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ORIGINS

Zilber constructed several sentences φ in Lω1,ω(Q)

and

1. gave sufficient conditions for φ to be categorical

in every uncountable cardinal;

2. these sentences (conjecturally) provide more in-

formation about complex exponentiation.
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WHY GO BEYOND FIRST ORDER LOGIC?

I. Because it’s there.

A. To understand the infinite:

B. To understand canonical structures

II. To understand first order logic

III. To understand ‘Model Theory’

IV. To investigate ordinary mathematical struc-

tures

This is the first of two talks with different em-

phases on going beyond first order logic. The dif-

ferent foci of the talks are explained below.
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TO UNDERSTAND THE INFINITE!

Most known mathematical results are either

extremely cardinal dependent: about finite or

countable structures or at most structures of car-

dinality the continuum;

or completely cardinal independent: about ev-

ery structure satisfying certain properties.
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Understanding Classes of Models

Logics vrs classes of models: Robinson, Tarski,

Morley, Shelah

Model theory has discovered problems that have

an intimate relation between the cardinality of struc-

tures and algebraic properties of the structures:

i) Stability spectrum and counting models

ii) A general theory of independence

iii) Decomposition theorems for general models

There are structural algebraic, not merely com-

binatorial features, which are non-trivially cardinal

dependent.
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TO UNDERSTAND CANONICAL STRUCTURES

A Thesis of Zilber:

Fundamentally important structures like the com-

plex field can be described at least up to categoric-

ity in power in an appropriate logic.
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TO UNDERSTAND FIRST ORDER LOGIC

The study of first order logic uses without think-

ing such methods as:

1. compactness theorem

2. upward and downward Löwenheim-Skolem the-

orem

3. closure under unions of Elementary Chains

4. Ehrenfeucht-Mostowski models

We can better understand these methods and their

use in the first order case by investigating situa-

tions where only some of them hold.

There are important, not well understood, con-

nections between n-dimensional amalgamation in

the infinitary and first order situations.
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TO UNDERSTAND MODEL THEORY

What are the syntactial and semantical com-

ponents of model theory?

How does the ability to change vocabulary dis-

tinguish model theory from other mathematical

disciplines?

8



INVESTIGATE ORDINARY MATHEMATICS

1. Banach Spaces (Krivine, Stern, Henson, Iovino

et al)

2. Complex Exponentiation (Zilber)

3. Group Representations (Hytinnen-Lessmann-

Shelah)

4. Locally finite groups (Grossberg, Macintyre,

Shelah)
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THE CATEGORICITY SPECTRUM

Theorem 1 (Morley) A countable first order

theory T is categorical in one uncountable car-

dinal if and only if it is categorical in all un-

countable cardinalities.

Is first order crucial? Does the theorem general-

ize to other classes of models?

Some counterexamples:

Let the vocabulary contain a unary predicate P .

In L(Q) we can say both the set and its compli-

ment are uncountable. This theory is categorical

in ℵ1 and nowhere else.

With an additional binary relation we can say

2|P (M)| ≥ |M |. The class of reducts is categorical

in κ only if κ = iα for some limit ordinal α.

What kinds of classes do we mean?
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PCΓ CLASSES

A class K of τ -structures is called PC if it is the

collection of reducts to τ of the models of a first

order theory T ′ in some τ ′ ⊇ τ .

A class K of τ -structures is called PCΓ if it the

collection of reducts to τ of the models of a first

order theory T ′ in some τ ′ ⊇ τ which omit all

types in a specified collection Γ of types in finitely

many variables over the empty set.

While we give the next definition semantically

notice that obvious examples are the class of mod-

els of any sentence of Lκ,ω, for any κ.
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ABSTRACT ELEMENTARY CLASSES

Definition 2 A class of L-structures, (K,¹K),

is said to be an abstract elementary class: AEC

if both K and the binary relation ¹K are closed

under isomorphism and satisfy the following con-

ditions.

• A1. If M ¹K N then M ⊆ N .

• A2. ¹K is a partial order on K.

• A3. If 〈Ai : i < δ〉 is ¹K-increasing chain:

1.
⋃

i<δ Ai ∈ K;

2. for each j < δ, Aj ¹K
⋃

i<δ Ai

3. if each Ai ¹K M ∈ K then
⋃

i<δ Ai ¹K M .

