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Abstract. A linear space is a system of points and lines such that any two

distinct points determine a unique line; a Steiner k-system (for k > 2) is a linear

space such that each line has size exactly k. Clearly, as a two-sorted structure,
no linear space can be strongly minimal. We formulate linear spaces in a (bi-

interpretable) vocabulary τ with a single ternary relation R. We prove that for

every integer k there exist 2ℵ0 -many integer valued functions µ such that each
µ determines a distinct strongly minimal Steiner k-system Gµ, whose algebraic

closure geometry has all the properties of the ab initio Hrushovski construction.

Thus each is a counterexample to the Zilber Trichotomy Conjecture.

1. Introduction

Zilber conjectured that every strongly minimal set was (essentially) bi-inter-
pretable either with a strongly minimal set whose associated acl-geometry was
trivial or locally modular, or with an algebraically closed field. Hrushovski [Hru93]
refuted that conjecture by a seminal extension of the Fräıssé construction of ℵ0-
categorical theories as ‘limits’ of finite structures to construct strongly minimal
(and so ℵ1-categorical) theories. In this paper we modify Hrushovski’s method
to construct 2ℵ0-many strongly minimal Steiner systems that also violate Zilber’s
conjecture. The examples arising from Hrushovski’s construction have been seen
as pathological, and there has been little work exploring the actual theories. The
new examples that we construct here are infinite analogs of concepts that have
been central to combinatorics for 150 years. But most of these investigations
(e.g. [BB93,CR99,RR10]) focus on finite systems.

Our construction of strongly minimal linear spaces via a Hrushovski construc-
tion might lead in two directions: (i) explore infinite Steiner systems investigating
combinatorial notions appearing in such papers as [Cam94, CW12, GW75, Ste56];
(ii) search for further mathematically interesting strongly minimal sets with exotic
geometries. This paper is an essential prerequisite for the sequel [Bal20], where
we address both issues by showing for k > 3 that the examples here are essentially
unary1, expand the techniques used here to construct strongly minimal quasigroups,
and extend the combinatorial analysis of [CW12] to those quasigroups.

Our construction combines methods from the theory of linear spaces/combina-
torics and model theory. A linear space (Definition 2.4) is a system of points and
lines such that any two points determine a unique line. A Steiner k-system is a
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linear space such that all lines have size k. We explain strong minimality below,
and explore its connection with Steiner systems in Section 2.1.

The key ingredient of our construction is the development in [Pao21] of a new
model theoretic rank function inspired by Mason’s α-function [Mas72], which arose
in matroid theory. Using this new rank to produce a strongly minimal set requires
a variant on the Hrushovski construction [Hru93] with several new features.

This is the first of a series of papers exploring these examples. Here are the main
results of this paper; they depend on definitions explained below.

• Theorem 2.9: The one-sorted (Definition 2.1) and two-sorted (Defini-
tion 2.4) notions of linear space are bi-interpretable.
• Theorem 2.7(2): For each k, with 3 6 k < ω, there are 2ℵ0-many strongly

minimal theories Tµ (depending2 on an integer valued function µ) of infinite
linear spaces in the one-sorted vocabulary τ that are Steiner k-systems.
• Conclusion 6.3: Each theory Tµ admits weak3 elimination of imaginaries,

its geometry is not locally modular, but it is CM-trivial and so it does not
interpret a field. Thus, it violates Zilber’s conjecture.

The last two results make sense only in the one-sorted vocabulary τ (see below
for a more detailed explanation of this). This phenomena is symptomatic of the
interplay among model theory, finite geometries and matroid theory. Notions in
these areas are ‘almost’ the same. Sometimes ‘almost’ is good enough and some-
times not. The same intuitive structures are formalized in different vocabularies
and in different logics depending on the field. Thus, the first task of this paper
is to explain this interaction. The first main result addresses this issue; further
refinements on bi-interpretability appear in Section 2.3 and even more in [Bal20].

We investigate here a new case where the structures have classical roots. Much
of the current research on strongly minimal theories (as opposed for example to
the strongly minimal sets discovered in differentially closed fields) focuses on clas-
sifying the attached acl-geometry. Work of Evans, Ferreira, Hasson, and Mermel-
stein [EF11,EF12,HM18,Mer18] suggests that up to arity or more precisely, purity,
(and modulo some apparently natural conditions4) any two acl-geometries associ-
ated with strongly minimal Hrushovski constructions are locally isomorphic. This
analysis is orthogonal to our program, which focuses on the particular strongly
minimal theories constructed.

The naive observation that a plane has Morley rank 2 motivated the construc-
tion in [Bal94] of an ℵ1-categorical non-Desarguesian projective plane of Morley
rank exactly 2. The novelty of that result is the failure of the Desarguesian axiom;
while the projective plane over C has Morley rank 2, it is ‘field-like’ and so Desar-
guesian. The result here complements that example, weakening ‘projective plane’
to ‘plane’ (a linear space which admits the structure of a simple rank 3 matroid)
while strengthening Morley rank 2 to strongly minimal (i.e. Morley rank 1 and
Morley degree 1). And the examples turn out to be Steiner systems.

2The theory of course depends on the line length k; k is coded by µ so we suppress the k.
3In view of Lemma 5.26 and Fact 6.2 our argument may, in very special cases, require naming

finitely many constants to guarantee that acl(∅) is infinite.
4In [EF11,EF11], the class of finite structures is restricted only by the dimension function and

properties of µ, that satisfy several technical conditions, which don’t hold in some constructions
in [Bal20], as opposed to such axioms as ‘two points determine a line’ here or the existence of a

quasigroup structure in [Bal20].
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A key difference from the finite situation is that k-Steiner systems of finite car-
dinality v occur only under strict number theoretic conditions on v and k. In
contrast, for every k, we construct theories with countably many models in ℵ0 and
one in each uncountable power that are all Steiner k-systems. But the number the-
ory reappears when we attempt to find algebraic structures associated with these
geometries. One goal is to coordinatize the Steiner systems by nicely behaved alge-
bras. A substantial literature [Ste57,Ste56,GW75,GW80] builds a correspondence
between k-Steiner systems and certain varieties of universal algebras. But while
this correspondence is a bi-interpretation for k = 3, it does not rise to that level
in general. Indeed, for k > 3, we show [Bal20] that none of the strongly minimal
Steiner systems constructed here interpret a quasi-group5. We also prove there that
for q a prime power, and V an appropriate variety, for each of our theories Tµ there
is a theory Tµ,V of a strongly minimal quasigroup in V that interprets a q-strongly
minimal Steiner system.

As already mentioned, most of the literature on linear spaces focuses on finite
structures, but Cameron [Cam94] asserts:

There is no theory of infinite linear spaces comparable to the enor-
mous amount known about finite linear spaces. This is due to two
contrasting factors. First, techniques which are crucial in the finite
case (notably counting) are not available. Second, infinite linear
spaces are too easy to construct; instead of having to force our
configurations to close up, we just continue adding points and lines
infinitely often! The result is a proliferation of examples without
any set of tools to deal with them.

We import non-trivial constructions from model theory to build interesting lin-
ear spaces. Since we are interested in finding theories rather than structures, we
construct families of similar Steiner systems that are similar both combinatorially
and model theoretically. Perhaps this technique could become a tool in studying
infinite linear spaces as stability has already influenced graph theory [MS14].

Studying the (a, b)-cycle graph [CW12] associated with Steiner triple systems
(Definition 4.9), already yielded a perspicuous proof that we have constructed con-
tinuum many theories (Corollary 5.23). In [Bal20] we extend the notion of graph
cycle from Steiner triple systems to Steiner q-systems, for q a prime power, and
produce examples of Tµ that have only finite cycles (called paths in the more gen-
eral situation) in the prime model but infinite cycles in all others. By cutting away
from the class of finite models some that have low δ-rank, it is fairly easy to guar-
antee that all models of Tµ are 2-transitive. By making a relatively large such cut
Hrushovski [Hru93, Example 5.2] produced an example, which as a side effect, is
a Steiner triple system. But this construction does not generalize uniformly, as
ours does, to get Steiner k-systems for larger k. With less extreme surgery we find
in [Bal20] theories of q-Steiner system such that every model is 2-transitive and
thus the path graph is uniform in a sense inspired by [CW12].

There have been a number of papers that use model theoretic techniques and,
in at least one case, the Hrushovski construction, to investigate linear spaces and

5A quasigroup is a structure (A, ∗) such that specification of any two of x, y, z in the equation

x∗y = z determines the third uniquely. This roughly corresponds to the current usage of groupoid.
But, in the literature mentioned in the paragraph a groupoid is an algebra with a single binary

function.
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Steiner systems. Our approach differs by invoking a predimension function inspired
by Mason’s α-function, and focusing on the combinatorial consequences of strong
minimality by investigating the family of similar (elementarily equivalent) struc-
tures of arbitrary cardinality arising from a particular strongly minimal k-Steiner
system. In contrast, Evans [Eva04] constructs Steiner triple systems using a variant
of the Hrushovski construction without discussing their stability class. At the op-
posite end of the stability spectra from our result, Barbina and Casanovas [BC1x]
find existentially closed Steiner triple systems that are TP2 and NSOP1 by a tra-
ditional Fräıssé construction. Remark 6.1 compares their example with ours in
more detail. Between these extremes, Hytinnen and Paolini [HP] show that the
Hall construction of free projective planes yields a strictly stable theory. Conant
and Kruckman [CK16] find an existentially closed projective plane and prove it is
NSOP1 but not simple. Their construction involves a generalized Fräıssé construc-
tion for the existential completeness as well as the Hall construction.

Thus, there are four techniques that construct infinite linear spaces in a range
of stability classes: taking all extensions in a given universal class but insisting on
finite amalgamation in a standard Fräıssé construction [BC1x], building one chain
of models carefully [HP], combining these two methods but allowing the amalgam of
finite structures to be countable [CK16], and, as here, restricting the amalgamation
class to guarantee a well-behaved acl-geometry.

Section 2.1 provides background on strong minimality and linear spaces, and
proves the bi-interpretablity between the one and two-sorted approach. Sections 3
and 4 lay out the distinctions in the basic theory between the general Hrushovski
approach and the specific dimension function for linear spaces studied here. In
Section 5 we prove the main existence theorem for strongly minimal Steiner systems
and in Section 6 we discuss the connection with recent work on the model theory
of Steiner systems and expound the underlying properties which show that our
examples have the usual ‘geometric’ properties of Hrushovski constructions. We
thank the referee for a very helpful report.

