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In this article we discuss some of the uses of model theory to investigate
the structure of the field of complex numbers with exponentiation and associ-
ated algebraic groups. After a sketch of some background material on the use
of first order model theory in algebra, we describe the inadequacy of the first
order framework for studying complex exponentiation. Then, we discuss the Zil-
ber’s program for understanding complex exponentiation using infinitary logic
and the essential role of understanding models in cardinality greater than ℵ1.
This analysis has inspired a number of algebraic results; we summarize some
of them. We close by discussing some consequences on ‘semiabelian varieties’
of the work on the model theory of uncountable models in infinitary logic. We
place in context seminal works of Shelah [She75, She83a, She83b] and Zilber
[Zil05, Zil00, Zil04, Zil03] . Shelah’s work was directed at understanding model
theoretic phenomena–generalizing to infinitary logic the techniques and results
that were proving so successful in the first order context. Zilber’s later work
was motivated by the attempt to understand complex exponentiation. But he
rediscovered some aspects of Shelah’s work and ultimately drew on some other
parts of it. The earlier works in Zilber’s program use model theory to formulate
problems concerning complex exponentiation; this motivates work in complex
analysis, algebraic geometry and number theory. But in [Zil03] the interaction
between core mathematics and model theory goes both ways; the deep work of
Shelah is exploited to obtain an equivalence between categoricity conditions and
non-trivial arithmetic properties (in the sense of a number theorist) of certain
algebraic groups.

1 Logic and Mathematics

We begin with a discussion of the relation between logic and ‘core mathematics’.
The logician behaves as a ‘self-conscious’ mathematician. That is, by being
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careful of the formal language in which mathematical statements are made, one
is able to find and justify generalizations that would not otherwise be available.
We will give several examples of this phenomena. To set the stage we need some
definitions.

Definition 1

A signature L is a collection of relation and function symbols.

A structure for that signature (L-structure) is a set with an interpretation for
each of those symbols.

The first order language (Lω,ω) associated with L is the least set of formulas
containing the atomic L-formulas and closed under finite Boolean operations
and quantification over finitely many individuals.

The infinitarylanguage (Lω1,ω) associated with L is the least set of formulas con-
taining the atomic L-formulas and closed under countable Boolean operations
and quantification over finitely many individuals.

The generalized quantifierlanguage (Lω1,ω) associated with L is the least set of
formulas containing Lω1,ω and closed under the quantifier (Qx)φ(x) that is true
if there are uncountably many solutions of φ(x).

Note that formulas in each case are built up inductively from the basic rela-
tions named in L by quantification over individuals. As we’ll explore below, the
situations when each formula is equivalent to one with no quantifiers (‘quanti-
fier eliminable’) or to one with only existential quantifiers (‘model complete’)
provide important simplifications. In general we are studying infinite structures.

There is a long history of interactions between Model Theory and Number
Theory. Prior to 1980 these involve the use of basic model theoretic notions
such as compactness and quantifier elimination. Some important examples are
Tarski’s proof that the real field admits elimination of quantifiers and the proof
of the analog for algebraically closed fields. Abraham Robinson developed much
of the analysis. The most significant result was the Ax-Kochen-Ershov analysis
of the Lang conjecture.

Many important tools of model theory were developed between 1955 and
1975 to investigate questions concerning the number of models of a complete
theory in first order logic and more generally the classification of models of a first
order theory. In particular, the notion of strong minimality, which is explored
in detail below, was seen to be basic for the study of a theory that is categorical
in power κ– has only one model of cardinality κ (up to isomorphism).

More recently, there has been increasing use of sophisticated first order model
theory including stability theory and in particular Shelah’s orthogonality cal-
culus [She91]. The most impressive result in this direction was Hrushovski’s
proof of the geometric Mordell-Lang conjecture (see [Bou99]. In a different di-
rection, building on ideas of Van Den Dries (later expounded in [dD99]), and
in analogy to the notion of strong minimality, Pillay and Steinhorn introduced
the notion of o-minimality. A linearly ordered structure is o-minimal if every
first order definable set is a finite union of intervals. In particular, no infinite
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discrete set can be defined. In a tour de force, Wilkie [Wil96] proved that the
real field with exponentiation was o-minimal. This inaugurated an explosive
study of o-minimal expansions of the reals which continues after fifteen years.
In contrast to this situation, we will see below that complex exponentiation is
not susceptible to study by first order methods.