• A4. If A,B, C ∈ K, A ¹K C, B ¹K C and

A ⊆ B then A ¹K B.

• A5. There is a Löwenheim-Skolem number

LS(K) such that if A ⊆ B ∈ K there is a

A′ ∈ K with A ⊆ A′ ¹K B and

|A′| ≤ LS(K) + |A|.
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TWO DIRECTIONS

A. Strong Syntax: No Assumption of upwards

Löwenheim-Skolem

Theorem 3 [Shelah]

1. (For n < ω, 2ℵn < 2ℵn+1) A complete Lω1,ω-

sentence which has few models in ℵn for each

n < ω is excellent.

2. (ZFC) An excellent class has models in ev-

ery cardinality.

3. (ZFC) Suppose that φ is an excellent Lω1,ω-

sentence. If φ is categorical in one uncount-

able cardinal κ then it is categorical in all

uncountable cardinals.

B. AEC’s with arbitrarily large models:

We focus on B in this talk.
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STRUCTURAL RESULTS

It is easy to see that every AEC with Löwenheim

number ℵ0 is determined by its restriction to count-

able models. All other models can be written as

direct limits of these.

But it is nontrivial to characterize those AEC in

which every model that can be written as a tree of

countable height of countable models. This is the

main gap, proved in

1. first order (Shelah)

2. excellent classes (Grossberg and Hart)

3. several variants for homogeneous model theory

( Grossberg, Hyttinen, Lessmann, Shelah).
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CONTEXT

Conjecture: Let X be the class of cardinals in

which a reasonably defined class is categorical.

Not both X and the complement of X are cofi-

nal.

(Note: So, PC-classes are not ‘reasonable’.)

We know this conjecture for first order theories

and for excellent classes in Lω1,ω. But it is open

even for general sentences in Lω1,ω. So it is rea-

sonable to investigate it first with quite strong hy-

potheses.

Of course, it is only interesting when K has arbi-

trarily large models – EM methods are applicable.
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EVENTUAL CATEGORICITY

Let H2 = H(H(|τ |)).
Theorem 4 (Main Result) If the AEC K has

1. ap and jep

2. is categorical in a successor cardinal λ where

(a) λ > H2 and

(b) for some χ < H(τ ) and any χ1, K is

weakly (χ, χ1)-tame

then K is categorical in every θ with

H2 ≤ θ.

Note this result is in ZFC.

Jep is assumed for convenience.

AP is a very significant assumption

We will discuss tameness and H(τ ) below.
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ATTRIBUTIONS

As stated this result depends on work of She-

lah [4] and Grossberg-VanDieren [3]; expositions

of various key lemmas are in several of my notes

[1, 2].

In particular, Shelah does not assume tameness

but only proves categoricity between H2 and λ.

The notion of inducting on cardinals is due to

Grossberg-Van Dieren as well as various specific

arguments attributed below. They prove upwards

categoricity from two successive categoricity car-

dinals assuming amalgamation, arbitrarily large

models and that for some χ less than the cate-

goricity cardinals and any χ1, K is weakly (χ, χ1)-

tame.
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THE PRESENTATION THEOREM

Every AEC is a PCΓ

More precisely,

Theorem 5 If K is an AEC with Lowenheim

number LS(K) (in a vocabulary τ with |τ | ≤
LS(K)), there is a vocabulary τ ′, a first order

τ ′-theory T ′ and a set of 2LS(K) τ ′-types Γ such

that:

K = {M ′ ¹ L : M ′ |= T ′ and M ′ omits Γ}.
Moreover, if M ′ is an L′-substructure of N ′

where M ′, N ′ satisfy T ′ and omit Γ then

M ′ ¹ L ¹K N ′ ¹ L.
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EM models

First order concepts:

Notation 6 1. For any linearly ordered set X ⊆
M where M is a τ -structure we write

Dτ (X) = Φ

(diagram) for the set of τ -types of finite se-

quences (in the given order) from X.

