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Abstract

We sketch the mathematical back ground and the main ideas in the proofs of
categoricity of theories of a several examples of universal covers – reducing analytic
to model theoretic (discrete) description. We hope this discussion will be useful to a
wide spectrum of mathematicians ranging from those working in geometry to those
working in logic; specifically, model theory

Contents
1 Introduction 2

1.1 Mathematical Encounters . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Some ancient history: In and out of the Zilber world . . . . . 5
1.1.2 An unlikely encounter of two areas: MAMLS at Rutgers, 2001 6

1.2 A word of thanks from the second author . . . . . . . . . . . . . . . 7

2 Model theory in Mathematics 7
2.1 Model theoretic background . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Various Viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1



3 Categoricity, quasiminimality and excellence 11
3.1 The Classical Categoricity Theorems . . . . . . . . . . . . . . . . . . 11
3.2 Pregeometries (matroids) and quasiminimality . . . . . . . . . . . . . 12

4 Modular and Shimura Curves 14
4.1 The great confluence . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Moduli Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Quantifier Elimination in Modular and Shimura Curves . . . . . . . . 20
4.4 Galois Representations and finite index conditions . . . . . . . . . . . 24

4.4.1 Two views: domain and field sort . . . . . . . . . . . . . . . 24
4.4.2 Galois Representation . . . . . . . . . . . . . . . . . . . . . 25

5 First order Excellence 29
5.1 The two-sorted structure and fmr groups . . . . . . . . . . . . . . . . 29
5.2 First order Excellence . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Higher Dimensional Shimura Varieties 32

7 Model Theory and Analysis 33

8 Families of covers of algebraic curves 34
8.1 Pseudo-analytic covers of modular curves . . . . . . . . . . . . . . . 35
8.2 Locally o-minimal covers of algebraic varieties . . . . . . . . . . . . 35

1 Introduction
{intro}

The goal of this paper is to sketch (hopefully for a wide spectrum of mathemati-
cians ranging from those working in geometry to those working in logic; specifically,
model theory) some recent interactions between model theory and a roughly 150-year
old study of analytic functions involving complex analysis, algebraic topology, and
number theory that explore the canonicity of universal covers. Towards this goal we
discuss and present several examples indicating the main ideas of the proofs and the
necessary changes in method for different situations.

Here is Zilber’s description of his own project (from his 2000 Logic Colloquium
talk in Paris [Zil05a]):

The initial hope of this author in [Zil84] that any uncountably categori-
cal structure comes from a classical context (the trichotomy conjecture),
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was based on the belief that logically perfect structures could not be over-
looked in the natural progression of mathematics. Allowing some philo-
sophical license here, this was also a belief in a strong logical predeter-
mination of basic mathematical structures. As a matter of fact, it turned
out to be true in many cases. . . . Another situation where this principle
works is the context of o-minimal structures [PS98].

A rather ambitious project aimed at finding categorical axiomatizations (Defini-
tion 3.0.1) of various kinds of universal covers has unfolded in the 21st century. The
simplest example of such universal covers is given by the short exact sequence:

0→ ker(exp)→ (C,+)
exp→(C, ·)→ 1. (1)

{eqcover1}
Zilber’s original project really aimed to understand the sequence

0→ ker(exp)→ (C,+, ·, exp)
exp→(C,+, ·, exp)→ 1. (2)

The first diagram describes a two-sorted cover of the multiplicative group by the
additive group. The full field structure is studied on the range space although the
kernel is with respect to the sequence displayed. The second [Zil04] corresponds
to the theory of the complex exponential field. The domain and range of the map
are the same exponential field but the kernel is again computed with respect to the
homomorphism exp from (C,+)→ (C∗,×).

In both cases, first order axioms are supplemented by an Lω1,ω sentence asserting
the kernel is isomorphic to Z, i.e., is standard. Here, we focus on three main families
of generalizations (described in the chart below) of the first diagram. As this question
was extended to more general algebraic contexts, the fundamental cover diagram from
equation (1) changed to this more general situation:

C
p→S(C)→ 1. (3)

Notice two things:

• The map (called p in the more general case) remains a projection, but it will
significantly change as the family of examples unfolds. Also,

• there is no longer a kernel when S(C) is not a group.

Therefore, in a rather Protean way, the infinitary description that in the particu-
lar case described a ‘standard kernel’ assumes various guises for different examples.
Usually, the descriptions are of ‘standard fibres’ rather than having a ‘standard ker-
nel’.
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Crucially, in all cases except § 5 the target will be some kind of definable set in an
algebraically closed field. The necessary vocabulary for the domain will vary among
the situations considered. The study of Shimura varieties involves a more general
domain.

{gs}
Notation 1.0.1. (The general situation)

X+ p→S(C)→ 1. (4)

We have a variety S(C) arising as the quotient of the action of a discrete group on
H (hyperbolic space) or more generally (Shimura varieties) on a hermitian symmetric
domain X+. The target is described by a first order theory T := Th(S(C)) in a large
enough countable vocabulary with quantifier elimination (possible, as S is definable
in (C,+,×)). We will instantiate the schema in Notation 1.0.1 with appropriate no-
tations for specific cases as we discuss them. Zilber describes the value of his project
in terms of ‘a complete formal invariant’ (Remark 5.3.2).

The geometric value of the project is perhaps in the fact that the formu-
lation of the categorical theory of the universal cover of a variety X . . . is
essentially a formulation of a complete formal invariant of X .
[DZ22b, 1]

The following chart organizes the papers which are the major source for this study.
It also provides a keyword describing the main method or context used, and the sec-
tion of this paper where issues around the specific variant are explained.

topic paper method/context section
1 Complex exponentiation [Zil05b] quasiminimality §1
2 cov mult group [Zil06] quasiminimality §1
3 [BZ11] quasiminimality
4 j-function [Har14] quasiminimality §4.1
5 Modular/Shimura Curves [DH17] quasiminimality §4
6 Modular/Shimura Curves [DZ22b] quasiminimality
7 Kummer Varieties [BGH14] finite Morley rank groups §5.1
8 Abelian Varieties [BHP20] fmr & notop §5.3
9 Shimura varieties [Ete22] notop §6

10 Smooth varieties [Zil22] o-quasiminimality §8

In this chart, the first line [Zil04] (an axiomatization of the exponential map from
the complex field to itself) differs from the others in the role of the quantifier ‘there
exists uncountably many’. In that case it is essential to directly control the cardinality
of the algebraic closure of a countable set. Moreover, in line 1 the domain has a field
structure that disappears in the two-sorted approach of the rest. In the other lines of
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the chart, the infinitary logic Lω1,ω is used to control the size of fibers of the cover
or when the structure is a group the size of the kernel. This requirement suffices
to also control the cardinality of the algebraic closure. Lines 2-6 deal with curves
(1-dimensional objects) where categoricity is obtained by quasiminimality. The third
big horizontal block deals with higher dimensional varieties. Lines 7 and 9 stray from
formal categoricity towards more traditional descriptions of models; quasiminimality
is replaced by a different version of excellence arising in Shelah’s study of notop theo-
ries (an important notion in Classification Theory). Both quasiminimality and ‘notop’
apply to line 8. The last line considers families of covers of arbitrary smooth algebraic
varieties with an infinitary logic construction defined over o-minimal expansions of
the reals. There, the focus is on categoricity in ℵ1.

It is worth noting that we could have organized our chart under a totally different
scheme. The Abelian varieties and (C,+) are specific varieties. The j-function and
the Shimura varieties may be regarded as moduli spaces for (generalized) families of
varieties1. After preliminary discussions on the model theoretic framework, in Sec-
tion 4, we sketch in some detail categoricity of universal covers of modular curves. In
the later sections we describe the modifications to this program necessary for higher
dimensions.

1.1 Mathematical Encounters
1.1.1 Some ancient history: In and out of the Zilber world

The first author turns to the first person singular for some memories:
Zilber and I both received our Ph.D.’s in the early 1970’s. An important result

appeared in both theses: the solution to Morley’s conjecture that an ℵ1-categorical
theory has finite Morley rank. Such an overlap was not an issue during the Cold War.
(On the other hand, Baldwin’s advisor, Lachlan, had to write an entirely new thesis
when the result of the proposed one appeared in the west as he was about to submit.)

I first (given my zero knowledge of Russian) learned in any detail of Zilber’s work
during the 1980-81 model theory year in Jerusalem. Greg Cherlin had no such defi-
ciency and gave with Harrington and Lachlan an alternate proof of Zilber’s theorem
that there were no finitely axiomatizable totally categorical theories. They relied on
the classification of finite simple groups. A few years later Boris completed his model
theoretic proof of the key combinatorial lemma avoiding that reliance.

I first knew Boris in any depth during the model theory semester in Chicago 91-
92. Unfortunately, I had partially financed a semester by agreeing to be acting head
the Fall semester, thereby restricting my mathematical activity. In that busy fall, Boris

1Many Shimura varieties are moduli spaces of other algebraic varieties; more generally, they are moduli
spaces of a variation of Hodge structures, not necessarily of algebraic varieties.
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and Angus Macintyre lectured on Tuesday’s on Zariski geometries and o-minimality,
respectively. The lively group include Macintyre, Zilber, Laskowski, Marker, Otero,
D’aquino and myself, with Pillay driving in weekly from Notre Dame. Lunch was at
a deli that Boris insisted on because of the soup followed by coffee at Jamoch’s, the
first modern coffee house in the UIC area.

About that time, I began work on the Hrushovski construction, but in a quite dif-
ferent direction from Boris’s: predimension with irrational α. This led to my proof
with Shelah that the theory of the Shelah-Spencer graph was stable, building on the
1992 Ph.D. thesis of my student Shi. And this led to work with Kitty Holland on fu-
sions, giving the first construction of a rank 2 field with a definable infinite predicate.
And then back to Boris and his work on complex exponentiation. Understanding his
notion of quasiminimal excellence inspired the desire to understand Shelah’s more
general notion of excellence. Thus my monograph on abstract elementary classes
and subsequent work on infinitary logic. In any case, visits several times a decade to
Oxford always were exciting sources of ideas and pleasant times.

1.1.2 An unlikely encounter of two areas: MAMLS at Rutgers, 2001

The second author of this paper witnessed and participated in one of those momen-
tous encounters of two areas that only seldom happen: during the MAMLS Meeting at
Rutgers in February 2001, a group of people working in Abstract Elementary Classes
(including Rami Grossberg, Monica VanDieren, Olivier Lessmann and the second au-
thor of this paper) was very busy discussing Shelah’s notion of excellence, originally
linked to his work in the model theory of Lω1ω. The n-amalgamation diagram was
very much part of that discussion. There was a lecture by Boris Zilber at the end of
the day, and we all attended, not expecting to understand much, but eager to see him
speak. To our great surprise, at the end of Zilber’s lecture (dealing with exponen-
tial covers, mentioning many analytic number theoretic methods that were arcane to
us, and mixing in areas such as “Nevanlinna Theory”, etc.), he asked a final ques-
tion and drew a picture underscoring his question. Boris’s picture was exactly the
n-amalgamation diagram we had been discussing thoroughly with the AEC people
those very same days; Boris’s question was exactly about the behaviour of types in
the amalgam and how it could be controlled by small pieces in the components. We
jumped to talk to him at the end of his lecture, with the excitement of seeing a po-
tential connection. Boris said he didn’t know the model theory of Lω1ω but he would
look into excellence. . .

