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We work in the context of an abstract elementary class (AEC) with the amalga-
mation and joint embedding properties and arbitrarily large models. We prove
two results using Ehrenfeucht-Mostowski models: 1) Morley’s omitting types the-
orem – for Galois types. 2) If an AEC (with amalgamation) is categorical in some
uncountable power µ it is stable in (every) λ < µ.

These results are lemmas towards Shelah’s consideration [12] of the downward
transfer of categoricity, which we discuss in Section 6. This paper expounds some
of the main ideas of [12], filling in vague allusions to earlier work and trying to
separate those results which depend only on the Ehrenfeucht-Mostowski method
from those which require more sophisticated stability theoretic tools.

In [15], Shelah proclaims the aim of reconstructing model theory, ‘with no use of
even traces compactness’. We analyze here one aspect of this program. Keisler
organizes [8] around four kinds of constructions: the Henkin method, Ehrenfeucht-
Mostowski models, unions of chains, and ultraproducts. The later history of model
theory reveals a plethora of tools arising in stability theory. Fundamental is a notion
of dependence which arises from Morley’s study of rank, and passes through various
avatars of splitting, strong splitting, and dividing before being fully actualized in
the first order setting as forking. We eschew this technique altogether in this paper–
to isolate its role.

The axioms of an AEC (K,¹K ), were first set down in [17]. We repeat for
convenience.

Definition 0.1. A class of L-structures, (K,¹K ), is said to be an abstract el-
ementary class: AEC if both K and the binary relation ¹K are closed under
isomorphism and satisfy the following conditions.

• A1. If M ¹K N then M ⊆ N .
• A2. ¹K is a partial order on K.
• A3. If 〈Ai : i < δ〉 is ¹K -increasing chain:
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(1)
⋃

i<δ Ai ∈ K;
(2) for each j < δ, Aj ¹K

⋃
i<δ Ai

(3) if each Ai ¹K M ∈ K then
⋃

i<δ Ai ¹K M .
• A4.[Coherence Axiom] If A, B,C ∈ K, A ¹K C, B ¹K C and A ⊆ B

then A ¹K B.
• A5. There is a Löwenheim-Skolem number κ(K) such that if A ⊆ B ∈ K

there is a A′ ∈ K with A ⊆ A′ ¹K B and |A′| < |A|+ κ(K).

In English, we often write B is a strong extension of A for A ¹K B.

Sections 1, 2, 3 define most of the terminology and lay out the basic results. In
Sections 4, we show categoricity implies stability and establish the existence of sat-
urated models. Section 5 lifts Morley’s omitting types theorem to the AEC setting.
Finally in Section 6, we survey the additional steps needed to prove Shelah’s down-
ward categoricity theorem. I thank Greg Cherlin for some trenchant observations,
Tapani Hyttinen for pointing out an error in an earlier draft, and Alex Usvyatsov
for a careful reading.

1. Assumptions

We work with classes of structures in a fixed vocabulary, τ . When results are
uniform functions of such invariants as the cardinality of τ or LS(K) we may write
them in terms of these numbers. We use variants on τ to denote vocabularies. In
addition to this usage, Shelah uses τ as an operator: τ(Φ) denotes the vocabulary
of the set of sentences Φ. We may write τ -structure or L-structure.

Assumption 1.1. (1) K has arbitrarily large models.
(2) K satisfies the amalgamation property and the joint embedding property.

We say K has the amalgamation property if M,N1, N2 ∈ K and there are strong
embeddings of M into N1 and N2 then there is an N3 and strong embeddings of N1

and N2 into N3 so that the composition maps agree on M . Joint embedding means
that for any two members of K there is a third into which both can be strongly
embedded. Crucially, we amalgamate only over members of K; this distinguishes
this context from the context of homogeneous structures. Amalgamation does not
imply the existence of arbitrarily large models; the class of initial segments of ℵ1

with end extension as strong extension is an AEC. An AEC with disjoint amalga-
mation (the images of N1 and N2 in N3 intersect in the image of M) and at least
two models can easily be seen to have arbitrarily large models.

We stress that amalgamation is a very strong assumption and we make full use of
it. However, many of the results can be achieved under some weaker conditions
with somewhat more effort; we allude to some of these. Much of the Shelah work
involves two kinds of argument of a more local nature: failure of amalgamation in
κ implies many models in, say, κ+ (with various variants), and arguments which
assume only amalgamation below (or in) a certain cardinality.

Notation 1.2. (1) Let µ(λ, κ) be the least cardinal µ such that if a first order
theory T with |T | = λ has models of every cardinal less than µ which omit
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each of a set Γ of types, with |Γ| = κ, then there are arbitrarily large
models of T which omit Γ.