2. If X is a sequence of τ -indiscernibles with

diagram Φ = Dτ (X) and any τ model of Φ

has built in Skolem functions, then for any

linear ordering I,

EM(I, Φ)

denotes the τ -hull of a sequence of order in-

discernibles realizing Φ.
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Morley’s Omitting Types Theorem

Lemma 7 If (X,<) is a sufficiently long lin-

early ordered subset of a τ -structure M , for

any τ ′ extending τ (the length needed for X de-

pends on |τ ′|) there is a countable set Y of τ ′-
indiscernibles (and hence one of arbitrary order

type) such that Dτ (Y) ⊆ Dτ (X).

This implies that the only (first order) τ -types

realized in EM(X, Dτ ′(Y)) were realized in M .

Let H(κ) denote i(2κ)+.

The easiest formulation of ‘sufficiently long’ is:

|X| greater than H(|τ |).
Tighter estimates are possible, but we don’t need

them now.
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Hanf Numbers

Hanf numbers are functions from cardinals to

cardinals.

1. The Hanf number for omitting 2κ types is the

least cardinal Θ(κ) such that if a first order

theory in a vocabulary with cardinal κ has a

model of cardinality Θ that omits the family of

types then arbitrarily large models of T omit

them.

2. The Hanf number for a logic L is the least

cardinal Θ(κ) such that if an L-sentence in a

vocabulary with cardinal κ has a model of car-

dinality Θ then it has arbitrarily large models.

3. The Hanf number for AEC’s is the least cardi-

nal Θ(κ) such that if an AEC in a vocabulary

with cardinal κ has a model of cardinality Θ

then it has arbitrarily large models.

In each case, Θ(κ) ≤ H(κ) = i(2κ)+.

We write H(τ ) for H(|τ |).
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EM models for AEC

Theorem 8 If K is an abstract elementary class

in the vocabulary τ , which is represented as a

PCΓ class witnessed by τ ′, T ′, Γ that has arbi-

trarily large models, K has EM over ordered

sets of indiscernibles.

Thus the Hanf number for having models for the

class of AEC s with |τ | = κ is also H(κ).
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EM models for AEC–Long Form

If K is an abstract elementary class in the vocab-

ulary τ , which is represented as a PCΓ class wit-

nessed by τ ′, T ′, Γ that has arbitrarily large mod-

els, K has EM over ordered sets of indiscernibles.

there is a τ ′-diagram Φ such that for every linear

order (I, <) there is a τ ′-structure M = EM(I, Φ)

such that:

1. M |= T ′.

2. The τ ′-structure M = EM(I, Φ) is the Skolem

hull of I .

3. I is a set of τ ′-indiscernibles in M .

4. M ¹ τ is in K.

5. If I ′ ⊂ I then EMτ (I
′, Φ) ¹K EMτ (I, Φ).

Thus the Hanf number for having models for the

class of AEC s with |τ | = κ is also H(κ).
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Model Homogeneity

Definition 9 M is µ-model homogenous if for

every N ¹K M and every N ′ ∈ K with |N ′| <
µ and N ¹K N ′ there is a K-embedding of N ′

into M over N .

Lemma 10 (jep) If M1 and M2 are µ-model

homogenous of cardinality µ > LS(K) then

M1 ≈ M2.

Theorem 11 If K has the amalgamation prop-

erty and µ∗<µ∗ = µ∗ and µ∗ ≥ 2LS(K) then there

is a model M of cardinality µ∗ which is µ∗-
model homogeneous.

A monster model M exists
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GALOIS TYPES

Definition 12 Let M ∈ K, M ¹K M and a ∈
M. The Galois type of a over M is the orbit

of a under the automorphisms of M which fix

M .

Definition 13 The set of Galois types over M

is denoted ga− S(M).

We say a Galois type p over M is realized in N

with M ¹K N ¹K M if p ∩N 6= ∅.
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GALOIS SATURATION

Definition 14 The model M is µ-Galois satu-

rated if for every N ¹K M with |N | < µ and

every Galois type p over N , p is realized in M .

Theorem 15 For λ > LS(K), the model M is

λ-Galois saturated if and only if it is λ-model

homogeneous.
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GALOIS STABILITY

Definition 16 1. Let N ⊂M. N is λ-Galois-

stable if for every M ⊂ N with cardinality

λ, only λ Galois types over M are realized

in N .

