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Abstract. We introduce the notion of a ‘pure’ Abstract Elementary Class to block
trivial counterexamples. We study classes of models of bipartite graphs and show:

Main Theorem (cf. Theorem 3.34 and Corollary 3.38): If 〈λi : i ≤ α < ℵ1〉 is
a strictly increasing sequence of characterizable cardinals (Definition 2.1) whose models

satisfy JEP(< λ0), there is an Lω1,ω-sentence ψ whose models form a pure AEC and

(1) The models of ψ satisfy JEP(< λ0), while JEP fails for all larger cardinals and AP
fails in all infinite cardinals.

(2) There exist 2λ
+
i non-isomorphic maximal models of ψ in λ+i , for all i ≤ α, but no

maximal models in any other cardinality; and
(3) ψ has arbitrarily large models.

In particular this shows the Hanf number for JEP and the Hanf number for maximality
for pure AEC with Löwenheim number ℵ0 are at least iω1 . We show that although

AP (κ) for each κ implies the full amalgamation property, JEP (κ) for each κ does not

imply the full joint embedding property.
We prove the main combinatorial device of this paper cannot be used to extend the

main theorem to a complete sentence.

We investigate in this paper the spectra of joint embedding and of maximal models for
an Abstract Elementary Class (AEC), in particular for AEC defined by universal Lω1,ω-
sentences under substructure. Our main result provides a collection of bipartite graphs whose
combinatorics allows us to construct for any given countable strictly increasing sequence of
characterizable cardinals (λi), a sentence of Lω1,ω whose models have joint embedding below

λ0 and 2λi
+

-many maximal models in each λ+i , but arbitrarily large models. Two examples
of such sequences (λi) are: (1) an enumeration of an arbitrary countable subset of the iα,
α < ω1, and (2) an enumeration of an arbitrary countable subset of the ℵn, n < ω.

We give precise definitions and more details in Section 1. In Section 2, we describe our
basic combinatorics and the main constructions are in Section 3. We now provide some
background explaining several motivations for this study.

In first order logic, work from the 1950’s deduces syntactic characterizations of such prop-
erties as joint embedding and amalgamation via the compactness theorem. The syntactic
conditions immediately yield that if these properties hold in one cardinality they hold in all
cardinalities. For AEC this situation is vastly different. In fact, one major stream studies
what are sometimes called Jónsson classes that satisfy: amalgamation, joint embedding,
and have arbitrarily large models. (See, for example, [She99, GV06, Bal09] and a series
of paper such as [GV06].) Without this hypothesis the properties must be parameterized
and the relationship between, e.g. the Joint Embedding Property (JEP) holding in various
cardinals, becomes a topic for study. In [Gro02] Grossberg conjectures the existence of a
Hanf number for the Amalgamation Property (AP): a cardinal µ(λ) such that if an AEC
with Löwenheim number λ has the AP in some cardinal greater than µ(λ) then it has the
amalgamation property in all larger cardinals. Boney [Bon] makes great progress on this
problem by showing that if κ is strongly compact and an AEC K is categorical in λ+ for
some λ ≥ κ, then K has JEP and AP above κ. Baldwin and Boney, [BB14], show that if
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there is a strongly compact cardinal then it is an upper bound on the Hanf number for joint
embedding. Our results here give much smaller but concrete lower bounds in ZFC for the
Hanf number of JEP, again with no categoricity involved.

The lack of a syntactic condition for joint embedding or amalgamation is a symptom of the
lack of a good notion of ‘complete’ for AEC’s. In particular various ‘trivial’ counterexamples
arise from mere (or slightly disguised) disjunction of sentences. We introduce the notion
of a pure AEC to address this issue. We attempted in [BHK11a, BHK11b] to find other
notions of ‘complete’ which might provide a more robust substitute for ‘joint embedding’.
Often ‘complete for Lω1,ω’ is taken as a good completeness notion. It certainly is a robust
notion as witnessed by Shelah’s categoricity theorem for such sentences. But the examples
of e.g [BFKL13, BLS] show that even such sentences do not guarantee even joint embedding
in all cardinals. Here we are considering weakenings of the full joint embedding property.
But we show (Theorem 3.20), that (even weak versions of) Lemma 3.34 cannot be extended
to a complete sentence for the combinatorics here.

Kolesnikov and Lambie-Hanson [KLH14] study a family of AEC’s called coloring classes,
They show that for these classes1 the amalgamation property is equivalent to disjoint amal-
gamation and the Hanf number for amalgamation is iω1

; specific classes fail disjoint amalga-
mation for the first time arbitrarily close to iω1

. Our examples have arbitrarily large models
and no maximal model above iω1 . But specific classes have maximal models arbitrarily close
to iω1 ; we specify the cardinalities of the maximal models exactly.

Baldwin, Koerwien, and Laskowski [BKL14] exploit excellence in appropriate classes, ax-
iomatized by universal sentences in Lω1,ω to construct complete sentences in Lω1,ω that
uniformly homogeneously characterize (φα has no model of cardinality > ℵα) cardinals be-
low ℵω. We use these examples as an input to Corollary 3.38(1) constructing AEC that
have maximal models in a countable set of cardinals less than ℵω. Similarly we use Morley’s
example to show the Hanf number for JEP is at least iω1 in Corollary 3.38(2).

1. JEP and Pure AEC

One can trivially augment any AEC K by adding structures below the Löwenheim-Skolem
number LS(K) which have no extensions; to avoid such trivialities the following assumption
applies to the rest of the paper.

Assumption 1.1. For each AEC (K,≺K), we work at or above the Löwenheim-Skolem
number LS(K).

In this section we spell out the parameterized notions of joint embedding and introduce the
notion of pure and hybrid AEC. We then show that there is no real theory possible if hybrid
AEC are allowed.

Definition 1.2. The AEC (K,≺K) has the joint embedding property at the infinite cardinal
κ (JEP(κ)) if for any two models A,B of cardinality κ have a common ≺K extension C.

If this condition holds for models A,B of any cardinality ≤ κ (< κ) we write JEP(≤ κ)
(JEP(< κ)). In particular, |A| and |B| can be different.

The full-joint embedding property (full-JEP) is the JEP with no restriction on the sizes of
A,B.

The AEC (K,≺K) has the amalgamation property at the infinite cardinal κ (AP(κ)) if
for any three models A,B,C each of cardinality κ there are ≺K-maps of B and C into an
extension D which agree on A. We use cardinal parameters as for joint embedding.

1For easy comparison, we restrict their results to countable languages.
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By Assumption 1.1, κ is greater or equal to LS(K) and without loss of generality we can
assume that C in the definition of JEP and D in the definition of AP, both have size κ.

The following easy consequences of the definitions show there are some subtleties in the
relation between joint embedding, maximal models and arbitrarily large models.

Lemma 1.3. Let (K,≺K) be an AEC

(1) If there are no maximal models then K has arbitrarily large models.
(2) If (K,≺K) satisfies JEP(≤ κ) and has a model in power κ then any model extends

to one of size of κ; thus
(3) If (K,≺K) has full-JEP and has arbitrarily large models then K has no maximal

models.
(4) If K has two non-isomorphic maximal models in power κ, JEP(κ) fails.

