Example 1 Why Axioms III and IV are needed! big time!

Let Π be $\Re \times \Re$, the usual real plane. Let lines be the usual notion of lines. But for every line ℓ define:

 Ψ^1_{ℓ} is the points in the plane that are not on ℓ and have both coordinates rational.

 Ψ^2_ℓ is the points in the plane that are not on ℓ and have at least one irrational coordinate.

Now Axiom II holds but the two half planes, while disjoint, are all mixed together.

Since the publishers omitted the proof of 7.46, I am posting it.

Theorem 2 (7.46) If $C \in {}^{\circ}\overline{AB}{}^{\circ}$ then $\overrightarrow{CB} \subseteq \overrightarrow{AB}$.

Proof. We show $X \notin \overrightarrow{AB}$ implies $X \notin \overrightarrow{CB}$ and apply contraposition. Without loss of generality we may assume X is on the line AB.

By 7.36, $C \in {}^{\circ}\overline{AB}{}^{\circ}$ implies $\overrightarrow{AC} = \overrightarrow{AB}$. Substituting, $X \notin \overrightarrow{AB}$ implies $X \notin \overrightarrow{AC}$. $X \notin \overrightarrow{AC}$ means $X \notin \Psi_m^C$ for any m with $m \cdot AB = A$. Thus X - A - C. So by Axiom IV, $A \in {}^{\circ}\overline{XC}{}^{\circ}$ and again by 7.36, $\overrightarrow{CX} = \overrightarrow{CA}$.

On the other hand, $C \in {}^{\circ}\overline{AB}^{\circ}$ implies by Axiom IV that A - C - B. That is,

$$CA \cap CB = \{C\}.$$

Since we just showed, $\vec{CX} = \vec{CA}$, substituting we have

$$\overrightarrow{CX} \cap \overrightarrow{CB} = \{C\}.$$

So X - C - B and we finish.