2. K is λ-Galois-stable ifM is. That is autM(M)

has only λ orbits for every M ⊂ M with

cardinality λ.
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CATEGORICITY IMPLIES STABILITY

Theorem 17 If K is categorical in λ, then K

is σ-Galois-stable for every σ < λ.

This argument has the same form as the first

order proof. But one has to choose different linear

orders λ<ω for the skeletons.
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STABILITY YIELDS SATURATION

Corollary 18 Suppose K is categorical in λ and

λ is regular. The model of power λ is saturated

and so model homogeneous.

Proof. Choose in Mi ¹K M using < λ-stability

and Löwenheim-Skolem, for i < λ so that each Mi

has cardinality < λ and Mi+1 realizes all types

over Mi. By regularity, it is easy to check that Mλ

is saturated. 218
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MORLEY’S METHOD FOR GALOIS TYPES

Lemma 19 [II.1.5 of Sh394] If M0 ≤ M and

|M | ≥ H(|M0|),
we can find an EM-set Φ such that the fol-

lowing hold.

1. For every I, M0 ≤ EM(I, Φ).

2. EMτ (I, Φ) omits every Galois type over N

which is omitted in M .

Thus the Hanf number for omitting Galois types

in an AEC with |τ | = κ is also H(κ).
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MORLEY’S METHOD FOR GALOIS TYPES–Long form

[II.1.5 of Sh394]

If M0 ≤ M and

|M | ≥ H(|M0|),
we can find an EM-set Φ such that the following

hold.

1. The τ -reduct of the Skolem closure of the empty

set is M0.

2. For every I , M0 ≤ EM(I, Φ).

3. If I is finite, EMτ (I, Φ) can be embedded in

M .

4. EMτ (I, Φ) omits every galois type over N which

is omitted in M .

Thus the Hanf number for omitting Galois types

in an AEC with |τ | = κ is also H(κ).
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TOWARDS DOWNWARD CATEGORICITY

Theorem 20 Suppose M ∈ K omits a Galois

type p over a submodel M0 with |M | ≥ H(|M0|).
Then there is no regular cardinal λ ≥ |M | in

which K is categorical.

Proof. By Lemma 19, there is a model N ∈ K

with cardinality λ which omits p. But by Lemma 18,

the unique model of power λ is saturated. 220

That is categoricity in λ implies all models N

are ‘log’ |N |-saturated.

This is analogous to the step in Morley’s proof.

Every model of λ-categorical theory is ℵ1-saturated.

We need some significant new tools.
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TAMENESS

Definition 21 We say K is (χ, µ)-weakly tame

if for any saturated N ∈ K with |N | = µ < λ

if p, q,∈ ga − S(N) and for every N0 ≤ N with

|N0| ≤ χ, p ¹ N0 = q ¹ N0 then q = p.

(χ, µ)-tame means we must have the condition

for all models not just saturated ones.

We can formulate tameness in terms of groups

actions.

Let M be the model-homogenous structure of

cardinality µ.

Let N ¹K M .

If for every N0 ¹K N , with |N0| ≤ χ

there is an automorphism of M fixing N0 and map-

ping b to b′,

then there is an automorphism of M fixing N and

mapping b to b′,
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CATEGORICITY IMPLIES TAMENESS

The following is either a theorem or a conjecture.

Theorem 22 (9.4) Suppose K is λ-categorical

for the regular λ ≥ H(τ ). If H(τ ) < χ < λ

Then K is (χ,H(τ ))-weakly tame.

χ < λ rather than χ ≤ λ is a crucial issue.

See F659 as well as 394.
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CRUCIAL CONCEPTS

Vaughtian pairs

Definition 23 1. A (p, λ) Vaughtian pair is a

pair of models M ¹K N with p over a sub-

model of M and p nonalgebraic such that

p(M) = p(N) and |M | = |N | = λ.

2. A true (p, λ) Vaughtian pair is one where

both M and N are saturated.

3. A (p, κ, λ) model is a model N of power κ

with p ∈ ga − S(M) for some M ≺ N and

p(N) = λ; |M | ≤ λ.