We will construct an AEC with at least two maximal models in a cardinal λ+. Condition 4)
says the most JEP possible is JEP(≤ λ). Some of our examples will satisfy this. For others
we settle for JEP(< λ).

We show that without the hypothesis of full-JEP the implication from arbitrarily large
models to no maximal models fails on various countable sets of cardinals. There are some
trivial examples for this (see Corollary 1.6), where one just takes disjunctions of sentences
(in disjoint vocabularies). However, the disjunction of two sentences introduces properties
that are clearly artificial. In particular, one can find sentences with maximal models in any
countable set of cardinals by putting them in disjoint vocabularies and taking a disjunction.
Such a class does not have JEP in any cardinal. We eliminate these trivial examples using
the following definition. Moreover, our examples also satisfy JEP(≤ λ), for some infinite λ.

Definition 1.4. • Let K be a collection of τ -structures and τ1 be a subset of τ . Then
Kτ1 is the subcollection of K of models where all symbols not in τ1 have the empty
interpretation.

• An AEC (K,≺K) in a vocabulary τ is called hybrid if τ = τ1 ∪ τ2, K = Kτ1 ∪Kτ2

and both τ1, τ2 are not equal to τ .
If K is not hybrid then it is pure.

The most trivial example of a hybrid AEC is defined by the disjunction of sentences in
disjoint vocabularies. The definition allows a more subtle version where the vocabularies
can overlap but one of the classes forces some of the relations to be empty. Lemma 1.5
provides an example of how hybrid AEC that are not just disjunctions of sentences in
disjoint vocabularies give trivial counterexamples.

Note that trivially JEP(< κ) for all κ, or AP(< κ) for all κ, imply full-JEP and full-AP
respectively. On the contrary, Lemma 1.5 proves that the assumption JEP(< κ), for all κ,
can not be replaced by the assumption JEP(κ), for all κ. In addition (see Corollary 1.6) the
example in Lemma 1.5 has AP(κ), for all uncountable κ, but fails AP(ℵ0) and thus it fails
AP(< κ), for all uncountable κ. So there is a genuine distinction between these types of
conditions. This is an important distinction since the definition of a good-κ frame requires
the weaker AP(κ) and not AP(< κ).

Lemma 1.5. The full-Joint Embedding Property is not equivalent to the conjunction of
JEP(κ), for all infinite κ.

Proof. Let τ be the vocabulary {V,U,E,<}, where the V,U are unary predicate symbols,
and E,< are binary predicate symbols. Consider φ1 to be the conjunction of τ -sentences
asserting:

(1) V,U partition the universe;
(2) (U,<) is well-ordered in order type ω; and
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(3) E defines a bijection from V onto U .

Let φ2 be the conjunction of

(1) U is empty, V is infinite and equals the universe; and
(2) <,E are empty

Let K be the collection of models of φ1 ∨ φ2, and let ≺K be the substructure relation.

If M1,M2 are two models of φ2 of the same cardinality κ, then they are isomorphic so can
be jointly embedded. If M1,M2 are two (necessarily countable) models of φ1, then M1

and M2 are isomorphic. If M1 is a model of φ1 and M2 is a countable model of φ2, then
M2 can be embedded in M1. So, for all infinite κ, JEP(κ) holds.

However, ifM1 is a countable model of φ1 andM2 is an uncountable model of φ2,M1,M2

have no common extension in K (as M1 is maximal in K). So, full-JEP fails. �

Corollary 1.6. The AEC (K,≺K) defined in Lemma 1.5 is a hybrid AEC that satisfies
JEP(κ) for all infinite κ, has maximal models in ℵ0, and has arbitrarily large models, but
fails JEP(≤ ℵ1). Moreover, it satisfies AP(κ), for all uncountable κ, but it fails AP(ℵ0) and
AP(≤ ℵ1).

Question 1.7. Is there a ‘pure’ example (according to Definition 1.4) to illustrate the dis-
tinction between full-JEP and JEP(κ) for all κ?

We contrast this result with a less complicated version of a result of Shelah (Theorem 2.8
of [She87a]) which was originally stated without proof.2.

Fact 1.8. If an AEC has AP(κ) for every κ, then it has the (full-) Amalgamation Property.

An easy variation of the proof shows:

Corollary 1.9. If λ < κ and an AEC satisfies JEP(λ) and AP(≤ κ), then it also satisfies
JEP(κ) and even JEP(≤ κ).

Thus, for the distinction made in Lemma 1.5 between JEP(≤ ℵ1) and the conjunction of
JEP(ℵ0) and JEP(ℵ1), it is imperative for AP(≤ ℵ1) to fail.

We can modify the example of Lemma 1.5 to allow (U,<) to be an infinite well-order of order
type ≤ κ (with strong substructure as end-extension), for some cardinal κ. The resulting
AEC will satisfy JEP(λ), for all infinite λ, and even JEP(≤ κ), but fail JEP(≤ κ+).

Corollary 1.10. For all infinite κ,

(1) JEP(≤ κ+) is not equivalent to the conjunction of JEP(λ), λ ≤ κ+.
(2) JEP(≤ κ+) is not equivalent to the conjunction of JEP(≤ κ) and JEP(κ+).

We will see with more difficulty below that there are pure AEC which exhibit the behavior
of Corollary 1.6, i.e. they have both maximal models and arbitrarily large models.

2. Basic combinatorics

In this section we set up a first-order template of bipartite graphs on sets A,B with colors
from C. We introduce the requirement that there is no monochromatic K2,2 subgraph (a
complete bipartite graph on points a1, a2 ∈ A, b1, b2 ∈ B with all edges the same color). Then
we show restrictions on the cardinality of A and B that are imposed by restrictions on the

2The proof is sketched on page 134 of [She09]. A weaker form of this result was reproved in [BLS]
(Theorem 3.4), inadvertently without citation. The result also occurs in Rami Grossberg’s master’s thesis.
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number of colors. In later sections, we will impose the restrictions on |C| by characterizing
them by sentences of Lω1,ω in the following sense.

Definition 2.1. An Lω1,ω-sentence φ characterizes an infinite cardinal κ, if φ has models
in all cardinalities ≤ κ, but no model of size κ+. In this case we say that the cardinal κ is
characterizable.

Since the Hanf number for Lω1,ω-sentences is iω1
, it follows that all characterizable cardinals

are strictly less than iω1
.

Notation 2.2. Let τ0 = {A,B,C,E} where A,B,C are unary predicates and E is a ternary
relation. Let σ0 be the conjunction of the following statements:

• A,B,C are non-empty and partition the universe.
• E ⊂ A×B × C defines a total function from A×B into C.

As a notation, let F (a, b) the unique value c such that E(a, b, c) holds. A and B should be
regarded as the two sides of a full bipartite graph and C as the set of edge-labels. E assigns
a unique label to any pair from A×B.

Let σ1 be the conjunction of σ0 and

(∗) for all distinct a1, a2 in A and b1, b2 in B, the four values F (ai, bj) (i, j ∈ {1, 2})
are not all identical.

We will also refer to (∗) as “there are no monochromatic K2,2 subgraphs”. If a1, a2 are two
distinct elements in A and for some b ∈ B, F (a1, b) = F (a2, b), we will say that there exists
a monochromatic path of length 2, or monochromatic 2-path, on a1, a2.