2 Model theory of the complex field

Since we intend to expound recent work on complex exponentiation, let us
begin with the model theoretic formulation of the complex field. Algebraically
closed fields are the fundamental structures for the study of Algebraic Geometry.
We work with the first order theory given by the axioms for fields of fixed
characteristic and

(∀a1, . . . an)(∃y)Σaiy
i = 0.

Axioms of this form (universal quantifiers followed by existential) are desig-
nated as ∀∃. The theory Tp of algebraically closed fields of fixed characteristic
has exactly one model in each uncountable cardinality (Steinitz). That is, Tp is
categorical in each uncountable cardinality.

Here are some standard examples of structures whose first order theory is
categorical in an uncountable cardinal.

Example 2 1. (C, =)

2. (C, +, =) vector spaces over Q.

3. (C,×, =)

4. (C, +,×,=)

We will return to these examples below to illuminate the classification of
combinatorial geometries. The fundamental fact about categorical theories is
Morley’s theorem.

Theorem 3 (Morley [Mor65]) If a countable first order theory is categorical
in one uncountable cardinal it is categorical in all uncountable cardinals.

The significance of this result was not only the result – establishing an analog
to Steinitz’ theorem for all first order theories– but various specific techniques.
The citation awarding Michael Morley the 2003 Steele prize for seminal paper
asserts,

‘. . . what makes his paper seminal are its new techniques, which involve a
systematic study of Stone spaces of Boolean algebras of definable sets, called
type spaces. For the theories under consideration, these type spaces admit a
Cantor Bendixson analysis, yielding the key notions of Morley rank and ω-
stability.’
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The notion of type space requires some explanation. Let A ⊂ N and b ∈ N .
The type of b/A (in the sense of N) is the collection of formulas φ(x, a) with
parameters from A that are satisfied by b. Each such type corresponds to an
element of the dual space of the Boolean algebra of formulas with parameters
from A. The parenthetical ‘in the sense of N ’ virtually disappears from first
order model theory after Shelah introduces the notion of a universal domain or
monster model. But it returns with a vengeance in the study of infinitary logics.

Here are some of the consequences of categoricity.

Corollary 4 The set of sentences true in algebraically closed fields of a fixed
characteristic is decidable.

The next two results illustrate the value of the logician’s self-conciousness
concerning the form of an axiomatization. Recall that a constructible set is one
defined closing the classes defined by equation under conjunction and disjunc-
tion.

Theorem 5 (LINDSTROMS’S LITTLE THEOREM [Lin64]) If T is ∀∃-
axiomatizable and categorical in some infinite cardinality then T is model com-
plete.

Thus we have the model completeness of algebraically closed fields, which
can be phrased in algebraic terms.

Corollary 6 (Tarski, Chevalley) The projection of a constructible set (in an
algebraically closed field) is constructible.

With a little technical but general model theoretic work, the model com-
pleteness of algebraically closed fields (which we now have from Steinitz) can
be refined to:

Corollary 7 The theory of algebraically closed fields admits elimination of quan-
tifiers.

The previous examples show how the basic results on elimination of quanti-
fiers can be derived for algebraic geometry from the fundamental fact of cate-
goricity. But categoricity has a more specific aspect. It means the notion of the
dimension of a model is very clearly visible.

Definition 8 M is strongly minimal if every first order definable subset of any
elementary extension M ′ of M is finite or cofinite.

This notion is perhaps best understood as providing the existence of a com-
binatorial geometry or matroid.

Definition 9 A pregeometry is a set G together with a dependence relation

cl : P(G) → P(G)
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satisfying the following axioms. A1. cl(X) =
⋃{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X)
A3. cl(cl(X)) = cl(X)
A4. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).
If points are closed the structure is called a geometry.

Geometries are classified as: trivial, locally modular, non-locally modular.
Exemplars are respectively examples 1 for trivial, 2 and 3 for locally modu-
lar and 4 for non-locally modular in Example 2. Zilber had conjectured that
each non-locally modular geometry of a strongly minimal set was ‘essentially’
the geometry of an algebraically closed field. We discuss below Hrushovski’s
construction which gave counterexamples to this conjecture and maybe much
more.