2. Strong Minimality, Linear Spaces, Matroids and planes

The goals of this paper and the sequel are to construct strongly minimal linear
spaces, in fact, Steiner systems and to investigate some of the relevant connections
between model theory and combinatorics. In this section we describe strong mini-
mality on the one hand, and the combinatorial notions of linear space, matroid, and
some notions from design theory on the other. The sophisticated study of strongly
minimal sets depends on the general framework of one-sorted first-order logic; lin-
ear systems are usually studied in a two-sorted first-order logic, while matroids are
rarely formalized (See Section 2.4.). We explore here the role of and translations
between these various ‘formalisms’. Most of our work takes place in the following
context:

Definition 2.1 (Linear Spaces in τ). Let τ contain a single ternary relation symbol
R which holds of sets of 3 distinct elements in any order. K∗, the class of linear
spaces, consists of the τ -structures that satisfy: any two distinct points determine a
unique line when R is interpreted as collinearity. That is, R(x, y, z)∧R(x, y, w)→
R(x,w, z). Each pair of elements is regarded as lying on a (trivial) line; each non-
trivial line is a maximal R-clique.
K∗0 denotes the collection of finite structures in K∗.
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The switch from a 2-sorted to a 1-sorted formalism leads to some peculiar no-
tation. In the two-sorted world, a line in (M ;PM , LM ) can gain points when M
is extended. In the one-sorted context a line is a subset of the universe which is
definable from any two points lying on it. But this definition is non-uniform. If
the line is trivial (only two points) the definition is x = a ∨ x = b; if the line is
non-trivial the definition is R(a, b, x). As a model M is extended, not only may a
line gain points, but the correct such definition can change.

2.1. Strongly Minimal Theories

A complete theory T is strongly minimal if every model of T is a strongly minimal
structure. Prototypic examples of strongly minimal theories include completions of
the pure theory of equality, vector spaces, and algebraically closed fields.

We define the model theoretic algebraic closure of a set A ⊆M to be6:

aclM (A) = {b ∈M : M |= ϕ(b, a) ∧ for some k (∃k!x)ϕ(x, a)},
where the ϕ(x, a) vary over all formulas with parameters from A. In any strongly
minimal structure M , the operator acl induces a matroid (pre-geometry) on the
subsets of M (see e.g. [BL71]). This pre-geometry is infinite dimensional if M is
saturated. If aclM (a) = {a}, for every a ∈ M , then (M, aclM ) is a simple matroid
(a combinatorial geometry). Strong minimality imposes significant restrictions on
the structure M due to the following:

Fact 2.2. If M is strongly minimal, then for every formula ϕ(x, y), there is an
integer k = kϕ such that for any a ∈ M , (∃>kϕx)ϕ(x, a) implies that there are
infinitely many solutions of ϕ(x, a), and thus finitely many solutions of ¬ϕ(x, a).

This is an easy consequence of the compactness theorem: if the conclusion fails
the collection of sentences {(∃>kx)ϕ(x, y) ∧ (∃>kx)¬ϕ(x, y) : k < ω} is finitely sat-
isfiable and so realized by some a∗ in an elementary extension N of M , which con-
tradicts strong minimality. This result allows us, by suppressing the dependence of
k on ϕ, to introduce the abbreviation (∃∞x)ϕ(x, a) for (∃>kϕx)ϕ(x, a). As, in our
context, the second assertion implies the first, which is usually not first-order.

Fact 2.2 has an immediate consequence for any strongly minimal linear space,
(M,R) ∈ K∗ (cf. Definition 2.1), where all lines have at least 3 points: there can
be no infinite lines. Suppose ` is an infinite line. Choose A not on `. For each
Bi, Bj on ` the lines ABi and ABj intersect only in A. But each line Bi has a
point not on ` and not equal to A. Thus ` has an infinite definable complement,
contradicting strong minimality. More strongly, we observe:

Fact 2.3. If (M,R) is a strongly minimal linear space, then there exists an integer
k such that all lines have length at most k.

As, R(x, y, z) means7 x, y, z are collinear, i.e. x is on the line determined by
y, z, applying Fact 2.2 we see that there is k = kR such that (∃>kRx)R(x, a, b)
implies the line through a, b is infinite, which contradicts the preceding paragraph.
In particular, there can be no strongly minimal affine or projective plane, since in
such planes the number points on a line must equal the number of lines through a
point (+1 in the finite affine case).

6(∃k!x)ϕ(x, a) means that there are exactly k-solutions of ϕ(x, a); we similarly use (∃>kx).

These are abbreviations of first-order formulas.
7We require any triple satisfying R to be of distinct points.
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2.2. (Families of) Linear Spaces

We begin with the notion of linear space as expounded in [BB93]. We formalize
this notion in the usual first-order two-sorted way. In Definition 2.1 we provided
a one-sorted formalization of linear spaces, and in Theorem 2.9 we will prove that
the two definitions are bi-interpretable.

Definition 2.4 (Linear Spaces in τ+). A linear space is a structure S for a vo-
cabulary τ+ with unary predicates P (points) and L (lines) and a binary relation I
(incidence) satisfying the following properties:

(A) any two distinct points lie on at exactly one line;
(B) each line contains at least two points.

K+ denotes the collection of τ+-structures that are linear spaces.

Remark 2.5. We omit in Definition 2.4 the usual non-trivality condition that
there are at least three points not on a common line. It will of course be true of
the infinite structures that we construct, but allowing even the empty structure is
technically convenient.

While [BB93] deals almost exclusively with finite linear spaces, the definition
extends (as the authors noted) to allow infinite spaces. We pause to describe several
different descriptions of linear spaces, most notably pairwise balanced designs (as
defined in [Wil72]):

Definition 2.6 (PBD). A finite design is a pair (X,L) where X is a finite set and
L is a family {Bi : i ∈ I} of (not necessarily distinct) subsets (blocks) of X.

(1) For v > 0 and λ > 0 integers, and K a set of positive integers, a design (X,L)
is a (v,K, λ)-PBD, Pairwise Balanced Design, if and only if:
(a) |X| = v;
(b) |Bi| ∈ K;
(c) every two element subset of X is contained in exactly λ blocks Bi.

(2) A Pairwise Balanced Design is said to be a Steiner system if λ = 1 and |K| = 1
(i.e. all blocks have the same size).

An infinite PBD is obtained by omitting the requirement that v is finite.

If K = {k}, we adopt the standard notation of Steiner k-system.
Condition (1)(c) is read as asserting that the design is pairwise balanced with

index λ. Any finite linear space is a (v,K, λ)-PBD for some K and with λ = 1.
Fact 2.3 gives (1) of the next theorem; (2) is a consequence of our main construction.

Theorem 2.7. (1) A strongly minimal infinite linear space in the vocabulary τ
(cf. Definition 2.1) is a (v,K, 1)-PBD for some finite set of integers K.

(2) For each 3 6 k < ω, we construct continuum-many strongly minimal infinite
linear spaces in the vocabulary τ that are Steiner k-systems.

2.3. One and Two-Sorted Formalization

We explore the historical connections between the one and two-sorted approach
to combinatorial geometry and indicate that while our formalizations are bi-inter-
pretable in the usual sense of model theory they differ in important ways. In par-
ticular, as mentioned in Section 2.1, the one-sorted version can be strongly minimal
while the two-sorted one cannot. Hilbert’s axiomatization of geometry is naturally
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formulated as a first-order two-sorted incidence geometry8 and this framework is
developed in, e.g., Hall [HJ43]. This tradition is continued with Definition 2.4
of linear spaces as two-sorted structures in a vocabulary τ+ for first-order logic.
Tarski aimed for a first-order foundation for Euclidean geometry and pioneered a
single-sorted approach to geometry summarised in [GT99]. Here the fundamental
relation is a ternary predicate interpreted as ‘betweenness’ or more generally as
‘collinearity’. In order to apply standard model theoretic tools, we provide a first-
order single-sorted framework in a vocabulary τ that is equivalent (for our purposes;
recall, however, that Morley rank is not preserved) to the study of linear spaces.

In the next definitions, we regard a linear space in the vocabulary τ+ (cf. Def-
inition 2.4) as a τ -structure (cf. Definition 2.1); this is easily done. Given a τ+-
structure B as in Definition 2.4, define a τ -structure A by letting A be P (B),
the points of B, and defining R(a, b, c) if and only there is line ` in B such
that each of a, b, c is on `.

Remark 2.8. We now show that the class K∗ (Definition 2.1) of single-sorted
linear spaces is bi-interpretable with the class K+ of linear spaces in the two-
sorted vocabulary τ+ (cf. Definition 2.4). Notice that conditions (A) and (B) of
Definition 2.4 imply that every pair of distinct lines intersects in at most one point.
Also, recall that we allow models with no points or lines.

We define a pair of mutually inverse bijections from the models of a class of
τ -structures to a class of τ+-structures and back that are uniformly definable, re-
spect isomorphism, and preserve substructure. The notion that ‘bi-interpretability’
means ‘same’ requires some clarification. On the one hand, we have already men-
tioned that the transformation here does not preserve Morley rank/degree. This is
because the lines of the τ+ structure are interpreted as imaginary elements (equiva-
lence classes) of the associated τ -structure (More concretely; this is a 2-dimensional
interpretation [Hod93, 212].). On the other hand, such properties as decidability,
ℵ1-categoricity, and λ-stability are preserved by first-order bi-interpretability.

While the next theorem explicitly gives an isomorphism of categories (with em-
beddings as morphisms), by changing notation we could construct a bi-interpretation
in the classical sense of [Hod93, Section 5.3] between K+ and K∗. For example,
the domain of the interpretation of K+ into K∗ in part (1), which Hodges would
label ∂F , is: ∆(A2) ∪ (A2 −∆(A2))/E. Our formulation is awkward for the usual
applications to decidability but natural for our ‘equivalence’ between structures.
Such a reformulation is a real strengthening since bi-interpretability of A and B
is equivalent to their endomorphism rings being continuously isomorphic [AZ86]
while mere isomorphism of those monoids gives equivalent categories of models as
in [Las82]. But [BEKP16] shows that there are ℵ0-categorical structures which
have isomorphic but not continuously isomorphic endomorphism monoids.

Theorem 2.9. (1) There is an interpretation F of K+ into K∗. That is, for every
A ∈ K∗ there is a τ+-structure F (A) ∈K+ definable without parameters in A.

(2) There is an interpretation G of K∗ into K+. That is, for every B ∈ K+ there
is a τ -structure G(B) ∈K∗ definable without parameters in B.

(3) For any A ∈K∗, G(F (A)) is definably isomorphic to A and for any B ∈K+,
F (G(B)) is definably isomorphic to B. Thus we have a bi-interpretation.

8Although he includes two non-first-order axioms; all the properly geometric work is first-order
axiomatized [Bal18,Bal19].
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Proof. We prove (1). Let A ∈ K∗. Set P = {(a, a) : a ∈ A} as the set of points of the
τ+-structure F (A). Towards describing the lines, define the following equivalence
relation E on A2−P by declaring (a, b)E(c, d) if and only if the following condition
is met:

(?) {a, b} = {c, d} or {a, b} ∪ {c, d} is an R-clique.