The rest is history: after a few weeks, a first draft of a proof of properties of
pseudoexponentiation was circulated, and Zilber started using many methods from
excellent classes and infinitary logic. The richness of this approach has provided
many interesting connections; we explore some of them in our paper.
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1.2 A word of thanks from the second author
Here, the second author turns to the first person singular, for this excerpt:

I would like to thank Boris Zilber, at a very personal level, for an
amazing, life-changing conversation we had in 2007 in Utrecht, during a
meeting that Juliette Kennedy organized, on links between Mathematics,
Philosophy and Art. We gave lectures for the meeting and saw many inter-
esting connections. But one evening, after dinner, Boris said “let’s go for
a walk and speak a bit about mathematics.” He described, for about an
hour, some of what he had been doing–I kept asking and asking questions.
At some point, crossing a canal he turned to me and said: “And you, what
have you been doing?” I tried to gather my thoughts on the spot while
walking, and started describing a project we had back then, with Beren-
stein and Hyttinen [BHV18], of understanding independence notions in
continuous logic, trying to extend the work of Chatzidakis and Hrushovski
to the continuous case, and encountering difficulties. Boris asked me to
describe briefly continuous model theory and continuous abstract elemen-
tary classes. At some point, he said I obviously had tools for dealing with
model theoretical approaches to quantum mechanics. I asked how so. He
said “look at Gelfand triples, . . . ”. I returned to Helsinki where I was
spending a sabbatical, and Boris’s remarks made a deep change in my
own approach to model theory, in the possibilities I started slowly unfold-
ing. I am deeply grateful for that momentous conversation, and for all the
lines of work that have derived from that evening!

Andrés Villaveces

The authors want to thank many people who helped this project go through.
Among them, hoping not to forget important people, are, most notably Sebastian
Eterović, Jim Freitag, Jonathan Kirby, Ronnie Nagloo, and Boris Zilber. Without
their attention to our discussions, online, at conferences, and on campus, this project
would have been much harder to complete. The first author especially wants to thank
Ronnie and Sebasitian for hours of conversation. We also want to thank Alex Cruz
and Leonardo Cano for many helpful discussions related to these subjects in the Bo-
gotá seminar before this project started. Finally, discussions with Thomas Kucera and
Martin Bays were very important at earlier stages of the construction of this paper.
Finally, the referee reports were invaluable.

2 Model theory in Mathematics
{mtbg}

We first deal with some variations in model theoretic and geometric terminology.
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2.1 Model theoretic background
Mathematical logic makes a central distinction between a vocabulary and a collection
of sentences in a logic. For this reason, we use ‘language’ only for the second and
reserve ‘vocabulary’ for what is sometimes called similarity type.

{vocstr}
Definition 2.1.1 (Vocabulary and Structure). 1. A vocabulary τ is a collection of

constant, relation, and function symbols (with finitely many arguments).

2. A τ -structure is a set in which each τ -symbol is interpreted, e.g., an n-ary
relation symbol as an n-ary relation.

Definition 2.1.2. Full formalization involves the following components.

1. A vocabulary with associated notion of structure as in Definition 2.1.1.

2. A logic L has:

a A class L(τ) of ‘well formed’ formulas.
b A notion of ‘truth of a formula’ from the class L (τ) in a τ -structure, usually

denoted A |= ϕ.
c A notion of a “formal deduction” for this logic.

3. Axioms: Specific sentences of the logic that specify the basic properties of the
situation in question.

Example 2.1.3. (Three important logics.)

1. The first order language Lω,ω(τ) associated with τ is the least set of formulas
containing the atomic τ -formulas and closed under finite Boolean operations
and quantification over finitely many individuals.

2. The Lω1,ω(τ) language associated with τ is the least set of formulas containing
the atomic τ -formulas and closed under countable Boolean operations and
quantification over finitely many individuals.

3. The second order language associated with τ , denoted L2(τ), is the least set of
formulas extending Lω,ω(τ) by allowing quantification over sets and relations.
L2({=}) is symbiotic (‘morally equivalent’, roughly speaking) with set theory.

Morley rank (corresponding to the Krull/Weil dimension in the particular case
of fields) was introduced in [Mor65] to study theories categorical in uncount-
able power. Section 5 explores the role of finite rank Morley groups in studying
covers. Three good sources for the more advanced model theory used here are
[Mar02, TZ12, Poi85].
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2.2 Various Viewpoints
We now discuss two quite different uses of the three words automorphism, definition
and model coming from areas of mathematics relevant to this paper. (The difference
in use depending on the area of mathematics has been at times a source of confusion.)

Remark 2.2.1. (Automorphism: two notions) {twonot}

In Model Theory: An automorphism of a τ -structure A is a permutation of its uni-
verse A that preserves (in both directions) each relation or function symbol for
τ . For instance, the automorphisms of a geometry (when given in terms of lines
and points together with an incidence relation) are the collineations.

In Algebraic Geometry: An automorphism of a variety is an invertible morphism2.
{canmod}

Remark 2.2.2. (Model: two notions)

In Model Theory: The word model also sees different uses depending on the area.
In logic, a model is sometimes just a structure (formally, a τ -structure, as spec-
ified above) but often signifies that the structure satisfies a theory.

In Algebraic Geometry: A model is a specific variety in a birational equivalence
class. In Weil/Zariski style, a variety is determined by the coordinate ring, but
only up to isomorphism of the coordinate ring. A ‘model’ of the variety might
be a specific affine variety with that coordinate ring, but any isomorphic variety
would also be a model.
Thus, unlike model theory, algebraic geometry does not identify ‘models’ up to
isomorphism. Rather, it looks at ‘isomorphic’ structures within a single model,
or finds a specific ‘canonical representation’.
A minimal model is a smooth variety X with function field K such that if Y is
another smooth variety with function field K and f : X 7→ Y is birational, then
f is an isomorphism.

Remark 2.2.3. (Definable/defined: two notions)

In Model Theory: A subset X of a model Mn is defined over a set A if there is a
formula φ(x,a) with solution set X .

In mainstream mathematics the word ‘defined’ is often short for ‘well-defined’
saying that the value of a function defined on a quotient space does not depend
on the choice of a representative.

2This begs the question of defining morphism. A good approximation is ‘definable map’. In algebraic
geometry a morphism is (cf [Poi87, p 79: section 4.4]) a constructible (generically quasi-rational) bijection.
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In model theory, we add the adjective ‘definable’ when there is a formula of the
language that captures the notion. Thus, the algebraic geometric ‘automorphism’
becomes ‘definable bijection’. It is worth noting that many important automorphisms
in algebraic geometry do not necessarily preserve structure.

Remark 2.2.4 (Why infinitary logic?). A natural question at this point is: Why is
axiomatizability in Lω1,ω relevant to geometric questions? The answer to this ques-
tion is not univocal, and strongly reflects different historical issues arising in different
areas of mathematics. We discuss four responses.

1. In ordinary mathematics:

(a) The constraints of expressibility offered by a particular logic force a de-
tailed analysis of the hypotheses of a result. This analysis in similar earlier
cases has led to, for example, the Zilber-Pink conjecture and the Conjec-
ture on the Intersection of Tori (see e.g. [BMPTW20]).

(b) Of course, each of the ‘canonical structures’ is explicitly definable in set
theory. But this definition in most cases is useless for studying the object.
Useful succinct second order axioms are available for the real and com-
plex numbers but are so far not known for universal covers. First order
logic is stymied a priori by the intractability of arithmetic. Thus, cate-
goricity in infinitary logic is essential for giving an ‘algebraic’ account of
an ‘analytic object’. This use of model theory can be seen as part of the
larger scale GAGA mathematical program of bridging analytical concepts
and algebraic ones.

2. In logic (in particular, in model theory):

(a) A natural question is: are there important mathematical notions express-
ible in infinitary logic which are not expressible in first order? The study of
complex exponentiation yielded a superb initial example: the categoricity
of the covering map of C∗ in [BaysZil].

(b) This raises the question of what are the new axioms in this paper that re-
quire an infinitary description. The infinite dimension axioms are well
known and the switch from ‘standard kernel’ to ‘standard fiber over z’ (i.e.
q−1(z)) is unremarkable. It seems the finite index conditions (Section 4.4)
are not first order expressible.
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3 Categoricity, quasiminimality and excellence
{cqe}

We give a quick sketch of notions around categoricity3 and the history of their logical
development.

{catdef}
Definition 3.0.1 (Categoricity). 1 A theory T in a logic L is a collection of L-

sentences in a vocabulary τ .

2 T is categorical in cardinality (power) κ if all models M of T with |M | = κ
are isomorphic.

Although, certain canonical mathematical structures are fruitfully axiomatized
in second order logic, rather than second order categoricity, we find it more useful
to consider these characterizations as defining these structures in set theory. Such
definitions are exactly what it means to be a structure. Second order categoricity per
se gives no useful information. In contrast, categoricity in power in first order logic
or in Lω1,ω provides significant (combinatorial geometric) information; in the best
situations, it assigns a dimension to each model.

3.1 The Classical Categoricity Theorems
The following results survey the spectrum of cardinals in which certain types of the-
ory can be categorical. These theorems are of the form if a theory (or a sentence) is
categorical in some high enough cardinal(s), then it must be categorical on a tail of
cardinals.

Theorem 3.1.1 (Morley’s Categoricity Theorem). A countable first order theory is
categorical in one uncountable cardinal if and only if it is categorical in all uncount-
able cardinals. [Mor65].

Theorem 3.1.2 (Shelah’s Categoricity under the weak continuum hypothesis below
ℵω). Assuming 2ℵn < 2ℵn+1 a sentence in Lω1,ω that is categorical in ℵn (for every
n < ω) is categorical in all uncountable cardinals [She83a], [She83b].

Theorem 3.1.3 (Shelah’s Categoricity theorem for excellent sentences). An excel-
lent sentence in Lω1,ω is categorical in one uncountable cardinal if and only if it is
categorical in all uncountable cardinals [She83a], [She83b].

Theorem 3.1.4 (Zilber’s Categoricity for quasi-minimal excellent classes). A quasi-
minimal excellent class is categorical in all uncountable cardinals [Zil04].