(2) Write µ(κ) for µ(κ, κ).
(3) We say λ is substantial for κ if λ ≥ µ(κ).
(4) For a similarity type τ , µ(τ) means µ(|τ |).

Note that an old theorem of Morley [11], VII.5, [3] says µ(κ, κ) ≤ i(2κ)+ . For
simplicity, we assume the Löwenheim number is at least |τ |.
When LS(K) = |τ(K)| = κ, µ(κ) is sometimes called the Hanf number of K. This
is somewhat misleading because a single class cannot have a Hanf number – a Hanf
number is a maximum for all similarity types of a given cardinality. It is in fact not
the Hanf number of K but the Hanf number for all AEC with the same Löwenheim
number. But as we’ll see there is a still wider basis for this name; we will consider
other classes of models (which are not AEC) and it is crucial that all of them have
the property: for any model M with |M | ≥ µ(τ), there are models in the class of
all cardinalities that omit all types omitted in M .

There is some vestige of compactness here. Both the existence of arbitrarily large
models and amalgamation are proved in first order logic using compactness. But
they have completely semantic statements and you have to start somewhere.

2. The presentation theorem and E-M models

We call the next result: the presentation theorem. It allows us to replace the
entirely semantic description of an abstract elementary class by a syntactic one. I
find it extraordinary that the notion of an AEC which is designed to give a version of
the Fräisse construction and thus saturated models, also turns out to allow the use
of the second great model theoretic technique of the 50’s: Ehrenfeucht-Mostowski
models.

Theorem 2.1. If K is an AEC with Lowenheim number LS(K) (in a vocabulary τ
with |τ | ≤ LS(K)), there is a vocabulary τ ′ with cardinality |LS(K)|, a first order
τ ′-theory T ′ and a set of 2LS(K) types Γ such that:

K = {M ′ ¹ τ : M ′ |= T ′ and M ′ omits Γ}.

Moreover, if M ′ is a τ ′′-substructure of N ′ where M ′, N ′ satisfy T ′ and omit Γ then
M ′ ¹ τ ¹K N ′ ¹ τ .

Proof. Let τ ′ contain n-ary function symbols Fn
i for n < ω and i < LS(K). We

take as T ′ the theory which asserts only that its models are nonempty. For any
τ ′-structure M ′ and any a ∈ M , let M ′

a denote the subset of M ′ enumerated as
{Fn

i (a) : i < LS(K)} where n = lg(a); the only requirement on this enumeration
is that the first n-elements are a. The isomorphism type of ′a is determined by
the quantifier free τ ′-type of a. Note that M ′

a may not be either a τ ′ or even a
τ -structure. Let Γ be the set of quantifier free τ ′-types of finite tuples a such that
M ′

a ¹ τ 6∈ K or for some b ⊂ a, M ′
b ¹ τ 6¹K M ′

a ¹ τ .
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We claim T ′ and Γ suffice. That is, if K ′ = {M ′ ¹ τ : M ′ |= T ′ and M ′ omits Γ}
then K = K′. Let the τ ′-structure M ′ omit Γ; in particular, each M ′

a is a τ -
structure. Write M ′ as a direct limit of the finitely generated τ -structures M ′

a.
(These may not be closed under the operations of τ ′.) By the choice of Γ, each
M ′

a ¹ τ ∈ K and if a ⊆ a′, M ′
a ¹ τ ¹K M ′

a′ ¹ τ , and so by the unions of
chains axioms M ′ ¹ τ ∈ K. Conversely, if M ∈ K we define by induction on |a|,
structures Ma for each finite subset a of M . Let M∅ be any ¹K -substructure of
M with cardinality LS(K) and let the {F 0

i : i < LS(K)} be constants enumerating
the universe of M∅. Given a sequence b of length n + 1, choose Mb ¹K M with
cardinality LS(K) containing all the Ma for a ⊂ b of smaller cardinality. Let
{Fn+1

i (b) : i < LS(K)} enumerate the universe of Mb (and give the function the
same value on any ordering of the range of b). Now each Ma ¹ τ ∈ K and if b ⊂ c,
Mb ¹K Mc so M ′ omits Γ as required.

The moreover holds for the partial τ ′-structures M ′
a directly by the choice of Γ and

extends to arbitrary structures by the union of chain axioms on an AEC. In more
detail, we have M ′ is a direct limit of finite structures M ′

a and N ′ is a ¹K -direct
limit of N ′

a where M ′
a = N ′

a for a ∈ M because M ′ ¹ τ is a τ -substructure of
N ′ ¹ τ . Each M ′

a ¹ τ ¹K N ′ ¹ τ so the direct limit M ′ ¹ τ is a strong submodel of
N ′ ¹ τ . ¤2.1

We have represented K as a PCΓ class in the following sense.