Lemma 2.3. In any model of σ1, if |A| > |C|+ then |B| ≤ |C|. By symmetry, the same is
true if we switch the roles of A and B.

Proof. Toward a contradiction, assume that |B| > |C|. For any subset D of B and any
element a ∈ A, define S(a,D) = {F (a, d)|d ∈ D} (which is a subset of C).

Now given any such D of size |C| and any b ∈ B \D, we observe that for all but |C| many
elements a ∈ A, S(a,D) ( S(a,D ∪ {b}). Indeed, if S(a,D) = S(a,D ∪ {b}), then we have
some c ∈ C and da ∈ D with F (a, da) = F (a, b) = c. If a, a′ are distinct elements of A and
F (a, da) = F (a, b) = c = F (a′, da′) = F (a′, b), then da and da′ have to be distinct. If not,
a, a′, da, b witness a violation to (∗). So, for every color c, the set {a ∈ A|F (a, b) = c} has
size at most |D|. Since there exist |C| many colors, there are at most |D| · |C| = |C| many
elements such that S(a,D) = S(a,D ∪ {b}).

Now let (bi|i < |C|+) be a sequence of distinct elements in B\D and set Di = D∪{bj |j < i}.
For each i < |C|+, let Ai ⊂ A be the set of elements a such that S(a,Di) ( S(a,Di+1).
Since |A| > |C|+ and all A \Ai have size at most |C|, A∗ =

⋂
i<|C|+

Ai is non-empty (in fact

its complement has size at most |C|+). But for any element a ∈ A∗, S(a,Di) grows at each
step i < |C|+ which is impossible since S(a,Di) ⊂ C for all i.

�

3. Maximal models in many cardinalities

In this section we prove that one can have interesting spectra of maximal models for AEC
that are pure (see Definition 1.4). Specifically, we construct sentences in Lω1,ω that are not
just disjunctions of complete sentences. In Section 3.2, we show limitations on getting such
results for complete sentences compatible with σ1.
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In [She87b] Shelah defines a universal class as one that is closed under substructure, union
of chains, and isomorphism. He remarks that by a result of Tarski, if the vocabulary is finite,
then such a class is axiomatized by a set of universal first order sentences. This generalizes
to: If the vocabulary has cardinality κ, the class is axiomatized in Lκ+,ω. For simplicity
here we use only countable vocabularies and Lω1,ω-sentences.

3.1. Maximal Models. Throughout this sectionM is a model of σ1 of cardinality κ. Since
we discuss in this subsection only the construction of extensions of a single model we are
free to assume that C ⊆ κ. We write CM = C ⊂ κ to assert that the interpretation of the
predicate C is a subset of κ and use |C| when we mean cardinality.

In this section we build models M of σ1 that are C-maximal in the following sense.

Definition 3.1. Let |C| = κ; M is a C-maximal model of σ1 if CM = C and there is no

proper extension of M to a model M′ of σ1 with CM
′

= C.

In applications we require that we will expand τ0 to a vocabulary τ ′ = τ0 ∪ τ1 and study
τ ′-models M such that M � τ0 |= σ1 and CM � τ1 belongs to an AEC (K0,≺K0

) for the
vocabulary τ1, and K0 has models in cardinality κ but no larger, and thus it has a maximal
model in κ.

Notation 3.2. If M |= σ1, |AM| = κ and |BM| = λ then we say that M is a (κ, λ)-model.

In the following construction, we reverse the procedure of Lemma 3.3 and build a model
from a function on cardinals.

Lemma 3.3. For any κ, there is a (κ+, κ+) model M |= σ1 such that CM = κ.

Proof. Let AM and BM be two copies of κ+.

Fix a function F from κ+ × κ+ to κ such that a)3 for all α, F (α, α) = 0 and b) for
all α ∈ A, F (α, ·) is a one-to-one function when restricted to the set {β ∈ B|β ≤ α}.
Symmetrically, demand that for all β ∈ B, F (·, β) is a one-to-one function when restricted
to the set {α ∈ A|α ≤ β}. Both conditions are possible because all initial segments have
size κ = |CM|. Then define a graph as in Notation 2.2 using this function.

Towards contradiction, assume that there are distinct α1, α2 in A and β1, β2 in B with
all four values F (αi, βj) (i, j ∈ {1, 2}) identical. Without loss of generality assume that
max{α1, α2, β1, β2} = α1. By the choice of F , F (α1, β1) must be different than F (α1, β2).
Contradiction. �

Corollary 3.4. For any infinite cardinal κ, the class of all models N of σ1 with CN = C
where C = κ is fixed, contains a (κ+, κ+)-model M that is C-maximal.

Proof. By fixing C = κ we have an (κ+, κ+) model M by Lemma 3.3. But there is no
extension of M with either A or B of cardinality > κ+ by Lemma 2.3. The collection of
extensions N of M that satisfy σ1 with CN = C is closed under union since σ is ∀1. So
some extension of M with cardinality κ+ must have no extension. �

We can in fact give two explicit constructions that yield nonisomorphic maximal models.
The first proof uses Fodor’s theorem, which we state for the sake of completeness.

Fact 3.5 (Fodor). If f is a regressive function on a stationary set S ⊂ κ, then there is a
stationary set T ⊂ S and some γ < κ such that f(α) = γ, for all α ∈ T .

Lemma 3.6. If we modify the construction of Lemma 3.3 to require that

3This requirement is not needed now but is used in the proof of Lemma 3.6.
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(†) for all α ∈ A, α ≥ κ, the function F (α, ·) restricted to {β ∈ B|β < α} is
onto C − {0},

then we obtain a C-maximal model.

Proof. Recall for each α, F (α, α) = 0. First note that if we extend B by a new point b, then
there must exist some i ∈ C and a stationary subset Si of A such that all the edges between
s ∈ Si and b are colored i. Without loss of generality assume that Si ⊂ κ+ \ κ.

Now, define a function g from κ+ \ κ to κ+ by

g(α) = least β < α such that F (α, β) = i.

By (†), g is well-defined on all κ+ \κ, and by the definition, g is regressive, i.e. g(α) < α. By
Fodor’s Theorem we get a stationary Ti ⊂ Si and a γi such that for each t ∈ Ti, F (t, γi) = i.
But this contradicts (∗) of Notation 2.2. �

Notation 3.7. Consider the following condition (‡)A.

(‡)A For any pair (a, a′) ∈ A2 and for any color c, there exists some b ∈ B
such that F (a, b) = F (a′, b) = c.

Similarly, define (‡)B by exchanging the role of a’s and b’s in (‡)A, and let:

(‡) is the conjunction of (‡)A and (‡)B.

Lemma 3.8. If M is a (κ+, κ+)-model of σ1 ∧ (‡)A, then BM can not be extended, and
symmetrically, AM can not be extended from a (κ+, κ+)-models of σ1 ∧ (‡)B.

Thus, if M is a model of σ1 ∧ (‡) with CM = κ and CM = κ, then M is C-maximal.

Proof. Assume a model satisfies (‡)A with |CM| = κ and C ⊆ κ. Towards contradiction,
assume we can extend B by one element, say b. Since there are κ many colors and κ+ many
elements a ∈ A to connect to b, there will be two elements a1, a2 ∈ A so that both edges
(a1, b), (a2, b) get the same color c. Then (‡)A gives a contradiction to (∗). �

Lemma 3.9. There exists a (κ+, κ+)-model of σ1 that satisfies (‡) and C = κ.