We verify that E is transitive. To this end, suppose that (a, b)E(c, d) and (c, d)E(e, f),
e 6= f , {a, b} 6= {c, d} and {c, d} 6= {e, f}. Since each pair is of distinct elements
both {a, b, c, d} and {c, d, e, f} are R-cliques and since two points determine a line
{a, b, c, d, e, f} is an R-clique and transitivity is established. Now, let

L = {[(a, b)]E : (a, b) ∈ A2 such that a 6= b}
be the set of lines of F (A). For (p, p) ∈ P and [(a, b)]E ∈ L define the following
point-line incidence relation:

(p, p)I[(a, b)]E ⇔ ∃(c, d) ∈ [(a, b)]E such that p ∈ {c, d}.
Clearly, F (A) is definable in the τ -structure (A,R). We show that F (A) ∈ K+,
i.e. Definition 2.4 is satisfied. Obviously, Axiom (B) is satisfied. We prove axiom
(A). Towards this goal, let `1 and `2 be two distinct lines of F (A) that intersect
(via the definition of I) in two distinct points (b1, b1) and (b2, b2). By hypothesis
`1 6= `2 and so, we can assume `1 = [(b1, b2)]E and there is (c, d) ∈ A2 such that
c 6= d, ¬E((b1, b2), (c, d)) and (c, d) ∈ `2. Note that any E-equivalence class of
element with more than 3 elements consists of an R-clique and distinct R-cliques
can intersect in only one point; so, we finish.

We prove (2). Let B ∈K+. Define the τ -structure G(B) = (A,R) by letting A be
the points of B and defining R(a, b, c) if and only if a, b, c are distinct and there is
a line ` in B such that each of a, b, c is on `. Since B is a linear space the axioms
of K∗ are immediate.

We prove (3) by showing that up to definable isomorphism G is F−1. Fix A
and F (A) from (1). We analyze the composition G(F (A)) and show the image
is definably isomorphic to A. The set of points, PF (A), is the diagonal ∆(A2)
of A2. Map (a, a) to a. The set of lines of F (A) is LF (A) = (A2 − ∆(A2))/E.
Let m ∈ LF (A) and suppose (a0, a0), (a1, a1), (a2, a2) are on m, where the ai are
distinct. By the definition of I in F (A), for each i < 3 there exists an a′i such that
for i 6= j, [(ai, a

′
i)]E = [(aj , a

′
j)]E . By (∗) this implies the ai, a

′
i for i < 3 (some may

be repeated) form an R-clique in A. Thus G(F (A)) is definably isomorphic to A.
Now we reverse the procedure and show that for B ∈ K+, F (G(B)) is definably
isomorphic to B. This is even easier. If a, b, c are collinear in B, then G(B) |=
R(a, b, c) (Note PB is the domain of G(B)). For this, recall the argument in part
(1) showing F (A) ∈ K∗ takes collinear points of A into a clique composed of
elements of the diagonal of G(B), which correspond to a clique in B. Applying this
argument to G(B) completes the proof.
Finally, this shows, in the case at hand, the essential point of [Mak18], that F is
onto from K∗ to K+.

2.4. Connections with Matroids

The convention in matroid theory is to regard the rank as (normal geometri-
cal dimension) + 1. For example, a ‘plane’ is a rank 3 matroid. By a plane we
here mean a model of a first-order single-sorted representation of the class of simple
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matroids of rank 3. In describing this representation we lay out a formal correspon-
dence (i.e.a bi-interpretation) between the matroidal and axiomatic approaches (as
incidence structures) to geometry. The functorial correspondence between matroids
and certain incidence structures is well-known to experts, but, at the best of our
knowledge, the formal correspondence by model-theoretic means in Lemma 2.12
has, like that in Theorem 2.9, not been made explicit in the literature.

As is well-known, see e.g. [WN85, Chapter 2], matroids can be defined using
many different notions as primitive. Among them are the notions of dependent
set, circuit, independent set, basis, etc. In this work we will assume as primary
the notion of dependent set. In e.g. [Oxl92, WN85], a collection D of dependent
sets is any collection of non-empty finite sets, closed under superset, and satisfying
the well-known Exchange Axiom of Definition 2.10(2). The matroid theorist writes
axioms in the fashion of Euclid, Hilbert in 1899 [Hil71], or Bourbaki; there is no
formal language. In fact, no standard logic can directly express these axioms,
since the collection of dependent sets contains finite set of various cardinalities.
Notionally, his arguments and definitions can be formalized in ZFC, but this is not
an issue to him. It is however crucial to our enterprize to describe our structures
in first-order single-sorted logic.

For this, as in [Bal84], we first work in a relational vocabulary τ̌ = {Rn : 1 6
n < ω}, where Rn is an n-ary relation symbol. Our axioms on τ̌ -structures first
require that each Rk is a uniform-k-hypergraph, that is, M |= Rn(a1, ..., an) implies:

(1) ai 6= aj for every 1 6 i < j 6 n;
(2) M |= Rn(aσ(1), ..., aσ(n)), for each σ ∈ Sym({1, ..., n}).

Consequently, if X ⊆M , (x1, ..., xn) is an injective enumeration of X and M |=
Rn(x1, ..., xn), then we can write M |= Rn(X). Given a τ̌ -structure M and D ⊆ω
M we say that a set D is dependent if M |= R|D|(D). The further axioms in
Definition 2.10 require the Rn to code in this way dependent sets of size n, for
1 6 n < ω. For emphasis, we write the first and third axioms as τ̌ sentences but
we use the abbreviations introduced above to make the exchange axiom easier to
read.

Definition 2.10 (Planes in τ̌). Following [WN85] (see, in particular, [WN85,
Proposition 2.2.3 and Theorem 2.2.6]) the class Kτ̌ of simple matroids of rank 6 3
can be defined as the class of τ̌ -structures M such that each Rk is a uniform-k-
hypergraph and satisfy the following further axioms:

(1) (∀x)¬R1(x), (∀x, y)[x 6= y → ¬R2(x, y)];
(2) if D1, D2 ⊆ω M are dependent and D1 ∩D2 is not dependent, then for every

a ∈M we have that D1 ∪D2 − {a} is dependent;
(3) for all n > 4, ∀x1, . . . xnRn(x1, . . . xn).

We call K τ̌ the class of planes.

In matroid parlance, condition (1) asserts that we consider only simple matroids;
in the language of combinatorial geometry it asserts that the structure is a geometry,
not merely a pre-geometry. The more usual requirement for a matroid that a
superset of a dependent set is dependent follows immediately from (1) and (3).
When dealing with simple matroids of rank 3 we can replace τ̌ by the vocabulary
with a single ternary relation symbol R = R3 (see Definition 2.1 and Theorem 2.9).
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The formulation in the last paragraphs deliberately smudges the transition be-
tween the informal and the formal first-order viewpoint. In the further development
we will have to remind ourselves of the conditions we put on the Rn for n > 3.

Table 1 may help in navigating among the various choices of vocabulary (lan-
guage) for first-order axiomatizations of linear spaces and matroids.

Language Class Context
τ K∗ One-sorted linear spaces (cf. Definition 2.1)
τ+ K+ Two-sorted linear spaces (cf. Definition 2.4)
τ̌ Kτ̌ Matroids of rank 3 (cf. Definition 2.10)

τ Ǩ Matroids of rank 3 as τ -structures (cf. Definition 2.11)

Table 1. The various contexts/languages of Section 2.

Definition 2.11 (Planes in τ). Let τ contain a single ternary relation symbol R.
And, let ψn(x1, . . . xn) assert that the xi are distinct. Ǩ is the class of τ -structures
that satisfy Definition 2.10 when x 6= x is substituted for R1(x), x = y for R2(x, y),
R(x, y, z) for R3(x, y, z), and ψn for Rn when n > 4.
Ǩ0 denotes the collection of finite structures in Ǩ.

Definition 2.11 is motivated by the following result, showing that the objects we
create are planes in the matroid sense (cf. Definition 2.10).

Lemma 2.12. The axiom schema of Definition 2.11 determines a rank 3 matroid
structure on each member of Ǩ.

Proof. Let the τ -structure A satisfy the axioms from Definition 2.11 concerning R3,
in particular, the exchange axiom for R3. The only obstruction now is checking
the exchange axiom under the hypothesis that every four or more element set is
declared dependent in A. Suppose D1 and D2 are arbitrary sets with at least four
elements. By the substitutions for R1 and R2, |D1 ∩D2| > 3 and so D1 ∪D2 has
at least seven points and so is dependent. Thus A is a simple rank 3 matroid.

Remark 2.13. Lemma 2.12 could be generalized to any k using only Ri for 3 6
i 6 k < ω. Of course, if the space arises as e.g. Fnq , the n-space over a q-element

field, and k < n the matroid dependence by membership in Ǩ will be stronger than
the dependence relation arising from the native linear space.

We distinguish among K∗, K τ̌ and Ǩ in order to be able to axiomatize certain
notions in first-order logic. We often say a structure ‘is’ a matroid, meaning a
matroid structure can be imposed. The notion of a matroid is a property expressed
in ZFC. But if we formalize the matroid or linear space notions in one-sorted first-
order logic we must be more careful. A τ̌ -structure which belongs to K τ̌ is a
matroid if it is a model of the axioms in Definition 2.10. A τ -structure in K∗ may
admit matroid structures of any finite rank. But a τ -structure in Ǩ is a matroid of
rank 3 because it satisfies the sentences ψn from Definition 2.11. We are pedantic
about the ψn in order to ensure that the structures at the end of our complicated
construction are rank 3 matroids and so ‘planes’. In view of Lemma 2.12, we can
regard any linear system as a rank 3 matroid (and the limit structures to have any
finite rank we please). That is, any such linear system admits the structure of a rank
k matroid for any finite k, and so there was no need to restrict to the rank 3 case.
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3. The Specific Context

In this section we introduce the specific context in which we will work for the
rest of the paper. The main component of this section is the introduction of a new
predimension function δ (cf. Definition 3.4), which will be the essential ingredient
in the construction of our strongly minimal Steiner systems. This predimension
function δ was introduced in [Pao21] and it is inspired by Mason’s α-function, a
well-known measure of complexity for matroids introduced by Mason in [Mas72].
We will give an explicit definition of our function δ without introducing the matroid
theoretic machinery needed to define the α-function. For the reader interested in
this connection we refer to [Pao21, Section 3], where this is carefully explained.

Notation 3.1. (1) For any class L0 of finite structures for a vocabulary σ that is

closed under substructure, L̂0 denotes the class of all σ-structures M such that
every finite substructure of M is in L0.

