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Abstract

Theorem. Suppose that an ℵ0-presentable Abstract Elementary Class (AEC), K, has the joint embed-
ding and amalgamation properties in ℵ0 and < 2ℵ1 models in ℵ1. If K has only countably many models
in ℵ1, then all are small. If, in addition, K is almost Galois ω-stable then K is Galois ω-stable.

1 Introduction
This paper concerns two aspects of pseudo-elementary classes in Lω1,ω , the reducts to a vocabulary τ ⊆ τ+
of models of an Lω1,ω(τ+)-sentence. In the first two sections we investigate the relationship among the
number of countable models of such a class, Scott ranks, and the number of small (i.e., having a countable
Lω1,ω-elementary submodel) models and large (not small) models of the class in ℵ1; this yields some techni-
cal information about putative counterexamples to Vaught’s conjecture. Building on this material, in the third
section, we treat such classes as abstract elementary classes and investigate variations on Galois ω-stability.
In the final section we use the results presented here and in [3] to prove a theorem on the absoluteness of
ℵ1-categoricity for pseudo-elementary classes in Lω1,ω .

We call an Abstract Elementary Classes (AEC) almost Galois ω-stable if for every countable model M ,
EM (the equivalence relation of ‘same Galois type over M ’) does not have a perfect set of equivalence
classes. The immediate impetus for this paper was [3], which studied what Baldwin and Larson called
analytically presented Abstract Elementary Classes. These classes are called by many names: pseudo-
elementary classes in Lω1,ω , ℵ0-presentable classes, PCℵ0 [23], PC(ℵ0,ℵ0), PCΓ(ℵ0,ℵ0) [1] or, in the
language of Keisler [12], PCδ in Lω1,ω . In this paper we will most often refer to them as ℵ0-presented. The
term ‘analytically presented’ emphasizes that one can deduce from Burgess’s theorem on analytic equiva-
lence relations that if such a class is almost Galois ω-stable then each equivalence relation EM has at most
ℵ1 equivalence classes. This topic first arose in [23] and several of the arguments here just expand ideas
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Shelah mentioned there; for further background on the context see [3, 1, 21]. Our main goal is to prove that
an almost Galois ω-stable ℵ0-presentable Abstract Elementary Class with only countably many models in
ℵ1 is Galois ω-stable. This extends earlier work by Hyttinen-Kesala [10] and Kueker [14] proving the result
for sentences of Lω1,ω with no requirement on the number of uncountable models.

Each class of models in this paper is ℵ0-presented. A major tool for this investigation is to expand
models of set theory by predicates encoding relevant properties of the models (for some vocabulary τ ) being
studied. This approach appears in Shelah’s analysis in [18], Section VII, connecting the Hanf number for
omitting families of types with the well-ordering number for classes defined by omitting types.

In [17], expanding the vocabulary to describe an analysis of the syntactic types allowed the construction
of a ‘small’ (Definition 2.2) uncountable model in an ℵ0-presentable class K from an uncountable model
that is small with respect to every countable fragment of Lω1,ω . In Lemma 2.7, we use this method to show
that if, in addition, there are only countably many models in ℵ1, then they are each small. In Section 3, we
combine this technique with constructions using iterated models of set theory to show the main theorem as
stated in the abstract.

2 Small Models
We refer the reader to [1, 21] for the definition of Abstract Elementary Class (AEC).

Assumption 2.1. K = (K,≤K) is an AEC which is ℵ0-presented. Specifically, K is the class of reducts to
τ of a class defined by a sentence φ ∈ Lω1,ω(τ+), where τ+ is a countable vocabulary extending τ .

This section deals with syntactic (Lω1,ω)-types in ℵ0-presentable classes. As such the arguments are
primarily syntactic and are minor variants on arguments Shelah used in [17, 19, 23]. In particular, no
amalgamation assumptions are used in this section.

Definition 2.2. 1. A τ -structure M is L∗-small for L∗ a countable fragment of Lω1,ω(τ) if M realizes
only countably many L∗-types (i.e. only countably many L∗-n-types over ∅ for each n < ω.)

2. A τ -structure M is called locally τ -small if for every countable fragment L∗ of Lω1,ω(τ), M realizes
only countably many L∗-types.

3. A τ -structure M is called small or Lω1,ω-small if M realizes only countably many Lω1,ω(τ)-types.

Note that ‘small’ is a much stronger requirement than ‘locally small’. If τ ⊆ τ ′ and N ∈ τ ′, we say that
N is locally τ -small when N�τ is. We emphasize τ when the ambient larger vocabulary plays a significant
role. The following standard fact plays a key role below (see also pages 47-48 of [1]).

Fact 2.3. Each small model satisfies a Scott-sentence, a complete sentence of Lω1,ω .

We quickly review the proof of this fact, as the details will be important later. For any model M over a
countable vocabulary τ , we can define for each finite tuple a (of size n) from M the n-ary formulas φa,α(x)
(α < ω1) as follows.

• φa,0(x) is the conjunction of all atomic formulas satisfied by a,

• φa,α+1(x) is the conjunction of the following three formulas:

– φa,α(x)
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–
∧
c∈M ∃wφac,α(x,w)

– ∀w
∨
c∈M φac,α(x,w)

• for limit β < ω1, φa,β(x) =
∧
α<β φa,α.

The apparent uncountability of the conjunctions in the previous definition is obviated by identifying
formulas φac,α and φa′c,α when they are equivalent in M . Working by induction on α, one gets that if M is
L∗-small for each countable fragment L∗ of Lω1,ω(τ), then the set of formulas φa,α is countable for each α,
letting a range over all finite tuples from M . Finally, if M is small there exists an α such that

M |= ∀x(φa,α(x)→ φa,α+1(x))

for all finite tuples a. Then
φ〈〉,α ∧

∧
a∈M<ω

∀x(φa,α(x)→ φa,α+1(x))

is a Scott sentence for M . Fixing the least such α, we say that M has Scott rank α.
We will also use the following fundamental result (see [12] or Theorem 5.2.5 of [1]; the notion of

fragment is explained in both books). Roughly speaking, the fragment generated by a countable subset X of
Lω1,ω(τ) is the closure of X under first order operations. We preserve Keisler’s terminology to emphasize
that the theorem deals only with the number of models and does not involve the choice of ‘elementary
embedding’ on the class.

Theorem 2.4 (Keisler). If a PCδ over Lω1,ω class K has an uncountable model but less than 2ω1 models
of power ℵ1 then K is locally τ -small. That is, for any countable fragment L∗ of Lω1,ω(τ), each M ∈ K
realizes only countably many L∗-types over ∅.

By just changing a few words in the proof of Theorem 6.3.1 of [1], (originally in [17]) one can obtain
the following result, which was implicit in [23].

