
Bulletin of the Iranian Mathematical Society Vol. XX No. X (201X), pp XX-XX.

BEYOND FIRST ORDER LOGIC: FROM NUMBER OF
STRUCTURES TO STRUCTURE OF NUMBERS PART II

JOHN BALDWIN, TAPANI HYTTINEN AND MEERI KESÄLÄ

Communicated by
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in non-elementary model theory focusing in the framework of ab-
stract elementary classes. We discuss the role of syntax and seman-
tics and the motivation to generalize first order model theory to
non-elementary frameworks and illuminate the study with concrete
examples of classes of models.

This second part continues to study the question of catecoricity
transfer and counting the number of structures of certain cardi-
nality. We discuss more thoroughly the role of countable models,
search for a non-elementary counterpart for the concept of com-
pleteness and present two examples: One example answers a ques-
tion asked by David Kueker and the other investigates models of
Peano Arihmetic and the relation of an elementary end-extension
in the terms of an abstract elementary class.
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We discussed the categoricity transfer problem and how this lead to
the development of a so called stability classification. We emphasized
how research questions in counting the number of models of the class
in a given cardinality had led to better understanding of the structures
of the class, enabled classification via invariants and found out to have
applications beyond the original research field.

We mentioned two procedures for proving a categoricity transfer the-
orem: the saturation transfer method and the dimension method. Espe-
cially, we discussed types and how the question whether or how many
times certain types are realized in a structure was essential. Here we
describe how these methods have been applied for Abstract Elementary
Classes.

The study of complete sentences in Lω1,ω gives little information about
countable models as each sentence is ℵ0-categorical. Another approach
to the study of countable models of infinitary sentences is via the study of
simple finitary AEC, which are expounded in Subsection 1.1. However,
while complete sentences in Lω1,ω is too strong a notion, some strength-
ening of simple finitary AEC is needed to solve even such natural ques-
tions as, ‘When must an ℵ1-categorical class have at most countably
many countable models?’. In Section 2 we focus on countable models
and study the concept of completeness for abstract elementary classes.
Some interesting examples of models of Peano Arithmetic enliven the
discussion.

1. Abstract elementary classes and Jónsson classes

We recall the definition of an abstract elementary class.

Definition 1.0.1. For any vocabulary τ , a class of τ -structures (K,4K)
is an abstract elementary class (AEC) if

(1) Both K and the binary relation 4K are closed under isomorphism.
(2) If A 4K B, then A is a substructure of B.
(3) 4K is a partial order on K.
(4) If 〈Ai : i < δ〉 is an 4K-increasing chain:

(a)
⋃
i<δ Ai ∈ K;

(b) for each j < δ, Aj 4K
⋃
i<δ Ai

(c) if each Ai 4KM∈ K, then
⋃
i<δ Ai 4KM.

(5) If A,B, C ∈ K, A 4K C, B 4K C and A ⊆ B then A 4K B.



Beyond First Order Logic Part II 3

(6) There is a Löwenheim-Skolem number LS(K) such that if A ∈ K
and B ⊂ A a subset, there is A′ ∈ K such that B ⊂ A′ 4K A
and |A′| = |B|+ LS(K).

Abstract elementary classes arise from very different notions4K, which
do not necessarily have a background in some logic traditionally studied
in model theory. If a class (K,4K) is an AEC, many tools of model the-
ory can be applied to study that class. The first essential observation is
that an analog of the Chang-Scott-Lopez-Escobar Theorem (See Theo-
rem 3.1.5 in Part I) holds for any AEC. Here, purely semantic conditions
on a class imply it has a syntactic definition.

Theorem 1.0.2. (Shelah) Assume that (K,4K) is an abstract elemen-
tary class of L-structures, where |L| ≤ LS(K). There is a vocabulary
L′ ⊇ L with cardinality |LS(K)|, a first order L′-theory T and a set Σ of
at most 2LS(K) partial types such that K is the class of reducts of mod-
els of T omitting Σ and 4K corresponds to the L′-substructure relation
between the expansions of structures to L′.

This theorem has an interesting corollaries, since it enables us to use
the tools available for pseudoelementary classes: for example, we can
count an upper bound for the Hanf number. To extend the notion of Hanf
number (See definition 2.1.6 in Part I) to AEC, take C in the definition as
the collection of all abstract elementary classes for a fixed vocabulary and
a fixed Löwenheim-Skolem number. (For a more general account of Hanf
Numbers see page 32 of [2].) There is an interesting interplay between
syntax and semantics: we can compute the Hanf number for AECs with
a given LS(K), a semantically defined class. But the proof relies on the
methods available only for an associated syntactically defined class of
structures in an extended vocabulary.

The following properties of an AEC play a crucial role in advanced
work:

Definition 1.0.3 (Amalgamation and Joint embedding).
(1) We say that (K,4K) has the amalgamation property (AP), if it

satisfies the following:
If A,B, C ∈ K, A 4K B, A 4K C and B ∩ C = A, there is

D ∈ K and a map f : B ∪ C → D such that f � B and f � C are
K-embeddings.