Proof. Proceed as in the proof of Lemma 3.3. At every stage α choose either a pair a1, a2 < α
in A or a pair b1, b2 < α in B, and some color c ∈ C. Organize the construction so that
every combination of a pair and a color appears at exactly one stage. This is possible, since
there are κ+ stages and κ+ such combinations.

Assume (a1, a2) and c are chosen at stage α. If there is a 2-path on (a1, a2) colored by
c, then do nothing more than what the proof of Lemma 3.3 requires. If there is no such
pair, require that the new edges (a1, α) and (a2, α) are both colored by c. This is a small
violation of the requirement that F (·, α) is 1-1; demand that this is the only violation. Make
the analogous choice when (b1, b2) and c are chosen.

We claim that the resulting construction satisfies (∗) and obviously satisfies (‡). Towards
contradiction, assume that there are distinct α1, α2 in A and β1, β2 in B with all four values
F (αi, βj) (i, j ∈ {1, 2}) equal to the same value c. Without loss of generality assume that
max{α1, α2, β1, β2} = α1. Observe that F (α1, β1) = F (α1, β2) = c is possible only if the
pair β1, β2 and the color c were chosen at stage α1. Split into two cases:

Case 1. α2 > β1, β2. Then the same observation (for α2) proves that the same pair β1, β2
and the same color c that were chosen at stage α1 were also chosen at stage α2. But
it is impossible for the same combination of pair and color to appear more than once.
Contradiction.
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Case 2. α2 ≤ max{β1, β2}. Then at stage α1, there already exists a 2-path on (β1, β2) colored
by c. The construction requires in this case that F (α1, β1) be different than F (α1, β2) which
again yields a contradiction. So, (∗) holds. �

The requirements of Lemma 3.6 and Lemma 3.8 are contradictory, so there are two noniso-
morphic C-maximal models of σ1.

Corollary 3.10. For all infinite cardinals κ, there is a model M with CM = κ that has
two non-isomorphic extensions that are C-maximal.

We can vary the constructions and get still other maximal models; these constructions will
be used in the next section.

Corollary 3.11. If AM = κ+, A0 is a club in κ+ with A0 ∩ κ = ∅, and CM ⊂ κ then
condition (†) in Lemma 3.6 can be relaxed to the following condition.

(†)A0
For all α ∈ A0, the function F (α, ·) restricted to the set {β ∈ B|β < α}

is onto C − {0}.

and we still get that M is C-maximal.

Corollary 3.12. If AM = κ+, A0 is a subset of A of size κ+, and CM ⊂ κ, then (‡)A can
be relaxed to

(‡)A0
For any pair (a, a′), a, a′ ∈ A0, and for any color c, there exists some

b ∈ B such that F (a, b) = F (a′, b) = c.

and we still get that M is C-maximal.

Notice that while condition (‡) can be expressed by a first-order sentence in the same vo-
cabulary as σ1, this is not the case for (†) and (†)A0

. The latter conditions make use of the
ordering < that we used during the proof which is not part of the vocabulary.

Corollary 3.12 will be used to construct infinitely many nonisomorphic maximal models of σ1
in Section 3.4. The existence of maximal models is complemented by the following lemma.

Lemma 3.13. For any κ, there is a model M |= σ1 with |A| arbitrary large, |B| ≤ κ and
|C| = κ.

Proof. Let A be an arbitrary set, B = {bα|α < γ ≤ κ}, and C = {cα|α < κ} such that
A,B,C are pairwise disjoint. For any a ∈ A and bα ∈ B, set F (a, bα) = cα. We cannot have
a contradiction to (∗) since each element in B is connected only by edges of a fixed color
and distinct elements in B get distinct colors. �

Corollary 3.14. For any infinite cardinal κ, the class of all models of σ1 with |C| = κ has
arbitrary large models. Moreover, in any model larger than κ+, exactly one of A or B has
to be no larger than κ.

3.2. Failure for Complete Sentences. We show that our main combinatorial idea does
not support the maximal model spectra given above, if the Lω1,ω-sentence is required to be
complete. For this we need to formalize the consequences of our two types of constructions
of maximal models. The next lemma proves that the models of σ1 given in Lemma 3.13 are
typical of (λ, κ)-models, where λ ≥ κ+. We need one definition first.

Definition 3.15. LetM = (A,B,C,E) be colored by F . For a ∈ A, let Ca = range(F (a, ·)),
and for c ∈ Ca let

Ba,c = {b ∈ B|F (a, b) = c}.

Lemma 3.16. Let M be a (λ, κ)-model of σ1, λ ≥ κ+, such that |CM| = κ. For all but κ
many a ∈ A and for all c ∈ Ca, |Ba,c| = 1.
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Proof. Assume otherwise, i.e. there are at least κ+ many a ∈ A such that there exists some
ca ∈ Ca so that |Ba,ca | ≥ 2. Call A0 the set of these a’s. Since A0 has size κ+ and C has
size κ, we can restrict A0 to some subset A1 of size κ+ such that ca = c, for all a ∈ A1.
Then, for each a ∈ A1 choose a 2 element subset B′a,c of Ba,c. Since there are only κ many
2-element subsets of κ, there exist a1, a2 ∈ A1, B′a1,c = B′a2,c. But a1, a2 witness that (∗) is
violated. Contradiction. �

Now we formalize this distinction.

Lemma 3.17. Let τ1 be the (first-order) statement: “There exists some a ∈ A so that for
all c ∈ Ca, |Ba,c| = 1”. If |C| = κ and λ ≥ κ+ , then any (λ, κ)-model of σ1 satisfies τ1,
while τ1 is obviously false in (κ+, κ+)-models.

Corollary 3.18. There is no model M of size κ++ such that |CM| = κ and M satisfies
the conjunction σ1 ∧ ¬τ1.

We also see that all sufficiently large models are extendible.

Corollary 3.19. If M is a (λ, κ)-model of σ1, λ ≥ κ+, and |CM| = κ, then the A-side of
M is extendible, while keeping the B-side of M and C the same.

In particular, M is not maximal.

Proof. By Lemma 3.17, τ1 holds and let a be an element that witnesses τ1. Extend A by
adding a new element a′ and letting F (a′, b) = F (a, b), for all b ∈ B. It is immediate that
(∗) holds in the new model. �

Now we show this combinatorics will not give a complete sentence with two maximal models.

Theorem 3.20. For each κ and each τ ′ ⊆ τ0, there is no complete τ ′-sentence φκ such that
(a) φκ allows at most κ colors, (b) φκ is consistent with σ1, (c) φκ has maximal models in
some cardinal λ ≥ κ+ and (d) φκ has arbitrarily large models.

Proof. By Lemma 2.3, if φκ has a model of cardinality λ ≥ κ++, this is a (λ, κ)-model.
Then by Lemma 3.17, φκ is consistent with τ1. In particular, φκ does not have any (κ+, κ+)-
models. So, all models of φκ of size λ ≥ κ+ are (λ, κ)-models and by Corollary 3.19, any
such model can not be maximal. �

Observation 3.21. Before we move to the next section note that the requirement that the
requirement of C-maximality that appears in the results of this section can be replaced by the
requirement that C is the universe of a maximal model of an Lω1,ω(τ ′)-sentence φ for some
τ ′ disjoint from τ0 and φ characterizes κ in the sense of Definition 2.1. More generally, we
can require that C belongs to an AEC with models in cardinality κ, but no larger.