Minimal Types

Definition 24 The Galois type p ∈ ga − S(M)

is minimal if it nonalgebraic (not realized in

M) and for every N with M ¹K N and |N | =

|M |, p has at most one nonalgebraic extension

to ga− S(N).
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DOWNWARD CATEGORICTY

Lemma 25 (9.7*2) If K is λ-categorical for a

regular λ > H(H(τ )) then

1. Every model of cardinality ≥ H(H(τ )) is

H(H(τ ))-saturated.

2. Consequently, K is H(H(τ ))-categorical.

Lemma 26 (9.7* 6-9) If K is λ+-categorical

for a λ > H(H(τ )) then there is a model M ∗

with cardinality H(τ ) such that there is no (p,H(H(τ )))

Vaughtian pair.

These results use tameness, EM-models, Mor-

ley’s two cardinal theorem and omitting of types.

Now we can work ourselves back up. The limit

on going up is the necessary use of tameness.

36



UP ONE CARDINAL

Theorem 27 Suppose |M | = µ, K is µ-categorical,

p ∈ S(M) is minimal, and there is no (p, µ)-

Vaughtian pair. Then every model of cardinal-

ity µ+ is saturated.
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THE INGREDIENTS

Lemma 28 Let p ∈ ga − S(M), |M | = µ and

suppose there is no (p, µ) Vaughtian pair. Then

any N with |N | = µ+ and M ¹K N has µ+

realizations of p.

Definition 29 N admits a (p, λ, α)-resolution

over M if |N | = |M | = λ and there is a con-

tinuous increasing sequence of models Mi with

M0 = M , Mα = N and a realization of p in

Mi+1 −Mi for every i.

Theorem 30 [Grossberg VanDieren]

Assume p ∈ ga − S(M) is minimal and K does

not admit a (p, λ)-Vaughtian pair. If N admits

a (p, λ, α)-resolution over M , with α = λ · α
then N realizes every q ∈ ga− S(M).
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Proof of UP ONE CARDINAL

The up-one theorem Suppose |M | = µ, K

is µ-categorical, p ∈ S(M) is minimal, and there

is no (p, µ)-Vaughtian pair. Then every model of

cardinality µ+ is saturated.

Proof. Let N ∈ K have cardinality µ+. Choose

any M ¹K N with cardinality µ. We will show ev-

ery type over M is realized in N . By µ-categoricity

M and p can be taken as in the hypotheses. Fix

α with α · µ = µ. By Lemma 28, p is realized µ+

times in N ; easily, there is N ′ with M ¹K N ′ ¹K

N such that N ′ admits a (p, µ, α)-decomposition.

By Theorem 30, N ′ and a fortiori N realize every

type over M and we finish. 227
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SPLITTING-SHORT FORM

There is a notion of non-splitting, patterned on

the first order case, which has appropriate exten-

sion properties to yield.

Suppose an AEC with amalgamation and joint

embedding is categorical in λ. If M ¹K N are

saturated models in K with |M | < |N | ≤ λ and

p ∈ ga − S(M), p has an extension to ga − S(N)

which does not |M |-split over M .

The proof requires a careful use of EM models

and properly chosen linear orders.
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GOING UP

Suppose (H(τ ),∞)-tame and K is λ+-categorical

for some λ > H(H(τ )) = H2. Then K is categor-

ical in all cardinals greater than H2.

1. The hypothesis of ‘up-one’ are satisfied by the

model in H2. So K is both H2 and H+
2 -categorical.

2. (Grossberg-VanDieren). For any µ > H2, cat-

egoricity in µ and µ+ implies categoricity in

µ++.

3. (Grossberg VanDieren) If κ is singular and there

is a unique model in each cardinality less than

κ, which is saturated, then every model of power

κ is saturated. Hence, K is κ-categorical.

4. In fact, this model of power κ also satisfies the

hypotheses of Theorem up-one. (Using non-

splitting to transfer Vaughtian pairs and mini-

mal types.)
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SUMMARY

Working in AEC with amalgamation, we can use

four important tools:

1. Galois-types

2. EM models over indiscernibles

3. Vaughtian pairs

4. splitting

If we add the full tameness hypothesis, this resolves

the eventual categoricity conjecture.

Problems:

1. Remove tameness hypothesis

2. Remove amalgamation hypothesis

3. Make connections with syntax – e.g. Lω1,ω(Q).
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