
What is π?

I quote the following story from Wigner’s: Unreasonable Effectiveness of
Mathematics.

‘There story about two friends, who were classmates in high school, talk-
ing about their jobs. One of them became a statistician and was working
on population trends. He showed a reprint to his former classmate. The
reprint started, as usual, with the Gaussian distribution and the statistician
explained to his former classmate the meaning of the symbols for the actual
population, for the average population, and so on. His classmate was a bit
incredulous and was not quite sure whether the statistician was pulling his
leg. ”How can you know that?” was his query. ”And what is this symbol
here?” ”Oh,” said the statistician, ”this is pi.” ”What is that?” ”The ratio of
the circumference of the circle to its diameter.” ”Well, now you are pushing
your joke too far,” said the classmate, ”surely the population has nothing to
do with the circumference of the circle.”’

Recall that we have defined the measure of an angle as being an equiv-
alence class of congruent angles. Strictly speaking this is defined only for
angles formed by intersection of two distinct lines. Moreover, we defined the
addition of angles only when the ‘sum’ was less than a ‘straight angle’. We
defined ad hoc the notion of the sum of the sum of a supplementary sequence
of angles. (page 286)

We extend the notion of angle.

Definition 1. A straight angle is
→

AB ∪
→

AC where A, B, C are collinear.

We already proved:

Theorem 2. All straight angles are congruent.

Definition 3. π is the congruence class of straight angles.

Now we can talk about the sum of two angles being a straight angle (or
in Euclid’s parlance) - the sum is the same as the sum of two right angles.

Theorem 4. The sum of the interior angles of a triangle is π.

Proof. The angles are a supplementary sequence. (13.56).

Theorem 5. The sum of the interior angles of a convex n-gon is (n− 2)π.



Proof. There are n−2 triangle formed by connecting a given vertex to the
nonadjacent vertices of the triangle. The sum of the angles of these triangles
is the sum of the interior angles of the polygon.

Corollary 6. The sum of the central angles of a convex polygon (circle) is
2π.

Proof. Any point in the interior defines n-triangles (with bases the sides
of the polygons). The sum of all the angles is nπ. From Theorem 5 the sum
of the interior angles of the polygon is (n− 2)π, leaving 2π as the sum of the
central angles.

Definition 7. 1. C is a circle with radius b and center P if for each
X ∈ C, |XP | = r.

2. int C is the collection of points P with |XP | ≤ r.

3. For any points A, B on C the chord AB is the AB ∩ int C.

4. A central angle is an angle ∠CPB with vertex the center P of a circle
and C, B points on the circle. We insist that int ∠CPB is convex.

We follow Hilbert by saying that such definition determines some collec-
tion of points (possibly empty). There are theorems to say that the circle
C is non-empty. Indeed it is clear that every line through P contains two
points that are on C. Thus, unlike Euclid, we don’t have an axiom declaring
the existence of a circle with a given radius and center.

A priori there are two angles determined by every pair of lines with vertex
P ; we have chosen the smaller one as the central angle. The next remark
is evident from Definition 3. This is what is meant by saying there are 2π
radians (or 360o) in a circle.

Lemma 8. For any finite sequence of points A1, A2, . . . An on a circle C,
determining angles ∠AiPAi+1, the sum of the angles is 2π.

The proof of Archimedes
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that the circumference of a unit circle has length 2π is based on the definition
that the measure of a straight angle is π. By proportionality, we can extend
to prove the measure of an arc is the same as the measure of the central
angle.



Definition 9. 1. The segment AB is a diameter of the circle C with cen-
ter P if A, B ∈ C and P ∈ AB.

2. An angle ∠ABC is said to be circumscribed in a semicircle if all A, B, C
are points on a circle and A, C are the ends of a diameter.

Theorem 10. An angle circumscribed in a semicircle is a right angle.

Proof. Let P be the center, AB be a diameter and C ∈ C. Consider the
points C, C1 = ΓAB(C), C2 = ΓP (C).

Note CA ≈ C2B and CB ≈ C2A and CA ‖ C2B (under ΓP ). So by SSS,
4ACB ≈ 4BC2A. Similarly, 4ACC2 ≈ BC2C. Note that since C ∈ C,
and |PC| = |PC2|, C2 is on the circle and |AB| = |CC2|. By alternate
interior angles, ∠CAB ≈ ∠C2BA. So by SAS, 4ABC ≈ 4ACC2. Now the
four angles ∠ACB,∠CBC2, ∠BC2 and ∠CAC2 are all congruent. But the
sum of the four angles is 2π by Theorem 5 and so each has measure π/2 and
is therefore a right angle by Definition 3 and the definition of a right angle.
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Theorem 11. If AB is a diameter of C (with center P and radius r).

1. PA, PB have length r.

2. ΓAB fixes X setwise.

Proof. 1) is clear. For 2), let D ∈ C and D′ = ΓAB(D). Now PD ≈ PD′,
so D′ ∈ C.

We want a converse.

Theorem 12. If CD is a chord of C and ΓCD fixes C setwise then CD is a
diameter.

There were definite gaps in my argument for this and I have not had time
to work out the solution. My argument was to go through a proof that each
circle is convex. Here are two possibilities in that direction.

Lemma 13. For any circle C, int C is convex.

Proof.
Proof 1. (Weinzweig’s suggestion) For any finite sequence of points on the

circle the tangent to the circle at that point (i.e. perpendicular to the radius)



defines a half-plane which includes the circle. The intersection of these half-
planes is the circle and since the intersection of convex sets is convex, the
circle is convex.

Proof 2. It seems we could get a more ‘basic’ proof if we could prove:
given 4ABC. Choose D on BC. Then |AD| < |AB|. This ought to be a
variant on 13.61 but I haven’t seen how to do it yet.