3.3. The Maximal Model Functor and JEP. In this section we define a functor which
takes us from an AEC which has models of size κ but no models in κ+, to an AEC with a
maximal model in κ+ but arbitrarily large models.

For the rest of the paper K̂0 is taken to depend on K0 as in the next definition. We build
the construction using σ1 from Notation 2.2.

Definition 3.22. Let (K0,≺K0
) be an AEC. The vocabulary of K̂0 is τ̂0 = τ0 ∪ τK0

. Let

K̂0 be the collection of models of σ1 with the color sort C the domain of a model in K0.
Define for M,N ∈ K̂0, M ≺ ˆK0

N , if M ⊂ N and CM ≺K0
CN .

Lemma 3.23. (K̂0,≺ ˆK0

) is an AEC with the same Löwenheim-Skolem number as K0.
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Proof. Since σ1 is a ∀01-first-order sentence, K̂0 is closed under direct limits. The coherence
axiom is straightforward. So the only issue is to check the Löwenheim-Skolem number. Let
M be a model in K̂0 and X be a subset of M . Find some C1 ∈K0 such that X∩CM ⊂ C1,
and |C1| = |X∩CM |+LS(K0). Let M0 = X∪C1. In particular, CM0 = C1 and M0 belongs

to K̂0. Indeed, M0 satisfies σ1, since any violations of (∗) in M0 would be violations of (∗)
in M too. Contradiction. Considering that |M0| ≤ |X| + |C1| ≤ |X| + |X| + LS(K0) =

|X|+ LS(K0), it follows that LS(K̂0) = LS(K0). �

Theorem 3.24. Let κ be an uncountable cardinal, K0 and K̂0 be as in Definition 3.22,
and suppose K0 has models in cardinality κ, but no larger.

Then K̂0 is an AEC that satisfies the following

(1) If λ ≤ κ then K0 satisfies JEP(≤ λ) if and only if K̂0 satisfies JEP(≤ λ). The
equivalence extends to JEP(< λ) and JEP(λ).

(2) AP fails in all infinite cardinals;

(3) K̂0 has at least 2 maximal models in κ+ and none in any λ 6= κ+; moreover, K̂0

fails JEP(≤ λ), even JEP(λ), for λ ≥ κ+.

(4) K̂0 has arbitrarily large models; and

(5) LS(K̂0) = LS(K0).

Moreover, K̂0 is a pure AEC, in the sense of Definition 1.4 if and only if K0 is pure.

Proof. First observe that since K0 characterizes κ it must contain some maximal models in
κ.

(1) Clearly if K̂0 satisfies JEP(≤ λ) then K0 satisfies JEP(≤ λ). For the converse, fix

λ ≤ κ and suppose K0 satisfies JEP(≤ λ); we show K̂0 satisfies JEP(≤ λ). The other two
cases (JEP(< λ), JEP(λ)) are similar. Let M1 = (A1, B1, C1), M2 = (A2, B2, C2) be two

models in K̂0 such that both M1,M2 have size ≤ λ. Use JEP on K0 and Lemma 1.3.2 to
find a common extension C of both C1, C2 with cardinality at most λ. Then consider the
structure (A1∪A2, B1∪B2, C). By identifying C1 and C2 with subsets of C, we can consider
all existing edges as C-colored. Then assign colors to new edges in a one-to-one way. This
is possible, since that there are no more than λ many edges and λ many colors. Towards
contradiction assume there is a violation of (∗) witnessed by the edges (l, l′, r, r′). If there
were three old edges among these then all four vertices would be inM1 orM2. So there are
two new edges, but the new edges were colored, so there can not be two new edges among
(l,l’,r,r’) with the same color. Contradiction.

(2) For any λ, let Mi = (Ai, Bi, Ci), i = 1, 2, 3, be three models of K̂0 with cardinality
λ such that M1 ⊂ M2,M3 and there exist distinct a0, a1, a2 ∈ A1, distinct c, c′, c′′ ∈ C1,
b2 ∈ B2, and b3 ∈ B3 such that F (ak, bl) = c, for k = 0, 1 and l = 2, 3, F (a2, b2) = c′,
and F (a2, b3) = c′′. (Extensions M2 and M3 of any M1 must exist). Thus, in the disjoint
amalgam of M2 and M3, a0, a1, b2, b3 witness a violation to (∗). But in any amalgam
of M1,M2,M3, the images of b2 and b3 must be distinct, and thus, a0, a1, b2, b3 witness a
violation to (∗) in any amalgam.

(3) By Corollary 3.10 there exist two maximal models in κ+; by Corollaries 3.14 and 3.19
no model of size > κ+ can be maximal. By (1) no model of cardinality ≤ κ can be maximal.

Since there are two maximal models in κ+, K̂0 fails JEP(κ+) and JEP(≤ λ) for λ ≥ κ+. To

see that K̂0 fails JEP(λ) for λ > κ+, consider a model M0 of type (λ, κ) and a model M1

of type (λ, κ). By Corollary 3.14, M0 and M1 can not be jointly embedded into a model

in K̂0.

(4) is established by Corollary 3.14. The proof of (5) is from Lemma 3.23 �
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Suppose K0 has models in cardinality κ, but no larger, and K0 satisfies JEP(≤ κ). It

follows from Theorem 3.24 that K̂0 will satisfy JEP(≤ κ) and have a maximal model in
κ+. This condition on K0 is very strong: there is a unique maximal model in κ. However,
examples of this sort (e.g. the well-orderings of order type at most ω1 under end-extension)
are well-known.

Question 3.25. Is there a complete sentence of Lω1,ω that has more than one maximal
model?

3.4. 2κ
+

Nonisomorphic Maximal Models. In this section we prove that the AEC given

by Theorem 3.24 actually has 2κ
+

many nonisomorphic maximal models in κ+. We will build
a family of models of σ1, each one starting with sets A,B,C, the first two ordered as κ+,
C ordered as κ, and with a subset C0 of C that also has order type κ, and with C \C0 has
cardinality κ.

We are building models of the AEC K̂0 with vocabulary τ̂0 using an input AEC K0 with
vocabulary τ0 to control the cardinality of the color sort. The key step in the construction
is to add new relations to the vocabulary K̂0 and use them to construct many models (in
the expanded vocabulary). But then, we show these relations are definable in Lκ,ω(τ̂0) and
deduce many τ̂0-models.

The proof goes in two steps. At the first step we “code” a linear order of order type κ on
C0. At the second step we make use of this linear order to “code” κ+ many subsets of κ

into A. By varying the construction we get 2κ
+

many nonisomorphic maximal models.

Recall that there exists a monochromatic 2-path (based) on some a1, a2 ∈ A, if there exists
some b ∈ B, such that both edges (a1, b) and (a2, b) have the same color.