Definition 2.2. A PC(T, Γ) class is the class of reducts to τ ⊂ τ ′ of models of a
first order theory τ ′-theory which omit all types from the specified collection Γ of
types in finitely many variables over the empty set.

We write PCΓ to denote such a class without specifying either T or Γ. And we
write K is PC(λ, µ) if K can be presented as PC(T, Γ) with |T | ≤ λ and |Γ| ≤ µ.
In the simplest case, we say K is λ-presented if K is PC(λ, λ).

In this language we have shown any AEC K is 2LS(K)-presented.

Remark 2.3. (1) There is no use of amalgamation in this theorem.
(2) The only penalty for increasing the size of the language or the Löwenheim

number is that the size of τ ′ and the nunber of types omitted increases as
well. This will meant that for the use of EM models below, the θ must be
chosen larger.

(3) We can observe with Shelah [17] that the class of pairs (M, N) with
M ¹K N also forms a PC(LS(K), 2LS(K)). This observation is im-
portant for some applications but will not be used here; see Theorem 2.7
and its applications. The moreover clause appears in Grossberg’s account:
[5] and in Makowsky’s [9].

We immediately conclude the required computation of Hanf numbers for abstract
elementary classes; we will use in a significant way the fact that this is, in fact, the
Hanf number for PCΓ classes where |Γ| ≤ 2|τ |.

Corollary 2.4. Let K be an AEC with similarity type τ . If K has a model with
cardinality at least µ(τ) then K has arbitrarily large models.
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.

Notation 2.5. (1) For any linearly ordered set X ⊆ M where M is a τ -
structure we write Dτ (X) (diagram) for the set of τ -types of finite se-
quences (in the given order) from X. We will omit τ if it is clear from
context.

(2) Such a diagram of an order indiscernible set, Dτ (X) = Φ, is called ‘proper
for linear orders’.

(3) If X is a sequence of τ -indiscernibles with diagram Φ = Dτ (X) and any τ
model of Φ has built in Skolem functions, then for any linear ordering I,
EM(I, Φ) denotes the τ -hull of a sequence of order indiscernibles realizing
Φ.

(4) If τ0 ⊂ τ , the reduct of EM(I, Φ) to τ0 is denoted EMτ0(I,Φ).

‘Morley’s method’ (Section 7.2 of [4]) is a fundamental technique in first order
model theory. It is essential for the foundations of simplicity theory and for the
construction of indiscernibles in infinitary logic. We quote the first order version
here; in Lemma 5.1, we prove the analog for abstract elementary classes.

Lemma 2.6. If (X, <) is a sufficiently long linearly ordered subset of a τ -structure
M , for any τ ′ extending τ (the length needed for X depends on |τ ′|) with < in τ ′

there is a countable set Y of τ ′-indiscernibles (and hence one of arbitrary order
type) such that Dτ (Y ) ⊆ Dτ (X). This implies that the only (first order) τ -types
realized in EM(X,Dτ ′(Y )) were realized in M .

Further, we find Skolem models over indiscernibles in an AEC.

Theorem 2.7. If K is an abstract elementary class in the vocabulary τ , which is
presented as a PCΓ class witnessed by τ ′, T ′, Γ that has arbitrarily large models,
there is a τ ′-diagram Φ such that for every linear order (I, <) there is a τ ′-structure
M = EM(I, Φ) such that:

(1) M |= T ′.
(2) The τ ′-structure M = EM(I,Φ) is the Skolem hull of I.
(3) I is a set of τ ′-indiscernibles in M .
(4) M ¹ τ is in K.
(5) If I ′ ⊂ I then EMτ (I ′, Φ) ¹K EMτ (I, Φ).

Proof. The first four clauses are a direct application of Lemma 2.6, Morley’s the-
orem on omitting types. See also problem 7.2.5 of Chang-Keisler [4] or [3]. It is
automatic that EM(I ′,Φ) is an L′ substructure of EM(I, Φ). The moreover clause
of Theorem 2.1 allows us to extend this to EMτ (I ′, Φ) ¹K EMτ (I,Φ). ¤2.7

Note that we have simplified our presentation of many members of K. Inside the
class K, which is the set of reducts of models which omit Γ, sits a class K ′, which
is the class of reducts of Skolem hulls of order indiscernibles. In general, K ′ is a
proper subclass of K. It may not be an AEC because we don’t know closure under
unions of chains. In [14], under strong hypotheses this closure is proved.