Theorem 2.5. If K is an ℵ0-presentable AEC and some model M ∈K of cardinality ℵ1 is locally τ -small,
then K has a Lω1,ω(τ)-small model N of cardinality ℵ1.

Proof. Let φ be the τ+-sentence whose reducts to τ are the members of K. Without loss of generality
we may assume the universe ofM is ω1. Add to τ+ a binary relation<, interpreted as the usual order on ω1.
Using the fact that M realizes only countably many types in any τ -fragment, define a continuous increasing
chain of countable fragments Lα for α < ℵ1 such that

• for each quantifier free (first order) n-type over the empty set realized in M , the conjunction of the
type is in L0, and

• the conjunction of each type in Lα that is realized in M is a formula in Lα+1.

Extend the similarity type further to τ ′ by adding new (2n + 1)-ary predicates En(x,y, z) and (n + 1)-
ary functions fn for each n ∈ ω. Let M satisfy En(α,a,b) if and only if a and b realize the same
Lα-type, and let the interpretation of fn map Mn+1 into ω in such a way that En(α,a,b) if and only if
fn(α,a) = fn(α,b) for all suitable α, a, b. Then the following hold.

1. The equivalence relations En(β, x, y) refines En(α, x, y) if β > α;
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2. En(0,a,b) implies that a and b satisfy the same quantifier free τ -formulas;

3. If β > α and En(β,a,b), then for every c1 there exists c2 such that En+1(α, c1a, c2b), and

4. fn witnesses that for any a ∈ M , each equivalence relation En(a, x, y) has only countably many
classes.

All these assertions can be expressed by an Lω1,ω(τ ′) sentence χ. Let L∗ be the smallest τ ′-fragment
containing χ ∧ φ. Now by the Lopez-Escobar bound on Lω1,ω definable well-orderings, Theorem 5.3.8
of [1], there is a τ ′-structure N of cardinality ℵ1 satisfying χ ∧ φ such that there is an infinite decreasing
sequence d0 > d1 > . . . in N (alternately, one could use Lemma 2.5 of [3] for this step). For each n, let
E+
n (x, y) denote the assertion that for some i, En(di, x, y).

Using 1), 2) and 3) one can prove by induction on quantifier rank (for all n ∈ ω simultaneously) that
for all n-ary Lω1,ω(τ) formulas µ, and all finite tuples a, b from N , if E+

n (a,b) holds then N |= µ(a)
if and only if N |= µ(b). To see this, suppose that this assertion holds for all n and all θ with quantifier
rank at most γ. Let µ(z) be an n-ary formula of the form (∃x)θ(z, x), where θ has quantifier rank γ. Let
a,b be n-tuples from N for which E+

n (a,b) holds and N |= µ(a). Then for some i, En(di,a,b) and for
some a, N |= θ(a, a). By condition 3) above there is a b such that En+1(di+1,a, a,b, b). By our induction
hypothesis we have N |= θ(b, b) and so N |= µ(b).

Now, for each n, En(d0, x, y) refines E+
n (x, y) and by 4) En(d0, x, y) has only countably many classes,

so N�τ is small. 2.5

Definition 2.6. We say a countable structure is extendible if it has an Lω1,ω-elementary extension to an
uncountable model.

Lemma 2.7. Suppose that K is the class of reducts to τ of a class defined by a sentence φ ∈ Lω1,ω(τ+),
where τ+ is a countable vocabulary extending τ . If some uncountable M ∈ K is locally τ -small but is not
Lω1,ω(τ)-small then

1. There are at least ℵ1 pairwise-inequivalent complete sentences of Lω1,ω(τ) which are satisfied by
uncountable models in K;

2. K has uncountably many small models in ℵ1 that satisfy distinct complete sentences of Lω1,ω(τ);

3. K has uncountably many extendible models in ℵ0.

Proof. Suppose that M is a model in K with cardinality ℵ1 that is is locally τ -small but is not Lω1,ω(τ)-
small. Let M+ be an expansion of M to a τ+-structure satisfying φ. We construct a sequence of τ+-
structures {N+

α : α < ω1} each with cardinality ℵ1 and an increasing continuous family of countable
fragments {L′α : α < ω1} of Lω1,ω(τ) and sentences χα such that:

1. L′0(τ) is first order logic on τ ;

2. all the models N+
α satisfy φ;

3. for each α < ω1, N+
α �τ is Lω1,ω(τ)-small;

4. χα is the Lω1,ω(τ)-Scott sentence of Nα;

5. L′α+1(τ) is the smallest fragment of Lω1,ω(τ) containing L′α(τ) ∪ {¬χα};
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6. For limit δ, L′δ(τ) =
⋃
α<δ L

′
α(τ);

7. For each α, Nα ≡L′α(τ) M .

Working by recursion, suppose that we have constructed Nα for all α < β, for some countable ordinal
β. This determines each χα (α < β) as the Scott sentence of Nα and also determines L′β(τ). Since M
is not small, M |= ¬χα for each α < β. Apply Theorem 2.5 to M and the restriction of K to models
L′β(τ)-elementarily equivalent to M to construct Nβ .

Now the Nα are pairwise non-isomorphic since each satisfies a distinct complete sentence χα of
Lω1,ω(τ), so conclusions 1) and 2) are satisfied. And each Nα has a countable elementary submodel with
respect to L′α+1(τ), so there are at least ℵ1 non-isomorphic extendible models in ℵ0 as well. 2.7

Putting together Theorem 2.4 and Lemma 2.7, we have the following.

Corollary 2.8. If an ℵ0-presented AEC K has only countably many models in ℵ1, then every model in K
is small.

Lemma 2.7 leads to several corollaries connected to the Vaught conjecture. First we recall the following
result of Harnik and Makkai [8].

Theorem 2.9 (Harnik-Makkai). If σ ∈ Lω1,ω is a counterexample to Vaught’s Conjecture then it has a
model of cardinality ℵ1 which is not small.

Corollary 2.10. If φ ∈ Lω1,ω is a counterexample to the Vaught conjecture then φ has ℵ1 extendible
countable models.

Proof. If φ ∈ Lω1,ω is a counterexample to Vaught’s conjecture, then every uncountable model of φ is
locally small. The result then follows from Theorem 2.9 and Lemma 2.7. 2.10

Su Gao pointed out another argument for this observation. By Becker [4], the Vaught conjecture holds
for countable models such that aut(M) is a ‘cli’ group (admits a compatible left-invariant complete metric).
By Gao [6], aut(M) is ‘cli’ if and only if M is not extendible. Thus if there is failure of Vaught’s conjecture
there must be ℵ1 extendible countable models.