Step I Code order:

Let C be the set of colors and assume C = κ. Extend the vocabulary τ̂0 to τ̂1 by including
a unary symbol C0 and a binary symbol <. C0 will be a subset of C and < will be a linear
order on C0 of order type κ. The goal is to build a model as in Lemma 3.9, but this time
certain 2-paths are disallowed. In particular, for all α < κ there exist two elements lα1 , l

α
2 ∈ A

and the 2-paths on lα1 , l
α
2 ∈ A can not use any of the colors {β|β ≤ α}. Any other color is

allowed. The resulting model is maximal, as seen by Corollary 3.27.

Lemma 3.26. There is a τ̂1-model M that satisfies all the following conditions.

(0) CM � τK0
∈K0.

(1) M � τ0 is a (κ+, κ+)-model of σ1 and C = κ.
(2) C0 is a subset of C such that |C0| = |C \C0| = κ and < is an order on C0 of order

type κ. We may refer to the elements of C0 using ordinals < κ.
(3) < is void outside C0.
(4) For every α ∈ C0, there exist two elements lα1 , l

α
2 ∈ A such that there exists a 2-path

on lα1 , l
α
2 colored by c if and only if c > α or c ∈ C \ C0.

(5) For distinct α, α′ ∈ C0, the elements lα1 , l
α
2 , l

α′

1 , l
α′

2 are all distinct.
(6) For every pair (a1, a2) in A and for all c ∈ C, there exists a 2-path on a1, a2 colored

by c, unless it is forbidden by clause (4).

Proof. We now construct the model. Let A,B,C,C0 be as in the first paragraph of Sec-
tion 3.4 and order C0 by < so that the requirements of clauses (2) and (3) are met. For

every α < κ, select two elements lα1 , l
α
2 ∈ κ so that α 6= α′ implies {lα1 , lα2 } ∩ {lα

′

1 , l
α′

2 } = ∅.
The rest of the proof is similar to the proof of Lemma 3.9, the only difference is that for
every α < κ, the pair lα1 , l

α
2 given by clause (4) do not have a 2-path with any color c ≤ α.

The rest of the argument remains the same. �
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A priori, the conditions in Lemma 3.26 are not τ̂0-invariant. We show in Lemma 3.28 that
C0 and < are definable in Lκ,ω(τ̂0) so they are.

Corollary 3.27. The models that satisfy the requirements of Lemma 3.26 are C-maximal.

Proof. Since the set of all lα1 , l
α
2 has size κ, the result follows from Corollary 3.12. �

Lemma 3.28. Let M1 and M2 be two τ̂1-models that satisfy the conditions of Lemma 3.26
and let M1|τ̂0 ,M2|τ̂0 be their reducts to vocabulary τ̂0. Then any isomorphism i between
M1|τ̂0 and M2|τ̂0 is also an isomorphism of M1,M2 (as τ̂1-structures).

We will refer to this property as “the τ̂0-isomorphisms respect C0, <”.

Proof. We claim that both C0, < are definable in the original structure M by a sentence
of an appropriate infinitary language in vocabulary τ̂0, and therefore, preserved by τ̂0-
isomorphisms.

First, C0(x) is defined by “there exists a pair (lα1 , l
α
2 ) ∈ A such that there is no 2-path on

lα1 , l
α
2 colored by x”.

Second, for each ordinal α < κ, let αM denote the αth element of the order <M. Since <
has order type κ, the specification makes sense. We prove by induction on α < κ that αM

is defined by a formula φα(x) in Lκ,ω in the vocabulary τ̂0.

φ0(x): There exist two points a, a′ with no 2-path colored x. But for every other color c 6= x,
there is a c-colored 2-path on a, a′.

φα(x): There exist two points a, a′ with no 2-path colored by x or by any color y satisfying∨
β<α φβ(y). But for every other color c 6= x and

∧
β<α ¬φβ(c), there is a c-colored 2-path

on a, a′.

Now < is defined by a Lκ,ω-formula in the vocabulary τ̂0.

x < y if and only if
∨

α<β<κ

φα(x) ∧ φβ(y).

Since each φα(x) is a formula in vocabulary τ̂0, this proves the result. �

It also follows by a similar argument that the elements lα1 , l
α
2 are definable by a formula

in Lκ,ω in the vocabulary τ̂0. Consider the formula φ(x, y): “there exists a 2-path on x, y
colored by c if and only if ¬

∨
β≤α φβ(c). ”. By clauses (4) and (6) of Lemma 3.26, φ(x, y)

holds if and only if {x, y} = {lα1 , lα2 }. So, any τ̂0-isomorphism must preserve the two-element
subset {lα1 , lα2 }, for all α < κ.

Step II Code subsets:

Recall that τ̂1 = τ̂0 ∪ {C0, <} and extend τ̂1 to τ̂2 by including a new binary symbol S. S
will be a binary relation that codes subsets A0 = {mα|α < κ+} of A by elements of C0.

We also require that the set {lαi |α < κ, i = 1, 2} from Step I and the set A0 from Step II are
disjoint. Using S we can assign to each mα ∈ A0 a distinct subset Sα of C0. The goal is to
build a model that satisfies all the restrictions from Step I, plus more 2-paths are forbidden.
In particular, for each α < κ+ the 2-paths based on m0,mα can not use any of the colors in
Sα. Every other color is allowed. Once again, the resulting model is maximal (see Corollary
3.30).

We again add predicates, this time to code models, and then prove they are Lκ,ω(τ̂0) defin-
able.
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Lemma 3.29. There is an τ̂2-model N that satisfies all the following conditions.

(1) Clauses (1)− (5) from Lemma 3.26 hold.
(2) There is a set A0 = {mα : α < κ+} ⊂ A such that |A \A0| = κ+ and A0 is disjoint

from {lαi |α < κ, i = 1, 2}.
(3) S(x, y) is a binary relation on A0 × C0. Denote the set {y ∈ C0|S(mα, y)} by Sα.
(4) The Sα’s are distinct subsets of C0. For all α, |Sα| = |C0 \ Sα| = κ, and 0 does not

belong to any Sα.
(5) For all 0 < α < κ+, there exists a 2-path on m0,mα colored by c if and only if

c ∈ Sα.
(6) For all a1, a2 ∈ A and for all c, there exists a 2-path on a1, a2 colored by c, unless

it is forbidden by clause (5) of this Lemma or by clause (4) of Lemma3.26.

Proof. The proof is similar to the proof of Lemma 3.26 and is left to the reader. �

Corollary 3.30. The models that satisfy the requirements of Lemma 3.29 are C-maximal.

Proof. Since |A\(A0∪{lαi |α < κ, i = 1, 2})| = κ+, the result follows from Corollary 3.12. �

Lemma 3.31. Let N1 and N2 be two τ̂2-models that satisfy the conditions of Lemma 3.29
and let N1|τ̂0 ,N2|τ̂0 be their reducts to vocabulary τ̂0. Then any isomorphism i between N1|τ̂0
and N2|τ̂0 is also an isomorphism of N1,N2 (as τ̂2-structures).

Proof. From Step I we know that C0 and < are definable by Lκ,ω(τ̂0)-formulas. We prove
that the same is true for the set A0 = {mα|α < κ+} and the sets Sα, α < κ+. The element
m0 is defined by the following Lκ,ω(τ̂0)-formula ψ0(x).

ψ0(x): there exist two distinct elements m1,m2 ∈ A and two distinct colors c1, c2 ∈ C0

and there is no 2-path based on x,m1 colored by c1, and there is no 2-path based on x,m2

colored by c2.