Remark 2.8. Silver (Chapter 18 of [8]) gives a simple example of a psuedoelemen-
tary class where the categoricity spectrum and its complement are both cofinal in
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the class of cardinals. The example is the class of models (M,X) where 2|X| ≥ |M |.
This class is not an AEC because it is not closed under unions of chains.

The arguments below depend on classes being both AEC and PCΓ.

3. Galois types and saturation

In this section we take advantage of joint embedding and amalgamation to find a
monster model. We then define types in terms of orbits of stabilizers of submodels.
This allows an identification of ‘model-homogeneous’ with ‘saturated’. That is, we
give an abstract account of Morley-Vaught [10].

Definition 3.1. M is µ-model homogenous if for every N ¹K M and every
N ′ ∈ K with |N ′| < µ and N ¹K N ′ there is a K-embedding of N ′ into M over
N .

To emphasize, this differs from the homogenous context because the N must be in
K. It is easy to show:

Lemma 3.2. If M1 and M2 are µ-model homogenous of cardinality µ > LS(K) then
M1 ≈ M2.

Proof. If M1 and M2 have a common submodel N of cardinality < µ, this is an easy
back and forth. Now suppose N1, (N2) is a small model of M1, (M2) respectively.
By the joint embedding property there is a small common extension N of N1, N2

and by model homogeneity N is embedded in both M1 and M2. ¤3.2

Note that in the absence of joint embedding, to get uniqueness we would (as in
[17]) have to add to the definition of ‘M is model homogeneous’ that all models of
cardinality < µ are embedded in M .

Theorem 3.3. If K has the amalgamation property and µ∗<µ∗ = µ∗ and µ∗ ≥
2LS(K) then there is a model M of cardinality µ∗ which is µ∗-model homogeneous.

We call the model constructed in Theorem 3.3, the monster model. From now
on all, structures considered are substructures of M with cardinality < µ∗. The
standard arguments for the use of a monster model in first order model theory
([7, 2] apply here.

Definition 3.4. Let M ∈ K, M ¹K M and a ∈ M. The Galois type of a over
M is the orbit of a under the automorphisms of M which fix M .

We freely use the phrase, ‘Galois type of a over M ’. Note that a priori this notion
depends on the embedding of Ma into an N ∈ K and the embedding of N into
M. Since we have assumed amalgamation, our usage is justified as long as the base
is an M ∈ K. In more general situations, the Galois type is an equivalence class
of an equivalence relation on triples (M,a, N). This is an equivalence relation on
the class of M that are amalgamation bases for extensions in the same cardinality.
(See [18, 19].) Since we have amalgamation and have fixed M, we don’t need the
extra notation. The following definition and exercise show the connection of the
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situation as described here with the more complicated description elsewhere. They
are needed only to link with the literature.

Definition 3.5. For M ¹K N1 ∈ K, M ¹K N1 ∈ K and a ∈ N1 − M ,
b ∈ N2 −M , write (M, a, N1) ∼ (M, b,N2) if there exist strong embeddings f1, f2

of N1, N2 into some N∗ which agree on M and with f1(a) = f2(b).

Exercise 3.6. If K has amalgamation, ∼ is an equivalence relation.

Exercise 3.7. Suppose K has amalgamation and joint embedding. Show
(M, a,N1) ∼ (M, b,N2) if and only if there are embeddings g1 and g2 of N1, N2

into M that agree on M and such that g1(a) and g2(b) have the same Galois type
over g1(M).

Definition 3.8. The set of Galois types over M is denoted ga− S(M).

We say a Galois type p over M is realized in N with M ¹K N ¹K M if p∩N 6= ∅.
Definition 3.9. The model M is µ-Galois saturated if for every N ¹K M with
|N | < µ and every Galois type p over N , p is realized in M .

Again, a priori this notion depend on the embedding of M into M; but with
amalgamation it is well-defined.