(2) We say that (K,4K) has the joint embedding property (JEP) if
for every A,B ∈ K there is C ∈ K and K-embeddings f : A → C
and g : B → C.
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The notion of AEC is naturally seen as a generalization of Jónsson’s
work in the 50’s on universal and homogeneous-universal relational sys-
tems; we introduce new terminology for those AEC’s close to his original
notion.

Definition 1.0.4 (A Jónsson class). An abstract elementary class is
a Jónsson class if the class has arbitrarily large models and the joint
embedding and amalgamation properties.

The models of a first order theory under elementary embedding form a
Jónsson class in which complete first order type (over a model) coincides
exactly with the Galois types described below and the usual notion of a
monster model is the one we now explain.

A standard setting, stemming from Jónsson’s [10] version of Fraïssé
limits of classes of structures, builds a ‘large enough’ monster model M
(or universal domain) for an elementary class of structures via amalga-
mation and unions of chains. A monster model is universal and homo-
geneous in the sense that

• All ‘small enough’ structures can be elementarily embedded in
M and
• all partial elementary maps from M to M with ‘small enough’
domain extend to automorphisms of M.

Here ‘small enough’ refers to the possibility to find all structures ‘of
interest’ inside the monster model; further cardinal calculation can be
done to determine the actual size of the monster model.

The situation is more complicated for AEC. We consider here Jónsson
classes, where we are able to construct a monster model. However, even
then the outcome differs crucially from the monster in elementary classes,
since we get only model-homogeneity, that is, the monster model for a
Jónsson class is a model M such that

• For any ‘small enough’ model M ∈ K there is a K-embedding
f :M →M.
• Any isomorphism f :M → N between ‘small enough’K-elementary
substructures M,N 4K M extends to an automorphism of M.

The first order case has homogeneity over sets; AEC’s have homogeneity
only over models.

The first problem in stability theory for abstract elementary classes is
to define ‘type’, since now it cannot be just a collection of formulas. We
note two definitions of Galois type.
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Definition 1.0.5 (Galois type).
(1) For an arbitrary AEC (K,4K) and modelsM 4K N ∈ K consider

the following relation for triples (ā,M,N), where ā is a finite
tuple in N :

(ā,M,N) ≡ (b̄,M,N ′)

if there are a model N ′′ ∈ K and K-embeddings f : N → N ′′,
g : N ′ → N ′′ such that f � M = g � M and f(ā) = b̄. Take
the transitive closure of this relation. The equivalence class of a
tuple ā in this relation, written tpg(ā,M,N) is called the Galois
type of ā in N over M .

(2) Assume that (K,4K) is a Jónsson class and M is a fixed monster
model for the class. We say that the tuples ā and b̄ in M have
the same Galois type over a subset A ⊆M,

tpg(ā/A) = tpg(b̄/A),

if there is an automorphism f of M fixing A pointwise such that
f(ā) = b̄.

Fruitful use of Definition 1.0.5.2 depends on the class having the amal-
gamation property over the ‘parameter sets’ A. Thus, even with amal-
gamation, there is a good notion of Galois types only over models and
not over arbitrary subsets.

The monster model is λ-saturated for a ‘big enough’ λ. That is, all
Galois-types over 4K-elementary substructuresM of size ≤ λ, which are
realized in some 4K-extension of M , are realized in M. When M is a
K-elementary substructure of the monster model M, the two notions of
a Galois type tpg(ā,M,M) agree. As in the first order case, the set of
realization of a Galois-type of ā (over a model) is exactly the orbits of
the tuple ā under automorphisms of M fixing the model M pointwise.
That is,

tpg(ā,M,M) = tpg(b̄,M,M)

if and only if there is an automorphism f of M fixing M pointwise such
that f(ā) = b̄. Furthermore, if N 4K M is any K-extension of M
containing ā, tpg(ā,M,N) equals tpg(ā,M,M) ∩ N . Hence in Jónsson
classes we fix a monster model M and use a simpler notation for a Ga-
lois type, tpg(ā/M), which abbreviates tpg(ā,M,M). Since we can also
study automorphisms of M fixing some subset A of M, also the notion
of a Galois type over a set A becomes amenable. But over sets, the two
forms are not equivalent.
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The notion of Galois type lacks many properties that the compact-
ness of first order logic guarantees for first order types. In the first order
case, we can always realize a union of an increasing chain of types in
the monster model and types have finite character : the types of ā and b̄
agree over a subset A if and only if they agree over every finite subset of
A. Many such nice properties disappear for arbitrary Galois types. But
we restrict to better-behaved Jónsson classes. Grossberg and VanDieren
[4] isolated the concept of tameness that is crucial in the study of cate-
goricity transfer for Jónsson classes.

Definition 1.0.6 (Tameness). We say that a Jónsson class (K,4K) is
(κ, λ)-tame for κ ≤ λ if the following are equivalent for a model M of
size at most λ:

• tpg(ā/M) = tpg(b̄/M),
• tpg(ā/M ′) = tpg(b̄/M ′) for each M 4K M with |M ′| ≤ κ.

Furthermore, we say that the class is κ-tame if it is (κ, λ)-tame for all
cardinals λ and tame if it is LS(K)-tame.

Giving up compactness also has benefits: ‘non-standard structures’
that realize unwanted types, which are forced by compactness, can now
be avoided. For example, we might study real vector spaces in a two
sorted language and demand that the reals be standard.