First let us note an equivalent form of strong minimality.

Definition 10 The algebraic closure is defined on a model M by for every
B ⊆ M and every a, a ∈ acl(B) if for some first order formula φ(x, y), some
b ∈ B, φ(a, b) holds in M and φ(x, b) has only finitely many solutions.

Lemma 11 A complete theory T is strongly minimal if and only if it has infinite
models and

1. algebraic closure induces a pregeometry on models of T ;

2. any bijection between acl-bases for models of T extends to an isomorphism
of the models

Because of exchange each combinatorial geometry has a unique dimension
(cardinality of a maximal independent set). A straightforward variant of Steinitz
argument shows that every strongly minimal set (indeed every homogenous ge-
ometry) is categorical in all uncountable powers. Given the quantifier elimina-
tion result discussed above it is easy to see that the complex field is strongly
minimal.

In contrast, arithmetic is a much wilder structure. It follows from Gödels
work in the 30’s that:

1. The collection of sentences true in (Z, +, ·, 0, 1) is undecidable.

2. There are definable subsets of (Z, +, ·, 0, 1) which require arbitrarily many
alternations of quantifiers. (Wild)

3 Complex Exponentiation

Now we consider complex exponentiation: the structure (C, +, ·, ex, 0, 1). It is
Godelian. The integers are defined as {a : ea = 1}. Thus, the first order theory
is undecidable and ‘wild’. The resources of modern first order model theory-
either stability theory or o-minimality are not available.
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But Zilber had the following fundamental insight. Maybe Z is the source of
all the difficulty. Fix Z by adding the infinitary axiom:

(∀x)ex = 1 →
∨

n∈Z

x = 2nπ.

Here is our situation. The first order theory of the complex field is cate-
gorical and admits quantifier elimination. Model theoretic approaches based on
Shelah’s theory of orthogonality have led to advances such as Hrushovski’s proof
of the geometric Mordell-Lang conjecture.

The first order theory of complex exponentiation is model theoretically in-
tractable. But working out the insight of Zilber, we explore infinitary ap-
proaches. Will it be possible to develop the model theory of infinitary logic
to have similar deep connections with core mathematics?

Now we consider how to generalize the notion of strongly minimal to the
infinitary setting. Here is a trial definition. M is ‘quasiminimal’ if every first
order (Lω1,ω?) definable subset of M is countable or cocountable.

The analog for this situation of algebraic closure as defined in Definition 10
is: a ∈ acl′(X) if there is a first order formula with countably many solutions
over X which is satisfied by a.

The following fact is an exercise for the standard definition of algebraic
closure. If f takes X to Y is an elementary isomorphism, f extends to an
elementary isomorphism from acl(X) to acl(Y). Does the result remain true if acl
is replaced by acl′. In general the answer is no. In those classes where it is true,
one can begin to analyze the construction of all models of an infinitary sentence
in terms of countable components. The development of such an analysis for
countable models by Shelah [She91] is one of the deepest and most significant
works in first order model theory. The last stages of his proof of the ‘main
gap’ involve the study of first order theories without the ‘omitting types order
property’. This is another manifestation of the notion of the excellence.

In turns out that to prove this extension of isomorphism condition in the
more general setting one needs the following more precise version of quasimini-
mal excellence.

Definition 12 A class (K, cl) is quasiminimal excellent if it admits a combi-
natorial geometry which satisfies on each M ∈ K

1. there is a unique type of a basis,

2. a technical homogeneity condition: ℵ0-homogeneity over ∅ and over mod-
els.

3. and the ‘excellence condition’ which follows.

In the following definition it is essential that ⊂ be understood as proper
subset.

Definition 13 1. For any Y , cl−(Y ) =
⋃

X⊂Y cl(X).
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2. We call C (the union of) an n-dimensional cl-independent system if C =
cl−(Z) and Z is an independent set of cardinality n.

We need to explore the notion of n-amalgamation. The next diagram illus-
trates the notion of the amalgam of a three dimensional diagram.

M{1,3} // X

M{1} //

55lllllllllllllllllllllllllllllll
M{1,2}

55

M{3}

OO

// M{2,3}

OO

M∅

OO

55lllllllllllllllllllllllllllllllll // M{2}

OO

55llllllllllllllllllllllllllllllll

While, the next picture illustrates a 4-dimensional amalgam 1.