(2) Given an arbitrary class of structures L for a vocabulary σ we denote by L0 the
class of finite structures in L. (For convenience, we allow the empty structure.)

(3) We write w for isomorphism, X ⊆ω Y for finite subset, and if B ( C, we may

writeĈ for C −B.

We will define below several classes of structures; in particular K0, Kµ, and
Kµ
d (see Table 3 for references). Furthermore, there will be various (closure oper-

ators)/(dependence relations) on structures in each class. Since each one of them
could naturally be called ‘geometric’, we avoid this term and give them each a
different tag (see also Table 2):

Notation 3.2 (Notions of Dependence). Let M ∈ K∗ (cf. Def. 2.1) and A ⊆M .

(1) The intrinsic closure operator (cf. Definition 3.6) is denoted by icl(A).
(2) The d-closure operator (cf. Definition 5.4) is denoted by cld(A).
(3) The algebraic closure operator is denoted by acl(A). (We use the standard

model theoretic notion for algebraic closure, i.e. a ∈ acl(B) means that a is in
a finite set definable with parameters from B.)

(4) The subspace closure clR(X) in A, the smallest subset B of A containing X
such that if a ∈ A satsfies R(b1, b2, a) with the bi ∈ B, then a ∈ B.

A key fact, Lemma 5.24, asserts that on a d-closed structure M (cf. Definition
5.4) in the class Kµ, notions (3) and (4) are equivalent; this is central for proving
strong minimality.

Tables 2 and 3 fix the notation introduced in Definition 3.2 and the classes of
models discussed at various places in the text.

Notation Name
icl(A) intrinsic closure
acl(A) algebraic closure
cld(A) d-closure
clR(X) subspace closure

Table 2. Notions of dependence.
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Notation References
K∗ Definition 2.1
K∗0 Definitions 2.1 and 3.1(2)
K0 Definition 3.6

K̂0 Definitions 3.6 and 3.1(1)
Kµ Definition 5.2(3)
Kµ
d Definition 5.4(4)

Table 3. The classes of structures relevant to our construction.

The following notation will clarify the distinction between 2-element lines (a.k.a.
trivial lines) which are understood to hold of arbitrary pairs of elements from models
in K∗ and lines where the relation symbol R is explicit (cf. Definition 2.1).

Definition 3.3. Let A ∈ K∗ and A ⊆ B with B ∈ K∗ (cf. Definition 2.1).

(1) A line of A is an R-closed subset X of A such that all the points from X are
collinear. In particular, if two points a 6= b ∈ A and there is no c ∈ A with
R(a, b, c), then {a, b} is a line. We call such lines ‘trivial’.

(2) We denote the cardinality of a line ` ⊆ A by |`|, and, for B ⊆ A, we denote by
|`|B the cardinality of ` ∩B.

(3) We say that a line ` contained in A is based in B ⊆ A if |` ∩ B| > 2, in this
case we write ` ∈ L(B).

(4) The nullity of a line ` contained in a structure A ∈ K∗ is:

nA(`) = |`| − 2.

Note that if B ⊆ A are both in K∗, and ` ⊆ A is a line then ` ∩ B may be in
L(B) (if it has at least two points) but may not be R-closed in A (i.e. if `−B 6= ∅).

With these notions in hand, we introduce the new rank δ that is central to this
paper9. It has two key features: (i) it is based on the notion of ‘dimension’ of a
line; (ii) the associated geometry is flat, and so we get counterexamples to Zilber’s
conjecture (see Section 5 for details.).

Definition 3.4. For A ∈ K∗0 (recall Definitions 2.1 and 3.1(2)), let:

δ(A) = |A| −
∑

`∈L(A)

nA(`).

Proposition 3.5. Let A and B disjoint subsets of a structure C ∈ K∗0. Then:

(1) if ` ∈ L(AB) and ` ∈ L(B), then nAB(`)− nB(`) = |`|A;
(2) δ(A/B) := δ(AB)− δ(B) is equal to:

|A| −
∑

`∈L(AB)
`∈L(A)
` 6∈L(B)

nAB(`)−
∑

`∈L(AB)
`∈L(A)
`∈L(B)

|`|A −
∑

`∈L(AB)
` 6∈L(A)
`∈L(B)

|`|A.

We rely on Proposition 3.6 and Lemma 3.7 of [Pao21], which assert (the content
of Lemma 3.10 is also known as “submodularity” of the δ function):

9Mermelstein [Mer18] has independently studied variants on this rank, but only in the infinite
rank case so the intricate analyis of primitives in this paper does not arise.
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Definition 3.6. (1) Let:

K0 = {A ∈ K∗0 such that for any A′ ⊆ A, δ(A′) > 0},
and (K0,6) be as in [BS96, Definition 3.11], i.e. we let A 6 B if and only if:

A ⊆ B ∧ ∀X(A ⊆ X ⊆ B ⇒ δ(X) > δ(A)).

(2) We write A < B to mean that A 6 B and A is a proper subset of B.
(3) For any X, the least subset of A containing X that is strong in A is called the

intrinsic or self-sufficient closure of X in A and denoted by iclA(X) or X.

Since in the current situation we are dealing with integer coefficients for δ the
intrinsic closure of every finite set is finite.

Remark 3.7. Note that K0 has many fewer structures that K∗0. In particular, no
projective plane (except the Fano plane, Example 4.3) or space A over a finite field
is in K0; as, for each such A, δ(A) < 0.

We give a general conceptual analysis for submodularity10 and flatness of δ that
clarifies the proofs of Lemmas 3.10 and 6.3 (flatness of d).

Definition 3.8. (1) For a sequence F1, ..., Fs of elements of K0. For ∅ ( S ⊆
{1, ..., s} = I, we let FS =

⋂
i∈s Fi and F∅ =

⋃
16i6s Fi. We say that f is

flat if for all such F1, ..., Fs we have:

(∗) f(
⋃

16i6s

Fi) 6
∑
∅6=S

(−1)|S|+1f(FS).

(2) Suppose (A, cl) is a pregeometry on a structure M with dimension function
d and F1, ..., Fs are finite-dimensional d-closed subsets of A. Then (A, cl)
is flat if d satisfies equation (∗).

In the basic Hrushovski case, δ is flat because it is the difference between two
functions, the cardinality of each set, which satisfies inclusion-exclusion, and count-
ing the number of occurrences of R in each set, which undercounts. We now note
our δ is similarly represented and that δ is modular on the appropriate notion of
free amalgam: A⊕C B in K0.

Definition 3.9. Let A ∩ B = C with A,B,C ∈ K0. We define D := A ⊕C B as
follows:

(1) the domain of D is A ∪B;
(2) a pair of points a ∈ A − C and b ∈ B − C are on a non-trivial line `′ in D if

and only if there is a line ` based in C such that a ∈ ` (in A) and b ∈ ` (in B).
Thus, in this case, `′ = ` (in D).

Lemma 3.10.3 does not follow from submodularity but depends on the particular
choice of free amalgam which is driven by ‘two points determine a line’.

Lemma 3.10. (1) δ is flat (Definition 3.8 1).
(2) Let A,B,C ⊆ D ∈ K∗0, with A ∩ C = B. Then:

δ(A/B) > δ(A/C),

which an easy calculation shows is equivalent to submodularity:

δ(A ∪ C) = δ(A) + δ(C)− δ(B).

10This result is proved by computation in [Pao21].
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(3) If E ∩ F = D, D 6 E and E,F,D ∈ K0 then G = F ⊕D E is in K0.
Moreover, δ(A⊕CB) = δ(A)+δ(B)−δ(C) and any D with C ⊆ D ⊆ A⊕CB
is also free. Thus, F 6 G.

Proof. 1) Recall δ(A) = |A| − Σ`⊆A(|`| − 2). Observe that if A,B are sets and ` is
a line in A ∪B, then:

|`| = |` ∩A|+ |` ∩B| − |` ∩ (A ∩B)|.
But in computing δ(

⋃
16i6s Fi) on the right hand of (*) one must sum for each S

only over those lines based in FS . Thus for example, in the case of two sets A,B,
if a line is based in A − B and has a single point in C − B (and none in B) that
point will not be counted on the right-hand-side but will be on the left. So the
subtracted term of δ(FS) is under-counted and δ(FS) is over-counted. This is not
corrected at the next step because no ` is based there. Thus, δ is flat.

2) For such combinations of counting functions, submodularity is just the notion
of flat for two sets.

3) We need to check that each pair of points a0, a1 determine a unique line in
G. Without loss of generality, one is in F − D and the other in E. Suppose for
contradiction there are two distinct lines on which both of a0, a1 are incident. If
both lines are contained in F , the claim is obvious. But, if not, Definition 3.9
guarantees that both of a0, a1 are on a unique line based in D.

By the general submodularity argument, δ(A⊕C B) 6 δ(A) + δ(B)− δ(C). But
the definition of the free amalgamation guarantees that each line that intersects
A − B and C − B in based on two points in B. There is no undercount as there
may be in 2) so we have equality.

Reference [BS96] provides a set of axioms for strong substructure. These axioms
can be seen to hold in our situation using Lemma 3.10.

Fact 3.11. (K0,6) satisfies Axiom A1-A6 from [BS96, Axioms Group A], i.e.:

(1) if A ∈K0, then A 6 A;
(2) if A 6 B ∈K0, then A is a substructure of B;
(3) if A,B,C ∈K0 and A 6 B 6 C, then A 6 C;
(4) if A,B,C ∈ K0, A 6 C, B is a substructure of C, and A is a substructure of

B, then A 6 B;
(5) ∅ ∈K0 and ∅ 6 A, for all A ∈K0;
(6) if A,B,C ∈K0, A 6 B, and C is a substructure of B, then A ∩ C 6 C.

We use the following notion of genericity:

Definition 3.12. The countable model M ∈ K̂0 is (K0,6)-generic when:

(1) if A 6M,A 6 B ∈K0, then there exists B′ 6M such that B wA B′;
(2) M is a union of finite substructures.

4. Primitive Extensions and Good Pairs

Using only the δ function one can build up models in K0 from well-defined
building blocks: primitive extensions and good pairs (Definition 4.1). This section
is an analysis of these foundations. In the next section we use them to study the
complete theories we are constructing.

Definition 4.1. Let A,B ∈K0 with A ∩B = ∅ and A 6= ∅.
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(1) We say that A is a primitive extension of B if B 6 A and there is no A0 with
B ( A0 ( A such that B 6 A0 6 A. Equivalently, we describe a primitive
pair as (B,A) where B and A are disjoint (and so BA is the set in the initial
description).

(2) If δ(A/B) = 0, we write 0-primitive. We stress that in this definition while B
may be empty, A cannot be.