The first ‘test question’ for AECs was to ask if one can prove a cate-
goricity transfer theorem. Shelah stated the following conjecture:

Conjecture 1.0.7. There exists a cardinal number κ (depending only on
LS(K)) such that if an AEC with a given number LS(K) is categorical in
some cardinality λ > κ, then it is categorical in every cardinality λ > κ.

Shelah introduced the notion of a Jónsson class (not the name) in
1999 [18] and proved the following categoricity transfer result. ( Part
II [2]).

Theorem 1.0.8. (Shelah) Let (K,4K) be a Jónsson class. Then there is
a calculable cardinal H2, depending only on LS(K), such that if (K,4K)
is categorical in some cardinal λ+ > H2, then (K,4K) is categorical in
all cardinals in the interval [H2, λ

+].

We remark that this almost settles the Categoricity Conjecture for
Jónsson classes: for each such AEC with a fixed Löwenheim-Skolem
number LS, let µK be the sup (if it exists) of the successor cardinals
in which K is categorical. Since there does not exists a proper class
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of such AECs, there is a supremum for such µK, denote this number
Λ(LS). Now if a Jónsson class with Löwenheim-Skolem number LS is
categorical in some successor cardinal λ > µ = sup(Λ(LS),H2), it is
categorical in all cardinals in [H2, λ

+], and in arbitrarily large successor
cardinals, and hence in all cardinals above H2. Two problems remain in
this area. Remove the restriction to successor cardinals in Theorem 1.0.8;
this would avoid the completely non-effective appeal to Λ(LS). Make a
more precise calculation of the cardinal H2 in the successor case (Problem
D.1.5 of [2].)

Shelah proves a downward categoricity transfer theorem and also shows
categoricity for λ+ > H2 implies certain kind of ‘tameness’ for Galois
types over models of size ≤ H2, which enables the transfer of categoric-
ity up to all cardinals in the interval [H2, λ

+]. Grossberg and VanDieren
separated out the upward categoricity transfer argument, and realized
that tameness was the only additional condition needed to transfer cate-
goricity arbitrarily high. The downward step uses the saturation transfer
method, where saturation is with respect to Galois types; the upwards
induction uses the dimension method.

Theorem 1.0.9. (Grossberg and VanDieren) Assume that a χ-tame
Jónsson class (K,4K) is categorical in λ+, where λ > LS(K) and λ ≥ χ.
Then (K,4K) is categorical in each cardinal ≥ λ+.

Lessmann [15] extends the result to LS(K)+-categoricity in the case
LS(K) = ℵ0. The restriction to countable Löwenheim cardinal number
reflects a significant combinatorial obstacle. In these two results the
categoricity transfer is only from successor cardinals and the proof is
essentially an induction on dimension. In Subsection 1.1 we discuss fur-
ther use of the saturation transfer method for simple, finitary AECs by
Hyttinen and Kesälä in [11].

1.1. Simple finitary AECs. Simple finitary AECs were defined partic-
ularly to study independence and stability theory in a framework without
compactness. The idea was both to find a common extension for homo-
geneous model theory and the study of excellent sentences in Lω1ω (See
Part I) and also clarify the ‘core’ properties which support a success-
ful dimension theory. The property finite character is essential for this
analysis.

Definition 1.1.1 (Finite character). We say that (K,4K) has finite
character if for any two models A,B ∈ K such that A ⊆ B the following
are equivalent:



8 Baldwin, Hyttinen and Kesälä

(1) A 4K B
(2) For every finite sequence ā ∈ A there is a K-embedding f :A → B

such that f(ā) = ā.

Definition 1.1.2 (Finitary AEC). An abstract elementary class is fini-
tary if it is a Jónsson class with countable Löwenheim-Skolem number
that has finite character.

Definition 1.1.2 slightly modifies Hyttinen, Kesälä [6]; in particular the
formulation of finite character is from Kueker [14]. Elementary classes
are finitary AECs. However, a class defined by an arbitrary sentence in
Lω1ω, the relation 4K being the one given by the corresponding fragment,
may not have AP, JEP or even arbitrarily large models. A relation 4K
given by any fragment of L∞ω will have finite character. Most abstract
elementary classes definable in Lω1ω(Q) do not have finite character. An
easy example of a class without finite character, due to Kueker [14], is a
class of structures with a countable predicate P , where M 4K N if and
only if M ⊆ N and P (M) = P (N).

The notion of weak type is just Galois type with built-in finite char-
acter: two tuples ā and b̄ have the same weak type over a set A, written

tpw(ā/A) = tpw(b̄/A),

if they have the same Galois type over each finite subset A′ ⊆ A. Fur-
thermore, we say that a model M is weakly saturated if it realizes all
weak types over subsets of size < M .

Basic stability theory with a categoricity transfer result for simple
finitary AEC’s is carried out in the papers [6], [7] and [5]. However,
some parts of the theory hold also for arbitrary Jónsson classes; this
is expounded in [9]. David Kueker [14] has clarified when AEC admit
syntactic definitions and particularly the connection of finite character
to definability in L∞ω definablity of AEC’s; unlike in Theorem 1.0.2, no
extra vocabulary is needed for these results.