M{0,2,3} // X

M{0,2}

ddJJJJJJJJJ
// M{0,1,2}

99

M{2,3} //

77nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
M{1,2,3}

66

M{0} //

OO

zzttttttttt
M{0,1}

OO

%%KKKKKKKKKK

M{2}

ccHHHHHHHHH

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
// M{1,2}

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

::ttttttttt
M{0,3}

OO

// M{0,1,3}

OO

M∅

OO

//

{{vv
vv

vv
vv

v

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
M{1}

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

$$JJJJJJJJJ

OO

M{3}

OO

77nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
// M{1,3}

[[

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Roughly speaking, excellence asserts the existence of a prime model X over a
given independent system of 2n−1 models. We make this precise for the special

1We thank Rami Grossberg for providing these diagrams.
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case of quasiminimal excellence in the next few definitions. A more general
notion is needed for the results of Shelah discussed in Section 7.

Definition 14 Let C ⊆ H ∈ K and let X be a finite subset of H. We say
tpqf(X/C) is defined over the finite C0 contained in C if it is determined by its
restriction to C0.

Definition 15 (Quasiminimal Excellence) Let G ⊆ H ∈ K with G empty
or in K. Suppose Z ⊂ H − G is an n-dimensional independent system, C =
cl−(Z), and X is a finite subset of cl(Z). Then there is a finite C0 contained
in C such that tpqf(X/C) is defined over C0.

Excellence implies by a direct limit argument:

Lemma 16 An isomorphism between independent X and Y extends to an iso-
morphism of cl(X) and cl(Y ).

This gives categoricity in all uncountable powers if the closure of each finite
set is countable. And the argument is a fairly straightforward generalization of
the basic Steinitz argument – given Lemma 16. More formally, we have:

Definition 17 The structure M satisfies the countable closure condition if ev-
ery the closure of every finite subset of M is countable.

Theorem 18 (Zilber[Zil05]) Suppose the quasiminimal excellent (I-IV) class
K is axiomatized by a sentence Σ of Lω1,ω, and the relations y ∈ cl(x1, . . . xn)
are Lω1,ω-definable. Then, for any infinite κ there is a unique structure in K
of cardinality κ which satisfies the countable closure property.

The categorical class could be axiomatized in Lω1,ω(Q). But, the categoricity
result does not depend on any such axiomatization.

4 pseudo-exponentiation

We mentioned above Hrushovski’s refutation of Zilber’s conjecture that all cat-
egorical first order structures were essentially known. In this section, we discuss
Zilber’s program to turn this construction of apparently pathological structures
into a positive force for investigating complex exponentiation.

Let K0 be a class of substuctures closed under submodel. Then we are able
to define notions of dimension. The following notions arise from Hrushovski’s
construction of various exotic models.

A predimension is a function δ mapping finite subsets of members of K into
the integers such that:

δ(XY ) ≤ δ(X) + δ(Y )− δ(X ∩ Y ).

For each N ∈ K and finite X ⊆ N , the dimension of X in N is

dN (X) = min{δ(X ′) : X ⊆ X ′ ⊆ω N}.

8



The dimension function

d : {X : X ⊆fin G} → N

satisfies the axioms:

D1. d(XY ) + d(X ∩ Y ) ≤ d(X) + d(Y )

D2. X ⊆ Y ⇒ d(X) ≤ d(Y ).

Definition 19 1. For M ∈ K0, A ⊆ M , A finitely generated (i.e. in K0),
dM (A) = inf{δ(B) : A ⊂ B ⊆ M,B ∈ K0}.

2. For A, b contained M , b ∈ cl(A) if dM (bA) = dM (A).

Naturally we can extend to closures of infinite sets by imposing finite char-
acter. If d satisfies:
D3. d(X) ≤ |X|.

We get a full combinatorial (pre)-geometry with exchange.

Lemma 20 1. The closure system defined in Definition 19 is monotone and
idempotent as in Definition 9.A1.

2. If, in addition δ is a predimension (integer range) and for any finite X,
dM (X) ≤ |X| then the closure system satisfies exchange, Definition 9.A4.