(3) We say that the 0-primitive pair A/B is good if there is no B′ ( B such
that (A/B′) is 0-primitive. When discussing good pairs, usually A and B are
disjoint; for ease of notation, sometimes A is confused with A ∪B.

(4) If A is 0-primitive over B and B′ ⊆ B is such that we have that A/B′ is good,
then we say that B′ is a base for A (or sometimes for AB).

(5) If the pair A/B is good, then we also write (B,A) is a good pair.

(6) We sometimes use the notation Ĉ: if B ( C, then Ĉ = C −B.

Remark 4.2. Note that if C is primitive over the empty set then the unique base
for C is ∅. For, if there is B 6= ∅ with B ( C with C based on B, then ∅ 6 B and
B ( C contradicting that C is primitive over the empty set.
This does not forbid the existence of C ∈ K0 such that δ(C/∅) = 0 but C is not
primitive over ∅; on this see Lemma 5.26.

Example 4.3. Some sets are based on the empty set. In particular, if C is the
τ -structure representing the unique 7 point projective plane (often called the Fano
plane), then δ(C) = 0. And it is easy to see (∅, C) is a good pair.

In earlier variants of the Hrushovski’s construction one was able to prove the ex-
istence of a unique base B′ for any given 0-primitive extension A/B. Unfortunately,
this assertion is false in the current situation, cf. Example 4.4. We will make up for
this with a careful examination of the structure of good pairs that almost regains
uniqueness.

Example 4.4. For A ∈ K0 containing m + 2 points p1, ..., pm+2 on a line ` and
for some c such that c 6∈ {p1, ..., pm+2} but c is on ` in A ∪ {c}; we have that c is
0-primitive over A, and any pair of points in ` ∩A constitutes a base for c/A.

The following preparatory results allow us to characterize primitive extensions
and eventually prove amalgamation for (Kµ,6) (cf. Conclusion 5.13).

Proposition 4.5. Let B ∈K0 and b ∈ B such that b does not occur in any R-tuple
from B, then δ(B) = δ(B − {b}) + 1.

Proof. As b is on no line based in B−{b} this follows from Definitions 3.3 and 3.4.

Using the above proposition, we can see:

Proposition 4.6. Let A,B ∈K0 with A∩B = ∅, AB ∈K0 and B 6 AB. Then:

(1) if there exists b ∈ B such that b does not occur in any R-tuple from AB, and
B′ denotes B − {b}, then δ(A/B) = δ(A/B′).

(2) if the 0-primitive pair A/B is good (cf. Definition 4.1(2)), then for every b ∈ B
we have that b occurs in an R-tuple from AB.

Proof. It suffices to prove (1), and (1) is clear by applying Proposition 4.5 to AB
as follows:

δ(A/B) = δ(AB)− δ(B) = (δ(AB′) + 1)− (δ(B′) + 1) = δ(AB′)− δ(B′).
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We use the following technical lemma to prove Lemma 4.8, which characterizes
good pairs.

Lemma 4.7. Suppose C is a primitive extension of B such that |(C − B)| > 2,
then every non-trivial line ` with `∩ (C−B) 6= ∅ intersects B in at most one point.
Furthermore, if C is 0-primitive, then any point in (C −B) lies on two lines based
in (C −B).

Proof. Let ` be a line that intersects (C−B). Then ` is not based in B since, if so,
for any c ∈ `∩ (C−B), Bc would contradict the primitivity of C. But then, if C is
0-primitive, any c ∈ (C−B) must lie on a line based in (C−B), as otherwise, letting
C ′ = (C − B) − {c}, Proposition 4.5 implies δ(C ′/B) = δ(C/B) − 1 = 0 − 1 < 0,
contradicting B 6 C. But, in fact, c ∈ (C − B) must lie on two lines based in
(C − B). If it is based on only one, deleting c decrements both the number of
points and the sum of the nullities of lines based in (C −B) by 1. So δ(C ′/B) = 0,
contradicting that C is 0-primitive over B.

The next lemma is the fundamental tool for our analysis of primitive extensions.

Lemma 4.8. Let B 6 C ∈K0 be a primitive extension. Then there are two cases:

(1) δ(C/B) = 1 and C = B ∪ {c};
(2) δ(C/B) = 0.

(2.1) There is c ∈ (C − B) incident with a line ` based in B if and only if
|(C − B)| = 1. In that case, any B′ ⊆ B with B′ ⊆ ` and such that
|B′| = 2 yields a good pair (B′, c). Furthermore, c is in the relation R
with an element b ∈ B if and only if b is on the unique line based in B′.

(2.2) If |(C − B)| > 2 then there is a unique base B0 in B for C. Moreover,
suppose b ∈ B and c ∈ (C −B). If b and c lie on a nontrivial line, then
b ∈ B0. And every b ∈ B0 lies on such a line, which must be based in
(C −B).

Proof. We follow the case distinction of the statement of the lemma:
Case 1. Suppose δ(C/B) > 0 and there are distinct elements in (C −B) that are
not on lines based in B, then any one of them gives a proper intermediate strong
extension of B that is strong in C. Thus C must add only one element to B yielding
Case 1.
Case 2. Suppose δ(C/B) = 0.
Case 2.1. Suppose there is an element c ∈ (C − B) which is on a line with two
points in B, say b1, b2, and |(C −B)| > 2. Then clearly Bc is a primitive extension
of B and Bc � BC. Thus, (C − B) must be {c}. Furthermore, ({b1, b2}, c) is a
good pair. So C is based on {b1, b2} and for any b ∈ B, b is R-related to c if and if
R(b1, b2, b); otherwise c would be on two lines based in B (contradicting B 6 C).
Conversely, if |(C −B)| = 1 then c must be on a line based in B since δ(C/B) = 0.
Case 2.2 |(C −B)| > 2 and δ(C/B) = 0.
By Lemma 4.7, each line ` ∈ L((C − B)) intersects B in at most one point b`.
If there is no such b`, then there is no R-relation between (C − B) and B, so by
Proposition 4.6(2), B = ∅ and C is based on ∅. As argued in Remark 4.2, that base
must be unique.
If there is such a b`, let B0 be the collection of all the b`, ` ∈ L((C − B)). By
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Lemma 4.6.(1), δ(C/B0) = δ(C/B), and so (B0, C) is a good pair. Further B0 is
the unique base for C as these are the only elements of B on lines that intersect
(C −B).

Omer Mermelstein provided us with an example showing there are infinitely
many primitives based on a single three element set. But the study of (a, b) cycles
in [Bal20] led to stronger and simpler examples over smaller base sets. Recall that
any linear space with 3-point lines is an example of Steiner triple system (i.e. in
Definition 2.6 we have K = {3}). The following definition will be used to prove
Lemma 4.11.

Definition 4.9 ([CW12]). We define the notion of (a, b)-cycle graphs in Steiner
triple systems. Fix any two points a, b of a Steiner triple system S = (P,L). The
cycle graph G(a, b) has vertex set P − {a, b, c} where (a, b, c) is the unique block
(Definition 2.6) containing the points a and b. There is an edge coloured a (resp.
b) joining x to y if and only if axy is a block (resp. bxy is a block) and the colors
alternate.

Definition 4.10. Fix any two points a, b of a Steiner m-system S = (P,L). We can
build an (a, b)-cycle, Ck, c1, c2, . . . c4k of length 4k by demanding R(a, c2n+1, c2n+2)
for 0 6 n 6 2k, R(b, c2n+2, c2n+3) for 0 6 n < 2k, and R(b, c1, c4k).

In the Steiner triple system case a triple a, b, c1 with c1 not on (a, b) determines
a unique cycle as described in Definition 4.10. For m-Steiner systems with m > 3,
we can choose such cycles but not uniquely. Note that the lines determined by the
pairs of points cn, cn+1 in Definition 4.10 must be distinct.

Lemma 4.11. There are infinitely many mutually non-embeddable primitives in
K0 over a two-element set. In fact, there are infinitely many mutually non-
embeddable primitives in K0 over the empty set and similarly over a 1-element set.

Proof. Over any a, b for each k build an (a, b)-cycle Ck , as in Definition 4.10. Ck
has 4k points and ({a, b} ∪ Ck) ∈K0 has 4k 3-element lines. So δ({a, b} ∪ Ck)) =
2 = δ({a, b}). Primitivity easily follows since if the cycle is broken, the δ-rank goes
up. So ({a, b}, Ck)) is a good pair whose isomorphism type we denote by γk.

To get primitives over ∅, let c be on ab and add the relations R(c, c1, c2k+1) and
R(c, ck+1, c3k+1). Now the entire structure Dk has 4k + 3 points and 4k + 3 lines
and can easily be seen to be 0-primitive over the empty set. (Note that for k = 1,
this is another avatar of the Fano plane.)

Now remove one of the last two instances ofR and the result is primitive over a or b.

5. The Class Kµ

We now introduce the new classes of structures needed to obtain strong minimal-
ity. Recall that we have two classes: (i) K0 is a class of finite structures; (ii) K̂0

is the universal class generated by K0. The new class Kµ ⊆ K0 adds additional
restrictions so that the generic model for Kµ is a strongly minimal linear space,
and, in fact, a Steiner k-system for some k. Using Definition 5.6, we axiomatize
the subclass Kµ

d of K̂µ (the universal class generated by Kµ) of those models that
are elementarily equivalent to the generic for Kµ. We extend Table 3 to a Table 4
including the new classes defined in this section.
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Notation References
K∗ Definition 2.1
K∗0 Definitions 2.1 and 3.1(2)
K0 Definition 3.6

K̂0 Definitions 3.6 and 3.1(1)
Kµ Definition 5.2(3)

K̂µ Definition 5.2(4)
Kµ
d Definition 5.4(4)

Table 4. The classes of structures relevant to our construction.

The following notation singles out the effect of the fact that our rank depends
on line length rather than the number of occurrences of a relation.

Notation 5.1 (Line length). We write α for the isomorphism type of the good pair
({b1, b2}, a) with R(b1, b2, a).

Definition 5.2. Recall the characterization of primitive extensions from Lemma
4.8 of [BP20].

(1) Let U be the collection of functions µ assigning to every isomorphism type β of
a good pair (B,C) in K0 (we write µ(B,C) instead of µ((B,C))):

(i) an integer µ(β) = µ(B,C) > δ(B), if |C −B| > 2;
(ii) an integer µ(β) > 1, if β = α (cf. Notation 5.1).

(2) For any good pair (B,C) with B ⊆ M and M ∈ K̂0, χM (B,C) denotes the
number of disjoint copies of C over B in M . Of course, χM (B,C) may be 0.

(3) Let Kµ be the class of structures M in K0 such that if (B,C) is a good pair,
then χM (B,C) 6 µ(B,C).