3More specifically, when in model theory we use the word categoricity, we mean categoricity in a specific
cardinality or ‘in power’. See a thorough discussion of categoricity in various logics in [Bal18, §3.1].
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3.2 Pregeometries (matroids) and quasiminimality
The presence of quasiminimal pregeometries provides an extremely fruitful and nat-
ural control of models in a class (and of their interactions).

Definition 3.2.1 (Combinatorial Geometry). A closure system is a setG together with
a ‘closure’ relation on subsets of G

cl : P(G)→ P(G)

satisfying the following axioms.

A1. cl(X) =
⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X)
A3. cl(cl(X)) = cl(X)

(G, cl) is a pregeometry if, in addition, we have:
A4. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).

If points are closed (cl({a}) = {a}, for each a) the structure is called a geometry.

Pregeometries are virtually the same mathematical objects as matroids.
{mtbas}

Definition 3.2.2. 1. A subset D of a τ -structure M is first order-definable in M
if there is a ∈ M and an Lω,ω(τ)-formula ϕ(x,y) such that D = {m ∈ M :
M |= ϕ(m,a)}. If a ∈ A ⊆M , D is definable with parameters from A.

2. aclM (A) (the algebraic closure of A in M ) is {m ∈ M : φ(m, a), a ∈ A},
where φ(x, a) has only finitely many solutions in M .

3. dclM (A) (the definable closure of A in M ) is defined as the algebraic closure,
but replacing ‘finitely many’ by ‘one’.

4. A definable subset D (or its defining formula ϕ(x)) is strongly minimal if every
definable subset of D in every elementary extension of M is finite or cofinite.

5. A theory is strongly minimal if the formula x = x is strong minimal.

The notion of type is a crucial tool in model theory.

Definition 3.2.3. 1. The first order type of a over B (in M ), denoted tpM (a/B),
is the set of Lω,ω-formulas with parameters from B that are satisfied in M (for
a,B ⊆M ).

2. The quantifier-free type of a over B (in M ), denoted tpqf(a/B : M), is the
set of quantifier-free first order formulas ϕ(x,b) such that M |= ϕ(a,b) (as
before, b ranges over tuples of B).
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In most contexts, when we just say ‘the type of a over B,’ we mean the first
order type. Note also that if a property is defined without parameters in M , then it
is uniformly defined in all models of Th(M) (the theory of M , i.e., the set of all τ
sentences that are true in M ).

Here are three fundamental observations on strongly minimal sets.

• A strongly minimal set admits a combinatorial geometry when the closure is
taken as acl (Definition 3.2.2).

• There is a unique type of elements in a strongly minimal set that are not alge-
braic. This is called the generic type for D.

• In many important examples (e.g. DCF0), the structure of the model is con-
trolled by its strongly minimal sets.

Shelah’s abstract notion of independence (for some first order theories, crystal-
lized as non-forking) weakens the notion of combinatorial geometry by dropping A3;
in some desirable cases this property is recovered on the points realizing a regular
type and in even better cases the dimensions of the regular types determine the iso-
morphism type of the model. However, a priori, the existence of a global dimension
is rare.

We now look at the generalization of strong minimality that is central in the con-
nections between model theory and algebraic geometry described in this paper.

{qmdefstr}
Definition 3.2.4 (Quasiminimal structure). Zilber introduced a natural generaliza-
tion of strong minimality: a structure M is quasiminimal if every first order (Lω1,ω)
definable subset of M is countable or cocountable. Algebraic closure is generalized
by saying b ∈ acl′(X) if there is a first order formula with countably many solutions
over X which is satisfied by b.

{qmdef}
Definition 3.2.5 (Quasiminimal excellent geometry). Let K be a class ofL-structures
such that M ∈ K admits a closure relation clM mapping X ⊆ M to clM (X) ⊆ M
that satisfies the following properties.

1. Basic Conditions

(a) Each clM defines a pregeometry on M .
(b) For each X ⊆M , clM (X) ∈ K .
(c) countable closure property (ccp): If |X| ≤ ℵ0 then |cl(X)| ≤ ℵ0.

2. Homogeneity

(a) A class K of models has ℵ0-homogeneity over ∅ (Definition 3.2.5) if the
models of K are pairwise qf-back and forth equivalent (Definition 4.3.7)
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(b) A class K of models has ℵ0-homogeneity over models if for any G ∈ K
with G empty or a countable member of K , any H,H ′ with G ≤ H,G ≤
H ′, H is qf-back and forth equivalent with H ′ over G.

3. K is an almost quasiminimal excellent geometry if the universe of any model
H ∈ K is in cl(X) for any maximal cl-independent set X ⊆ H .

4. We call a class which satisfies these conditions an almost quasiminimal excel-
lent geometry [BHH+14].

An almost quasiminimal excellent geometry with strong submodel taken as A ≤
M , if acl(A) = A, gives an AEC. But the distinct notion of a quasiminimal AEC
(defined in terms of ≤ rather than any axioms) is due to [Vas18].

To obtain that the class is complete for Lω1,ω, [Kir10, BHH+14] add the require-
ment of ℵ0-categoricity.

{qmhist}
Remark 3.2.6. This definition differs only superficially from those in e.g. [Kir10],
where the connections with the combinatorial geometry was emphasized by distin-
guishing the treatment of elements depending on whether they were in cl(H). How-
ever, [BHH+14] required a quasiminimal structure to have a unique generic type.
This requirement fails in a two-sorted treatment; there may be acl-bases in each
sort. So we replace quasimininality with almost quasiminimality (less explicit in
[BHP20]) and we thus restore Zilber’s first intuition (Definition 3.2.4) that quasimin-
imality means that all definable sets are countable or co-countable.

{exc}
Remark 3.2.7 (Excellence). From Zilber’s introduction of the notion in [Zil04], it
has been known that the axioms 3.2.5 imply ℵ1-categoricity. See the exposition in
[Bal09]. But, without further ‘excellence’ hypotheses, it was unknown whether the
class had larger models. Two formulations of excellence are 1) [She83a, She83b]:
n-amalgamation of independent systems of models, for all n < ω, and 2) A local
condition on the properties of a ‘crown’ [Kir10]. Either of these implies the existence
of arbitrarily large models for theories in Lω1,ω. As we discuss in Section 5.2, in-
fluenced by work Hart and Shelah on first order classification theory, the next result
(modified by ‘almost’) clarified the relationship.

Remark 3.2.8. Crucial Fact [Theorem: Bays, Hart, Hyttinen, Kesala, Kirby]. Ev- {cf}
ery almost-quasiminimal class (Definition 3.2.5) is excellent as described in Re-
mark 3.2.7. Thus, it is categorical in all uncountable cardinalities.

4 Modular and Shimura Curves
{modshicurves}

I liked my ‘astronaut’s view’. If you think that is too informal, lets use
‘high level view’ which doesn’t require a verb as ‘wide perspective’ does.
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We begin with a high level view of the j-function and then turn to the model
theoretic treatment of some generalizations.

4.1 The great confluence
{aroundjfunction}

The general form (over a field of characteristic 0) of an elliptic curve is

y2 = x3 + ax+ b.

Since Diophantus (3rd century AD) the search for integer solutions for such equa-
tions has been central to number theory. The cataloguing of such equations was a
major achievement of the 19th century. One key step toward this classification is to
generalize the original problem and look first for complex solutions. The solution set
of an elliptic curve is then a smooth, projective, algebraic curve of genus one. It can
be thought of as a ‘classical torus’ Tτ := C/Λτ , where τ ∈ C and Λτ is the lattice in
C (the subgroup of (C,+) generated by 〈1, τ〉.

Klein defined a function j that is analytic on the upper half plane H = {z :
im(z) > 0} and maps onto C and meromorphic with some poles on the real axis and
the following remarkable properties.

{Klein}
Theorem 4.1.1 (Classification of tori by the j-function). The following are equiva-
lent:

1. There exists s =

[
a b
c d

]
∈ SL2(Z) such that s(τ) = aτ+b

cτ+d = τ ′,

2. Tτ ≈ Tτ ′ in the algebraic geometry sense of Definition 2.2.1.

3. j(τ) = j(τ ′)

This rather remarkable classical fact paves the way toward modern day classi-
fications. It provides equivalences between analytic and number-theoretic notions.
Strikingly, j is defined as a rational function of two analytic functions g2 and g3 (each
of them coding so-called ‘modularity’ properties):

j(τ) = 123 · g2(τ)3

g2(τ)3 − 27g3(τ)3
.

But where does the word ‘elliptic’ come from? A meromorphic function is called
an elliptic function, if it is doubly periodic: there are two R -linear independent com-
plex numbers ω1 and ω2 such that ∀z ∈ C, f(z + ω1) = f(z) and f(z + ω2) = f(z).
Abel discovered such doubly periodic functions arose from the solutions of elliptic
integrals – originally defined to find the arc length of an ellipse. The Weierstraß ℘-
function is a family of functions ℘(z,Λτ ) where the defining double sum runs over
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the elements of the lattice Λτ , generated by 1 and τ . The crucial property of the
function is that every meromorphic function that is periodic on Λτ is a rational com-
bination of ℘(z,Λτ ) and ℘′(z,Λτ ). This field of functions is precisely Abel’s field of
elliptic functions.

Klein’s theorem provides a uniformization of the functions arising from the work
of Weierstraß. In his famous investigation of the psychology of mathematical investi-
gation, Hadamard devotes several pages to Poincaré’s generalization of the j-function
to the family of functions derived from Fuchsian group actions. The crucial phrase for
us is ‘the transformations I had used to define the Fuchsian functions were identical
with those of non-Euclidean geometry’ [Had54, p 33].

This completes a very quick summary of the 19th century predecessors of the
theory of moduli spaces, developed in the next section. This study involves complex
analysis, actions by a discrete group, number theory, and non-Euclidean geometry.
The crucial model theoretic step is to formalize in a vocabulary for two-sorted struc-
tures of the form

A = 〈〈H; {gi}i∈N〉, 〈F,+, ·, 0, 1〉, j : H → F 〉

where 〈F,+, ·, 0, 1〉 is an algebraically closed field of characteristic 0, 〈H; {gi}i<ω〉
is a set together with countably many unary function symbols, and j : H → F .

In the next section we provide some of the mathematical background for a formal
analysis of these two-sorted structures.

4.2 Moduli Spaces
{modspsec}

Moduli spaces in geometry are parametrized collections of objects, together with
equivalences that allow us to see when two objects are in some sense ‘the same’,
and with families that articulate the variation between the objects in the collection.
Paraphrasing the important survey [BZ08], ‘moduli spaces are a geometric solution
to a geometric classification problem.’ They parametrize collections of geometric ob-
jects, they define equivalences to say when two objects are the ‘same’, and establish
families that determine how we allow our objects to vary or modulate.