Let us outline the Zilber program for studying (C, +, ·, exp).
Goal: Realize (C, +, ·, exp) as a ‘canonical’ model of an Lω1,ω(Q)-sentence.

Objective A. Expand (C,+, ·) by a unary function which behaves like expo-
nentiation. Use a Hrushovski-like dimension function to prove some Lω1,ω(Q)-
sentence Σ is categorical and has quantifier elimination.

Objective B. Prove (C, +, ·, exp) is a model of the sentence Σ found in
Objective A.

Crucially, the categoricity from Objective A must be applied in Objective
B to a structure of cardinality 2ℵ0 . Categoricity in ℵ1 is a non-trivial algebraic
result; transfer to 2ℵ0 is a model theoretic result which requires the notion of
excellence.

Here are the axioms.

Definition 21 Let L = {+, ·, E, 0, 1}. Σ is the sentence of Lω1,ω(Q) expressing
the following properties.

1. K is an algebraically closed field of characteristic 0.

2. E is a homomorphism from (K, +) onto (Kx, ·) and there is ν ∈ K tran-
scendental over Q with kerE = νZ.

3. acl′(X) is countable for every finite X.
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4. E is a pseudo-exponential.

5. K is strongly exponentially algebraically closed.

We now explain the fourth axiom. In next section we introduce some of
the algebra involved in the investigation and elucidate the last axiom. The Q,
‘there exists uncountably many’ quantifier is needed only to express property 3.
Infinitary logic is needed for conditions 2 and 5.

Definition 22 E is a pseudo-exponential if for any n linearly independent
elements over Q, {z1, . . . zn}

td(z1, . . . zn, E(z1), . . . E(zn)) ≥ n.

Schanuel conjectured that true exponentiation satisfies this equation. In the
appropriate Hrushovski construction, we use an abstract form of the Schanuel
conjecture to define a dimension function.

For a finite subset X of an algebraically closed field k with a partial expo-
nential function. Let

δ(X) = td(X ∪ E(X))− ld(X)

where td denotes transcendence degree and ld denotes linear dimension.
Apply the Hrushovski construction to the collection of (k,E) with δ(X) ≥ 0

for all finite X ⊂ k. That is, those which satisfy the abstract Schanuel condition.
The result is a quasiminimal excellent class.

5 Algebraic Results

One of the more intriguing ramifications of Zilber’s program has been the results
in algebra and complex analysis which have been proved in attempts to establish
it. The first group concern the conjecture on intersection of tori.

I. Conjecture on Intersection of Tori.
Given a variety W ⊆ Cn+k defined over Q, and a coset T ⊆ (C∗)n of a torus.
An infinite irreducible component S of W (b) ∩ T is

atypical if
dfS − dim T > dfW (b)− n.

Theorem 23 (True CIT) There is a finite set A of nonzero elements of Zn,so
that if S is an atypical component of W ∩ T then for some m ∈ A and some γ
from C, every element of S satisfies xm = γ.

Using the true CIT, the abstract Schanuel condition becomes a first order
property. Replacing C by a semialgebraic variety gives the conjectured full CIT,
which implies Manin-Mumford and more.

II. Choosing roots
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Definition 24 A multiplicatively closed divisible subgroup associated with a ∈
C∗, is a choice of a multiplicative subgroup isomorphic to Q containing a .

Definition 25 b
1
m
1 ∈ bQ1 , . . . b

1
m

` ∈ bQ` ⊂ C∗, determine the isomorphism type of
bQ1 , . . . bQ` ⊂ C∗ over F if given subgroups of the form cQ1 , . . . cQ` ⊂ C∗ and φm

such that
φm : F (b

1
m
1 . . . b

1
m

` ) → F (c
1
m
1 . . . c

1
m

` )

is a field isomorphism it extends to

φ∞ : F (bQ1 , . . . bQ` ) → F (cQ1 , . . . cQ` ).

Theorem 26 (Zilber [Zil00]) [thumbtack lemma]

For any b1, . . . b` ⊂ C∗, there exists an m such that b
1
m
1 ∈ bQ1 , . . . b

1
m

` ∈ bQ` ⊂ C∗,
determine the isomorphism type of bQ1 , . . . bQ` ⊂ C∗ over F .

The Thumbtack Lemma implies that K satisfies the homogeneity conditions
and ‘excellence’.