Remark 2.11. Clearly, if K has only countably many models in ℵ1 then K has at most ℵ0 non-isomorphic
extendible countable models (since each uncountable model is Lω1,ω-equivalent to at most one model in ℵ0).
The three conclusions of Lemma 2.7 are easily seen to be equivalent; we separated them in the statement
because both the countable and uncountable models arose naturally in the proof. The converse of Lemma 2.7
asserts if that K has uncountably many extendible countable models and a locally small model in ℵ1 then
it has a non-small model in ℵ1. Theorem 2.9 shows this is true if the hypothesis is changed to ‘uncountably
many countable models, but not a perfect set of countable models’, without requiring extendibility. In gen-
eral, the converse is false. The empty theory in a vocabulary with ℵ0 constants has 2ℵ0 models (depending
on which constants are identified) in each of ℵ1 and ℵ0; all are small. But joint embedding and amalgama-
tion fail even under first order elementary submodel. Example 2.1.1 of [2] is a sentence of Lω1,ω giving rise
to an AEC, with a particular notion of ≺K (weaker than first order), which satisfies amalgamation and joint
embedding and is ℵ1-categorical, and for which the model in ℵ1 is small. In this case there are 2ℵ0 countable
models, but only one of them is extendible.

Definition 2.12. A sentence σ of Lω1,ω is large if it has uncountably many countable models. A large
sentence σ is minimal if for every sentence φ either σ ∧ φ or σ ∧ ¬φ is not large.
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As part of their proof of Theorem 2.9, Harnik and Makkai showed that any counterexample to Vaught’s
conjecture can strengthened to a minimal counterexample. We call a model of cardinality ℵ1 large if it is
not Lω1,ω-small in the sense of Definition 2.2. Lemma 2.7 implies that if φ has a large model in ℵ1 then φ
is large.

Corollary 2.13. If φ is a minimal counterexample to Vaught’s conjecture then φ has a large model in ℵ1,
and all large models of φ in ℵ1 are Lω1,ω-elementarily equivalent.

Proof. Theorem 2.9 says that φ has a large model N . Suppose that φ ∈ Lω1,ω holds in N . The fact
that φ ∧ ψ has a large model implies by Lemma 2.7 that φ ∧ ψ has uncountably many models in ℵ0. By
minimality, φ ∧ ¬ψ has only countably many models in ℵ0 and so by Lemma 2.7 again, all uncountable
models of φ ∧ ¬ψ are small. 2.13

Harrington (see the discussion in [15]) showed that any counterexample to Vaught’s conjecture had
models in ℵ1 with Scott ranks (as sentences in Lω2,ω) up to ℵ2.

Question 2.14. Can one say anything about the embedability relation on the large models of a counterex-
ample to Vaught’s conjecture?

2.1 Connections with the Morley Analysis
We pause to connect this analysis in Section 2.2 with a related but subtly distinct procedure.

Definition 2.15. 1. Morley’s Analysis Let K be the class of models of a sentence of Lω1,ω .

(a) Let LK
0 be the set of first order τ -sentences.

(b) Let LK
α+1 be the smallest fragment generated by LK

α and the sentences of the form (∃x)
∧
p(x)

where p is an LK
α -type realized in a model in K.

(c) For limit δ, LK
δ =

⋃
α<δ L

K
α .

2. K is scattered if and only if for each α < ω1, LK
α is countable.

Recall Morley’s theorem, which is key to his approach to Vaught’s conjecture.

Theorem 2.16 (Morley). If K is the class of models of a sentence in Lω1,ω that has less than 2ℵ0 models of
power ℵ0 then K is scattered.

Remark 2.17. We cannot conclude that K is scattered from just counting models in ℵ1, even from the
hypothesis that K is ℵ1-categorical. Again, Example 2.1.1 of [2] (Remark 2.11) is ℵ1-categorical and has
joint embedding for ≺K . But there are 2ℵ0 first order types that give models that are not even first order
mutually embeddible and the class K is not scattered.

Remark 2.18. The sequence of languages in Theorem 2.5 might be labeled LMα . They come about by
applying the Morley analysis solely to the types realized in M . So this gives a slower growing sequence of
languages than the Morley analysis. We replace the conclusion of scattered in Theorem 2.16 with locally
small. If K has either less than 2ℵ0 models in ℵ0 or less than 2ℵ1 models in ℵ1, then every uncountable
model of K is locally small.

Remark 2.19. The arguments of Morley and Shelah have different goals. Being scattered is a condition on
all models of an (in the interesting case for the Vaught conjecture) an incomplete sentence in Lω1,ω . The
Shelah argument contracts K to a smaller class where every model is small and thus finds a K ′ ⊂ K that
is small and is axiomatized by a complete sentence. The hard part is to make sure K ′ has an uncountable
model. In the most used case, K and a fortiori K ′ is ℵ1-categorical.
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2.2 Alternate proofs using Scott sentences
In this subsection we prove alternate versions of Theorem 2.5 and part of Lemma 2.7. Theorem 2.20 can be
used in place of Theorem 2.5 in all of our applications of Theorem 2.5, and the basic use of ill-founedness
is the same. The ill-foundedness can be obtained either Lopez-Escobar or by iterated models of set theory.
In the proof of Theorem 3.13, we use iterated models of set theory to obtain ill-foundedness; they can be
obtained either by ultrafilters or by a use of Lopez-Escobar. For convenience we use the theory ZFC◦ from
[3]. Any theory strong enough to carry out the construction of Scott sentences should be sufficient.

Theorem 2.20. Let τ be a countable vocabulary, let M be a τ -structure, and let N be an ω-model of
ZFC◦ with ωN1 ill-founded. Let β be the ordinal isomorphic to the longest well-founded initial segment of
ωN1 . Suppose that, in N , M is locally τ -small and either large or small with Scott rank in the ill-founded
part of N . Then M is small, and the Scott rank of M is exactly β.

Proof. Let t be the Scott rank of M in N if N thinks that M is small, and ωN1 otherwise. Let

〈φa,s : a ∈M<ω, s < t〉

be the set of formulas defined in N in the first t many steps of the search for a Scott sentence for M . Then

〈φa,α : a ∈M<ω, α < β〉

is also the set of formulas defined in V in the first β many steps of the search for a Scott sentence for M .
Since the Scott rank of M in N is in the ill-founded part of N if it exists, the Scott rank of M in V is at least
β.

We claim that for any n ∈ ω and any pair a, b of n-tuples from M , if φa,s = φb,s for any ill-founded
s < t, then a and b satisfy all the same Lω1,ω(τ)-formulas in M (from the point of view of V ). To see
this, suppose that this assertion holds for all n and all formulas θ with quantifier rank at most γ. Let µ(z)
be an n-ary formula of the form (∃x)θ(z, x), where θ has quantifier rank γ. Let a,b be n-tuples from N ,
let s < t be an ill-founded ordinal of N such that φa,s = φb,s, and suppose that M |= µ(a). Then there
is an ill-founded r < s, and for any such r, φa,r = φb,r. Since M |= µ(a), there is a c ∈ M such that
M |= θ(a, c). Since r < s and φa,s = φb,s, φa,r+1 = φb,r+1, which means that there is some d ∈M such
that φbd,r = φac,r. Thus by our induction hypothesis, M |= θ(b, d) and thus M |= µ(b).