In model theory, the notion of a uniform family of definable sets is common.
Such a family is given by a formula of the form φ(x,y). Each set in the family is the
solution set of φ(a,y) (for some a), and the set {a : (∃y)φ(a,y)} is an indexing set
of the family. In the algebraic geometry setting, one can require that the x fall into
a variety V and the y into a variety Wa. V is a step toward the notion of a moduli
space.

Except in § 5, we consider moduli spaces arising from a pair (G,X) consisting
of a group G acting on a space X . The algebraic varieties we study arise as quotients
Γ \ X (for Γ a subgroup of G, see Definition 4.2.2). A modular curve arises as a
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connected component of quotient of H by congruence subgroups (Definition 4.2.9)
of GL2(R). Shimura curves are rather more complicated yet generally share similar
categoricity properties. Shimura varieties of higher dimension raise many new issues
that we sketch in Section 6. Shimura generalized the topic to groups acting on wider
classes of domains. In this section, we consider only covers of modular curves by H.

Here, H refers, as in the rest of this paper, to the upper half complex plane (as
the set of points: H = {z ∈ C : Im(z) > 0}). H is also called the hyperbolic
plane (when endowed with a metric and topology that make it hyperbolic rather than
Euclidean). See [Miy89] for a detailed description. In all our prototypes, the map p
takes the hyperbolic plane to a complex variety.

We consider the action of PSL2(R) on H as fractional linear transformations: for

A =

[
a b
c d

]
∈ SL2(Z) and τ ∈ H, A(τ) =

(
aτ+b
cτ+d

)
.

The group of bijections (isometries, isom(H)) that preserve the hyperbolic metric
of H is generated by PSL2(R) and the map z 7→ −z; PSL2(R) consists precisely
of all those isometries that preserve orientation (e.g. [Kat92]). After outlining the
classical theory of such actions and moduli spaces, in section 4.3 we describe a model
theoretic approach.

Definition 4.2.1 (Fuchsian group). {fuchgrp}
1. A subgroup G ≤ isom(H) ≈ PSL2(R) is discrete if it is discrete in the induced

topology.

2. A Fuchsian group is a discrete subgroup of PSL2(R).

The most important example of a Fuchsian group is PSL2(Z). Underlying this
entire study and almost one and a half centuries of interactions between number the-
ory and complex analysis is the remarkable fact that the quotient of H by certain
discrete subgroups has the structure of a Riemann surface [Miy89, §1.8] and even an
algebraic variety which, in important cases, is a moduli space [Mil12].

{quotdef}
Definition 4.2.2 (Quotient of H by a group). If a group G acts on a set X , G \X has
universe the collection of G-orbits of the action. π is the canonical map taking x to
its orbit Gx. The prototypical example corresponds to X = H.

Replaced primal example by prototypical example – just above

Definition 4.2.3. A moduli space is a variety W , given as in Definition 4.2.2 by a
discrete group Γ, is the image of a map p from H that acts as a uniformizer for a
family of varieties Va. Namely for each a, b ∈ H, Va ∼= Vb iff for some γ ∈ Γ,
γ(a) = b iff p(a) = p(b).

17



We explored in Section 4.1 the ur-example of a moduli space, elliptic curves as
uniformized by the j-function. The next definition relies on the fact that, while ele-
ments of PSL2(R) fix H setwise, they also act on all of C.

{cuspdef}
Definition 4.2.4 (Cusp). For a discrete subgroup Γ of PSL2(R), we have:

1. c ∈ P 1(R) is a cusp of Γ if c ∈ R ∪ {∞} is the unique fixed point of some
γ ∈ Γ.

2. PΓ is the set of cusps of Γ and H∗ = H∗Γ = H ∪ PΓ.

We relate some standard facts (see [Har14, p 15]). The first relies on the fact that
while some of the quotients we study are not compact, they can be compactified by
adding finitely many cusps from R ∪ {∞}.

{quotchar}
Fact 4.2.5. For any discrete subgroup Γ ⊆ PSL2(R), the quotient H∗Γ = Γ \H∗ is a
compact Hausdorff space that can be given the structure of a Riemann surface. There-
fore if Γ′ is of finite index in Γ, the quotient Γ′\H∗ is a compact Riemann surface, and
is therefore algebraic by the Riemann existence theorem. H∗Γ is the compactification
of HΓ, the quasi-projective algebraic variety (so first order definable).

Notation 4.2.6 fixes the group G for the rest of § 4. Setting the determinant as 1
and modding out the center guarantees the group action preserves both distance and
orientation.

{fixG}
Notation 4.2.6. Let G = GLad2 (Q)+ =def PSL2(Q)/Z(PSL2(Q)) ≈ PSL2(Q)
modulo its center. Γ varies over modular curve. Thinking of it as PSL2(Z) will give
the flavor.

We now distinguish two kinds of points in H: ‘special’ points and ‘Hodge-
generic’ points. The equivalence of the following definition with the usual notion
[DH17, Definition 2.2] for Shimura varieties is in [DH17, Theorem 2.3].

{spptdef}
Definition 4.2.7 (Special points). Fix 〈H, S(C), p〉 with S(C) biholomophic to Γ\H.
A point x ∈ H is special if there is a g ∈ G whose unique fixed point is x.

We omit the definition of a Hodge generic point arising in algebra, as it does not
enter our discussion; we use only the equivalent characterization [DH17, Prop 2.5]
given in Fact 4.2.8.1) and the dichotomy in 2) noted just after that proposition. It is
worth mentioning that for a point the fact of being “special” or “Hodge generic” does
not depend on the choice of the group Γ; furthermore, these two notions are preserved
by the action of G = GLad

2 (Q)+.
{dichot}

Fact 4.2.8. Special and Hodge generic points [DH17, Proposition 2.5]

(1) If x is Hodge generic the only g ∈ G that fixes x is the identity.
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(2) Every point in H is either Hodge generic or special.

Although we are studying the categoricity of the universal cover of a specific
modular curve (e.g. the image of the j-function, Γ\H), other modular curves naturally
arise in the analysis. The study of families of such curves is expounded in [Shi71, §6,
7]. A key tool to give a uniform treatment to a family is the existence of a common
commensurator of the generating Fuchsian groups. In fact, the members of the family
are interalgebraic and the entire family (indexed by the ΓN ) is studied in [DZ22a].

{disgrpterm}
Definition 4.2.9. 1. Two subgroups Γ and Γ′ of a group H are said to be com-

mensurable if Γ ∩ Γ′ is of finite index in both of them.

2.

ΓN =

{[
a b
c d

]
∈ Γ : b ≡ c ≡ 0, a ≡ d ≡ 1 mod N

}
.

Note that each ΓN has finite index in Γ and if N |M then ΓM ⊆ ΓN .

3. A congruence subgroup is a subgroup Γ′ of Γ such that some ΓN is a finite index
subgroup of Γ.

4. The commensurator comm(Γ) of a subgroup Γ of PSL2(R) is

{δ ∈ PSL2(R) : δΓδ−1 is commensurable with Γ}.

We rely on the following standard fact.

Lemma 4.2.10. The group G = GLad2 (Q)+ (Notation 4.2.6) is the commensurator
of any congruence subgroup Γ of SL2(Z).

Because the functions g ∈ G are in the formal vocabulary, we employ congru-
ence subgroups Γg from Notation 4.2.11 rather than the ΓN . The Zg defined in No-
tation 4.2.11 play a central role both in the quantifier elimination and via an inverse
limit in Section 4.4.

{zgbar}
Notation 4.2.11. With G as fixed in Notation 4.2.6, as each of the congruence sub-
groups of PSL2(Z) act on H we can define for any finite sequence of the form
g = 〈e, g2, . . . , gn〉 from G (by convention, g1 = e),

1. Γg = Γ ∩ g−1
2 Γg2 . . . ∩ g−1

n Γgn.

2. Zg = {(p(x), p(g2x), . . . , p(gnx)) ∈ S(C)n : x ∈ H}.
3. Let Hg denote Γg \H.

4. Recall p : H→ S(C).

(a) Let pg : H→ Zg ⊆ S(C)n be defined by

x 7→ p(gx) = 〈p(x), p(g1(x)), . . . , p(gn(x))〉.
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(b) Let [φg] be the map from Hg onto Zg (Lemma 4.2.12) given by [φg]xΓg =
pg(x).

The following lemma [Ete22, 3.31] is central to Section 4.4.2. Its proof uses
Shimura theory very heavily.

{holmo}
Lemma 4.2.12. The map [φg] is bijective on the Hodge generic points and the image
Zg is a variety contained in Sn(C), n = lg(g). Moreover, [Ete22, p 17], for all g,
Zg is defined over the maximal Abelian extension L of the field of definition, E, of S.

{defconf}
Remark 4.2.13. From the model theoretic standpoint, it makes no sense to say the
[φg] are definable since their domains Hg are not. While the maps [φg] are bijective
on Hodge generic points, they may identify special points.

4.3 Quantifier Elimination in Modular and Shimura
Curves

{section:QEcurves}
We now lay out the vocabulary and first order theory for studying modular curves. The
mathematical input is a Fuchsian group Γ acting on hyperbolic space H and the image
curve S(C) = Γ \ H∗Γ (Definition 4.2.4) with a standard model p = 〈H, S, p〉. The
structure of a discrete group is unwieldy from a traditional model theoretic standpoint
because its first order theory is unstable and undecidable. Just as modules are usually
studied in model theory by adding unary function symbols fr for the elements of the
ring, in order to represent the action ofG on H, we add symbols fg for g ∈ G as unary
functions that act on H. We thus use a two-sorted presentation of our structures.

{sortexp}
Remark 4.3.1 (Sorts). A two-sorted structure interprets two unary predicates and
additional relation and function symbols with the understanding that each such rela-
tion/function either is restricted to one of the predicates or explicitly connects them.

{mcvocab}
Notation 4.3.2 (The formal vocabulary τ ). The two-sorted vocabulary τ consists of
the sorts (unary predicate symbols) D (the covering sort), S the target sort, and a
function q mapping D onto the sort S.

We write τG for the vocabulary of the first sort with G = Gad(Q+). The sec-
ond τF = R where R is the set of formulas in {+,−, 0, 1,×} specified in Defini-
tion 4.3.3. τ is τG ∪ τF ∪ {p}. There are constant symbols for each element of the
field Eab(Σ) defined in Notation 4.3.3. We use fg to name the functions acting on D,
but often write the shorter g(x) or gx instead of fg(x).

The following notation is essential to understand the Axioms 4.3.5. Note in the
prototype q is replaced by the known covering map p.
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{stmod}
Notation 4.3.3. The standard model for a modular curve determined by a Fuchsian
group Γ ⊆ G = Gad(Q+) will consist of a τ -structure p = 〈H, S, p〉with the domain
H, the variety S(F ) over the algebraically closed field F defined by Γ \ H, and R
the set of all Zariski closed relations on S(F )n (for all n) with constants from a field
Eab(Σ) that are true in F . Eab is the maximal abelian extension of the defining
(reflex) field E of S. Eab(Σ) is the extension of Eab (F0 in [Ete22, p 19]) obtained
by adding the coordinates of the (≤ ℵ0) special points, and closing to a field.