We now show the set {mα|0 < α < κ+} is defined by the formula ψ1(x).

ψ1(x): there exists some y 6= x such that ψ0(y), i.e. y equals m0, and there exists a color
c ∈ C0 and there is no 2-path based on y, x colored by c.

Then ψ1(x) holds if and only if x belongs to {mα|0 < α < κ+}. Note that ψ1 defines
the whole set {mα|0 < α < κ+}, but not the order of the mα’s in this set. Nevertheless,
for every α < κ+, the set Sα is definable by the following formula ψ2 which uses mα as a
parameter; ψ2 is a reformulation of clause (5) from Lemma 3.29.

ψ2(x,mα): there exists some y such that ψ0(y) and there exists a 2-path on y,mα colored
by x.

Then ψ2(x,mα) holds if and only if x ∈ Sα.

Since all these sentences are in vocabulary τ̂0, this finishes the proof. �

Now fix Y to be some subset of κ+ and vary the construction of Lemma 3.29 so that for
each 0 < α < κ+, 0 ∈ Sα if and only if α ∈ Y . Call the corresponding τ̂2-structure NY . If
Y1, Y2 are two distinct subsets, then NY1 and NY2 are easily seen to be nonisomorphic as
τ̂2-structures. By Lemma 3.31, their τ̂0-reducts are also nonisomorphic, which proves the
following.

Theorem 3.32. If K0 is an AEC that has models in cardinality κ but no larger, then K̂0

from Theorem 3.24 has 2κ
+

-many nonisomorphic maximal models of type (κ+, κ+).

In the next section we give three applications of Theorem 3.32.
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3.5. Maximal Models in Many Cardinalities. If κ < λ < iω1 are two characterizable
cardinals (Definition 2.1) and Kκ, Kλ the corresponding AEC (in disjoint vocabularies),
then the union4 with an AEC with arbitrarily large models is an AEC ( with strong substruc-
ture being in the appropriate vocabulary) with maximal models in κ and λ and arbitrarily
large models. However, the union is a hybrid AEC which fails JEP in all cardinals.

If < λi|i ≤ α < ℵ1 > is a strictly increasing sequence of characterizable cardinals (Defini-
tion 2.1), we provide an example of a pure (Definition 1.4) AEC with maximal models in
cardinalities < λ+i |i ≤ α < ℵ1 >, arbitrarily large models, and JEP(< λ0) holds.

For any triple (A,B,C) there is a first order sentence σ1 asserting that A,B form a bipartite
graph with C many colors that contains no monochromatic K2,2 subgraph (see property (∗)).
The structures constructed below will contain many substructures satisfying this require-
ment. Rather than cluttering the paper with a careful description of the formal sentence
(with different ternary relations for each colored graph) we will just assert where σ1 holds.

We begin with the case of two cardinals.

Lemma 3.33. Let κ < λ and let (Kk
0 ,≺k) be an AEC in vocabulary τk with models in κ

but no higher, and let (K`
0,≺`) be an AEC in vocabulary τ ` with models in λ but no higher.

If both (Kk
0 ,≺k) and (K`

0,≺`) satisfy JEP(< κ), then there is an AEC (K∗,≺K∗) which

(1) satisfies JEP(< κ);
(2) fails AP in all infinite cardinals;

(3) has 2κ
+

non-isomorphic maximal models in κ+, 2λ
+

non-isomorphic maximal models
in λ+, but no maximal models in any other cardinality, while JEP fails in all λ ≥ κ;

(4) has arbitrarily large models; and

(5) LS(K∗) = max{LS(Kk
0), LS(K`

0)}.

If both (Kk
0 ,≺k) and (K`

0,≺`) are pure, then (K∗,≺K∗) is pure. If both (Kk
0 ,≺k) and

(K`
0,≺`) are definable by an Lω1,ω-sentence, then the same is true for (K∗,≺K∗).

Proof. Let K∗ be the AEC defined by the following construction. The construction contains
4 bipartite graphs entangled together. Recall that a bipartite graph is a τ0 structure and σ1
is a τ0 sentence.

a) A1, A2, A3, C1, C2 are non-empty and partition the universe.
b) The structures (A1, A2, C1), (A1, A3, C1), (A1, C2, C1), and (A2, A3, C2) are colored bi-

partite graphs satisfying σ1.
c) C1 is a model in Kk

0 and C2 is a model in K`
0. In particular |C1| ≤ κ and |C2| ≤ λ

Define for M,N ∈ K∗, M ≺K∗ N , if M ⊂ N with respect5 to τ0, CM1 ≺k CN1 and

CM2 ≺` CN2 .

(1) Fix χ < κ and letM1 = (A1
1, A

1
2, A

1
3, C

1
1 , C

1
2 ),M2 = (A2

1, A
2
2, A

2
3, C

2
1 , C

2
2 ) be two models

in K∗ such that both M1,M2 have size ≤ χ.

Use JEP(< κ) on K`
0 to extend the τ`-structures C1

2 , C
2
2 to a common structure Č2 which

has cardinality χ. Use the argument of Theorem 3.24.1 to find a common embedding of
(A1

2, A
1
3, C

1
2 ) and (A2

2, A
2
3, C

2
2 ) with domain (A1

2 ∪A2
2, A

1
3 ∪A2

3, Č2) with cardinality χ. Note
that the proof of Theorem 3.24.1 does not add any vertices to the graph. Then use JEP(< κ)

4By the union of AEC’s with disjoint vocabularies we mean the collection of structures in the union
of the vocabularies, where the obvious symbols have the empty interpretation, and one model is a strong

substructure of another if the same is true for their reducts to the vocabulary where the structures are
non-trivial.

5We abuse notation here; depending on the exact location the colored graph will be with respect to a
different ternary relation; but we will think of it as a structure modeling the appropriate translation of σ1.
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in Kk
0 to find a common extension Č1 of C1

1 and C2
1 of cardinality χ. Now consider the struc-

tures (A1
1, A

1
2, C

1
1 ), (A1

1, A
1
3, C

1
1 ), (A1

1, Č2, C
1
1 ) and (A2

1, A
2
2, C

2
1 ), (A2

1, A
2
3, C

2
1 ), (A2

1, Č2, C
2
1 ).

Apply the argument of Theorem 3.24.1 again several times to find an K∗ extension of all
these models with domain (A1

1∪A2
1, A

1
2∪A2

2, A
1
3∪A2

3, Č1, Č2). Exactly as in Theorem 3.24.1
we verify this structure is in K∗.

(2)The proof for AP follows as in Theorem 3.24.

(3) and (4) Assume that C1 has size κ. By Lemma 2.3, if A1 has size κ+, then A2, A3, C2

have size ≤ κ+ and by Theorem 3.32 there are 2κ
+

many non-isomorphic maximal models
in κ+. If A1 has size > κ+, then A2, A3, C2 have size ≤ κ, and notice that the size of A1 can
be arbitrarily large. If A1 has size κ, then the sizes of A2, A3, C2 can be greater than κ+.

Repeating the same argument, assume that C1 and A1 have size κ, and C2 has size λ. If

A2 has size λ+, then A3 has size ≤ λ+ and by Theorem 3.32 again, there are 2λ
+

many
nonisomorphic maximal models in λ+. If A2 (or A3) has size λ, then A3 (respectively A2)
can have any size and we get arbitrarily large models.