For each n ∈ ω and each pair a,b of n-tuples from M , if φa,α = φb,α for all α < β, then φa,s = φb,s
for some ill-founded s < t, since if φa,r 6= φb,r for any r < t, then N thinks that there is a least such r, and
there is no least ill-founded ordinal of N . It follows then that the Scott rank of M (in V ) is exactly β.

Lemma 2.21 will make up part of the proof of our main theorem (Theorem 3.13). The proof is in fact a
simplified part of the main argument in the proof of that theorem.

Lemma 2.21. Suppose that K is the class of reducts to τ of a class defined by a sentence φ ∈ Lω1,ω(τ+),
where τ+ is a countable vocabulary extending τ . If K has a model in Kℵ1 that is locally τ -small, but is not
Lω1,ω(τ)-small then K has small models in ℵ1 of club many distinct Scott ranks.

Proof. Suppose that M is a model in K with cardinality ℵ1 that is is locally τ -small but is not Lω1,ω(τ)-
small. Fix a regular cardinal θ > 22

ℵ1 . It suffices to show that for every countable elementary submodel
X of H(θ) with τ , φ and M in X , there exists a small model in K of cardinality ℵ1 whose Scott rank is
X ∩ ω1. Fix such an X . Let P be the transitive collapse of X , and let ρ : X → P be the corresponding
collapsing map. Then ρ(ω1) = ωP1 is the ordinal X ∩ ω1.
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By iterating the construction in [13], one can find an elementary extension P ′ of P with corresponding
elementary embedding π : P → N , with critical point ωP1 , such that ωN1 is ill-founded and uncountable,
and such that the wellfounded ordinals of N are exactly the members of ωP1 . Since ωN1 is ill-founded,
Theorem 2.20 implies that π(ρ(M)) is Lω1,ω(τ)-small, with Scott rank equal to the longest wellfounded
initial segment of of ωN1 , which is X ∩ ω1.

3 Almost Galois Stability
Fixing a coding of hereditarily countable sets by real numbers, the notion of Galois types naturally induces
an equivalence relation on the reals. For each countable M ∈ K we let EM denote the corresponding
equivalence relation for Galois types over M (this notation was used in [3]). If K is ℵ0-presented, then each
EM is an analytic equivalence relation, and by Burgess’s trichotomy for analytic equivalence relations, EM
has either countably many equivalence classes, ℵ1, or a perfect set of inequivalent reals.1 Because there are
two notions of weak-stability in the literature of AEC ([10, 21], we call the following notion almost Galois
ω-stability.

Definition 3.1. K is almost Galois ω-stable if for no countable model M , EM has a perfect set of equiva-
lence classes.

The next example shows that Galois types are very much a property of the monster model. If M ≺ N
and a ∈ N −M , ga− tp(a/M) cannot be determined by just looking at N in isolation.

Example 3.2. Let K be the set of structures in the language with a single equivalence relation E that
have infinitely many elements in each class and exactly ℵ0 classes. Let ≺K be the relation of first order
elementarity. This gives an ℵ0-presentable class. There are ℵ0 models in ℵ1 (given by the number of classes
that have cardinality ℵ0 and ℵ1 respectively). Let M be the ℵ1-saturated model in K of cardinality ℵ1; it
has uncountably many elements in each class. Let M0 be a countable submodel of M .

Given an element a of a model N ∈ K, let [a]N denote the E-equivalence class of a as interpreted in
N . Let K ′ be the class of countable models N ∈K containing M0 for which

{[a]N :a ∈M0 ∧ |[a]N \ [a]M0 | = m} is finite,

for each m ∈ ω and every E-class in N intersection M0. For each N ∈ K ′, let cN :ω → ω be defined by
setting

cN (m) = |{[a]N :a ∈M0 ∧ |[a]N \ [a]M0
| = m}|.

Then for each c : ω → ω there is an N ∈ K ′ for which cN = c, and for any two N,N ′ ∈ K ′, N
and N ′ are isomorphic via an isomorphism fixing M0 setwise if and only if cN = cN ′ . Furthermore,
even among the elements N of K ′ for which cN is the constant function 1, there are 2ℵ0 many models
(corresponding naturally to the permutations of ω) which are not isomorphic via isomorphisms fixing M0

pointwise, although they are isomorphic.
Finally, if N and N ′ are elements of K ′ with N ⊆ N ′, then cN = cN ′ if and only if [a]N = [a]N ′

for every a ∈ M0 with [a]N finite (in which case there is an isomorphism between N and N ′ fixing M0

pointwise). To see this, suppose that the latter statement is false and consider the least m for which there is
an a ∈M0 with m = |[a]N \ [a]M0 | 6= |[a]N ′ \ [a]M0 |. Then cN (m) > cN ′(m).

1Alternately, letting τ be the vocabulary associated to K, the set of τ -structures with domain ω can be viewed as a Polish space,
with the set of countable models in K as an analytic subset. See [7].

8



Remark 3.3 (Amalgamation, joint embedding, and maximal models). In this remark, we collect a number
of easy and well-known observations about the properties in its title. These observations should provide a
background for understanding the choice of some ‘background hypotheses’ below. If an AEC has no max-
imal models then it has arbitrarily large models. In general the converse fails; but the converse holds under
joint embedding with one exception: an AEC with a unique maximal model2 may satisfy joint embedding.

Assuming amalgamation, the relation ‘M and N have a common strong extension’ is an equivalence
relation and each equivalence class is an AEC with joint embedding. Often we will assume amalgamation
and joint embedding to avoid assuming only amalgamation and then having to restrict to one joint embedding
class. Failure to make this assumption yields to trivial counterexamples. There are no universal models for
the class of algebraically closed fields (because of characteristic) but fixing the characteristic (that is the
joint embedding class) yields a family of classes each with the joint embedding property. The technique of
restricting to an equivalence class is illustrated by the generalization of Theorem 3.13 to Corollary 3.20.

Amalgamation and some form of joint embedding easily allows one to show the following (see Corollary
8.23 of [1]); we give two variants. Note that in the second case the Galois-saturated model may not be unique.

Lemma 3.4. Suppose that K is almost Galois ω-stable and satisfies amalgamation in ℵ0.

1. If K has joint embedding in ℵ0 then there is a unique Galois-saturated model M in ℵ1.

2. IfN ∈K is countable and has an uncountable extension in K, then there is a Galois-saturated model
M in ℵ1 with N ≺K M .

Proof. For the first part, carefully construct an interweaving enumeration the Galois types over an in-
creasing chain of countable models in order type ω1 so that each Galois type over each model in the chain
is realized. For uniqueness, suppose that M and M ′ are Galois-saturated models in ℵ1. Choose countable
M0 ≺K M and M ′0 ≺K M . By joint embedding there is a countable M1 that ≺K -extends both M0 and
M ′0. Applying Galois saturation, a countable induction that M1 is a≺K -structure of both M and M ′. Then
an ℵ1 induction using Galois saturation shows M and M ′ are isomorphic (over M1).