Theorem 3.10. For λ > LS(K), The model M is λ-Galois saturated if and only
if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois saturated. Let
M ¹K M be λ-saturated. We want to show M is λ-model homogeneous. So
fix M0 ¹K M and N with M0 ¹K N ¹K M. Say, |N | = µ < λ. We must
construct an embedding of N into M . Enumerate N − M as 〈ai : i < µ〉. We
will define fi for i < µ an increasing continuous sequence of maps with domain Ni

and range Mi so that M0 ¹K Ni ¹K M, M0 ¹K Mi ¹K M and ai ∈ Ni+1.
The restriction of

⋃
i<µ fi to N is required embedding. Let N0 = M0 and f0 the

identity. Suppose fi has been defined. Choose the least j such that aj ∈ N −Ni.
By the model homogeneity of M, fi extends to an automorphism f̂i of M. Using
the saturation, let bj ∈ M realize the Galois type of f̂i(aj) over Mi. So there is
an α ∈ autM which fixes Mi and takes bj to f̂i(aj). Choose Mi+1 ¹K M with
cardinality µ and containing Mibj . Now f̂−1

i ◦ α maps Mi to Ni and bj to aj . Let
Ni+1 = f̂−1

i ◦ α(Mi+1) and define fi+1 as the restriction of α−1 ◦ f̂i to Ni+1. Then
fi+1 is as required. ¤3.10

The last argument makes full use of the amalgamation property. We discuss some
generalizations in the last paragraph of this article. In the remainder of this section
we discuss some important ways in which Galois types behave differently from
‘syntactic types’.

Note that if M ¹K N ¹K M, then p ∈ ga − S(N) extends p′ ∈ ga − S(N) if for
some (any) a realizing p and some (any) b realizing p′ there is an automorphism α
fixing M and taking a to b.
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Lemma 3.11. If M =
⋃

i<ω Mi is an increasing chain of members of K and {pi :
i < ω} satisfies pi+1 ¹ Mi = pi, there is a pω ∈ ga − S(M) with pω ¹ Mi = pi for
each i.

Proof. Let ai realize pi. By hypothesis, for each i < ω, there exists fi which fixes
Mi−1 and maps ai to ai−1. Let gi be the composition f0 ◦ f1 ◦ . . . fi. Then gi

maps ai to a0, fixes M0 and gi ¹ Mi−1 = gi−1 ¹ Mi−1. Let M ′
i denote gi(Mi)

and M ′ their union. Then
⋃

i<ω gi is an isomorphism between M and M ′. So by
model-homogeneity there exists an automorphism h of M with h ¹ Mi = gi ¹ Mi

for each i. Let aω = h−1(a0). Now g−1
i ◦ h fixes Mi and maps aω to ai for each i.

This completes the proof. ¤3.11

Now suppose we wanted to prove Lemma 3.11 for chains of length δ > ω. The
difficulty can be seen at stage ω. In addition to the assumptions of Lemma 3.11, we
are given {ai : i ≤ ω} and fω,i which fixes Mi and maps aω to ai. We can construct
gi as in the original proof. The difficulty is to find gω which extends all the gi and
maps aω to a0. In the argument for Lemma 3.11, we found a map h and an element
(which we will now call a′ω such that h takes a′ω to a0 while h extends all the gi. We
would be done if aω and a′ω realized the same galois type over M = Mω. In fact,
aω and a′ω realized the same Galois type over each Mi. So the following locality
condition (for chains of length ω) would suffice for this special case. Moreover, by
a further induction locality would give Lemma 3.11 for chains of arbitrary length.
Locality does not hold for all AEC with amalgamation; it would be interesting to
find a concrete example. Locality is defined in Definition 24 of [15].

Definition 3.12. K has local Galois types if for every M =
⋃

i<κ Mi in a con-
tinuous increasing chain of members of K and for any p, q ∈ ga − S(M): if
p ¹ Mi = q ¹ Mi for every i then p = q.

We have sketched the proof of:

Lemma 3.13. Suppose K has local Galois types. If M =
⋃

i<κ Mi in an increasing
chain of members of K and {pi : i < κ} satisfies pi+1 ¹ Mi = pi, there is a
pκ ∈ ga− S(M) with pκ ¹ Mi = pi for each i.

Locality provides a key distinction between the general AEC case and homoge-
nous structures. In homogeneous structures, types are syntactic objects and local-
ity is trivial. Thus, as pointed out by Shelah, Hyttinen, and Buechler-Lessmann,
Lemma 3.13 applies in the homogeneous context.

4. Getting stability

In this section we show that a countable λ-categorical AEC is µ-stable for µ above
the Löwenheim number and below λ. The key idea is that for a linear order I and
model EM(I, Φ), automorphisms of I induce automorphisms of EM(I,Φ). And,
automorphisms of EM(I,Φ) preserve types in any reasonable logic; in particular,
automorphisms of EM(I, Φ) preserve Galois types. Note that a model N is (de-
fined to be) stable if few types are realized in N . So if N is a brimful model
(Definition 4.2) then the model N is σ-stable for every σ < |N |.
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Since we deal with reducts and will consider several structures with the same uni-
verse; it is crucial to keep the vocabulary of the structure in mind. The AEC under
consideration has vocabulary τ ; it is presented as reducts of models of theory T ′

(which omit certain types) in a vocabulary τ ′. In addition, we have the class of
linear orderings (LO) in the background.