Theorem 1.1.3. (Kueker) Assume that (K,4K) is an abstract elemen-
tary class with LS(K) = κ. Then,

(1) The class K is closed under L∞,κ+-elementary equivalence.
(2) If LS(K) = ℵ0 and (K,4K) contains at most λ models of car-

dinality ≤ λ for some cardinal λ such that λω = λ, then K is
definable with a sentence in Lλ+,ω1

.
(3) If κ = ℵ0 and (K,4K) has finite character, the class is closed

under L∞,ω-elementary equivalence.
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(4) Furthermore, if κ = ℵ0, (K,4K) has finite character and at most
λ many models of size ≤ λ for some infinite λ, K is definable
with sentence in Lλ+,ω.

The notion of an indiscernible sequence of tuples further illustrates the
distinction between the syntactic and semantic viewpoint. Classically a
sequence is indiscernible if each increasing n-tupe of elements realize the
same (syntactic) type. In AEC, a sequence (āi)i<κ is indiscernible over a
set A (or A-indiscernible) if the sequence can be extended to any ‘small
enough’ length κ′ > κ so that any order-preserving partial permutation
of the larger sequence extends to an automorphism of the monster model
fixing the set A.

Note that two tuples lying on the same A-indiscernible sequence is a
much stronger condition than two tuples having the same Galois type
over A. However, ‘lying on the same sequence’ is not a transitive relation
and hence not an equivalence relation; the notion of Lascar strong type
is obtained by taking the transitive closure of this relation.

Using indiscernible sequences we can define a notion of independence
based on Lascar splitting1. Furthermore, we say that the class is simple if
this notion satisfies that each type is independent over its domain. Under
further stability hypotheses (Both ℵ0-stability [6],[5] and superstability
[7],[9] have been developed.) we get an independence calculus for subsets
of the monster model. Unlike in elementary stability theory, stability or
even categoricity does not imply simplicity; it is a further assumption.
However, we show that if any reasonable independence calculus exists
for arbitrary sets and not just over models, the class must be simple and
the notion of independence must agree with the one defined by Lascar
splitting, see [5].

1The notions are defined ‘for weak types’ since they are preserved under the equiv-
alence of weak types.

Definition 1.1.4 (Independence). A type tpw(ā/A) Lascar-splits over a finite set
E ⊆ A if there is a strongly indiscernible sequence (āi)i<ω such that ā0, ā1 are in the
set A but

tpw(ā0/E ∪ ā) 6= tpw(ā1/E ∪ ā).

We write that a set B is independent of a set C over a set A, written

B ↓A C,

if for any finite tuple ā ∈ B there is a finite set E ⊆ A such that for all sets D
containing A ∪ C there is b̄ realizing the type tpw(ā/A ∪ C) such that tpw(b̄/D) does
NOT Lascar-split over E.
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The saturation transfer method was further analyzed for simple, fini-
tary AECs by Hyttinen and Kesälä in [11]. It was noted there, that
even without tameness, weak saturation transfers between different un-
countable cardinalities. Assuming simplicity, they developed much of
the stability theoretic machinery for these classes and hence were able to
remove the assumption in Theorems 1.0.8 and 1.0.9 that the categoricity
cardinal is a successor.

Theorem 1.1.5. Assume that (K,4K) is a simple finitary AEC, κ > ω,
and each model of size κ is weakly saturated. Then

(1) for any λ > min{(2ℵ0)+), κ}, each model of size λ is weakly
saturated.

(2) Furthermore, each uncountable ℵ0-saturated model is weakly sat-
urated.

If in addition (K,4K) is ℵ0-tame, all weakly saturated models with a
common cardinality are isomorphic.

What then is the role of finite character of 4K? If it happens that
there are only countably many Galois types over any finite set (this
holds for example if the class is ℵ0-stable), the finite character property
provides a ‘finitary’ sufficient condition for a substructure M of M to
be in K: If all Galois types over finite subsets are realized in M , M is
back-and forth-equivalent to an ℵ0-saturated K-elementary substructure
N of M with |N | = |M |; a chain argument and finite character give that
N ≈ M . Even without the condition on the number of Galois types,
finite character enables many constructions involving building models
from finite sequences. It implies, for example, that under simplicity and
superstability, two tuples with the same Lascar type over a countable set
can be mapped to each other by an automorphism fixing the set (i.e. they
have the same Galois type over the set), see [9]. These Lascar types (also
called weak Lascar strong types) are a major tool in geometric stability
theory for finitary classes [8], since they have finite character.

2. Countable models and completeness

We recall that a theory T in the first order logic Lωω is said to be
complete if for any sentence φ ∈ Lωω either φ or its negation can be
deduced from T .

A famous open conjecture for elementary classes was stated by Vaught
in [21]:
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Conjecture 2.0.6 (Vaught conjecture). The number of countable models
of a countable and complete first order theory must be either countable
or 2ℵ0.

The conjecture can be resolved by the continuum hypothesis, which is
independent of the axioms of set theory: If there is no cardinality between
ℵ0 and 2ℵ0 , the conjecture is trivially true. The problem is to determine
the value in ZFC. Morley [17] proved the most significant result: not
just for first order theories but for any sentence of Lω1ω the number of
countable models is either ≤ ℵ1 or 2ℵ0 . He used a combination of de-
scriptive set theoretic and model theoretic techniques. There has been
much progress using descriptive set theory. The study of this conjecture
has also lead to many new innovations in model theory: a positive solu-
tion for ℵ0-stable theories was shown by Harrington, Makkai and Shelah
in [19] and a more general positive solution for superstable theories of
finite rank by Buechler in [3]. However, the full conjecture is still open.
[1] provides connections with the methods of this paper.