The failure of JEP in λ ≥ κ now fails as Theorem 3.24.

(5) The argument is similar to the proof of Lemma 3.23. Let M be a model in K∗ and X be a

subset of M . Find some Č1 ∈Kk
0 such that X ∩CM1 ⊂ Č1 and |Č1| = |X ∩CM1 |+LS(Kk

0).

Then find some Č2 ∈ K`
0 such that X ∩ CM2 ⊂ Č2 and |Č2| = |X ∩ CM2 | + LS(K`

0).

Let M0 = X ∪ Č1 ∪ Č2. Then M0 belongs to K̂0. Indeed, M0 satisfies σ1, since any
violations of (∗) in M0 would be violations of (∗) in M too. Contradiction. Considering

that |M0| ≤ |X|+ |Č1|+ |Č2| ≤ |X|+LS(Kk
0) +LS(K`

0) = |X|+ max{LS(Kk
0), LS(K`

0)},
it follows that LS(K∗) = max{LS(Kk

0), LS(K`
0)}.

Finally observe that the conjunction of (a)-(c) is expressible by an Lω1,ω-sentence if and

only if membership in both Kk
0 and K`

0 is expressible by an Lω1,ω-sentence. �

We sketch a minor variant in the argument to extend this to infinitely many cardinals.

Theorem 3.34. Let 〈λi : i ≤ α〉 be a strictly increasing sequence of cardinals. Assume that

for each i ≤ α, there exists an AEC (Ki
0,≺Ki

0

) with models in λi but no higher. Then if

all (Ki
0,≺Ki

0

) satisfy JEP(< λ0), there is an AEC (K∗,≺K∗) which

(1) satisfies JEP(< λ0), while JEP fails for all larger cardinals;
(2) fails AP in all infinite cardinals;

(3) there exist 2λ
+
i many nonisomorphic maximal models in λ+i , for all i ≤ α, but no

maximal models in any other cardinality;
(4) has arbitrarily large models; and

(5) LS(K∗) = max{LS(Ki
0)|i ≤ α}.

If all (Ki
0,≺Ki

0

) are pure, then (K∗,≺K∗) is pure. Further, if α < ℵ1 and all (Ki
0,≺Ki

0

)

are definable by an Lω1,ω-sentence, then the same is true for (K∗,≺K∗).

Proof. Let K∗ be the AEC defined by the following construction.

a) The sets (Ai|i ≤ α) and (Ci|i < α) are non-empty and partition the universe.
b) For each i, j with i < j ≤ α, the triples (Ai, Aj , Ci) and (Ai, Cj , Ci) satisfy σ1.

c) For each i ≤ α, Ci is a model in Ki
0, which implies that |Ci| ≤ λi.

Define for M,N ∈ K∗, M ≺K∗ N , if M ⊂ N with respect to τ0 and CMi ≺Ki

0

CNi , for

all i ≤ α.
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The proof is like the proof of Theorem 3.33 with some easy modifications. Observe that if
for some i, |Ci| = λi and |Ai| = |Ci|+, then by Lemma 2.3 all Aj , Cj , j > i, are “locked”

to have size at most |Ai|, and by Theorem 3.32 there are 2λ
+
i many nonisomorphic maximal

models in λ+i . If |Ai| = |Ci|, then the cardinalities of Aj , Cj , j > i can be greater than λ+i .
We leave the rest of the details to the reader. �

We need some background before getting specific applications of the previous theorem. The
next fact follows from Theorem 4.20 of [BKL14] for ℵr = κ, noting that joint embedding
holds in ℵr−1. Indeed, 2-AP in ℵr−2 implies 2-AP of models with cardinality ℵr−1 over
models of cardinality < ℵr−1 (or the empty set). This yields a complete sentence φr whose
class of models is denoted Atr; a similar argument for the incomplete sentence with models

K̂
r

is in Theorem 4.3 of that paper.

Fact 3.35. Every cardinal κ < ℵω is characterized by a (complete) sentence of Lω1,ω that
satisfies JEP(< κ).

We describe the next example, based on [Mor65], in detail since the particular formulation
is important.

Example 3.36. Fix some countable ordinal α and let {βn|n ∈ ω} list the ordinals less than
α. Consider the vocabulary τ that contains a binary relation ∈, a unary function r (for
‘rank’) and constants (cβn)n∈ω. Let φα be the conjunction of the following:

• ∀x, x ∈ cβn ↔
∨
βi∈βn x = cβi , for each n;

• ∀x,
∨
n∈ω r(x) = cβn ;

• r(cβn) = cβn , for each n;
• ∀x, y, x ∈ y → r(x) ∈ r(y); and
• ∀x, y, (∀z)((z ∈ x↔ z ∈ y)→ x = y) (Extensionality).

Observe that φα is an Lω1,ω(τ)-sentence. Let Kα be the collection of all models of φα. If
M ∈Kα, then M can be embedded into Vα. In particular, |M | ≤ |Vα| = iα.

Fact 3.37. For each α < ω1, (Kα,⊆) satisfies the following.

(a) Kα has a unique maximal model in cardinality iα, and no larger models;
(b) JEP(≤ iα) holds; and
(c) LS(Kα) = ℵ0.

Note that under GCH up to ℵω, Fact 3.37 is stronger than Fact 3.35 since JEP(< κ) is
replaced by JEP(≤ κ).

Corollary 3.38. Here are three applications of Theorem 3.34.

(1) If < λi|i ≤ α ≤ ω > is any increasing sequence of cardinals below ℵω, then there
exists an Lω1,ω sentence ψ
(a) whose models satisfy JEP(< λ0);
(b) that fails AP in all infinite cardinals;

(c) has 2λ
+
i many nonisomorphic maximal models in λ+i , for all i ≤ α, but no

maximal models in any other cardinality, while JEP fails for all larger cardinals;
and

(d) has arbitrarily large models.
(2) If < iαi |i ≤ γ < ω1 > is a strictly increasing sequence, then there exists an Lω1,ω

sentence ψ′

(a) whose models satisfy JEP(≤ iα0);
(b) fails AP in all infinite cardinals;
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(c) has 2i
+
αi many nonisomorphic maximal models in i+

αi , for all i ≤ γ, but no
maximal models in any other cardinality, while JEP fails for all larger cardinals;
and

(d) has arbitrarily large models.
(3) If < λi|i ≤ α ≤ ω > is any countable increasing sequence of cardinals below iω1

that
are characterized by complete Lω1,ω sentences, then there exists an Lω1,ω-sentence
ψ′′

(a) whose models satisfy JEP(ℵ0);
(b) fails AP in all infinite cardinals;

(c) has 2λ
+
i many nonisomorphic maximal models in λ+i , for all i ≤ α, but no

maximal models in any other cardinality; and
(d) has arbitrarily large models.

Proof. For 1) use Theorem 3.34 and Fact 3.35. For 2) use Theorem 3.34 and Fact 3.37. 3)
is easy by Theorem 3.34 since every complete sentence satisfies JEP in ℵ0. �

Question 3.39. Is there an Lω1,ω-sentence that has maximal models in uncountably many
cardinals but arbitrarily large models?
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