We really have three AEC’s: (LO,⊂), K ′ which is Mod(T ′) with submodel as τ ′-
closed subset, and (K,¹K ). We are describing the properties of the EM-functor
between (LO,⊂) and K′ or K. K ′ is only a tool that we are singling out to see the
steps in the argument. The following definitions hold for any of the three classes
and I write ≤ for the notion of substructure. In this section of the paper I am
careful to use ≤ when discussing all three cases versus ¹K for the AEC.

Definition 4.1. M2 is σ-universal over M1 in N if M1 ≤ M2 ≤ N and whenever
M1 ≤ M ′

2 ≤ N , with |M1| ≤ |M ′
2| ≤ σ, there is a ≤-embedding fixing M1 and taking

M ′
2 into M2.

I introduce one term for shorthand. It is related to Shelah’s notion of brimmed in
[13] but here the brimful model is bigger than the models it is universal over while
brimmed models may have the same cardinality.

Definition 4.2. M is brimful if for every σ < |M |, and every M1 ≤ M with
|M1| = σ, there is an M2 ≤ M with cardinality σ that is σ-universal over M1 in
M .

The next notion just makes it easier to write the proof of the following Lemma.

Notation 4.3. Let I ⊂ J be linear orders. We say a and b in J realize the same
cut over I and write a ∼I b if for every i ∈ I, a < i if and only if b < i.

Claim 4.4 (Lemma 3.7 of [16]). The linear order I = λ<ω is brimful.

Proof. Let J ⊂ I have cardinality θ < λ. Without loss of generality we can assume
J = A<ω for some A ⊂ λ. Note that σ ∼J τ if and only if for the least n such that
σ ¹ n 6= τ ¹ n, neither is in J and σ(n) ∼A τ(n). Thus there are only θ cuts over J
realized in I. For each cut Cα, α < θ, we choose a representative σα ∈ I−J of length
n such that σα ¹ n− 1 ∈ J , so a cut in J is isomorphic to {σα τ̂ : τ ∈ λ<ω, α < θ}.
We can assume any J∗ extending J is J∗ = B<ω for some B ⊂ λ, say with
otp(B) = γ. Thus, the intersection of J∗ with a cut in J is isomorphic to a subset
of γ<ω. We finish by noting for any ordinal |γ| = θ, γ<ω can be embedded in θ<ω.
Thus, the required θ-universal set over J is J ∪ {σα τ̂ : τ ∈ θ<ω, α < θ}.
Qing Zhang has provided the following elegant argument for the last claim. First
show by induction on γ there is a map g embedding γ in θ<ω. (E.g. if γ =
limi<θ γi, and gi maps γi into θ<ω, let for β < γ, g(β) = î gi(β) where γi ≤
β < γi+.) Then let h map γ<ω into θ<ω by, for σ ∈ γ<ω of length n, setting
h(σ) = 〈g(σ(0)), . . . , g(σ(n− 1))〉. ¤4.4

The argument for Claim 4.4 yields:

Corollary 4.5. Suppose µ < λ are cardinals. Then for any X ⊂ µ<ω and any Y
with X ⊆ Y ⊂ λ<ω and |X| = |Y | < µ, there is an order embedding of Y into µ<ω

over X.
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Since every τ ′-substructure N of EM(I, Φ) is contained in a substructure
EM(I0, Φ) for some subset I0 of I with |I0| = |N |, we have immediately:

Claim 4.6. If I is brimful as a linear order, EM(I, Φ) is brimful as an τ ′-structure.

Now using amalgamation and categoricity, we move to the AEC K. There are some
subtle uses here of the ‘coherence axiom’: M ⊆ N ¹K N1 and M ¹K N1 implies
M ¹K N .

Claim 4.7. If I is brimful as a linear order, EMτ (I, Φ) is brimful as a member of
K.

Proof. Let M = EM(I, Φ); we must show M ¹ τ is brimful as a member of K.
Suppose M1 ¹K M ¹ τ with |M1| = σ < |M |. Then there is N1 = EM(I ′, Φ) with
|I ′| = σ and M1 ⊆ N1 ≤ M . By Lemma 2.7.5, N1 ¹ τ ¹K M ¹ τ . So M1 ¹K N1 ¹
τ by the coherence axiom. Let M2 have cardinality σ and M1 ¹K M2 ¹K M ¹ τ .
Choose a τ ′-substructure N2 of M with cardinality σ containing N1 and M2. Now,
N2 can be embedded by a map f into the σ-universal τ ′-structure N3 containing
N1 which is guaranteed by Claim 4.6. But f(N2) ¹ τ ¹K N3 ¹ τ by the coherence
axiom so N3 ¹ τ is the required σ-universal extension of M1. ¤4.7

Definition 4.8. (1) Let N ⊂ M. N is λ-Galois-stable if for every M ⊂ N
with cardinality λ, only λ Galois types over M are realized in N .