An easier question for elementary classes is the number of countable
models of a theory, which has only one model, up to isomorphism, in some
uncountable power. Morley [16] showed that the number of countable
models of an uncountably categorical elementary class must be count-
able. We consider as a useful ‘motivating question’.

Question 2.0.7. Must an AEC categorical in ℵ1 or in some uncountable
cardinal have only countably many countable models?

As asked, the answer is opposite to the first order case. For example,
we can define a sentence ψ in Lω1ω as a disjunct of two sentences, one
totally categorical and one having uncountably many countable models
but no uncountable models. This problem does not occur in the first
order case because categoricity implies completeness. Lω1,ω poses two
difficulties to this approach. First, deducing completeness from cate-
goricity is problematic; there are several completions. Secondly, Lω1,ω-
completeness is too strong; it implies ℵ0 categoricity and there are inter-
esting ℵ1-categorical sentences that are not ℵ0-categorical. But sentences
like ψ lack ‘good’ semantic properties such as joint embedding. We might
ask a further question: are there some semantic properties that allow the
dimensional analysis of the Baldwin-Lachlan proof for an abstract ele-
mentary class? For example, does the question have a negative answer
for, say, finitary AECs? (See Subsection 2.1.) What can we say on
the number of countable models in different frameworks? Some results



12 Baldwin, Hyttinen and Kesälä

and conjectures were stated for admissible infinitary logics already by
Kierstead in 1980 [12].

For a non-elementary class with a better toolbox for dimension-theoretic
considerations it might be possible to say more on such questions. For
example, excellent sentences of Lω1ω have a well-behaved model theory;
but such sentences are complete, so their countable model is unique up
to isomorphism. An essential benefit of the approach of finitary abstract
elementary classes is that the framework also enables the study of in-
complete sentences of Lω1ω. The Vaught conjecture is false for finitary
abstract elementary classes: Kueker [14] gives an example, well-orders
of length ≤ ω1, where 4K is taken as end-extension. This example has
exactly ℵ1 many countable models. The example is categorical in ℵ1,
but is not a finitary AEC since it does not have arbitrarily large models.
However, we can transform the example to a finitary AEC, by adding a
sort with a totally categorical theory; but we lose categoricity.

Contrast the semantic and syntactic approach. If we require defin-
ability in some specific language, Lωω or Lω1ω, the Vaught conjecture
is a hard problem, but it has an ‘easy’ solution under the ‘semantic’
requirements we have suggested, such as, a finitary AEC. Is there a
similar difference for Question 2.0.7, maybe in the opposite direction?
David Kueker had a special reason for asking question 2.0.7 for finitary
AECs. Recall that by Theorem 1.1.3 (4) that if (K,4K) is an AEC
with finite character, LS(K) = ℵ0, and K contains at most λ models of
cardinality ≤ λ, then it is definable in Lλ+ω. Hence if (K,4K) is ℵ1 cat-
egorical and has only countably many countable models, it is definable
in Lω1ω. But under what circumstances can we gain this? Clearly if
(K,4K) is ℵ0-categorical, this holds. Kueker asks the following, refining
Question 2.0.7:

Question 2.0.8. (Kueker) Does categoricity in some uncountable car-
dinal imply that a finitary AEC (K,4K) is definable with a sentence in
Lω1ω?

Answering the following question positively would suffice:

Question 2.0.9. (Kueker) Does categoricity in some uncountable cardi-
nal imply that a finitary AEC (K,4K) has only countably many countable
models?

Unfortunately, Example 2.1.1 gives a negative answer Question 2.0.9,
leaving the first question open.
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Kueker’s results illuminate the distinction between semantic and syn-
tactic properties. Abstract elementary classes were defined with only
semantic properties in mind, Kueker provides additional semantic con-
ditions which imply definability in a specific syntax. Thus, the ability
to choose a notion of 4K for an AEC to make it finitary has definability
consequences. The concept of finite character concerns the relation 4K
between the models in an AEC; Kueker’s results conclude definability for
the class K of structures. He does prove some, but remarkably weaker,
definability results without assuming finite character.

2.1. An example answering Kueker’s second question. The fol-
lowing example is a simple, finitary AEC, which is categorical in each
uncountable power but has uncountably many countable models. Hence
the example gives a negative answer to Kueker’s second question.

Example 2.1.1. We define a language L = {Q, (Pn)n<ω, E, f), where
Q and Pn are unary predicates, E is a ternary relation and f is a unary
function. We consider the following axiomatization in Lω1ω:

(1) The predicates Q and 〈Pn :n < ω〉 partition the universe.
(2) Q has at most one element.
(3) If E(x, y, z) then x ∈ Q and z, y are not in Q.
(4) If Q is empty, we have that for each n < ω, |Pn+1| ≤ |Pn|+ 1.
(5) If P0 is nonempty, then Q is nonempty.
(6) For all x ∈ Q, the relation E(x,−,−) is a equivalence relation

where each class intersects each Pn exactly once.
(7) f(x) = x for all x ∈ Q and y ∈ Pn implies f(y) ∈ Pn+1.
(8) f is one-to-one.
8. For x ∈ Q, y ∈ Pn and z ∈ Pn+1, E(x, y, z) if and only if
f(y) = z.