{thnot}
Notation 4.3.4. For a structure p, we write Th(p) for the complete first order theory
of all sentences true in p and T (p) for the specified set of axioms true of p.

We must distinguish Th(p) from its subset T (p) until we prove T (p) is a com-
plete axiomatization of Th(p).

{mcax}
Definition 4.3.5 (First Order Axioms). T (p) is the following collection of first order
sentences that are to hold in a structure 〈D,S(F ), q〉.

1. Each sentence in Th(〈H, {fg : g ∈ G〉). These include ‘Special Point axioms’
SPg: For each g ∈ G that fixes a unique point in D

∀x, y ∈ D[(g(x) = x ∧ g(y) = y)⇒ x = y]

2. Th(S(C),R) (Definition 4.3.2)

3. the covering map; for each g ∈ Gm and all m < ω:

(a) Mod1
g,

∀x ∈ D (q(g1(x), . . . q(gm(x)) ∈ Zg)

(b) Mod2
g:

∀z ∈ Zg∃x ∈ D(q(g1(x)), . . . q(gm(x)) = z)

(c)
MOD = {Mod1

g ∧Mod2
g : g ∈ Gm,m < ω}

Note that MOD is a countable collection of first order sentences.
{namesp}

Notation 4.3.6. By the choice ofEab(Σ), special points belong to dcl (∅). Therefore,
we can name each one of them by dg, where g ∈ G fixes dg. Any g that fixes a point
is in G−SL2(Z) [Ete22, Lemma 3.18]. There will be distinct g1, g2 that fix the same
point (e.g. if g2 = g2

1). If so, T (p) ` dg1 = dg2 The theory of (D,G) contains the
uniqueness axiom (Definition 4.3.5.1) that entails g(dg) = dg.

The theory of the cover sort is of a set with unary functions. Both its theory (since
the universe is a union of orbits) and that of the field sort (since algebraically closed)
are strongly minimal and quantifier eliminable.
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{bfdef}
Definition 4.3.7. We say two structures M and N are qf-back and forth equivalent
if the system I of partial isomorphisms of M and N between isomorphic finitely
generated substructures satisfies the back and forth condition: For each f ∈ I and
each m ∈ M − dom f , there exists an n ∈ N such that f ∪ {〈m,n〉} ∈ I , and
symmetrically, for each n ∈ N − im f , there exists m ∈M such that f ∪{〈m,n〉} ∈
I . In this situation dom f is the definable closure of the arguments of f . {barnot}
Notation 4.3.8. We write g(x) for (g1(x), . . . gn(x)) where g has length n and begins
with e. And then g(x) denotes the sequence of length nm obtained when g is applied
to each element of a sequence x ∈ (D)m.

We now sketch the proof of Theorem 4.3.13 that T (p) axiomatizes a complete,
quantifier eliminable L-theory.

jb 8/19 couldn’t get right type face for rg.

{ps}
Definition 4.3.9 (The back and forth). Fix two models q = 〈D,S(F ), q〉 and
q′ = 〈D′, S(F ′), q′〉 of T (p). We define the qf-back-and-forth system I of sub-
structures of q and q′ For each f ∈ I , dom f and rg f are each finitely generated
overEab(Σ) . A typical member of the system for q is domf = U = UD∪US . Since
U is finitely generated, UD consists of the G-orbits of a finite number of x ∈ D; US
is S(LU ) where LU is the field generated by Eab(Σ) (since the elements of Eab(Σ)
elements are named), the coordinates of the q(x) for x ∈ UD and finitely many addi-
tional points of F ∩ U . Note that the additional points determine finitely many new
field elements since q is constant on each orbit, so the field remains finitely gener-
ated. Define a similar subsystem for q′, labeling by putting primes on corresponding
objects. By Lemma 4.2.8 every point of D is either special and so named in the vo-
cabulary (Remark 4.3.6), or Hodge generic. Thus we can ignore the special points in
building the back and forth system.

Suppose f is an isomorphism between U ⊆ q and U ′ ⊆ q′. Then f restricts
to a G-equivariant injection of UD into UD′ and an embedding of S(LU ) into S(F ′)
induced by an embedding σ of L into S(F ′), that fixes Eab(Σ).

Note that the following claim is for arbitrary finite sequences g, but only single-
ton x. The type rd of an infinite sequence (here represented by an infinite tuple of
variables v) includes the types of gx for any finite g.

The main consequence of the following claim is that we may reduce types of
points in the domains sort to quantifier-free types of their images in the field sort.

Claim 4.3.10. [DH17, Prop 3.3] If d ∈ D − UD is Hodge generic: {3.3}
rd(v) |= tpqf (d/U),

where rd(v) =
⋃

g∈G tpqf (q(g(d))/U) = tpqf (〈q(g(d)) : g ∈ G〉/U).
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Proof. We show that there is a unique quantifier-free type over U of an element of D
that restricts to rd. The consistent non-trivial types in τG are i) {x 6= f : f ∈ UD} and
ii) {x 6= gx} for any non-identity g ∈ G. The first is captured by (q(x), q(f)) 6∈ Ze,e
for each f ∈ UD and the second by (q(x), q(x)) 6∈ Ze,g if g 6∈ Γ and these are both
in r(v).

Suppose h ∈ S(M)ω (for a saturated M |= T (p) containing U ) realizes rd(v)
and h with d′ ∈ D(M) satisfy h = 〈q(g(d′)) : g ∈ G〉. By the previous paragraph
d′ 6∈ UD. So d′ realizes tpqf (d/U) as required.

{ftype}
Notation 4.3.11. For a type r(v) over a set A and an isomorphism f from A to B,
f(r) is the set of B-formulas φ(v, f(a)) with φ(v,a) ∈ r.

Claim 4.3.12. [DH17, Prop 3.4] Fix g. If x ∈ UD, there is an x′ ∈ UD′ such that {onegbar}
q(g(x′)) ∈ S(F ′)m realizes f(tpqf (q(g(x))/LU )).

Proof. We write Zq
g for the points in S(F ) satisfying (the formula defining) Zg.

Using Notation 4.3.11, Claim 4.3.10 implies that the smallest algebraic subvariety
Wq

g of S(F )n that is defined over LU and contains q(g(x)) ∈ S(F )n determines
tpqf (g(x))/LU ). Since Mod1

g is true in q, Wq
g ⊆ Zq

g . Then Zq
g which, by

Lemma 4.2.12, is defined over Eab(Σ) and so is fixed setwise by the map σ de-
scribed after Definition 4.3.9. So Wq′

g ⊆ Zq′
g . Now applying Mod2

g in q′, we find
the required x′.

Having proved Claim 4.3.12, we can finish the argument. We need one more
crucial piece for the ‘forth’. What if x ∈ D − UD? For this, we need q′ to be
ω-saturated.

{qe}
Theorem 4.3.13. Suppose that q and q′ are ω-saturated. Then the qf -system de-
scribed in Remark 4.3.9 is a back and forth; hence, T (p) admits elimination of quan-
tifiers and is complete.

Proof. Suppose f is an isomorphism between U ⊆ q and U ′ ⊆ q′. Then f restricts
to a G-equivariant injection of UD into UD′ and an embedding of S(LU ) into S(F ′)
induced by an embedding σ of L into S(F ′), that fixes Eab(σ).

For x ∈ q−U , we must find x′ ∈ U ′ so that f ∪(x, x′) generates an isomorphism
between the structures generated by U ∪ {x} and U ′ ∪ {x′}. If x ∈ S, x = q(x̌) for
some x ∈ D so we restrict to that case. If x ∈ UD, x′ exists as U ′D is closed under
action by G. Since the coordinates of special points are in Eab(Σ), whose points are
all named, for a special point x, x′ must equal x.

The difficult case is when x ∈ (D − UD) is Hodge generic. But
we noted in Claim 4.3.10 that it suffices to simultaneously realize all types
tpqf ((q(g1x), . . . q(gnx))/U) for all g (of arbitrary length). A slight variant on the
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argument for Claim 4.3.12 still holds if for fixed x, we replace a single g by an arbi-
trary finite set of g. By compactness, the entire type is consistent and so satisfied in
the ω-saturated q′. There is one final step. By induction we have to choose x′ for a
sequence x,y, x where x ∈ UD and y ∈ UkS for some k. But what if x ∈ US? By
Claim 4.3.10, tpqf (x,y) is determined by tpqf (g(x),y) (in the field sort). That we
can choose of x′ ∈ U ′S to satisfy f(tpqf (g(x),y)) is now immediate by ω-saturation
and quantifier elimination in the field-sort.

By Karp’s theorem [Bar73, Theorem 3], the existence of the back and forth im-
plies all ω-saturated models of T (p) are Lω1,ω (indeed, L∞,ω) elementarily equiv-
alent. Since every model has an ω-saturated elementary extension, T (p) is com-
plete.

4.4 Galois Representations and finite index conditions
{section:fic}

In this section we begin by considering the action of discrete and Galois groups on
the domain and field sorts. Then we unite these approaches by defining a Galois
representation. We then state the key to establishing categoricity, a consequence of
Serre’s open mapping theorem.

4.4.1 Two views: domain and field sort
{domfld}

We explore the following diagram which links the domain sort (via the quotient) with
the field sort.

Hh ≈ Γh \H Zh

Hg ≈ Γg \H Zg

[φh]

[idHg
] [ψh,g ]

[φg ]

Convention 4.4.1. g = 〈e, g1 . . . gn−1〉 has length n. We restrict to g with Γg E Γ
(normal subgroup). Recall Zg ⊆ S(C)lg(g).

We have two views of ‘essentially’ the same map. The first moves to a quotient
on the domain side which is not τ -definable; the second ‘names’ the range of the first
in the target side. We begin with quotient data but with manifestations in both the
domain and target.

Domain/Quotient data: The first view motivates id for identity.
{idmap}

Definition 4.4.2. Let g ⊆ h. Define idhg : Hh → Hg by [x]Γh
7→ [x]Γg .

The normality hypothesis implies that Γg/Γh acts on Hg: for λ ∈ Γg, λ[x]Γg :=
[λx]Γg , so the representatives λi of the cosets of Γg/Γh index the equivalence classes;
thus the action is transitive.
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Field data: We define the right hand column of the diagram.
{fieldmaps}

Definition 4.4.3. 1. For g ⊆ h, lg(g) = n, lg(h) = m, ψh,g, denotes the restric-
tion of the natural projection from S(C)m onto S(C)m to map Zh ⊆ S(C)m

onto Zg ⊆ S(C)n.

2. Choose z ∈ Zg and let L = Lz be a finitely generated extension of the defining
field for S such that z is defined over L. Write L for acl(L).