(4) K̂µ is the universal class generated by Kµ (cf. Notation 3.1(1)).

In [Bal20], we change the set U in various ways (and explore the combinatorial
consequences of this change in the resulting generic model). In this paper, we
assume µ ∈ U unless specified otherwise.

The value of µ(α) is a fundamental invariant in determining the possible com-
plete theories of generic structures; in particular we will see that it determines the
length of every line in the generic and thus in any model elementary equivalent to it.

Remark 5.3. We analyze the structure of extensions governed by good pairs with
isomorphism type α from Notation 5.1. Suppose {b1, b2, a} ⊆ F ∈ Kµ with
R(b1, b2, a). The 0-primitive extensions C of B = {b1, b2} with |(C − B)| = 1
are exactly the points on the line ` through b1, b2. Any pair of points e1, e2 from F
that are on ` form a base witnessed by ({e1, e2}, a) with R(e1, e2, a) ∧R(b1, b2, a).

Most arguments for amalgamation in Hrushovski constructions (e.g. [Bal88,Hol99,
Hru93, Zie13]) depend on a careful analysis of the location of the unique base of a

good pair. Here, when |Ĉ| = 1, the uniqueness disappears and one must focus on
the line rather than a particular base for it.

There are two general approaches to showing existence of complete strongly
minimal theories by the Hrushovki construction. One divides the construction into
two pieces, free and collapsed [Goo89, Zie13]. The final theory is taken as the
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sentences true in the generic model. The second, as the original [Hru93], provides
a direct construction of the strongly minimal set. We choose here to follow the
Holland’s version of this approach. She insightfully emphasised axiomatizing the
theory of the classKµ

d of d-closed structures [Hol99],which we now define, by clearly
identifiable π2-sentences. This established the model completeness which was left
open in [Hru93]. In fact, we axiomatize the theory Tµ of the class Kµ

d , prove it is
strongly minimal, and then observe that the generic satisfies Tµ.

Definition 5.4. Fix the class (K0,6) of τ -structures as defined in Definition 3.6.

(1) For A ∈ K̂0, X ⊆ω A and a ∈ A, we let:

dA(X) = min{δ(Y ) : X ⊆ Y ⊆ω A},
and

dA(a/X) = dA(aX)− dA(X).

(2) For M ∈ K̂µ, and X ⊆ω M :

cldM(X) = {a ∈M : dM (aX) = dM (X)}.
For infinite X, a ∈ cldM(X) if a ∈ cldM(X0) for some X0 ⊆ω X.

(3) For M ∈ K̂µ and X ⊆ M , X is d-closed in M if d(a/X) = 0 implies a ∈ X
(equivalently, for all Y ⊆ω M −X, d(Y/X) > 0).

(4) Let Kµ
d consist of those M ∈ K̂µ such that M 6 N and N ∈ K̂µ imply M is

d-closed in N .

The switch from δ to d is designed to ensure that X ⊆ Y implies d(X) 6 d(Y );
the submodularity of d is verified as in e.g. [BS96,Hol99,Zie13], and so the function
d is truly a dimension function, thus inducing a matroid structure.

Fact 5.5. The d-closure operator cldM (cf. Definition 5.4(2)) induces a combinato-

rial pregeometry on any M ∈ K̂µ.

We use good pairs to build our axiomatization, Σµ, of the theory of the classKµ
d .

We write Σµ as the union of four sets of first-order τ -sentences: Σ0
µ, Σ1

µ, Σ2
µ and

Σ3
µ. Before listing them, we explain the origin of the third group: Σ2

µ. We would
like to just assert the collection of universal-existential sentences: for all good pairs
(B,C) with B ⊆ M , χM (B,C) = µ(B,C). Unfortunately, some good pairs may
conflict with each others, and so, as far as we know, the equality may fail for some
good pairs when the base B is not strong in the model. Basically, this could happen
because if (P,G) and (Q,F ) are good pairs with QF contained in PG then realizing
(P,G) implies that (Q,F ) is automatically realized. In particular, note that the C
of the good pair (B,C) of Example 5.7 contains a new good pair (B′, C ′).

The distinguishing property of models M ∈ Kµ
d is that since every 0-primitive

extension over a finite strong subset of M can be embedded in M , by Lemma 5.14,
no proper 0-primitive extension of M is in K̂µ. In fact, this property characterizes
the models that are elementarily equivalent to the generic.

Crucially, Holland11 expresses this failure by a clearly motivated π2-sentence,
which we expound in Remark 5.8. A salient point about the generic for Kµ,

11Holland provides a common framework for both ab initio constructions and fusions. The

generality introduces considerations that are not relevant here, and our new predimension and the
restriction to linear spaces introduce complications to her argument. Thus, for the convenience of

the reader, we rephrased the argument for our situation.
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denoted Gµ (Notation 5.16), is that Gµ ∈Kµ
d . This fact is not used directly in the

proof of strong minimality of Tµ; we will observe it in Proposition 5.18.

One reason for the difficulty in the axiomatization is that the function µ is de-
fined on arbitrary substructures, not strong substructures. Restricting to strong
substructure would inhibit if not prevent the π2-axiomatization as the strong sub-
structure relation (A 6M) is only type-definable. Thus, in Lemma 5.10, we cannot
assume D is strong in both E and F . In the following definition we rely on the
terminology introduced in Definitions 4.1 and 5.2.

Definition 5.6. Σµ is the union of the following four sets of sentences:

(1) Σ0
µ is the collection of universal sentences axiomatizing K0 as in Definition 3.6.

(2) Σ1
µ is the collection of universal sentences that assert:

B ⊆M ⇒ χM (B,C) 6 µ(B,C).

(3) Σ2
µ is a collection of universal-existential sentences ψB,C , depending on the good

pair (B,C), such that for every occurrence of B if M |= ψB,C then for some
good pair (A,D) with AD ⊆ BC, any structure N containing MC satisfies
χN (A,D) > µ(A,D) and so violates Σ1

µ. See Lemma 5.19 for the explicit
formulation of these sentences.

(4) Σ3
µ is the collection of existential sentences asserting that every line has length

µ(α) + 2.

The argument in Lemma 5.10 that underlies both the axiomatization of Kµ
d and

the amalgamation for (Kµ,6) differs from a mere amalgamation argument in one
significant way: D ⊆ F but D 6 F is not assumed (on the other hand, D 6 E is
assumed). We require several technical lemmas to address the difficulties arising
from this fact. Our argument shows that if there is a model M that satisfies Σµ,
then we can find sentences to prevent extensions in which M is not d-closed. The
following example shows the necessity for the complications in proving Lemma 5.10:
new primitives can occur in many ways.

Example 5.7. Construct the isomorphism type β of a good pair (B,C) defined as
follows. Let B be two points d1, d2 and C consists of six points ci for i = 1, . . . 6.
Let the non-trivial lines be {d1, c1, c2, c3},{d2, c4, c5, c3}, {c4, c1, c6} and {c5, c2, c6}.
So C has 6 points and 4 lines each of nullity 1 so rank 2. And BC has 8 points and
4 lines, 2 of nullity 1 and 2 of nullity 2 so BC also has rank 2. Check primitivity
by inspection.

Now turn this example on its head. Consider the following example of the setting of
Lemma 5.10. Let D = {c1, c2}, Let F = D ∪ {c3, c4, c5, c6, d2}, and E = D ∪ {d1}.
(D,E) is a good pair. Amalgamating F and E over D we get a new realization
(B′, C ′) of the isomorphism type β of the good pair (B,C), which is not contained
in either D or E, but in F ∪ E. This example does not violate Lemma 5.10 as
µ(α) = 2 (and must be since there are 4-element lines in F ).

Remark 5.8. Example 5.7 shows that good pairs can conflict so we don’t know in
general that a model M of Tµ will satisfy χM (B,C) = µ(B,C) for all good pairs
(B,C) that appear in M . We first prove in Lemma 5.10 that each good pair (B,C)
can only conflict with finitely many pairs (B′, C ′) and that that can happen only if
one pair is included in the other. Following [Hol99], to guarantee that M ∈Kµ

d , we
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assert by the formula ψB,C (cf. Definition 5.6(3)) that each conflicting pair (A,D)
is ‘almost realized’ in M so that adding points from C contradicts Σ1

µ.

Notice that in Lemma 5.10 the fact that (D,E) is a good pair implies that
D 6 E, and so we can use Lemma 3 and thus consider G = E ⊕D F . Notice
that in Lemma 5.10 the fact that (D,E) is a good pair implies that D 6 E, and
so we can use Lemma 3 and thus consider G = E ⊕D F . The following variant
on [Zie13, Lemma 5.1] simplifies our original proof of Lemma 5.10.

Lemma 5.9. Suppose F 6 G and F satisfies Σ0
µ. If there Ci for i < n that are

pairwise disjoint over B and the (B,Ci) realize isomorphic good pairs. Then at
least one of the follows holds.

(1) B ⊆ F
(2) Some Ci lies in G− F .

Proof. Suppose B " F and Ci ⊆ F for 1 6 i 6 r − 1 and Ci ∩ F 6= ∅ and
Ci ∩ (E − F ) 6= ∅ if r 6 i 6 r + s − 1. Thus, r + s = n. Then, for each i < r,
B contains a point that is on a line that is based on Ci and none of the other Cj .
Thus

δ(B/F ) 6 δ(B/B ∩ F )− r 6 δ(B)− r.
But for j < s, δ(Cj/B∪(Cj∩F )) < 0 by the definition of primitive; so δ(

⋃
j<s Cr+jCj/FB) <

−s. So
δ(

⋃
j<s

Cr+jCj/F ) 6 δ(B)− (r + s)

as required.

Lemma 5.10. Let F,E |= Σµ, D ⊆ F , and suppose that (D,E) is a good pair (and
so in particular D 6 E). Now, if G = E ⊕D F and for some good pair (B,C) ⊆ G
we have χG(B,C) > µ(B,C), then:

(A) if |C| = 1, C = {c} and c is on a line based on some B′ ⊆ D;
(B) if |C| > 2 then B ⊆ E and there exists C ′ with BC ′ w BC, with C ′ ⊆ (E−D).

Further, if D 6 F , there is a copy C ′′ of C over B with C ′′ = (E −D), and
B ⊆ D.

Proof. SinceG = E⊕DF we can use the notation and results of 3.9 and Lemma 3.10. 3.
Note that F,D,E are in K̂µ by the definition of the axioms Σµ. Furthermore,
D 6 E and E ∈Kµ, by the definition of good pair. Let C be a set of µ(B,C) + 1
disjoint copies of C over B in G, and list C as (C1, ..., Cm), for m = µ(B,C) + 1.
Case A. |C| = 1.
Then (B,C) witnesses the isomorphism type α from Definition 5.1. So, there must
be a line ` of size µ(B,C) + 3 in G. Since E and F satisfy Σ1

µ, there must be
d ∈ F − D and c ∈ E − D that lie on `. By Definition 3.9(2) of free almalgam `
must contain two points (say, comprising B′) in D that are connected to c ∈ E−D.
Since {c} is then primitive over D, E −D must be {c}. We finish the first claim.
Note χF (B′, C) = µ(B,C) as ` has µ(α) + 2 points in F .
Case B. |C| > 2.