Now we define the class K be the L-structures satisfying the axioms above
and the relation 4K to be the substructure relation.

The example has two kinds of countable models. When there is no
element in Q, the predicate Pn may have at most n elements, and either
|Pn+1| = |Pn| or Pn+1 is one element larger. If any Pn has more than n
elements, the predicate Q gets an element. When there is an element x in
Q, all predicates Pn have equal cardinality, since the relation E(x,−,−)
gives a bijection between the predicates.

Thus we can characterize the countable models of K: There are count-
ably many models with nonempty Q: one where each Pn is countably
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infinite and one where each Pn has size k for 1 ≤ k < ω. If Q is empty,
the model is characterized by a function f : ω → {0, 1} so that f(n) = 1
if and only if |Pn+1| > |Pn|. Hence there are 2ℵ0 countable models.

This example is an AEC with LS(K) = ℵ0. The key to establish
closure under unions of chains is to note that if the union of a chain
has a nonempty Q, some model in the chain must already have one.
This example clearly has finite character, joint embedding and arbitrarily
large models. Furthermore, the class is categorical in all uncountable
cardinals.

We prove that the class has amalgamation. For this, let M,M ′ and
M ′′ be in K such that M ′ and M ′′ extend M . We need to amalgamate
M ′ andM ′′ overM . The case where Q(M) is nonempty is easier and we
leave it as an exercise. Hence we assume that Q(M) is empty. By tak-
ing isomorphic copies if necessary we may assume that the intersection
Pn(M ′′) ∩ Pm(M ′) is Pn(M) for n = m and empty otherwise. Further-
more, we extend bothM ′ andM ′′ if necessary so that Q(M ′) and Q(M ′′)
become nonempty and each Pn(M ′) and Pn(M ′′) become infinite. We
amalgamate as follows: For two elements x ∈ Pn(M ′) and y ∈ Pn(M ′′),
if there is k < ω such that fk(x) = fk(y) in Pn+k(M), then we identify
x and y. Otherwise, we take a disjoint union.

We prove that the class is simple. For this, define the following notion
of independence for A,B,C subsets of the monster model:

A ↓C B ⇔ For any a ∈ A, b ∈ B if we have that E(x, a, b),

then there is c ∈ C with E(x, a, c).

This notion satisfies invariance, monotonicity, finite character, local char-
acter, extension, transitivity, symmetry and uniqueness of free exten-
sions. furthermore, ā 6 ↓C B if and only if for some D ⊇ B and every
b̄ |= tpw(ā/C ∪B), the type tpw(b̄/D∪C) (Lascar-)splits over C. Hence
the notion is the same as the independence notion defined for general
finitary AECs. This ends the proof.

We can divide this AEC into two disjoint subclasses, both of which
are AECs with the same Löwenheim-Skolem number. The class of mod-
els where there is no element in Q has uncountably many countable
models and is otherwise ‘badly-behaved’; all models are countable and
the amalgamation property fails. However, the class of models where
Q is nonempty, is an uncountably categorical finitary AEC with only
countably many countable models. This resembles the example of the
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sentence in Lω1ω, mentioned in the beginning of this section, which was
a disjunction of two sentences, a totally categorical one and one with
uncountably many countable models and no uncountable ones. Is this
‘incompleteness’ the reason for categoricity not implying countably many
countable models? Can we obtain the conjecture if we require the AEC
to be somehow ‘complete’? These concepts and questions are explored
in the next section.

Jonathan Kirby recently suggested another example with similar prop-
erties. This example might feel more natural to some readers, since it
consists of ‘familiar’ structures.

Example 2.1.2. Let K be the class of all fields of characteristic 0 which
are either algebraically closed or (isomorphic to) subfields of the complex
algebraic numbers Qalg. Let 4K be the substructure relation. Then K is
categorical in all uncountable cardinalities and has 2ℵ0 countable models
which all embed in the uncountable models. Also (K,4K) is a simple
finitary AEC. Further, this class can be divided into smaller AEC’s. For
example, we can take all algebraically closed fields of characteristic 0,
except those isomorphic to subfields of Qalg as one class and all fields
isomorphic to a subfield of Qalg as the other.

2.2. Complete, Irreducible and minimal AECs. We define several
concepts to describe the ‘completeness’ or ‘incompleteness’ of an abstract
elementary class. A nonempty collection C of structures of an AEC
(K,4K) is a sub-AEC of (K,4K), if

• C is an abstract elementary class with 4C = 4K ∩ C2

• LS(K) = LS(C), that is, the Löwenheim-Skolem numbers are the
same.

This allows both ‘extreme cases’ that C is K or that C consists of only
one structure, up to isomorphism. The latter can happen if the only
structure in C is of size LS(K) and is not isomorphic to a proper 4K-
substructure of itself.

Definition 2.2.1 (Minimal AEC). We say that an AEC is minimal, if
it does not contain a proper sub-AEC.

