Weinzweig's axioms
(corrected Jan. 15; extended Feb. 17)
Definition $1 A$ geometry is a triple $\langle\Pi, \mathcal{L}, \Psi\rangle$ (points, lines, halfplanes) where each $\ell \in \mathcal{L}$ is a subset of Π and Ψ assigns to each ℓ a pair of subsets $\Psi_{\ell}^{1}, \Psi_{\ell}^{2}$ of Π - the halfplanes associated with ℓ.

Axiom 2 (I) Two points determine a line.
Axiom 3 (II) $\Psi_{\ell}^{1}, \Psi_{\ell}^{2}$ and ℓ are a partition of Π; neither halfplane is empty.
Definition $4(A-\ell-B)$ The line ℓ separates the points A and B if A and B are in different halfplanes of ℓ.
$[A-C-B]$ The point C separates the points A and B if C is on a line ℓ that separates A and B and C is on $A B$.
$[a-\ell-b]$ The line ℓ separates the lines a and b if a and b are subsets of different halfplanes of ℓ.

Axiom 5 (III) If ℓ separates the points A and B then ℓ meets $A B$ at some C. If C separates A and B and m is any line that intersects $A B$ at C then m separates A and B.

Definition 6 1. The closed half plane $\overline{\Psi_{\ell}}$ is $\Psi_{\ell} \cup \ell$.
2. If $\ell \cap A B=A, \psi_{B}^{\ell}$ is the ℓ-half plane containing B. And the ray $\overrightarrow{\psi_{B}^{\ell}} \cap \overline{A B}=$
3. For distinct points A, B, the em segment between A and $B, \overleftrightarrow{A B}$ is $\overrightarrow{A B} \cap$ $\overrightarrow{B A}$.
4. The open segment or interior of $\overleftrightarrow{A B}$ is denoted ${ }^{\circ} \overline{A B}^{o}$:

$$
{ }^{\circ} \overline{A B}^{o}=\overleftrightarrow{A B}-\{A, B\}
$$

Axiom 7 (IV) C separates A and B if and only if $C \in{ }^{\circ} \overline{A B}^{o}$.
Axiom 8 (V) There are two points.
Definition 9 There is one more component to a geometry. There is a function Γ which assigns to each line a mapping from Π into Π.

We write Γ_{ℓ} for the function assigned to ℓ. We denote the composition of two such functions by $\Gamma_{\ell} \Gamma_{m}$ and write 1 for the identity map on Π.

Recall that a mapping f is said to fix a point A if $f(A)=A$. A mapping f is said to fix a set X setwise if for every $A \in X, f(A) \in X$.

Axiom 10 (VI) For every ℓ, Γ_{ℓ} fixes each element of ℓ. For every $A \notin \ell$,

$$
A-\ell--\Gamma(\ell)\{A\} .
$$

Axiom 11 (VII) For every $\ell, \Gamma_{\ell} \Gamma_{\ell}=1$.
Axiom 12 (VIII) For every ℓ, Γ_{ℓ} preserves rays.
Definition 13 The group of mapping generated by the Γ_{ℓ} is called the group of rigid motions.

Axiom 14 (IX) For every ray $\overrightarrow{A B}$, if a motion fixes a ray set-wise then it is either the identity or $\Gamma_{A B}$.

Definition $15 a$ is perpendicular to b if Γ_{b} fixes a setwise.
The following is a version of the parallel postulate.
Axiom 16 (X) If $a \| b$ and $\ell \perp a$ then $\ell \perp b$.
Definition 17 The line t is the bisector of $\angle B A C$ if $\Gamma_{t}(A C)=A B$.
Axiom 18 (XI) There exists an angle bisector for every angle.
I prefer the equivalent version of Axiom XI: If a and b are intersecting lines there is a reflection mapping a to b.