(2) K is λ-Galois-stable ifM is. That is autM (M) has only λ orbits for every
M ⊂M with cardinality λ.

Since we are usually working in an AEC, we will frequently abuse notation and
write stable rather than Galois-stable.

Since for brimful I, a M = EM(I, φ) is brimful, and for M0 ¹K M1 ¹K M ,
each Galois type over M0 realized in M is represented by an M1 with |M1| = |M0|,
Claim 4.7 implies immediately:

Claim 4.9. If K is λ-categorical, the model M with |M | = λ is σ-Galois stable for
every σ < λ.

Theorem 4.10. If K is categorical in λ, then K is σ-Galois-stable for every σ < λ.

Proof. Suppose K is not σ-stable for some σ < λ. Then by Löwenheim-Skolem,
there is a model N of cardinality σ+ which is not σ-stable. Let M be the σ-
stable model with cardinality λ constructed in Claim 4.9. Categoricity and joint
embedding imply N can be embedded in M . The resulting contradiction proves
the result. ¤4.10

Corollary 4.11. Suppose K is categorical in λ and λ is regular. The model of
power λ is saturated and so model homogeneous.

Proof. Choose in Mi ¹K M using < λ-stability and Löwenheim-Skolem, for i < λ
so that each Mi has cardinality < λ and Mi+1 realizes all types over Mi. By
regularity, it is easy to check that Mλ is saturated. ¤4.11
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The same argument gives saturated models in smaller regular cardinals; more
strongly we can demand that the saturated model be an Ehrenfreuht-Mostowski
model.

Corollary 4.12. Suppose K is an AEC with vocabulary τ that is categorical in
λ and λ is regular. Then for every regular µ, LS(K) < µ < λ there is a model
Mµ = EMτ (Iµ,Φ) which is saturated. In particular, it is µ-model homogeneous.

Proof. For any ordered set J of cardinality λ, let M = EMτ (J, φ) be the model
of cardinality λ. We construct an alternating chain of K-submodels of length
µ. M0 ¹K M is arbitrary with cardinality µ. M2α+1 has cardinality µ and
realizes all types over M2α (possible by Corollary 4.10. M2α+2 has cardinality
µ, M2α+1 ¹K M2α+2 and M2α+2 is EMτ (Iα+1, Φ) where Iα ⊂ Iα+1 ⊂ J and
all Iα have cardinality µ. Then EMτ (Iµ, Φ) =

⋃
α<µ EMτ (Iα, Φ) is saturated by

regularity. ¤4.12

Now using stability we can get a still stronger result, eliminating the hypothesis
that µ is regular. We show the proofs of both Corollary 4.12 and Corollary 4.13
since in the first case we constructed a saturated model directly and in the second
a model homogeneous structure.

Corollary 4.13. Suppose K is an AEC with vocabulary τ that is categorical in
λ and λ is regular. Then for every µ, LS(K) < µ < λ there is a model Mµ =
EMτ (µ<ω,Φ) which is µ-model homogeneous.

Proof. Represent the categoricity model as M∗ = EMτ (λ<ω, Φ). We show Mµ =
EMτ (µ<ω,Φ) is model homogenous. Suppose M1 ¹K Mµ with |M1| = σ < |Mµ|.
Then there is N1 = EMτ (I1, Φ) with |I1| = σ, M1 ⊂ N1 and I1 ⊂ µ<ω. Let M2

have cardinality σ and M1 ¹K M2. By amalgamation, choose N2 ∈ K which is an
amalgam of N1 and M2 over M1. By the λ-model homogeneity of M∗, there is an
embedding of N2 into M∗ over N1 say with image N ′

2. Then N ′
2 ⊂ EMτ (J, Φ) for

some J with I1 ⊂ J ⊂ λ<ω and |J | = σ. Now by Corollary 4.5 and an argument
like that in Claim 4.7, there is an embedding of EMτ (J, Φ) into M = EMτ (µ<ω, Φ)
over N1, and a fortiori over M1 and we finish. ¤4.13

Remark 4.14. (1) Note that for each σ less than the categoricity cardinal
λ, the σ-universal model that is constructed has the form EMτ (I ′, Φ) for
some I ′.