F can be the acf of Q or a number field, or an independent system of alge-
braically closed fields. If C is replaced by a semi-abelian variety, these differences
matter.

III. Towards Existential Closure
Now, we pass to the ‘strongly existentially closed’ axiom. Given V ⊆ K2n we

might want to find z1, . . . , zn with (z1, . . . zn, E(z1), . . . E(zn)) ∈ V . Schanuel’s
conjecture prevents this for ‘small’ varieties. We want to say this is the only
obstruction.

Definition 27 (Normal Variety) Let Gn(F ) = Fn × (F ∗)n.
If M is a k × n integer matrix,
[M ] : Gn(F ) → Gn(F ) is the homomorphism taking 〈a, b〉 to 〈Ma, b

M 〉. Act
additively on first n coordinates, multiplicatively on the last n. V M is image of
V under M . V is normal if for any rank k matrix M , dim V M ≥ k.

Definition 28 (Free Variety) Let V (x, y) be a variety in 2n variables. prxV
is the projection on x, pryV is the projection on y V contained in F 2n, exp-
definable over C is absolutely free of additive dependencies if for a generic
realization a ∈ prxV, a is additively linearly independent over acl(C).

V contained in F 2n, exp-definable over C is absolutely free of multiplicative
dependencies if for a generic realization b ∈ pryV, b is multiplicatively linearly
independent over acl(C).

The variety V is exp-defined over C ⊂ F if it is defined with parameters
from C̃ = Q(C ∪ exp C ∪ ker).

Assumption 29 (strong exponential algebraic closure) Let V ⊆ Gn(K)
be free, normal and irreducible. For every finite A, there is (z, E(z)) ∈ V which
is generic for A.
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This proposition is Lω1,ω-expressible; using uniform CIT (Holland, Zilber) it
would become first order if the requirement of a generic solution were dropped.
But with that requirement we have an other essential use of infinitary logic.

6 The Status of the Program

OBJECTIVE A.

Theorem 30 The models of Σ with countable closure are categorical in all un-
countable powers. This class is Lω1,ω(Q)-axiomatizable.

This result has been proved in ZFC [Zil04].
OBJECTIVE B.

Does complex exponentiation satisfy Σ? The first two axioms are straight-
forward. But the rest raises a number of extremely hard questions. To verify
Axiom 21.5 requires verifying the well-known Schanuel conjecture. This has
been open for more than 50 years; the crucial work is that of [Ax71].

Schanuel’s conjecture: If x1, . . . xn are Q-linearly independent complex num-
bers then x1, . . . xn, ex1 , . . . exn has transcendence degree at least n over Q.

Zilber showed the following consequence to obtain Axiom 21.4.

Theorem 31 If Schanuel holds in C and if the (strong) existential closure ax-
ioms hold in C, then (C, +, ·, exp) has the countable closure property.

If anything, exponential completeness is even harder. We want: For any free
normal V given by p(z1, . . . zn, w1, . . . wn) = 0, with p ∈ Q[z1, . . . zn, w1, . . . wn],
and any finite A there is a solution satisfying (z1, . . . zn, E(z1), . . . E(zn)) ∈ V
and z1, . . . zn, E(z1), . . . E(zn) is generic for A.

Marker [Mar] has proved the following special case.

Theorem 32 Assume Schanuel. If p(x, y) ∈ Q[x, y] and depends on both x and
y then it has infinitely many algebraically independent solutions.

This verifies the n-variable conjecture for n = 1 with strong restrictions on
the coefficients. The proof is a three or four page argument using Hadamard
factorization.

7 Transfer of Lω1,ω-categoricity

Next we place the Zilber program in the context of the Shelah analysis of cate-
goricity in Lω1,ω ([She75, She83a, She83b]. Any κ-categorical sentence of Lω1,ω

can be replaced (for categoricity purposes) by considering the atomic models of a
first order theory (EC(T, Atomic)-class). Shelah defined a notion of excellence;
Zilber’s quasiminimal excellence is the ‘rank one’ case.
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Theorem 33 (Shelah 1983) If K is an excellent EC(T, Atomic)-class then
if it categorical in one uncountable cardinal, it is categorical in all uncountable
cardinals.