3. Now, Aut(C/L) acts on the fiber of ψh,g over z, by its action on the coordinates
of z; as it would for any definable finite-to-one map from Zmh → Zng .

To connect the two sides, conjugating by [φh], Aut(L/L) acts on id−1
hg(z).

Lemma 4.4.4. [Ete22, §3.5 p. 18] Aut(C/L) acts on the fiber of ψh,g over z, (and so {varside}
via [φh] on id−1

hg(z)). This action commutes with the action of the free and transitive
(simply transitive) action of Γg/Γh on the fibers of idh,g. Thus we have a homomor-
phism (Galois representation) ρzg,h from Aut(L/L) into Γg/Γh.

4.4.2 Galois Representation
{galrepsec}

While the notion of a representation of a groupA frequently refers to an isomorphism
of A with a matrix group B, here we will discuss specific examples of a more general
notion; a representation ofA is a homomorphism ofA into a groupB. This is a Galois
representation if A is the Galois group of one field over another. In Section 4.4.1, we
gave Galois representations of Aut(L/L) into Γg/Γh. In order to understand how to
combine the actions of the Γg/Γh as g,h vary, we need the notion of inverse limit.

{thelimit}
Definition 4.4.5 (Inverse Limit). Given a directed set (I,≤) an inverse system on I
is a family of structures 〈Ai : i ∈ I〉, and for i < j maps fij from Aj to Ai such that
i < j < k implies fij ◦ fjk = fik.

An inverse limit of this inverse system is an object Â = lim←−Ai and a family of

morphisms gi : Â → Ai such that (1) for all i < j in I , fij ◦ gj = gi and (2) given
any A′ and family g′i satisfying (1) there is a unique morphism h : Â→ A′ such that
for all i ∈ I, g′i = gi ◦ h.

Definition 4.4.6. Galois Representations We work with a modular curve S(C) = {galrep}
Γ \ H which is defined over Eab(Σ). (Notation 4.3.3). Since each Γg ⊆ Γ, ρzg,h :

Aut(L/L)→ Γ, by taking an inverse limit of the representations ρzg,h, we obtain:

ρz : Gal(L/L)→ Γ

where Γ = lim←−h Γ/Γh. The h range over all finite sequences. See Definition 4.4.5
and [Ete22, §3.6 p 17].
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For any groups H1 ≤ H2 that act on a set X the H1-orbits of X partition the
H2-orbits. So if [H2 : H1] is finite and H2 is infinite, the obits will have the same
cardinality and the smaller [H2 : H1] is, the closer we are to an isomorphism.

Now, we can state the first of two crucial sufficient conditions for categoricity.

Definition 4.4.7. Finite Index Condition (FIC1) The first finite index condition is {fic1}
satisfied by a modular curve p : H→ S(C) if:

For any non-special points x1, . . . xm ∈ H in distinct G-orbits (Defini-
tions 4.4.2, 4.4.3) and L contains the field over Eab(Σ) along with the coordinates
of the p(xi) the image of the induced homomorphism ρ : Gal(L/L)→ Γ

m has finite
index in Γ

m.

Recall from Lemma 4.3.10 that

rd(v) |= tpqf (d/U).

where rd(v) =
⋃

g∈G tpqf (q(g(d))/U) = tpqf (〈q(gd) : g ∈ G〉/U).
The argument for Lemma 4.3.10 began with the observation that rd(v) implied in

particular that d 6∈ DU , so d is an independent Hodge generic. We will deduce from
Lemma 4.4.8 that only finitely many tuples g of rd are really needed.

{onto}
Lemma 4.4.8. Assume FIC1. Then, for each z, for some ĝ, the map

ρz : Aut(L/Lĝ) 7→ Γ
m
ĝ = lim←−h⊇ĝ(Γĝ/Γh)m

is surjective.

Proof. Let I = im(ρz) and let k = [Γ : I]. Suppose not. Choose ĝ with g ⊆ ĝ such
that [Γĝ : Γg] = k. But then for any h ⊇ ĝ, ρz must be onto Γĝ/Γh. For, if not, there
is an η ∈ Γĝ/Γh, that is not in I; it must be in a new coset of I in Γ, contrary to the
choice of ĝ.

{getprin}
Corollary 4.4.9. For d ∈ D − U ,

tpqf (q(ĝ(d))/U) |= rd(v) |= tpqf (d/U).

Proof. The second implication is Lemma 4.3.10. For the first, choose any h ⊇ ĝ(d)
and let m = lg(ĝ), r = lg(h). Let F ⊆ Zrh be the fiber over ĝ(d′) ∈ Zmĝ of the
finite-to-one map ψhĝ : Zrh → Zmĝ . Similarly, tpqf (h(d)/LU ) is determined by
the Aut(C/LU)-orbit G ⊆ F containing h(d). Then, tpqf (h(x)/LU ) is determined
by the Aut(C/LU)-orbit G ⊆ F containing h(x). But G = F , since ρz induces
a homomorphism from Aut(C/LU) onto Γĝ/Γh and Γĝ/Γh acts transitively on the
fiber. Since this holds for any such h, we finish.

We turn now to the infinitary axioms that are needed to obtain categoricity.
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{infax}
Notation 4.4.10 (Infinitary Axioms). 1. Φ∞ is the Lω1,ω sentence asserting that

for (D,S, q) both the dimension of the field bi-interpretable with S and the
strongly minimal structure 〈D, {fg : g ∈ Γ}〉 are infinite.

2. SF (standard fibers) denotes the Lω1,ω-axiom:

(∀x∀y ∈ D(q(x) = q(y)→
∨
g∈Γ

x = fg(y)).

3. T∞(p) denotes Th(p) ∪ {Φ∞} and

4. T∞SF (p) denotes Th(p) ∪ {SF} ∪ {Φ∞}.
{cldef}

Definition 4.4.11. For 〈D,S(F ), q〉 |= T∞SF (p) and X ⊂ D ∪ S(F ),

cl(X) = q−1(acl(q(X)))

where acl is the field algebraic closure in F .

An essential consequence of the standard fibers axiom is that Definition 4.4.11
defines an almost quasiminimal closure relation satisfying the countable closure con-
dition from Definition 3.2.4. This closure dimension restricts on the separate sorts to
the dimension of the constituent strongly minimal sets that is expressed in Φ∞. This
accomplishes the aim of an (Lω1,ω-complete so ℵ0-categorical) Lω1,ω theory with
arbitrarily large models.

A class K of models has ℵ0-homogeneity over ∅ (Definition 3.2.5) (the precise
statement is from [Ete22, p 4]) if the models of K are pairwise qf-back and forth
equivalent (Definition 4.3.7).

{fitohom}
Theorem 4.4.12. [DH17, Theorem 4.11] If the standard model p of a modular curve
satisfies FIC1, then the class of models of T∞SF (p) is ℵ0-homogenous over ∅. In par-
ticular, by Karp [Kar64, Bar73], all models of T∞SF (p) are back and forth equivalent
and so satisfy the same sentences of Lω1,ω.

Proof. Our task is to replace the ω-saturated hypothesis from Lemma 4.3.13 by
adding the infinitary axioms and the condition FIC1. As in the proof of theorem 4.3.13
we need only worry about Hodge generic points. Suppose we have a partial function f
from q to q′ with domain and range U and U ′ as in Lemma 4.3.13 between models q
and q′ of T∞SF (p). Proceed as in the second paragraph of Lemma 4.3.13. We vary the
argument for the ‘difficult case’ from the 3rd paragraph. Choose ĝ by Lemma 4.4.8.
Taking ĝ for g in Lemma 4.3.12, for x ∈ UD, there is an x′ ∈ UD′ such that
q(g(x′)) ∈ S(F ′)m realizes f(tpqf (q(g(x))/LU )). We want to show that the same
choice x′ satisfies (*) for every g ⊇ ĝ. This is immediate from Lemma 4.4.9. The ar-
gument is completed by induction as in the ‘final step’ of the proof of Lemma 4.3.13.
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Remark 4.4.13. FIC2 [DH17, Condition 4.8] provides sufficient conditions so that a {fic2}
minor modification of the proof of Theorem 4.4.12, shows FIC2 implies homogeneity
over models; pairs of models are back and forth equivalent over a countable submodel.
This is the first place in the argument where types over countable algebraically closed
fields rather than the empty set (i.e. a fixed countable field) are encountered. Com-
bining this result with Theorem 4.4.12 The homogeneity conditions are now stronger
than those defining quasiminimal excellence in [BHH+14]. Thus, we apply that paper
and obtain:

{mainres}
Theorem 4.4.14. For any modular curve interpreted as a standard model p (Defini-
tion 4.3.3) for T∞(p), T∞(p) is almost quasiminimal excellent and so categorical
in every infinite power.

Proof. We need only that FIC1 and FIC2 hold for all modular curves. This is proved
in [DH17, §5], where the proof for FIC1 relies heavily on [Ser72, §6] and FIC2 on
[Rib75].

With further effort they extend this result to Shimura curves.
{compsentence}

Remark 4.4.15. Keisler’s theorem [Kei70, Corollary 5.10] and work of Shelah
[Bal09, §7] show that an ℵ1-categorical sentence φ of Lω1,ω not only has only count-
ably many types in any countable fragment of Lω1,ω containing φ (Keisler) but has a
completion (a sentence φ∗ that implies φ and decides every Lω1,ω-sentence) (Shelah).
Equivalently, the completion must specify the isomorphism type of the countable
model. The only such completion consistent with having an uncountable model is
adding Φ∞.

We have used FIC1 to prove categoricity in all powers. In fact, ℵ1-categoricity
implies FIC1. For this, [DH17, Ete22] argue that countably many types over the
empty set for T∞SF implies FIC1. If FIC1 holds, for some z, by Lemma 4.4.8, for
every g, there is h ⊇ g with a Γg/Γh-orbit contained in ψ−1

hg (z) that projects to that
Γg orbit. So under the assumption that FIC1 fails, there is a g, such that for every
h ⊇ g there are distinct Γg/Γh-orbits O1, O2 contained in ψ−1

hg (z) that project to the
same Γg-orbit.

By Lemma 4.3.10, if two points are Galois equivalent they realize the same quan-
tifier free τ -type; so O1, O2 realize distinct Galois orbits (and so any two orbits that
project to them must realize distinct τ -types). But since Γ acts transitively on each
Zg, there is a complete tree of splittings of Aut(C/L) orbits that all project to z. This
contradicts Keisler’s theorem. So ℵ1-categoricity of T∞SF implies FIC1

{ficstatus}
Remark 4.4.16. FIC1 and FIC2 hold for all modular and Shimura curves [DH17,
§5], where the proof relies heavily on [Ser72, §6]. So the remaining sections concern
higher dimensional varieties. FIC1 is known for some higher dimensional Shimura
varieties and conjecturally for others, while FIC2 is true for all [Ete22].
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[DH17] use both to prove categoricity. Note that FIC1 is a property of the Galois
group which is not explicit in our vocabulary. Thus, it cannot be directly expressed in
the two-sorted theory. So the goal of a ‘fully formal invariant’ is not fully achieved
unless explicit reliance on the finite index conditions as an hypothesis is avoided.