For the second part, let KN be the equivalence class under joint embedding of the models that are jointly
embeddable with N . Apply the first argument to this class. 3.4

Note that without joint embedding we cannot conclude uniqueness of Galois saturated models. As in the
situation of Lemma 3.4, there may be models which are Galois saturated with respect to a sub-AEC that are
mutually non-embeddable. In particular, there may be countable models that are not extendible, even when
there is a unique Galois-saturated model in ℵ1.

For any AEC K, if M,N ∈K and M ≺K N , then M is a substructure of N , but the definition of AEC
does not require even that M be a first-order elementary submodel of N . Before proving the main result of
this section, Theorem 3.13, we prove a lemma which reduces the proof to the case where M ≺K N implies
Lω1,ω(τ)-elementarity. A similar reduction appears in Theorem 3.6 E) of [23] and Lemma 2.5 of [17].

Definition 3.5. Let K be an AEC in a countable similarity type τ , with Löwenheim-Skolem number ℵ0, such
that K has a unique Galois-saturated model M in ℵ1 that is small.

Let K∗ = {N ∈K : |N | = ℵ0 ∧N ≺K ′M}, where N0≺K ′ N1 if N0 ≺K N1 and N0 ≺∞,ω N1.
Let (K ′,≺K ′) be the closure of (K∗,≺K ′) under isomorphism and direct limits of arbitrary length.

2Maximal means there is no extension, even one isomorphic to itself.
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To discuss the relationship between (almost) Galois stability of K and K ′, we introduce some notation.
We first give a standard equivalent for the definition of Galois type, but parameterized for the comparisons
we need here. The class K0 below will be K or K ′ in our applications. This construction is implicit in [23]
and in the extension of those arguments towards the construction of examples of a good frame in [22] and
chapter III of [21]. The next lemma shows the properties of the induced class K ′. We describe a slightly
more general situation from [21] in Remark 3.10

Notation 3.6. Let K0 be an AEC with a (K0,ℵ1)-homogenous-universal model M in ℵ1.

1. If M0 ≺K0
M , SK0

(M0) is the collection of orbits of elements of M under autM0
(M) (the auto-

morphisms of M fixing M0 pointwise).

2. α(K0) = sup{|SK0
(M0)| : M0 ∈K0, |M0| = ℵ0}.

We need to require the joint embedding property to guarantee that (K,ℵ1)-homogeneous-universal is
equivalent to Galois saturated. Most of the argument for the next lemma would work if we just assume there
is a unique Galois saturated model (which is small); but it might not be universal (in either K or K ′). (See
Chapter 16 of [1] or Remark 1 of [20] for more detailed remarks.)

Lemma 3.7. Let K be an AEC in a countable similarity type τ , with Löwenheim-Skolem number ℵ0, with
joint embedding and the amalgamation property in ℵ0. Suppose further that unique Galois-saturated model
M in ℵ1 is small. Then the following hold.

1. (K ′,≺K ′) is an AEC with Löwenheim-Skolem number ℵ0.

2. M is (K ′,ℵ1)-homogenous-universal.

3. (K ′,≺K ′) satisfies amalgamation in ℵ0.

4. For every M0 ∈K ′ℵ0 , SK (M0) = SK ′(M0).

5. α(K) = α(K ′).

6. If (K,≺K ) is ℵ0-presented then so is (K ′,≺K ′).

7. K ′ is ℵ0-categorical.

Proof. 1) The coherence and unions of chains axioms are immediate on K∗. For Löwenheim-Skolem,
note that M can be written as an increasing chain of K ′-submodels. Thus, K∗ is a weak AEC in the sense
of Definition 16.10 of [1] and so (K ′,≺K ′) is an AEC by Exercise 16.12 or earlier works of Shelah.

2) Let M0≺K ′M1 be countable. Then there are K ′-maps f and g such that f(M0)≺K ′M and
g(M1)≺K ′M by the definition of K ′. But since M is (K,ℵ1)-homogenous-universal, there is an h in
aut(M) mapping f(M0) onto g(M0). Since both ≺K and ≺K ′ are preserved by automorphisms, h is a
K ′-map. So h ◦ g is a K ′ embedding of M1 into M extending f .

3) Suppose M0≺K ′M1,M2. Then there are K ′-embeddings of M1 and M2 over M0 into M . So
amalgamation holds.

4) The Galois types are determined by autM0
M which does not depend on the choice of AEC.

5) We have thatα(K) ≥ α(K ′) since the supremum is taken over a smaller set. But for eachM0 ∈Kℵ0 ,
there is an M1 ∈ K ′ℵ0 with M0 ≺K M1≺K ′M and by the extendability of K-Galois types, and part 4,
|SK (M0)| ≤ |SK (M1)| = |SK ′(M1)| so α(K) = α(K ′).
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6) Let τ ′ and τ ′′ = τ ′ ∪{P} be the vocabularies which witness that K is ℵ0-presented. Let ψ1 be the τ ′

sentence whose reducts are the models in K; let ψ2 be the τ ′′ sentence whose reducts are pairs (N,M) with
N ≺K M . Further suppose φ is the Scott sentence of M . The following sentences witness that (K ′,≺K ′)

is ℵ0-presented: ψ̂1 = ψ1∧φ and ψ̂2 = ψ2∧χwhere (M,N) |= χ ifM ≺L∗ N where L∗ is least countable
fragment containing φ.

7) is evident since N is small. 3.7

Conclusion 5 immediately yields.

Corollary 3.8. Under the hypotheses of Lemma 3.7,

• (K,≺K ) is Galois ω-stable if and only if (K ′,≺K ′) is;

• (K,≺K ) is almost Galois ω-stable if and only if (K ′,≺K ′) is.

Moreover, the hypothesis of joint embedding is in some ways only a convenience; see Corollary 3.20.
If K has the amalgamation property then joint embedability is an equivalence relation and each of the
equivalence classes is an AEC with joint embedding preserving the other properties defining AEC’s. At
least one class fails Galois ω-stability if K does. But some classes may not have any uncountable models.

The following variants on an example of Jarden and Shelah [11] will illustrate the situation and also
provide some context for Theorem II.3.4 of [21]. That theorem aims to construct a good frame from an
ℵ0-presentable class that has few models in ℵ1, is ℵ0-categorical, has amalgamation in ℵ0 and is ω-Galois
stable or at least ω-almost Galois stable. We show several of these conditions are necessary. In particular,
these examples are not ℵ0-categorical. Note that one use of Lemma 3.7 is to extract an ℵ0-categorical AEC
from a given AEC with few models in ℵ1. Recall that there are only ℵ1 countable linear orders that are one
transitive (any two points are automorphic) [16].