Claim 5.11. If C ⊆ E −D is good over B ⊆ F , then B ⊆ E.

Proof. We show B ⊆ E. If not, there is a b1 ∈ B∩(F−E) and since Cj ⊆ (E−D) a
line from b1 to some c ∈ Cj . Thus c is on a line based on D and so Cj = E−D = {c}.
This contradicts |C| > 2 so B ⊆ E.
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We split into two cases depending on Lemma 5.9
Case B.1. Suppose B ⊆ F .
Since χF (B,C) 6 µ(B,C), there must be a Ci ∈ C that intersects G−F = E −D.
So, since F 6 G and C/B is primitive, Ci ⊆ G − F = E − D. But, since E is
primitive over D, FE is primitive over F , so Ci = E−D. By Case 2.2 of Lemma 4.8,
B is the only subset of F on which Ci is based. Hence, as BCi ⊆ E, we finish Case
B.1 without using the supplemental hypothesis for the ‘further’ in Case (B).

Case B.2. Suppose B 6⊆ F . By Lemma 5.9, we have the main claim; some Cj lies
in E −D. We prove the further. There must be a C ′ ∈ C that intersects F −D,
since E ∈ Kµ. But C ′ cannot split over E since, B ⊆ E by Claim 5.11. As we
now assume D 6 F , E 6 G; so C ′ ⊆ (F −D). But then C ′ is based on a unique
B′ ⊆ D since D 6 F . So B = B′ ⊆ D. But then Cj is primitive over D and based
on B ⊆ D, and so Cj = E −D. Hence, Cj is the required C ′′. This concludes the
proof of Lemma 5.10.

The argument for Lemma 5.12 differs from the standard only in requiring a
special case for extending a line.

Lemma 5.12. Suppose A and A′ are primitive over Y with δ(A/Y ) = δ(A′/Y ) = 0

and both are based on B ⊆ Y with isomorphic good pairs (B, Â) and (B, Â′), where

Â = A − Y and Â′ = A′ − Y . Then the map fixing Y and taking A to A′ is an
isomorphism.

Proof. There are two cases depending on the cardinality of Â.
Case 1. |Â| = 1.
As in case 1.1 of Lemma 4.8 let ` be a line which is based in Y and suppose
Â = {a}, Â′ = {b} are each on ` but neither is in Y . Then, since both a and b
are R-related only to the points on ` the map fixing Y and taking a to b is an
isomorphism.
Case 2. |Â| > 2.
Applying Lemma 4.8(2.2), there is a unique base B (the B0 of the lemma) and

there is a bijection f between |Â| and |Â′| such that for each b ∈ B, R(c1, c2, b)
if and only R(f(c1), f(c2), b). The union of that map with the identity on Y is as
required.

We now show that any element of K̂µ (not just Kµ) can be amalgamated (possi-
bly with identifications) over a (necessarily finite) strong substructure D of F with
a strong extension of D to a member E of Kµ.

Conclusion 5.13. If D 6 F ∈ K̂µ and D 6 E ∈ Kµ then there is G ∈ K̂µ that
embeds (possibly with identifications) both F and E over D. Moreover, if F ∈Kµ

d ,
then F = G. In particular, (Kµ,6) has the amalgamation property, and there is a

generic structure Gµ ∈ K̂µ for (Kµ,6).

Proof. Let D,E, F satisfy the hypotheses. Clearly, we can assume that D 6 E is a
primitive extension. If δ(E/D) = k > 0, Lemma 4.8 implies k = 1 and E−D = {a}.
Now the disjoint amalgamation E ⊕D F is in K̂µ since a is not R-related to any
other element. So, we are reduced to 0-extensions and can refine the induction to
assume (D,E) is a good pair. We have an amalgam G ∈ K̂0 such that G = E⊕DF ,
F 6 G, and E 6 G. If G ∈ Kµ, we finish. If not, there is an isomorphism type β
of a good pair (B,C) and (Ci : i < m) with (B,Ci) ⊆ G realizing β and such that
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m > µ(B,C). We now make a case distinction and show that in both cases we can
embed E into F over D.
Case 1. |C| = 1.
By Lemma 5.10(A) and by primitivity of D 6 E, we have that |E −D| = 1. But
E ∈ Kµ, and so χD(α) < µ(α), from which it follows that the element of E −D
can be embedded in F −D over B.
Case 2. |C| > 1.
The ‘further’ clause of Lemma 5.10(B) shows that there must be a copy of C equal
to E −D. Thus, using Lemma 5.12 and the argument in the last paragraph of the
proof of Lemma 5.10 (there is a copy of C in F −D), we can conclude that we can
embed E into F over D.

For the ‘moreover’, note that M ∈ Kµ
d implies that every proper extension N of

M with N ∈ K̂
µ

d satisfies d(N/M) > 0.

Corollary 5.14. If M ∈ K̂
µ

d and B 6 M , then for any good pair (B,C) with
C ∩M = B, we have:

χM (B,C) = µ(B,C).

Proof. By Conclusion 5.13, since B 6M , there is an amalgamation in K̂µ of C and
M overD. But, M andMC cannot be freely amalgamated overB. As, in a putative
amalgam N , dN (C/M) = 0. Whence since M is d-closed, C ⊆ M , contradicting
free amalgamation. By the ‘further’ of Lemma 5.10(B).2, the violation of Σ1 is
given by the new copy of the pair (B,C), and so χM (B,C) = µ(B,C).

Question 5.15. Is D 6 M essential for the conclusion of Lemma 5.14? A com-
plicated example showing necessity of this hypothesis in the fusion case (and thus
the gap in Poizat’s ‘proof’ of existence of a Morley rank 2 expansion of a plane
by a unary predicate) appears in [BH00, §4]. The proof of Corollary 5.14 relies on
that assumption both in using the ‘further’ of Lemma 5.10 and Conclusion 5.13.
Looking carefully at the proof of Lemma 5.10 reveals that if there is a counterex-
ample (D,E), the failure is witnessed by a (B,C) with m = µ(B,C) + 1 such that
B ⊆ E, B * F , no Ci ⊆ F and some Ci ⊆ E −D. Thus, |E −D| > |C| + m. It
is unclear whether B might be contained in D − E. Thus, we need something far
different from Example 5.7 where we showed new isomorphism types of good pairs
could appear in an amalgam but |E −D| = 1.

Notation 5.16. Let Gµ denote the generic for (Kµ 6) (cf. Conclusion 5.13).

Notice that it follows from Corollary 5.13 that every member of Kµ is strongly
embeddable in Gµ.

Definition 5.17. Let (K0,6) be as in the context of Fact 3.11. The structure M is

rich for the class (K̂0,6) (or (K̂0,6)-rich) if for any finite A,B ∈ K0 with A 6M
and A 6 B there is a strong embedding of B into M over A.

Clearly, a generic is rich. Even more, since the definition of Kµ
d requires the

embedding only of finite extensions with dimension 0, we have:

Proposition 5.18. Every rich model, and so in particular Gµ, is in Kµ
d .

Proof. We show that every (Kµ,6)-rich model M is in Kµ
d . Suppose for contra-

diction that there is an N ∈ K̂µ with M 6 N and there is a C ⊆ (N −M) such
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that C is 0-primitive over M . By Lemma 4.8, C is based on some finite B ⊆ M .
Since M 6 N , C is also primitive over B0 = iclM (B). Since M is rich there is a
copy C1 ⊆ M of C over B0. Now let B1 = iclM (C1). Applying richness again we
can choose another embedding C2 of C into M over B1. Continuing in this fashion,
after less than µ(B,C) + 1 steps we have contradicted M ∈ K̂µ.

Now we explain the interaction between the axioms Σ1
µ and Σ2

µ. No extension

of a model of Σ2
µ by a good pair is in K̂µ. This will yield the axiomatization of the

theory of the d-closed structures and thus of the generic (by Proposition 5.18).

Lemma 5.19. The family of first-order sentences Σµ (Definition 5.6) defines the
class of d-closed models.

Proof. We use the notation of Lemma 5.10. For M ∈ K̂µ, we say M ⊕D E is bad
if for some good pair (B,C) with BC ⊆ DE, χM⊕DE(B,C) > µ(B,C).

We first define for each good pair (D,E) the formula ψ(D,E) described in Defini-
tion 5.6. For each duo of good pairs (D,E) and (B,C) with BC ⊆ DE define the

formula ϕ(D,E),(B,C) as follows. Fix a model M0 ∈ K̂µ; choose a copy of D ⊆ M0

such that M0⊕DE is bad witnessed by (B,C). If |C| > 1 choose by Lemma 5.10.B
C1, . . . Cr (where r = µ(B,C) + 1) that are disjoint copies of C over B contained
in M0⊕D E and let s enumerate H = (

⋃
i Ci)−D)∩M0. Let χ(v, x) be a possible

atomic diagram of H ∪D ⊆M , where lg(v) = lg(s), for pairs (M0, D) as M0 varies

over K̂µ and D varies over possible embeddings into M0. Let

(1) ϕ(D,E),(B,C) :
∨
i

(∃v)χi(v, x)

where the χi are the finitely many possible such diagrams χ. We have shown
that for any M ∈ K̂µ if M ⊕D E is a bad extension witnessed by (B,C) then
M |= ψ(D,E)(B,C).

Let ρ(x) be the atomic diagram of D. Now we define Σ2
µ and Σ3

µ to assert a) each
line has cardinality µ(α) + 2 and b) each of the following (countable) collection of
sentences (for all good pairs (D,E)), where ρ(x) is the atomic diagram of D.

(2) ψ(D,E) : (∀x)[ρ(x)→
∨

BC⊆DE

ϕ(D,E),(B,C)(x)].

Now, if M |= Σµ then M is d-closed. Since if not, there is an N ∈ K̂µ for
some (D,E), M ⊕D E ⊆ N . If |E| = 1 then condition a) is violated. Suppose
M |= ψ(D,E) witnessed by (B,C). If |C| = 1 condition a) is again violated by
Lemma 5.10.A.

But, if |C| > 1 some χi from Equation 1 will be satisfied in M . And, by
Definition 3.10. 3.9, χ(v, x) ∪ diagqf(E) |= diagqf(HE) where H is, as before, the
interpretation of v. This implies χM⊕DE(B,C) > χHE(B,C) > µ(B,C) and we
finish.