5 First order Excellence
{section:notop}

Here are the opening paragraphs of [BHP20].

Let G = Gn be a complex algebraic torus, or let G be a com-
plex abelian variety. Considering G(C) as a complex Lie group, with
LG = T0(G(C)) its (abelian) Lie algebra, the exponential map provides
a surjective analytic homomorphism

exp : LG� G(C).

In the spirit of Zilber, their paper aims at finding ‘algebraic descriptions’ of the
cover exp which characterize the standard structure (at least up to categoricity in
power). They solve a more general problem by providing a first order theory T̂ for
the situation and showing each model M̃ (M̂ here) of T̂ is determined by relations
among two designated substructures and a certain transcendence degree. In this gen-
erality, the result is proved for any abelian group of finite Morley rank (henceforth
fmr groups). Then, under slightly stronger hypotheses, the result becomes a true
categoricity result for, in particular, an abelian variety defined over a number field.

We address in this section four new ingredients: formalized non-standard covers,
‘first order excellence’, Kummer theory, a distinction between classification and cate-
goricity. First order excellence appears to be both necessary and applicable for higher
order Shimura varieties.

As noted in [BHP20], the quasiminimal approach studied earlier in this paper
suffices to prove the Lω1,ω-categoricity in power for Abelian varieties. The goal of
this section is to identify the distinctive elements of the [BHP20] proof that later
reappear in [Ete22].

5.1 The two-sorted structure and fmr groups
{2sort}

A first order theory T is stable in κ if any M |= T , with |M | = κ, |S(M)| = κ.
(S(M) denotes the set of 1-types over M .) Morley showed that ω-stability (more
properly, ℵ0-stability) of a theory T is equivalent to stability in all powers (and also
to the Morley rank having an ordinal value for each type). We need here a slightly
weaker condition called superstability: T is stable in κ if κ ≥ 2ℵ0 .
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The theory of (Z,+) is one of the prototypical strictly superstable theories4 (that
is, superstable, but not ℵ0-stable). One can fix arbitrarily the congruence class of an
element x for each n. This gives 2ℵ0 distinct types realized by non-standard integers.

There is an extensive theory of fmr groups (see [BN94, ABC08]). We need here
only the basics. In particular, Macintyre’s result [Mac70] that an ω-stable group is
divisible by finite. We now introduce the two-sorted theory; with that notation we are
able at the end of this section to outline the main steps of the proof.

Unlike [DH17] where lim←− Zg is in the background of the proof of (our) Theo-
rem 4.4.12 but not the statement, [BHP20] build the structure of non-standard covers
into the vocabulary of the two sorted structure by the ρn below.

[BHP20, §2.2] use the inverse limit of Definition 5.1.1 for divisible abelian
groups; they refer to it as a profinite universal cover denoted Ĝ of G and G rapidly
becomes M . Although the hat has only one meaning in [BHP20], it becomes over-
loaded here so we denote the inverse limit defined below as M̃ . While in [BHP20] a
typical 2-sorted τ̂ is represented as either (M̃,M) or M̃ , we write M̂ = (M̃,M) and
M̃ for the inverse limit from [BHP20] defined in Definition 5.1.1 as that is the actual
usage in most of the cited paper.

{bhphat}
Definition 5.1.1 (M̃ ). Given a commutative, divisible, abelian group (M,+), con-
sider the inverse limit M̃ = lim←− Mn of isomorphic copies Mm of M with the index
set partially ordered bym ≤ n if and onlym|n and with maps ηnm (multiplication by
n/m) takingMn 7→Mm. Concretely, (M̃,+) is the subgroup of the direct product of
ω copies of M , containing those sequences (〈gk : 1 ≤ k < ω〉) such that if k = nm,
gm = n× gk and gn = m× gk.

The axioms [BHP20, 2.5] of T̂ are chosen so that

Theorem 5.1.2. [BHP20, 2.7, 2.8, 2.21]
For a fmr group G, (G←−,G, ρ0) |= T̂ and therefore T̂ admits quantifier elimination

and is superstable of finite U -rank.

Although the T in Notation ?? is ω-stable, T̂ is only superstable; also, many
elements of ker(ρ) are not divisible in ker(ρ).

For quantifier elimination purposes, we actually assume (by expanding T by con-
stants if necessary) that every acleq(∅)-definable connected subgroup of GN is ∅-
definable. We summarize [BHP20, Axioms 2.5]. Here G and H are ∅-definable
subgroups of some Gn and Ĝ, Ĥ are their pullbacks in Ĝ.

{kf}
Remark 5.1.3 (Quasiminimality, unidimensionality, notop). Abelian varieties can
be handled either by the quasiminimality methods of Section 4 or by the methods

4The other one is the theory of countably many equivalence relations En such that for each n, each
En-class is split into infinitely many En+1-classes (and En+1 ⊆ En).
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described in this section. A crucial distinction from Section 4 is that the former
considered only the theory of unary functions from a group acting on the domain,
while here we have the full group structure.

To explain the fmr proof we need some further model theoretic background. In
general two types p, q over M are orthogonal when in different models N extending
M the number of realizations of p and q can be varied arbitrarily. Non-orthogonality
for strongly minimal sets has a particular clear meaning. The strongly minimal sets
D1 and D2 are non-orthogonal if there is a definable finite to finite binary relation on
D1 ×D2. A theory is unidimensional if all types are non-orthogonal.

The three features that underlie the [BHP20] proof are.

1. A fmr abelian group has finite width [Bal88, XV.1] (aka almost ℵ1-categorical
[Las85]): Any model is the algebraic closure of the union of the bases a col-
lection Di for i < n < ω. The Di are strongly minimal sets defined over the
prime model (the unique up to isomorphism model embedded in every model
of the theory).

2. In models of T̂ where G is defined over a number field k0, for the prime model
M0, Kummer theory allows the control of ρ−1(M0) by the kernel ρ−1(0).

3. In studying Abelian varieties the n in 1) can be taken as 1 because the variety is
interalgebraic with an algebraically closed field and so almost strongly minimal
(M = acl(D) for strongly minimal D).

Due to the absence of Kummer theory, both 2) and 3) fail for more general higher
dimensional Shimura varieties, (Section 6).

5.2 First order Excellence
{foex}

Shelah’s main gap program defines a sequence of propertiesX of countable first order
theories forming a sequence of dichotomies such that: if T satisfies X , T has the
maximal number of models in every uncountable cardinal [Bal18, §5.5]. If T fails X ,
the models of T satisfy conditions useful for classification. (e.g. stability implies the
existence of the ‘non-forking’ independence relation)[Bal18, §5.5]. The positive side
of the final dichotomy in the sequence is superstable without the omitting types order
property (denoted notop). Under this hypothesis, Shelah ([She90] and earlier papers)
showed that an appropriate class of models of T had a notion of independence among
structures with n-amalgamation for all n that yields the classification of models. Hart
[Har87] reduced the amalgamation requirement to 2-amalgamation and this reduction
was extended to the quasiminimal excellent case in [BHH+14]. In Section 6, we note
this ‘notop’ approach is used to study higher dimensional Shimura varieties.
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In Section 3 of [BHP20] the techniques of [Har87] are adapted to the specific
framework here to establish a decomposition of models of T̂ analogous to that in
Remark 5.1.3 for models of T . This yields

Theorem 5.2.1. [BHP20, Theorem 3.31] Each model M̂ of T̂ is determined up to {3.31}
isomorphism by the transcendence degree of the algebraically closed field K such
that M ∼= G(K), the isomorphism type of the inverse image, M̂0, of the prime model
M0 of T , and the isomorphism type of M over M0.

5.3 Abelian Varieties
{abelianvarieties}

From the model theoretic standpoint, an Abelian variety is a complete algebraic vari-
ety whose points form a group such that the group operations are definable in the am-
bient field. For Abelian varieties, Kummer theory eliminates (as in [Gav08, BGH14])
the reliance in Theorem 5.2.1 on knowing the isomorphism type of M̌0 over the ker-
nel. Let G be (the formula defining) an abelian variety G(K) over a field K as in the
introduction to Section 5. Assume G(C) and its ring of endomorphisms are definable
over a number field k0.

With this notation:

Theorem 5.3.1. [BHP20, Theorem 4.6] a model M̂ = 〈M̃,M, q〉 of T̂ is determined {bhp4.6}
up to isomorphism by the transcendence degree of the algebraically closed field K
such that M ∼= G(K), and the τ̂ isomorphism type of kerρ.

{cfi}
Remark 5.3.2 (Complete formal invariant). Theorem 5.3.1 gives categoricity in all
uncountable cardinalities by adding the Lω1,ω sentence characterizing the standard
kernel. But Theorem 5.3.1 is more general than categoricity; it shows that models
with non-standard (possibly uncountable) kernel are characterized by the τ̂ -diagram
of the kernel. Of course, this statement cannot be formalized in languages with
bounded length of conjunctions since the kernels can be arbitrarily large. But Zil-
ber’s goal (just after Notation 1.0.1) only aimed at complete formal characterization
for prototypical mathematical structures.

The situation described in the opening paragraph of § 5 is a special case.

6 Higher Dimensional Shimura Varieties
{Shivar}

8/19 first paragraph needs some thought about proper usage of shimura
and generalized
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A Shimura variety is a higher-dimensional generalization of a modular curve that
arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup
of a reductive algebraic group defined over Q. We consider Shimura varieties that
are moduli spaces for generalized algebraic varieties. The Shimura variety is treated
as the quotient by a discrete group acting on the universal cover X+. Rather than
discussing further technical details on the definition of a Shimura datum (G,X), we
survey the differences that arise in generalizing the results in Remark 4.4.16 about
Shimura curves to higher dimensional Shimura varieties: S(C) = Γ \X+.

Central difficulties arise directly from the higher dimension in two ways. First, in
the curve case the 2-sorted structure is (almost)-quasiminimal because the variety in
field sort is a curve and so strongly minimal and the geometric closure on the cover
sort is given by a ∈ cl(X) if a ∈ q−1(acl((q(X)). Quasiminimality can fail in the
higher dimensions. Second, rather than special points which are fixed points of some
g, one must treat special subvarieties [Ete22, §3.4] and finite unions thereof, special
domains. The fact that these are not merely points leads to several difficulties.

1. The structure of the covering sort is no longer strongly minimal. Even after
naming the elements of the group the special subvarieties give a complicated
structure on the covering sort.