Example 3.9. Let τ contain equality, a binary symbol <, and another binary relation symbol E. Let
(K,≺K ) be the class of τ -structures such that each M ∈ K is a partially ordered set such that each
component is a countable 1-transitive linear order. Further E is an equivalence relation; each class inter-
sects each component in exactly one point. Moreover E induces an order-isomorphism between each pair
of components. M ≺K N means M ⊆ N but each element of N −M is incomparable with all elements
of M .

K is an ℵ0-presentable AEC. It has exactly ℵ1 models in each infinite cardinality. It is almost Galois
ω-stable but not Galois ω-stable. Kℵ0 satisfies the amalgamation property but does not satisfy the joint
embedding property. There are in fact ℵ1, pairwise non-isomorphic Galois saturated models in ℵ1; each
model is ℵ1 copies of a particular 1-transitive order.

There is no countable fragment L∗ such that syntactic type in L∗ is the same as the Galois type in K.

Remark 3.10. In chapters I and II (e.g. II.3.4) of [21], Shelah makes a somewhat more general argument.
Add to Definition 3.5 a third clause: For each countable M ∈ K, let KM = {N ∈ K : |N | = ℵ0 ∧
M ≺K ′ N}, where ≺K ′ is defined as before. It is again straightforward to see that each KM is an ℵ0
categorical AEC. If there are less than 2ℵ1 models in ℵ1 of K and a fortiori of each KM then under
2ℵ0 < 2ℵ1 , KM has the amalgamation property and since all models are extension of a single one, the joint
embedding property. Then Shelah argues that by way of the notion of ‘materialization of types’ (Chapter 1
of [21]) one can deduce almost Galois stability.

Because the joint embedding property fails, Lemma 3.7 does not apply to this example. Applying the
construction in Definition 3.5 gives rise to ℵ1 distinct ℵ0-presentable AEC; each is categorical in every
infinite cardinality; each is ω-stable. In each derived AEC, Galois type is equivalent to syntactic type.
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The refined AEC, where all components have the same order type, are indexed by φα for α < ω1, which
list the Scott sentences of countable transitive linear orders. Exercise 14.28 of Rosenstein [16] shows that
the transitive order Zα has Scott rank ω · α + 1. We return to the example of [11] to cast a little more light
on the current situation.

Example 3.11. Let τ contain equality and a binary symbol <. Let (K,≺K ) be the class of τ structures
such that each M ∈ K is a partially ordered set such that each component is a countable 1-transitive linear
order. M ≺K N means M ⊆ N but each element of N −M is incomparable with all elements of M .

K is an ℵ0-presentable AEC. It has exactly ℵ1 countable models and 2ℵ1 in ℵ1. It is almost Galois ω-
stable but not Galois ω-stable. Kℵ0 satisfies the amalgamation property and the joint embedding property.
Thus there is a unique Galois saturated model in ℵ1.

Neither Lemma 3.7 nor II.3.4 (page 285) of [21] applies because the Galois saturated model is not
locally small in the first case and there are too many models in ℵ1 in the second. Nevertheless there are ℵ1
restrictions of K to AEC Kα, where models in Kα contain only components satisfying φα. Each of them
is Galois ω-stable. In each Kα, galois types are equivalent to syntactic types in an appropriate fragment
Lα.

Question 3.12. Find an example of an ℵ0-presented AEC with the joint embedding and amalgamation
properties that has < 2ℵ1 models in ℵ1 and is strictly almost Galois ω-stable.

By Theorem 3.13 below, K must fail joint embedding or have at least ℵ1 models in ℵ1.

Corollary 3.20 derives a slightly weaker conclusion in the absence of the joint embedding property.

Theorem 3.13. Suppose that K is an ℵ0-presented AEC which satisfies amalgamation, and JEP for count-
able models, and that K is almost Galois ω-stable. If K has only countably many models in ℵ1, then

1. For every countable N ∈ K there is a countable fragment L∗(τ ′) of the expanded language τ ′

where constants are added for each member of N such that for every M ∈ K with N ≺K M and
N ≺∞,ω M , M is L∗(τ ′)-atomic. This implies

2. K is Galois ω-stable.

Proof. The proof of Theorem 3.13 takes up the rest of this section. By Corollary 2.8, all models in K
are small. Applying Lemma 3.4, let M be a small Galois-saturated model of cardinality ℵ1, and let φ be the
Scott sentence of M . By Lemma 3.7 and Corollary 3.8 , by replacing K by K ′ (but still calling it K) we
may assume that the relation ≺K implies full Lω1,ω(τ)-elementarity.

Notation 3.14. Fix any countable model M0 ∈ K. Let τ ′ = τ ′M be the extension of τ formed by adding
new constant symbols ci (i ∈ ω), and let M ′ be a τ ′-structure expanding M , where the interpretation of the
ci’s enumerates M0.

Now there are three cases; we will show cases 1) and 2a) contradict the hypothesis of almost Galois ω-
stability while case 2b) implies statement 1) of Theorem 3.13 which yields statement 2): Galois ω-stability.

1. For some countable fragment L∗(τ ′) of Lω1,ω(τ ′), there are uncountably many L∗(τ ′)-types realized
in M ′ .

2. For every countable fragment L0(τ ′) of Lω1,ω(τ ′), only countably many L0(τ ′)-types are realized in
M ′. Then one of the following holds.
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(a) The model M ′ is not Lω1,ω(τ ′)-small.

(b) The model M ′ is Lω1,ω(τ ′)-small, so for some countable fragment L∗(τ ′), M ′ has a Scott
sentence in L∗(τ ′);

In Case 1, there exists a perfect set of syntactic types in L∗(τ ′). Since ≺K implies Lω1,ω(τ)-
elementarity, this implies the existence of a perfect set of Galois types over M0, contradicting the almost
Galois ω-stability of K.

The bulk of the proof derives a contradiction from Case 2a. Since K is almost Galois ω-stable but not
Galois ω-stable, there exists a countable M0 ∈ K such that EM0

has exactly ℵ1 equivalence classes and
satisfies 2a). We use this model to show case 2a) is impossible. Note that only this case requires that there
are only countably many models in ℵ1.

Definition 3.15. Suppose that a model M with cardinality ℵ1 is the union of an uncountable chain of
countable models 〈Mα : α < ω1〉. For each α < ω1, let Fα be an automorphism of M mapping M0 onto
Mα. Then we say that 〈Mα, Fα : α < ω1〉 is a nice decomposition of M , and we let Fα,β denote Fβ ◦F−1α .

Recall that φ is the Scott sentence for M . Let M = 〈Mα :α < ω1〉 be such that (as above) M0 is the
model enumerated by c, M =

⋃
α<ω1

Mα and the following hold for each α < ω1:

• Mα is a countable element of K;

• Mα ≺K M ;

• Mα |= φ;

• Mα is a proper subset of Mα+1;

• if α is a limit ordinal, then Mα =
⋃
β<αMβ .

