Weinzweig's axioms (corrected Jan. 15; extended Feb. 17)

Definition 1 A geometry is a triple $\langle \Pi, \mathcal{L}, \Psi \rangle$ (points, lines, halfplanes) where each $\ell \in \mathcal{L}$ is a subset of Π and Ψ assigns to each ℓ a pair of subsets $\Psi^1_{\ell}, \Psi^2_{\ell}$ of Π - the halfplanes associated with ℓ .

Axiom 2 (I) Two points determine a line.

Axiom 3 (II) $\Psi^1_{\ell}, \Psi^2_{\ell}$ and ℓ are a partition of Π ; neither halfplane is empty.

Definition 4 $(A - \ell - B)$ The line ℓ separates the points A and B if A and B are in different halfplanes of ℓ .

[A - C - B] The point C separates the points A and B if C is on a line ℓ that separates A and B and C is on AB.

 $[a - \ell - b]$ The line ℓ separates the lines a and b if a and b are subsets of different halfplanes of ℓ .

Axiom 5 (III) If ℓ separates the points A and B then ℓ meets AB at some C. If C separates A and B and m is any line that intersects AB at C then m separates A and B.

Definition 6 1. The closed half plane $\overline{\Psi_{\ell}}$ is $\Psi_{\ell} \cup \ell$.

- 2. If $\ell \cap AB = A$, ψ_B^{ℓ} is the ℓ -half plane containing B. And the ray $\overrightarrow{AB} = \frac{1}{\psi_B^{\ell} \cap \overline{AB}}$
- 3. For distinct points A, B, the em segment between A and B, \overrightarrow{AB} is $\overrightarrow{AB} \cap \overrightarrow{BA}$.
- 4. The open segment or interior of \overrightarrow{AB} is denoted \overline{AB}^{o} :

$$\widetilde{AB}^{o} = \widetilde{AB} - \{A, B\}$$

Axiom 7 (IV) C separates A and B if and only if $C \in {}^{\circ}\overline{AB}^{\circ}$.

Axiom 8 (V) There are two points.

Definition 9 There is one more component to a geometry. There is a function Γ which assigns to each line a mapping from Π into Π .

We write Γ_{ℓ} for the function assigned to ℓ . We denote the composition of two such functions by $\Gamma_{\ell}\Gamma_m$ and write 1 for the identity map on Π .

Recall that a mapping f is said to fix a point A if f(A) = A. A mapping f is said to fix a set X setwise if for every $A \in X$, $f(A) \in X$.

Axiom 10 (VI) For every ℓ , Γ_{ℓ} fixes each element of ℓ . For every $A \notin \ell$,

$$A - \ell - -\Gamma_{\ell}\ell \{A\}.$$

Axiom 11 (VII) For every ℓ , $\Gamma_{\ell}\Gamma_{\ell} = 1$.

Axiom 12 (VIII) For every ℓ , Γ_{ℓ} preserves rays.

Definition 13 The group of mapping generated by the Γ_{ℓ} is called the group of rigid motions.

Axiom 14 (IX) For every ray AB, if a motion fixes a ray set-wise then it is either the identity or Γ_{AB} .

Definition 15 a is perpendicular to b if Γ_b fixes a setwise.

The following is a version of the parallel postulate.

Axiom 16 (X) If $a \parallel b$ and $\ell \perp a$ then $\ell \perp b$.

Definition 17 The line t is the bisector of $\angle BAC$ if $\Gamma_t(AC) = AB$.

Axiom 18 (XI) There exists an angle bisector for every angle.

I prefer the equivalent version of Axiom XI: If a and b are intersecting lines there is a reflection mapping a to b.