Definition 2.2.2 (Irreducible AEC). We say that an AEC (K,4K) is
irreducible if there are no two proper sub-AECs C1 and C2 of K such
that C1 ∪ C2 = K.
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Definition 2.2.3 (Complete AEC). We say that an AEC (K,4K) is
complete if there are no two sub-AECs C1 and C2 of K such that C1 ∪
C2 = K and C1 ∩ C2 = ∅.

Example 2.1.1 is not complete, not irreducible and not minimal. The
sub-AEC of Example 2.1.1, which contains the models whereQ is nonempty,
is also not complete: One abstract elementary class can be formed by
taking all such models where each Pn is of equal size ≤M for some finite
M , and the rest of the models of the class form another AEC.

We make a few remarks that follow from the definitions.

Remark 2.2.4. (1) Minimality implies Irreducibility, which implies
Completeness.

(2) Minimality implies the joint embedding property for models of
size LS(K).

(3) Completeness and the amalgamation property imply joint embed-
ding.

(4) If T is a complete first order theory, then the elementary class of
models of T is not necessarily complete in the sense above.

Item 1 is obvious. Item 2 holds, since if there are a pairM0,M1 of mod-
els in K with size LS(K), which do not have a common extension, those
structures of K which K-embed M0 form a proper sub-AEC. For item 3,
note that if the class has the amalgamation property, the following classes
are disjoint sub-AECs: {M ∈ K :M can be jointly embedded with M0}
and {M ∈ K :M cannot be jointly embedded with M0}. Furthermore,
the amalgamation property gives that joint embedding for models of size
LS(K) implies joint embedding for all models. Note that an ℵ1 but not
ℵ0-categorical countable first order theory is not complete as an AEC.

Example 2.1.1 has joint embedding and amalgamation but is not com-
plete or minimal, hence the implications of items 2 and 3 are not re-
versible. Is one or both of the implications of item 1 of Remark 2.2.4
reversible? If (K,4K) is an ℵ0-stable elementary class which is not ℵ0-
categorical, the class of ℵ0-saturated models of T is a proper sub-AEC,
so the class is not minimal. Example 2.3.7 below gives a class which
is complete but not irreducible, minimal or ℵ0-categorical. However,
this example is not finitary: it does not have finite character or even
arbitrarily large models.

To discuss the relationship between minimality and LS(K)-categoricity,
it is important to specify the meaning of LS(K)-categoricity. We define
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an AEC to be LS(K)-categorical, if it has only one model up to iso-
morphism, of size at most LS(K). We have forbidden smaller models
because models of an AEC which are strictly smaller than the number
LS(K) can cause quite irrational and one could say insignificant changes
to the class. We could add, say, one finite model which is not embed-
dable in any member of the class; this would give non-minimality, since
the one model constitutes an AEC. However, an AEC with one model
of size LS(K) and no smaller models, is automatically minimal: For any
sub-AEC K′ we can show by induction on the size of the models in K,
using the union and Löwenheim-Skolem axioms, that all models of K are
actually contained in K′.

Here are some further questions:

Question 2.2.5. (1) If an AEC is uncountably categorical and com-
plete, can it have uncountably many countable models?

(2) Is there a minimal AEC which is not LS(K)-categorical?
(3) Is there an irreducible AEC which is not minimal?

2.3. An example of models of Peano Arithmetic - Completeness
does not imply Irreducibility. In this section we present an example
of a class of models of Peano Arithmetic suggested by Roman Kossak.
The example shows that completeness does not imply irreducibility. The
properties of the class are from Chapters 1.10 and 10 of the book The
Structure of Models of Peano Arithmetic [13].

A model M of Peano Arithmetic (PA) is recursively saturated if for
all finite tuples b̄ ∈ M and recursive types p(v, w̄), if p(v, b̄) is finitely
realizable then p(v, b̄) is realized in M . Clearly an elementary union
of recursively saturated models is recursively saturated. For M , a non-
standard model of PA, define SSy(M), the standard system of M , as
follows:

SSy(M) = {X ⊆ N : ∃Y definable in M such that X = Y ∩ N}

Lemma 2.3.1. (Proposition 1.8.1 of [13]) Let N,M be two recursively
saturated models of Peano Arithmetic. Then M ≡∞ω N if and only if
M ≡ N and SSy(M) = SSy(N).

It follows that any countable recursively saturated elementary end-
extension of a recursively saturated M is isomorphic to M .

We say N |= PA is ω1-like, if it has cardinality ℵ1 and every proper
initial segment of N is countable. We say that N |= PA is an elementary
cut in M if M is an elementary end-extension of N .
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Theorem 2.3.2. (Corollary 10.3.3 of [13]) Every countable recursively
saturated model M |= PA has 2ℵ1 pairwise non-isomorphic recursively
saturated ω1-like elementary end-extensions.

The following abstract elementary class (K,4K), has one countable
model, 2ℵ1 models of size ℵ1 and no bigger models. We will use it to
generate the counterexample.

Example 2.3.3. Let M be a countable recursively saturated model of
Peano Arithmetic. Let K be the smallest class, closed under isomor-
phism, containing M and all ω1-like recursively saturated elementary
end-extensions of M . Let 4K be elementary end-extension.