The models Mα are all isomorphic, as they satisfy the same Scott sentence. As M is Galois saturated, there
is a set F = {Fα :α < ω1} such that 〈Mα, Fα : α < ω1〉 is a nice decomposition of M .

Let τ+ be the expansion of our vocabulary τ ′ to the τ ′ of Theorem 2.5 (i.e., add the symbols En, fn
(n ∈ ω), and a binary relation ordering the domain of M in order type ω1; alternately, using Theorem 2.20
we could skip this step). Fix a regular cardinal θ large enough so that M ′, τ+, M and F are elements of
H(θ) (to apply the methods of [3], we need θ to be larger than 22

ℵ1 ).
Let 〈Xα :α < ω1〉 be a properly ⊆-increasing continuous chain of countable elementary submodels of

A. In particular ωA1 ∈ X0 and for every α < ω1 there is a countable ordinal β ∈ Xα+1 − Xα. For each
α < ω1, let Pα be the transitive collapse of Xα, and let ρα : Xα → Pα be the corresponding collapsing
map. Then ρα(ω1) = ωPα1 is the ordinal Xα ∩ ω1.

The following is a paraphrase of Theorem 2.1 of [9] (Hutchinson built on work of Keisler and Morley
[13]; Enayat provides a useful source on this work in [5]). The following argument can also be carried out
via iterated ultrapowers as in [3]. Section 4 of [9] describes the fragment of ZFC needed for Fact 3.16; this
fragment is easily seen to follow from the theory ZFC◦ of [3].

Fact 3.16. Let B be a countable model of ZFC and c a regular cardinal in B. Then there is a countable
elementary extension C of B such that each a such that B |= a ∈ c is fixed (i.e. has no new elements in C)
but c is enlarged and there is a least new element of C.

13



Either iterating the construction in Fact 3.16, or by an iteration of ultrapowers of models of set theory
as in Lemma 1.5 of [3], construct a family {P ′α : α < ω1} of countable models of set theory so that, for
each α < ω1, there is an elementary extension of Pα to P ′α (with corresponding elementary embedding
χα : Pα → P ′α) such that

1. the critical point of χα is ωPα1 , so ωPα1 is an initial segment of ωP
′
α

1 ;

2. ωP
′
α

1 is ill-founded,

3. in V , there is a continuous increasing ω1-sequence 〈tαγ : γ < ω1〉 consisting of elements of ωP
′
α

1

Item 3 above implies in particular that each ωP
′
α

1 is uncountable. Each P ′α can be realized as the union of
a increasing elementary chain of models 〈Pαγ : γ < ω1〉, where Pα0 = Pα,

P ′α =
⋃
γ<ω1

Pαγ

for limit α, and each Pαγ+1 can be obtained by applying Fact 3.16 (or a generic ultrapower) to Pαγ . Then

each tαγ (the c of Fact 3.16) can be taken to be ω
Pαγ
1 .

Recall that M is the union of the continuous ⊆-increasing chain 〈Mα : α < ω1〉. It follows then for
each α < ω1, that MωPα1

= ρα(M) ⊂ Pα, and that MωPα1
has cardinality ℵ1 in Pα. For each α < ω1,

let Nα = χα(MωPα1
) and let N ′α = χα(ρα(M ′)). Then each N ′α is an expansion of Nα via the given

enumeration of M0 by the constants ci, and it has cardinality ℵ1 in P ′α.
In the argument for Theorem 2.5 replace the appeal to Lopez-Escobar (Theorem 5.3.8 of [1]) with the

observation that the induced ordering on N ′α is not well-founded by construction. The rest of the argument
for Theorem 2.5 (or Theorem 2.20) shows that, in V , each N ′α is small for Lω1,ω(τ ′). Nevertheless, by the
elementarity of χα ◦ ρα, each P ′α thinks that N ′α is not Lω1,ω(τ ′)-small.

Since M is a sequence indexed by ω1 in V (or in Xα), χα(ρα(M)) is a sequence indexed by ωP
′
α

1 in P ′α.
So, in P ′α, for each element t of its ω1, there is a t-th element of the sequence, which we denote by Mα

t .
Furthermore, in P ′α, χα(ρα(F )) is a set{Fαt : t ∈ ωP

′
α

1 } consisting of automorphisms of Nα, such that each
Fαt ∈ P ′α is an automorphism of Nα sending M0 to Mα

t . Each Fαt is then an automorphism of Nα in V
also.

Since each N ′α is small, each Nα is as well. Since we are assuming that there are only countably
many models in K of cardinality ℵ1, there exists an uncountable set S ⊆ ω1 such that Nα0 and Nα1 are
isomorphic (in V ) for all α0, α1 in S. Fix for a moment a pair of elements α0, α1 of S and an isomorphism
π : Nα0

→ Nα1
. Applying item 3 above and the continuity (in the sense of P ′αj , for j = 0, 1) of the

sequences 〈Mα0
t : t ∈ ω

P ′α0
1 〉 and 〈Mα1

t : t ∈ ω
P ′α1
1 〉, there must be t0 ∈ ω

P ′α0
1 and t1 ∈ ω

P ′α1
1 such that π

maps Mα0
t0 onto Mα1

t1 . To see this, start with γ0 = 0 and, for each n ∈ ω, let γn+1 be large enough so that

π[Mα0

t
α0
γn

] ⊆Mα1

t
α1
γn+1

and
π−1[Mα1

t
α1
γn

] ⊆Mα0

t
α0
γn+1

.
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Then let s0 = tα0
supn∈ω γn

and let s1 = tα1
supn∈ω γn

. By the continuity in item 3, the sj’s are in the respective
P ′αj , for j ∈ {0, 1}. So, for each j, by the continuity in P ′αj of Mαj

t ,

Mαj
sj =

⋃
n<ω

M
αj

t
αj
γn

.

Then (Fα1
s1 )−1 ◦ π ◦ Fα0

s0 is an isomorphism of Nα0
and Nα1

fixing M0 setwise, though not necessarily
pointwise.