Theorem 34 (Shelah 1983[She83a, She83b]) Suppose 2ℵn < 2ℵn+1 . If an
EC(T, Atomic)-class K has at most one model in ℵn for all n < ω, then it is
excellent.

This is an extraordinarily difficult theorem. By a simultaneous induction,
Shelah proves that categoricity up to ℵn proves the excellence condition in ℵ0

for independent n diagrams and the existence of models in ℵn+1. Excellence of
n-diagrams in ℵ0 for all n, then implies of n-diagrams in all cardinalities κ. It
is essential for the program that the existence of models in larger cardinals is
proved as part of the induction.

An example of Hart and Shelah [HS90] shows the infinitely many instances
of categoricity are necessary. The categoricity arguments were ‘Morley-style’.
Lessmann has given ‘Baldwin-Lachlan’ style proofs - showing models prime over
quasiminimal sets.

For Lω1,ω there is a straightforward analogy:
Strongly Minimal is to first order as Quasiminimal Excellent is to Lω1,ω.
But this analogy is more slippery with consideration of Lω1,ω(Q). In partic-

ular, there is no published extension of Theorem 34, although unpublished and
much more complicated arguments of Shelah may give the result.

8 Short Exact Sequences: the impact of un-
countable categoricity

In the work on infinitary logic discussed so far in this article the role of model
theory has been to suggest conjectures in core mathematics. But in [Zil03] cer-
tain ‘arithmetic’ properties of ‘semiabelian varieties’ are shown to be equivalent
to categoricity in all uncountable powers of an Lω1,ω-description of the vari-
ety. We sketch that equivalence. By a ‘semiabelian variety’, Zilber means an
algebraic group A whose universal cover is Cd for some d:

0 → Λ → Cd → A(C) → 0. (1)

with Λ ≈ ZNA for some NA with d ≤ NA ≤ 2d.

When is the exact sequence:

0 → ZN → V → A(C) → 0. (2)

categorical, where V is a Q vector space and A is a semi-abelian variety? As
we describe below, Zilber [Zil00] essentially showed ‘the thumbtack lemma’ is
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sufficient and in the special case A(C) = (C, ·), the ‘thumbtack lemma’ holds.
But he now raises the question for other choices of A.

Fix for the following discussion a semiabelian variety A, (that is A repre-
sents the formula defining a group in C which satisfies the short exact sequence
described above). Let k0 be the field of definition of A.

Write TA for the first order theory of the exact sequence and write Λ = ZN

for the infinitary assertion that the kernel of the projection map is ZN . Formally,
we investigate conditions on A such that TA + Λ = ZN is categorical in various
uncountable cardinalities.

To describe the operative version of the thumbtack lemma for this appli-
cation, we need some notation. The notion of an independent system in the
sense of quasiminimal excellence has the following specific form in this context.
Let F be an algebraically closed field containing k0 and let B an algebraically
independent over k0 subset of F . Partition B into n subsets Bi. Then for each
s ⊂ n, let

Fs = acl(k0(
⋃

i∈s

Bi).

Any independent system of algebraically closed fields has this form.
For a ∈ A(F ), aQ denotes

{x ∈ A(F ) : xn = am some m,n ∈ Z, n 6= 0}.

We write Ators for the torsion points of A(F ). Since F is algebraically closed,
completeness gives that Ators does not depend on F . But compare this with
Lemma 37 below where finite torsion is found for the interpretation of A in
other fields.

For a = 〈a1, . . . an〉, a finite sequence from A(F ), let

ka = k0(Ators, a
Q
1 , . . . aQn).

That is, ka is the set of coordinates of the points in the divisible hull of the
group generated by 〈a1, . . . an〉. Extend this notation to encompass extensions
by an infinite set of independent points B by: Let B be a countable algebraically
independent set over ka, partitioned into n sets Bi. Then

kB
a = k0(Ators,

⋃
s⊂n

Fs, a
Q
1 , . . . aQn).

Finally An denotes the points of A with order n.
Zilber [Zil00] had earlier proved.

Theorem 35 If A denotes the multiplicative group (C, ·) then TA + Λ = Z is
quasiminimal excellent with the countable closure condition and categorical in
all uncountable powers.