Recall (Definition 5.4) that a finite set X is d-independent when each x 6∈ cld(X−
{x}), i.e. d(X) > d(X − {x}) for each x ∈ X. It is then easy to establish the first
of the following assertions by induction and the others follow.

Lemma 5.20. Let M ∈ K̂µ and let Y be d-independent in M . For every finite
X ⊆ Y we have:

(i) d(X) = |X|;
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(ii) X 6M , and so iclM (X) = X;
(iii) there are no R-relations among elements of X.

Using Lemmas 5.20 and 5.13, we follow Holland’s proof showing that Σµ axiom-
atizes the complete theory of Kµ

d (See Lemma 23 of [Hol99].).

Lemma 5.21. If M |= Σµ then M ∈ Kµ
d . Moreover, Σµ is an axiomatization of

the complete theory Tµ of the class Kµ
d .

Proof. By Lemma 5.19, it suffices to show Kµ
d is κ-categorical for κ > ℵ0. Suppose

now that M,M ′ |= Σµ. By Σ3
µ and by taking elementary extensions we may

assume that both have cardinality κ > ℵ0. We show that Σµ is κ-categorical and
so complete. As geometries, M and M ′ have bases X,X ′ of the same cardinality.
By Lemma 5.20, X 6 M and X ′ 6 M ′ and they are isomorphic by any bijection
f . The isomorphism f extends to one between M and M ′ since M and M ′ are
built from X and X ′ by a sequence of 0-primitive extensions and each step can be
extended by Lemma 5.13.

Having followed the outline of her proof, we have the analog to Holland’s result
[Hol99] that the strongly minimal Hrushovski constructions are model complete.

Remark 5.22. Since the axioms Σµ are universal-existential and Tµ is ℵ1-cate-
gorical, it is model complete by Lindstroms’s ‘little theorem’: that π2-axiomatizable
theories that are categorical in some infinite power are model complete [Lin64].

Our theories Tµ uniformize the result that there are only finitely many finite
line lengths in any strongly minimal linear space (cf. Fact 2.3). We show in Corol-
lary 5.23 using Lemma 4.11 that there are continuum-many strongly minimal the-
ories Tµ such that in each of them all lines have fixed length µ(α+ 2.

Corollary 5.23. There are continuum-many µ ∈ U (cf. Definition 5.2(1)) which
give distinct first-order theories of Steiner systems. That is, there is V ⊆ U such
that |V| = 2ℵ0 and µ 6= ν ∈ V implies that Th(Gµ) 6= Th(Gν) (recall Notation 5.16).

Proof. For any X ⊆ ω, let µX assert that µ(γk) (from the proof of Lemma 4.11) is
3 if k ∈ X and 2 if not (recall that it must be at least 2). Then, if k ∈ X \ Y , then
TµX

6≡ TµY
(cf. Notation 5.16), since there are three extensions in the isomorphism

type µ(γk) of some pairs {a, b} in models of TµX
but not in models of TµY

.

Lemma 5.24. If M ∈ Kµ
d , then for every X ⊆ M , cld(X) = aclM (X). Thus, Tµ

is strongly minimal.

Proof. We first show that for M ∈ K̂µ the left hand side is contained in the right.
If Y is a finite subset of M ,δ(Y/X) = 0, Y is a union of a finite chain with length
k < ω of extensions by good pairs (Bi, Ci); each is realized by at most µ(Bi, Ci)
copies, and so:

|Y | 6
∑
i<k

µ(Bi, Ci)× |Ci|.

Thus, Y ⊆ aclM (X).

Concerning the other containment, let M ∈Kµ
d , a ∈M and X ⊆ω M . If d(a/X) >

0 and X0 is a maximal d-independent subset of X, then X0 ∪ {a} extends to a d-
basis for M . Furthermore, in the proof of Lemma 5.21, we observed that any
permutation of a d-basis extends to an automorphism of M . Thus, if a /∈ cld(X) ,
then a /∈ aclM (X). Hence, cld(X) = aclM (X), as desired.
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Strong minimality follows, since for any finite A there is a unique non-algebraic 1-
type over A, namely the type p of a point a such that: (i) a is not on any line based
in A (and so δ(a/A) = 1); (ii) Aa is strong in any model. Clause (ii) is given by the
collection of universal sentences forbidding any B ⊇ Aa with δ(B) < δ(Aa). Thus,
in Gµ we have that d(a/A) = 1 for any a realizing p. Hence, any two realizations
a and b of p are such that Aa 6 G and Ab 6 G, and thus they are automorphic by
the genericity of Gµ (cf. Conclusion 5.13). Hence, p is a complete type.

Notation 5.25. Let F be the Fano plane and F be the set of µ ∈ U such that:

µ(∅, F ) > 0.

Lemma 5.26 shows that for any µ ∈ F and M |= Tµ, we have that aclM (∅) is
infinite; by Ryll-Nardjewski, Tµ is not ℵ0-categorical. In view of Lemma 5.24, the
countable models correspond exactly to the models of dimension α for α 6 ℵ0.

Lemma 5.26. Let µ ∈ F . Neither the generic, Gµ, nor any model of Tµ is locally
finite with respect to cld = acl (cf. Lemma 5.24). Thus, Tµ is not ℵ0-categorical and
has ℵ0 countable models. Since the generic has infinite dimension, it is ω-saturated.

Proof. We show that the algebraic closure of the empty set is infinite. Construct a
sequence (Ai : i < ω) in Gµ by letting A0 to be the Fano plane, which (Example 4.3)
is easily seen to be 0- primitive over the empty set. Notice that there can only be
finitely many realizations of the Fano plane in any model of Tµ, and so A0 is in the
algebraic closure of the empty set. Now let a0, b0, c0 be the vertices of the triangle
in the standard picture of the Fano plane. Choose a1, b1, c1 disjoint from A0 so
that (a0, a1, c1), (b0, b1, c1), and (a1, b1, c0) are triples of collinear points. Then,
letting A1 = {a0, b0, c0, a1, b1, c1}, it is to see that A1 is a primitive extension of
A0. Now build A2 by taking a1, b1, c1 as the base and adding a2, b2, c2 as in the
construction of A1 from A0; and then iterate. Each stage (and hence the union) can
be strongly embedded as A′i in the generic. But then δ(A′i+1/A

′
i) = d(Ai+1/Ai) = 0.

By transitivity, with Aω denoting
⋃
i<ω Ai, we have that for any finite X ⊆ Aω,

d(X/A0) = 0. Since cld = acl (Lemma 5.24), we finish. We constructed this
sequence in the algebraic closure of the empty set, and so it occurs in the prime
model of T . Thus, aclM (∅) is infinite for any model M of Tµ. By Ryll-Nardjewski,
Tµ is not ℵ0-categorical. In view of Lemma 5.24, as in any strongly minimal theory,
these models correspond exactly to models of dimension α for α 6 ℵ0.

6. Further Context

In this section we place our work in the context of further work on the model the-
ory of Steiner systems/linear spaces, studies on the consequences of flat geometries,
and Hrushovski constructions.

Remark 6.1. We compare our examples with the construction in [BC1x] of struc-
tures existentially closed for the class of all Steiner quasigroups. Note that Steiner
quasigroups are the quasigroups associated with Steiner triple systems in [BC1x].

(i) Their generic, denoted Msq, has continuum many types over the empty set,
satisfies TP2 and NSOP1, and it is locally finite (but not uniformly locally
finite) as a quasigroup. If µ ∈ U , then it is obvious that Tµ fails the first three
of these properties since it is strongly minimal. Furthermore, we showed in
Lemma 5.26 that our examples with µ ∈ F are not locally finite for acl =



STRONGLY MINIMAL STEINER SYSTEMS I: EXISTENCE 27

cld. Strikingly, in Msq, the definable closure is equal to the algebraic closure
(dcl = acl). In [Bal20] we show that this equality fails drastically in any Tµ
with µ ∈ U .

(ii) The structureMsq is the prime model of its theory; our Gµ is saturated. While
the example in [BC1x] is quantifier eliminable, ours is only model complete.
The first is the model completion of the universal theory of Steiner quasi-
groups. Since each M ∈ Kµ can be extended to N ∈ Kµ

d , the second is the

model completion of the universal theory of K̂µ for the relevant µ. Quan-
tifier elimination does not follow since, despite the limited amalgamation in
Conclusion 5.13, K̂µ does not have amalgamation.

(iii) In the introduction we mentioned further results on the combinatorics of
strongly minimal Steiner systems and strongly minimal quasigroups from
[Bal20], and compared our approach with that of [BC1x,CK16,HP].

We isolate for strongly minimal sets the following facts scattered in the literature,
often in more generality, and then apply them to show the connection with Zilber’s
conjecture.

Fact 6.2. Let T be a strongly minimal theory.

(1) [Hru93, Lemma 14+remark just after] If the acl-geometry of T is flat, then T
does not interpret an infinite group and T is CM-trivial.

(2) [Pil96, Theorem 5.1.1] If the acl-geometry of T is locally modular and non-
trivial, then T interprets an infinite group.

(3) [Pil99, Lemma 1.6] If acl(∅) is infinite in T , then T admits weak elimination
of imaginaries.

We modify [Hru93, Lemma 15] to show our examples have the characteristic
properties of the ab initio Hrushovski construction.

Conclusion 6.3. For any µ ∈ U , the acl-pregeometry associated with Tµ is flat
(Definition 2. Thus,

(1) T does not interpret an infinite group and T is CM-trivial.
(2) If, further, µ ∈ F , T has weak elimination of imaginaries.

Proof. Fix M |= Tµ. By Lemma 5.24, acl is the same as cld. We use the notation
of Definition 3.8 and start with acl-closed subsets Ei 6 M of finite dimension for
i in the finite set I. For flatness, for each ∅ 6= S ⊆ I, let ES =

⋂
i∈S Ei; let ĚS ,

be a finite base for ES . That is, ĚS 6 ES 6 M and cld(ĚS) = ES . For i ∈ I, let
Fi = icl(

⋃
i∈S⊆I ĚS). Then, as usual, for S ⊆ I let FS =

⋂
i∈S Fi and F∅ =

⋃
i∈I Fi.

Now we have the following

ES =
⋂
i∈S

Ei = acl(ĚS) = acl(FS).

The first two equalities are immediate from the definitions. ĚS is clearly a subset
of FS since i ∈ S implies ĚS ⊆ Fi. Finally examination of the definitions of Fi and
FS shows ES ⊆ acl(FS) for each ∅ 6= S ⊆ I. Since δ(FS) = d(FS) and δ is flat by
Lemma 3.10.1 applied to the Fi and FS , lifting by d(FS) = d(ES), we have that d
is flat.

The consequences follow from Fact 6.2.
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