Finally, we show that for eachα0 < ω1 such an isomorphism is impossible for sufficiently largeα1 < ω1.
Each model P ′α thinks that N ′α is small for every countable fragment of Lω1,ω(τ ′) but not Lω1,ω(τ ′)-

small. Thus, from the point of view of P ′α, there is no ordinal t such that φa,t(x) ≡ φa,t+1(x) (in the terms
of the Scott construction) for all finite tuples a of N ′α. For each well-founded ordinal γ of P ′α (this includes
the members of ωP

′
α

1 = ω1 ∩Xα, by item 1 above), and each finite tuple a of N ′α, P ′α sees the same formula
φa,γ(x) that the true universe V does, which means that the Scott sentence for N ′α has rank at least ω1 ∩Xα

(and slightly more than this, in fact, in the approach from [3]). Alternately, Lemma 2.21 implies that the
Scott rank of N ′α is exactly the wellfounded part of ωP

′
α

1 .
Now choose α0, α1 ∈ S such that ω1∩Xα1 is greater than the Scott rank (in V) ofN ′α0

. Since permuting
the constants ci in terms of their enumeration of M0 has no effect on the rank of the Scott sentence for N ′α1

,
there cannot be then an isomorphism of Nα0

and Nα1
fixing M0 setwise, since this would imply that N ′α0

and N ′α1
have the same Scott rank (indeed, their Scott sentences would differ only by a permutation of the

ci’s). Thus we have a contradiction in case 2a.

We have ruled out cases 1) and 2a) and are left with case 2b). We show that Case 2b gives the conclusions
of Theorem 3.13. We use the following remark.

Remark 3.17. Suppose that a τ -structure M is small. Then there is a countable fragment L1 of Lω1,ω(τ)
such that M is L1-atomic. That is, for any a ∈ M , there is χa(x) ∈ L1 such that for any λ(x) ∈ Lω1,ω if
M |= λ(a), then

M |= (∀x)[χa(x)→ λ(x)].

Namely, let L1 be the least countable fragment containing the canonical Scott sentence of M .

Since we have reduced to case 2b) we have the hypotheses of the following Lemma for any countable
M0 ∈ K. Note that although we have a Galois-saturated model in power ℵ1, a priori, it might realize
countably many Galois types over some countable submodel.

Lemma 3.18. Assume that M ′ is Lω1,ω(τ ′)-small and Galois saturated for K. Then for some L∗(τ ′), M ′

is L∗(τ ′)-atomic. This implies that M realizes only countably many Galois types over M0.

Proof. By Remark 3.17 applied in the vocabulary τ ′, M ′ is atomic in L∗(τ ′), the countable fragment
in which M ′ has a Scott sentence; this is Theorem 3.13.1. We will show that for any a ∈ M the L∗(τ ′)-
type of a determines the Galois type (in K) of a over M0. Since M ′ is Lω1,ω(τ ′)-small, it follows that
only countably many Galois types over M0 are realized in M . Suppose that some a, b ∈ M realize the
same L∗(τ ′)-type in M ′. Then this type is given by a formula in L∗(τ ′), by L∗(τ ′)-atomicity. There
exists a countable M̂ ∈ K such that M0ab ⊂ M̂ ≺L∗(τ ′) M , and, as M̂ is L∗(τ ′)-atomic, there exists an
automorphism g of M̂ , fixing M0 pointwise with g(a) = b. Thus, a and b have the same Galois type over
M0. SoM realizes only countably many Galois types overM0. SinceM0 was an arbitrary countable model,
we have Theorem 3.13.2. 3.18

This completes the proof of the main theorem. 3.13
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Remark 3.19. Note that argument ruling out case 2a) uses the set theoretic argument to find ℵ1 τ ′-small
models in ℵ1 with distinct τ ′-Scott rank. By the automorphism argument, this contradicts the assumption
that there are only ℵ0 τ -models in ℵ1.

We return to the slightly more complicated situation where joint embedding is not assumed.

Corollary 3.20. Suppose K is an AEC satisfying the hypotheses of Theorem 3.13 except the joint embedding
property. Then K contains a countable family of sub-AEC Ki, which each satisfy Theorem 3.13.

Proof. Since there are only countably many models in ℵ1, the equivalence relation of common extension
has at most countably many classes. Each satisfies the hypothesis and therefore the conclusion of Theo-
rem 3.13 3.20

4 Categoricity
It is shown in [3] (see Theorems 2.1 and 6.2) that, given an ℵ0-presented AEC K, the statement that K has
an uncountable model is Σ1

1 in a real coding K, and the statement that K is almost Galois ω-stable is Π1
1 in

a real coding K. These statements are therefore absolute. Amalgamation for such a K is easily seen to be
Π1

2 in a code for K. In this section we apply Theorem 3.13 to prove the following theorem.

Theorem 4.1. Suppose that K is an ℵ0-presented almost Galois ω-stable AEC with Löwenheim-Skolem
number ℵ0, satisfying amalgamation and having a model of cardinality ℵ1. The assertion that K is ℵ1-
categorical is then absolute, as it is equivalent to a statement of the form φ1 ∧ φ2, where φ1 and φ2 are Π1

2

and Σ1
2, respectively, in a code for K.

Proof. Let K ′ be the result of removing from K all countable models with no uncountable extensions in
K. Then K ′ is an AEC, and the proof of Theorem 2.1 of [3] shows that K ′ is still ℵ0-presented (as M ∈ k
having an uncountable K-extension is Σ1

1), with the same real parameter as K.
As K satisfies amalgamation, K ′ does as well. It suffices then to prove the theorem for K ′.
Let φ1 be the statement that joint embedding holds for K ′. Then φ1 is Π1

2 in a code for K.
Let φ2 be the conjunction of the following statements.

1. All uncountable models in K satisfy the same Scott sentence in Lω1,ω .

This needs some detail - is the statement that all K-extendible countable models in K (i.e.
all members of K′) satisfy the same Scott sentence?

2. There exist a countable N ∈ K ′ and a countable fragment L1 of the expanded language where
constants are added for each member of N such that for every M ∈K ′ with N ≺K M and N ≺∞,ω
M , M is L1-atomic.

3. There do not exist N ≺K M with N countable and M uncountable, such that only countably many
Galois types over N are realized in M , and some Galois type over N is not realized in M .

Clause (1) is naturally expressed as a Σ1
2 statement (using the proof of Theorem 2.1 in [3]) in a real

parameter for K (and can also be expressed by a Π1
2 statement saying that all models in K which are
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uncountable in countable ω models of ZFC◦ are isomorphic). Clause (2) is easily seen to be Σ1
2 in a real

parameter for K. Theorem 6.1 of [3] shows that clause (3) is Π1
1 in a real coding K.

Suppose now that K is ℵ1-categorical. Then φ1 clearly holds. Corollary 2.8 implies that all uncountable
models of any ℵ1-categorical ℵ0-presented AEC satisfy the same Scott sentence, giving clause (1). By
Lemma 3.13.1, we have clause (2) for all countable N ∈ K ′. Lemma 3.13.2 implies Galois ω-stability for
K ′. Thus by Lemma 3.4 there is a Galois saturated model of cardinality ℵ1 in K, which implies clause (3)
by categoricity.

For the other direction, φ1, clause (1) and Lemma 3.4 imply that K has a small uncountable Galois
saturated model. By Lemma 3.18, clause (2) implies that K is Galois ω-stable. Then item (3) implies that
the Galois saturated model is the only model in K of cardinality ℵ1.
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