Lemma 2.3.4. The AEC 2.3.3 does not have finite character.

Proof. LetM be a recursively saturated countable model of PA. LetM ′
be a recursively saturated elementary substructure ofM (not necessarily
a cut) and let ā be a finite tuple inM ′. We construct a 4K-map f :M ′ →
M fixing ā. WhenM ′ is not a cut we contradict finite character. For this,
we will find an elementary cut M ′′ of M and an isomorphism f :M ′ →
M ′′ such that f(ā) = ā. Since M and M ′ are recursively saturated,
both (M, ā) and (M ′, ā) are recursively saturated. Furthermore, (M, ā)
is elementarily equivalent to (M ′, ā). Now let M ′′ be an elementary cut
in M such that (M, ā) is an elementary end-extension of (M ′′, ā) and
(M ′′, ā) is recursively saturated. Then (M ′, ā) ∼= (M ′′, ā). �

From now on, let M be a fixed countable recursively saturated model
of PA.

Now we construct a complete but not irreducible AEC. Let ≺end de-
note elementary end-extension. We define

M(a) =
⋂
{K ≺end M : a ∈ K},

M [a] =
⋃
{K ≺end M : a /∈ K},

where M [a] can be empty. Then let gap(a) denote M(a) \M [a].
It is easy to see that an equivalent definition is the following: Let F

be the set of definable functions f : M → M for which x < y implies
x ≤ f(x) ≤ f(y). Let a be an element in M . The gap(a) in M is the
smallest subset C of M containing a such that whenever b ∈ C, f ∈ F
and b ≤ x ≤ f(b) or x ≤ b ≤ f(x), then x ∈ C.

We say that N |= PA is short if it is of the form N(a) for some a ∈ N .
Equivalently, N has a last gap. A short model N(a) is not recursively
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saturated, since it omits the type

p(v, a) = {t(a) < v : t a Skolem term}.
If N is not short, it is called tall. The following three properties are
exercises in [13].

(1) The union of any ω-chain of end-extensions of short elementary
cuts in M is tall.

(2) Any tall elementary cut in M is recursively saturated and hence
isomorphic to M .

(3) IfK is an elementary cut inM and is NOT recursively saturated,
then K = M(a) for some a ∈M .

It follows also that the union of any ω-chain of elementary end-extensions
of models isomorphic to short elementary cuts in M is isomorphic to M .
For the following theorem, see [20].

Theorem 2.3.5. Two short elementary cuts M(a) and M(b) are not
isomorphic if and only if the sets of complete types realised in gap(a)
and gap(b) respectively are disjoint. There are countably many pairwise
non-isomorphic short elementary cuts in M .

Lemma 2.3.6. If a 6∈ M(0), the model M(a) is isomorphic to some
proper initial segment M(a′) of M(a), which is an elementary cut of
M(a).

Proof. Define the recursive type

p(x, a) = {φ(x)↔ φ(a) : φ(x) ∈ L} ∪ {t(x) < a : t is a Skolem term}.
Any finite subset of tp(a/∅) is realized inM(0) sinceM(0) ≺M . Thence
p(x, a) is consistent as M(0) is closed under the Skolem terms. Let
a′ ∈ M realize p(x, a). Then tp(a′) = tp(a) and M(a′) < a. Hence
M(a) is isomorphic to M(a′) by Theorem 2.3.5. Furthermore, M(a′) is
an elementary cut in M(a). �

Lemma 2.3.6 implies elementary ≺end-chains can be formed from iso-
morphic copies of one M(a), when a 6∈M0. Hence, each of the following
classes Kα is an abstract elementary class extending the ℵ0-categorical
class K from the Example 2.3.3 and Kα has α many countable models,
where α ∈ ω ∪ {ω}.

Example 2.3.7. Let α be a finite number or ω. Choose (M(ai))i<α to
be pairwise non-isomorphic short elementary cuts in M , where each ai is
non-standard. Let Kα be the smallest class, closed under isomorphism,
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containing K and M(ai) for all 1 ≤ i < α. Let 4K be elementary end-
extension.

The countable models of Kα are exactly M and M(ai) for 1 ≤ i < α.
This class is closed under 4K-unions: if 〈Mj , j < β〉, is a 4K-chain of
models in Kα, we have that for every countable limit ordinal β,

⋃
j<βMβ

is tall and hence isomorphic to M , and if β is uncountable, the union is
isomorphic to some ω1-like recursively saturated model in K. (Note that
the union is also an end-extension of M .)

Any abstract elementary class containing a short elementary cutM(a)
for some a ∈M must contain M , as M is a union of models isomorphic
to M(a) elementarily end-extending each other. Hence any abstract
elementary class containing M(a) contains M .

It follows that Kα is complete since it has no disjoint sub-AECs. Fur-
thermore, the class Kα is not irreducible for α > 2, since we can divide
it into two classes, one containing M(ai) but not M(aj) and one vice
versa, for any i 6= j < α.

However, Example 2.3.7 is neither a Jónsson class (all models have
cardinality below the continuum) nor a finitary AEC. We ask:

Question 2.3.8. Is there a Jónsson class which is complete but not
irreducible or minimal? Furthermore, is there such a finitary AEC?
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