The proof relies on his general analysis of quasiminimal excellence and the
thumbtack lemma. Now consider the following conditions:
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Notation 36 1. Given any b1, . . . bk that are multiplicatively independent in
A(k0), there is an integer ` such that for any integer m:

Gal(k0(Aml, b
1

m`
1 , . . . , b

1
m`

k ) : k0(Al, b
1
`
1 , . . . , b

1
`

k )) ≈ (Z/mZ)Nk.

2. Let F be a countable algebraically closed field and F0 an algebraically closed
subfield. Given any b1, . . . bk ∈ A(F ) that are multiplicatively independent
over A(F0), there is an integer ` such that for any integer m:

Gal(F0(Aml, b
1

m`
1 , . . . , b

1
m`

k ) : F0(Al, b
1
`
1 , . . . , b

1
`

k )) ≈ (Z/mZ)Nk.

3. Given any b1, . . . bk that are multiplicatively independent over
∏

s⊂nA(Fs),
there is an integer ` such that for any integer m:

Gal(kB
a (Aml, b

1
m`
1 , . . . , b

1
m`

k ) : kB
a (Al, b

1
`
1 , . . . , b

1
`

k )) ≈ (Z/mZ)Nk.

Now Zilber’s exploits the analysis by Keisler [Kei71] and Shelah ([She75,
She83a, She83b] to deduce algebraic facts about semi-abelian varieties from ℵ1-
categoricity.

Theorem 37 (Zilber [Zil00, Zil03]) If TA + Λ = ZN is ℵ1-categorical then

1. For any finite extension k of k0, A(k) has only finite many torsion ele-
ments.

2. Condition 36.1 holds.

Stronger algebraic facts are in fact equivalent to categoricity in uncountable
powers. Categoricity is deduced by analyzing the algebraic facts about (C, ·)
used in the proof of Theorem 35 and finding analogs that must hold of A to ob-
tain categoricity in all powers. Of course, this includes excellence. The converse
requires Shelah’s Theorem 34; the new work is the translation of excellence into
these specific algebraic conditions.

The condition of Theorem 37.2 is an immediate consequence of Mordell-
Weil (Dirchelet’s theorem for A = (C, ·). The other conditions below (and some
related corollaries to categoricity) are known to apply to some semi-abelian
varieties and not to others by work of Serre, Bashkamov and general techniques
of number theory. In particular, the existence of complex multiplication on the
variety A affects when TA + Λ = ZN can be categorical.

Theorem 38 (Zilber [Zil00, Zil03]) (2ℵn < 2ℵn+1 for n < ω) TA + Λ = ZN

is ℵ1-categorical in all uncountable cardinals if and only

1. a model theoretic version of Theorem 37.1: For any finite extension k of
k0, A(k) has only finite many torsion elements.

2. All the conditions of Notation 36 hold.
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9 Tameness and Future Work

Our analysis here has been strictly in the context of sentences in Lω1,ω (and
Lω1,ω(Q)). But much recent work explores categoricity in the context of tame
abstract elementary classes with the amalgamation property. (Abstract elemen-
tary classes generalize the semantic properties of elementary classes without an
explicit syntax.) With amalgamation, one is able to obtain a notion of Galois
type (corresponding to orbits in the monster model). With this notion one
(see for example) [She99] can develop a theory of stability and categoricity that
provides for a general study of categoricity. See [Balb, Bal04, Gro02] for an
overview and [Bala] for a detailed exposition. Grossberg and VanDieren saw
that a key aspect of the analysis in [She99] was the situation when Galois types
are determined by their restrictions to small sets. They label this notion tame
in [GVb]. They began the analysis of categorical AEC’s under the additional
hypotheses of the existence of arbitrarily large models and the amalgamation
property. This result in a sequence of strong categoricity transfer theorems for
tame AEC: [GVa, GVc, Les05, BL00, GVV, Van, HV]. One line of work is
to try to apply this study of tame AEC to the algebraic situation of Section 8.
Happily, the classes studied in Section 8 can easily be seen (by Zilber’s methods)
to have arbitrarily large models and the amalgamation property. Less happily,
tameness remains in doubt. But the work of Villaveces-Zambrano [VZ05] and
Grossberg-Kolesnikov [GK] provides hope for further progress here.

The analysis of number theoretic problems using infinitary logic provides
exciting opportunities for continuing the almost 100 year interaction between
model theory and number theory.
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