2. In the curve case the intersection of special domains was a point; that may fail
in higher dimensions.

3. The theories of two inverse limit structures p̂ and p̃ are considered as the cov-
ering space. The first structure is the analog of lim←− Zg (Definition 4.2.11). The
second consists only of the standard points of this limit. The canonical uni-
versal cover p satisfies the first order Th(p̃) but not in general Th(p̂) [Ete22,
Example 5.7, Corollary 5.14].

4. An Lω1,ω categorical axiomatization is not claimed. Each model can be pre-
cisely characterized but the characterization is not in Lω1,ω. See Remark 5.3.2.

5. Finally, even this characterization depends on whether the variety under consid-
eration satisfies finite index conditions as in the modular case. Although FIC1
and FIC2 are true in the modular curve case, here the truth of FIC1 for p is
actually equivalent to the characterizability of models of T inf

SF (p) since [Ete22]
show FIC2 is true.

7 Model Theory and Analysis
One can signal three different model theoretic approaches to analysis:

1. Axiomatic analysis studies behavior of fields of functions with operators but
without explicit attention in the formalism ofcontinuity but rather to the alge-
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braic properties of the functions. The function symbols of the vocabulary act
on the functions being studied; the functions are elements of the domain of the
model.
Example: DCF0 as discussed below.

2. Definable analysis has a lower level of abstraction; the domain of the functions
remains the universe of the model. The functions being studied are the com-
positions of the functions named in the vocabulary; one cannot quantify over
them.
Example: o-minimality.

3. Implicit analysis Attempt to provide ‘algebraic characterizations of important
mathematical structure by axiomatizations in infinitary logic that are categorical
in power, for example, the material in this paper.

The first two are discussed in [Bal18, §6.3]. The work expounded in this paper has
many commonalities with a prime example of axiomatic analysis: the study of tran-
scendence results for solutions of differential equations by the study of the ω-stable
theory DCF0 of differentially closed fields of characteristic zero. The notion of ‘not
integrable by elementary functions (Painlevé said ‘irreducible’) is formalized by ‘the
solution set is strongly minimal’ [Nag14]. The study of Schwartzian equations pro-
vides a general framework in which the j-function and modular curves are explored.
The work includes, variations on the Ax-Lindemann-Weierstrass theorem, Generic
differential equations are strongly minimal [DF23], Differential Chow Varieties are
Kolchin-constructible [FLS17], and the analysis of strongly minimal solution sets de-
fined by differential equations in terms of the Zilber trichotomy and ℵ0-categoricity.

But while the mathematical topics are the same, the aims are different: The covers
project tries to assign a categorical description of each cover. The DCF0 approach
tries to understand transcendence results for solutions of the differential equations.

The crucial methodological difference is the two sorted nature of the cover pro-
gram. The axiomatic analysis framework is preserved in that there is no explicit
treatment of convergence or continuity. But connecting the domain and target by
quotients under an explicit group action as well as the use of infinitary logic provides
tools not available in the earlier examples of axiomatic analysis.

8 Families of covers of algebraic curves
{smoothvar}

In recent work Zilber and Daw [DZ22b] deal with families of covers of curves. They
build on earlier constructions we have discussed in this paper. Rather than a cover of
a single variety, an entire family of covers is studied and the covering space becomes
an analytic Zariski structure [Zil10]. In [Zil22] the analysis of families is generalized
by being placed in a geometric algebraic setting.
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The most salient difference with respect to the works discussed earlier in this
paper is that, rather than a cover of a single variety, an entire family of covers is now
the main subject. Our earlier Definition 4.2.9 is now replaced by a basic vocabulary
consisting of three sorts, together with maps ΓN \H 7→ C covering a family of curves
SN (C).

8.1 Pseudo-analytic covers of modular curves
{families}

Major differences of paper [DZ22b] from the earlier discussion of modular curves
include:

1. The basic vocabulary is now 3-sorted. The discrete group is now given
as a third sort incorporating a group operation (so its pregeometry is lo-
cally modular, rather than trivial). This group and distinguished subsets5

(GL+
2 (Q),×,SL2(Z), E(Q), {dq,d′q : q ∈ Q)}, where E is the collection of

elliptic elements of the group; those that have unique fixed points. This struc-
ture is specified up to isomorphism by a sentence of Lω1,ω. But not all group
elements are still named in the formal language.
More specifically, [DZ22b] considers structures (D,G, jN ,C) where the jN :
H� SN (C). {sorted}

2. The uniformizing functions jN each map into P3(C) rather than into the arbi-
trarily high dimensional spaces of the maps [φg] in [DH17, Ete22]. Further-
more, these are now defined over Q rather than over Eab(Σ).

3. As well as an almost quasiminimal axiomatization of the 3-sorted structure, the
domain is considered as a Zariski Analytic set with a quasiminimal geometry.
Both of these structures are shown to be uncountably categorical.

4. The special points are not named. However as in Definition 4.3.5 they are
uniquely associated with elliptic elements of the group.

In many ways, this last distinction is the most important for the general program,
as naming of the special points trivializes some of the arithmetic. In this case, the
structure of the family is proved to be categorical in all uncountable cardinalities.

8.2 Locally o-minimal covers of algebraic varieties
{omin}

The paper [Zil22] takes a more general approach. It abstracts away from naming
all elements of the discrete groups as earlier in this paper. The relations among the
universal and finite covers are given more abstractly as properties of maps from a

5E is the elliptic Mobius transformations and the d are specific diagonal matrices.
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domain (whose smoothness is defined topologically and geometrically but not alge-
braically) onto families of algebraic varieties. This smoothness as well as the eventual
quasiminimality for curves6 is controlled by external o-minimal structures.

{whatsnew}
Remark 8.2.1. 1. Generalizing the last paragraph of Section 8.1, in the standard

model the domain is a complex manifold U(C) with holomorphic maps fi onto
algebraic varieties Xi(C) with natural projections pri,j among the Xi. We fix
k ⊆ C a subfield over which the varieties Xi are all defined.

2. The formalization is new. For a fixed model R of the theory T of a fixed o-
minimal expansion of the reals (e.g the restricted analytic functions) a structure
U(R) is defined. The predicates required in the previous paragraph are type-
definable in T . The resulting structure U(R) is an abstract Zariski structure7.

3. The ostensibly two-sorted structure of 1) becomes one-sorted because the field
can be interpreted in the abstract Zariski structure. And the third sort of Sec-
tion 8.1 has disappeared because the group is no longer referenced directly.

4. A crucial technical tool is the development of a theory of K-analytic sets in
o-minimal expansions of the reals [PS08, PS10].

5. The o-minimal geometry of algebraic closure in U(R) imposes the desired
quasiminimal geometry on U(R). The dimension function is denoted cdim for
‘combinatorial dimension’. Note that the ordering is not imposed on U but only
the predicates described above and the dimension.

6. As before, there is an Lω1,ω sentence that axiomatizes the quasiminimal (ex-
cellent) geometry and whose models form an AEC that is categorical in all
cardinalities.

Zilber provides a proof of the following theorem [Zil22]:

Theorem 8.2.2 (Categoricity of families of smooth complex algebraic vari-
eties [Zil22]). Let U be a cover of a family of smooth complex algebraic variety,
formalized as in Remark 8.2.1, and let U(R) be its associated Lω1ω-definable class. If
dimC(U) = 1, (i.e. if the varieties are curves) and cdim(R/k) is infinite, then U(R)
is categorical in all uncountable cardinals.

Zilber remarks that in the case of higher dimensional varieties, categoricity in ℵ1

can still be proved.

Example 8.2.3. Here are some examples from [Zil22]. Fix the expansion RAn =
Rexp,an of the reals with the exponential function and the restricted analytic functions.

6The set-up is for arbitrary algebraic varieties, but the categoricity result is only for curves and we restrict
to that case.

7Actually, U(R) also depends on an algebraically closed field K taken as R + iR.
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• Let I = N, U = C, fk(z) = exp( zk ), Dn = {z ∈ C : −2πn < Im(z) < 2πn}.
These are easily seen to provide a cover system.

• As we indicated in the motivation the j-function with variants jN as uniformiz-
ers for the modular curves ΓN \H are examples; this study allows one to formal-
ize their analytic properties in terms of o-minimality. Finally, other examples
include the Siegel half-space and polarized algebraic varieties (these last exam-
ples are claimed but not developed by Zilber).
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[Ete22] Sebastian Eterović. Categoricity of Shimura varieties. 2022 version,
2022.

[FLS17] J. Freitag, Wei Li, and T. Scanlon. Differential chow varieties exist. J.
Lond. Math. Soc., (2) 95:128–156, 2017. appendix by William John-
son.

[Gav08] Misha Gavrilovich. A remark on transitivity of Galois action on the
set of uniquely divisible abelian extensions of E(Q) by z2. Journal of
K-theory, 38:135–152, 2008.

[Had54] Jacques Hadamard. The psychology of invention in the math-
ematical field. Dover, 1954. First edition Princeton 1945;
Dover: http://worrydream.com/refs/Hadamard\%20-\
%20The\%20psychology\%20of\%20invention\%20in\
%20the\%20mathematical\%20field.pdf French version
of Poincaire story https://www.persee.fr/doc/ahess_
0395-2649_1963_num_18_2_420994_t1_0399_0000_1.

38



[Har87] Bradd Hart. An exposition of OTOP. In J. Baldwin, editor, Classifica-
tion Theory: Chicago, 1985. Springer-Verlag, 1987.

[Har14] Adam Harris. Categoricity and covering spaces. PhD thesis, Oxford,
2014. https://arxiv.org/pdf/1412.3484.pdf.

[Kar64] C. Karp. Languages with Expressions of Infinite Length. North Hol-
land, 1964.

[Kat92] S Katok. Fuchsian Groups. University of Chicago Press, Chicago,
1992.

[Kei70] H.J. Keisler. Logic with quantifier ”there exists uncountably many”.
Annals of Math. Logic, 1:1–93, 1970.

[Kir10] Jonathan Kirby. On quasiminimal excellent classes. Journal of Sym-
bolic Logic, 75:551–564, 2010.

[Las85] D. Lascar. Les groupes ω-stable de rang fini. Transactions of the
American Mathematical Society, 292:451–462, 1985.

[Mac70] Angus J. Macintyre. On ω1-categorical theories of abelian groups.
Fundamenata Mathematicae, 70:253–270, 1970.

[Mar02] D. Marker. Model Theory: An Introduction. Springer-Verlag, 2002.

[Mil12] James S. Milne. What is a Shimura variety. Notices of the American
Mathematical Society, 59:2560–1561, 2012.

[Miy89] T. Miyake. Modular Forms. Springer, 1989.

[Mor65] M. Morley. Categoricity in power. Transactions of the American Math-
ematical Society, 114:514–538, 1965.

[Nag14] Joel Nagloo. Model theory and differential equations. PhD thesis,
Leeds, 2014.
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