(2) Compare Claim 4.13 to I.3.1 in [18], which has the same conclusion but
weakening the amalgamation propery to: there are no maximal models.
There are two uses of the amalgamation property in the argument for
Claim 4.13. The first requires only that M1 be an amalgamation base for
models in K of size µ and so extends easily to prove the analogous result
where K has amalgamation is replaced by K has no maximal models. The
second is that M is < λ model homogenous. This step is done in quite a
different way in the proof of I.3.1 in [18]; stability is not used but GCH
is.
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5. Morley’s method for Galois Types

Now we prove ‘Morley’s method’ for Galois types.

Lemma 5.1. [II.1.5 of Sh394] If M0 ≤ M and M is substantial with respect to
|M0|, we can find an EM-set Φ such that the following hold.

(1) The τ -reduct of the Skolem closure of the empty set is M0.
(2) For every I, M0 ≤ EM(I, Φ).
(3) If I is finite, EMτ (I, Φ) can be embedded in M .
(4) EMτ (I, Φ) omits every galois type over M0 which is omitted in M .

Proof. Let τ1 be the Skolem language given by the presentation theorem and
consider M as the reduct of τ1 structure M1. Add constants for M0 to form τ ′1.
Now apply Lemma 2.6 to find an EM-diagram Φ (in τ ′1) with all τ -types of finite
subsets of the indiscernible sequence realized in M . Now 1) and 2) are immediate.
3) is easy (using clause 5 of Theorem 2.7) since we chose Φ so all finite subsets of
the indiscernible set (and so their Skolem closures) are realized in M .

The omission of Galois types is more tricky. Consider both M and N = EMτ (I, Φ)
embedded in M. Let N1 denote the τ ′1-structure EM(I, Φ). We need to show that
if a ∈ N , p = ga− tp(a/M0) is realized in M . For some e ∈ I, a is in the τ1-Skolem
hull Ne of e. (Recall the notation from the presentation theorem.) By 3) there is
an embedding α of Ne into M1 over M0. α is also an isomorphism of Ne ¹ τ into
M . Now, by the model homogeneity, α extends to an automorphism of M fixing
M0 and α(a) ∈ M realizes p. ¤5.1

This has immediate applications in the direction of transferring categoricity.

Theorem 5.2. Suppose M ∈ K omits a Galois type p over a submodel M0 with
|M | ≥ µ(|M0|). Then there is no regular cardinal λ ≥ |M | in which K is categorical.

Proof. By Lemma 5.1, there is a model N ∈ K with cardinality λ which omits p.
But by Lemma 4.11, the unique model of power λ is saturated. ¤5.2

6. Tameness and Downwards Categoricity

In [12] Shelah asserts the following result:

Theorem 6.1. If K is categorical in a regular cardinal λ and λ > µ(µ(|τ |)) then
K is categorical in every θ with µ(µ(|τ |)) ≤ θ ≤ λ.

Here is a sketch of the argument. We have shown that there are saturated models
of power θ for every θ < λ. The obstacle to deducing downward categoricity is
that Theorem 5.1 only allows us to transfer the omission of types when the model
omitting the type is much bigger than the domain of the type. The first step in
remedying this problem is to show that all types are determined by ‘relatively small’
subtypes. More precisely, we need the notion that Grossberg and Van Dieren [6]
have called χ-tame and Shelah [12] refers to has ‘having χ-character’. We add an
extra parameter to be careful.
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Definition 6.2. We say K is (χ, µ)-tame if for any saturated N ∈ K with |N | =
µ < λ if p, q,∈ ga − S(N) and for every N0 ≤ N with |N0| ≤ χ, p ¹ N0 = q ¹ N0

then q = p.

Shelah asserts the following in Sections II.1 and II.2.3 of the published version of
[12]. The published proof is incomplete; I haven’t yet seen the corrections. But it
seems to use only Ehrenfeucht-Mostowski type methods.

Theorem 6.3. Suppose K is λ-categorical for λ ≥ µ(τ) and λ is regular. Then K
is (χ, χ1)-tame for some χ and any χ1 with χ < µ(τ) ≤ χ1 ≤ λ.

The naive argument would give χ = µ(τ) since one is omitting types. But omitting
in every cardinal below µ(τ) is as good as in µ(τ) so the conclusion becomes for
some χ with χ < µ(τ).

The remainder of the argument for Theorem 6.1 uses such technologies as splitting
and minimal types that are beyond the scope of this paper.

Since we were expounding [12] we assumed, as there, that K has arbitrarily large
models and the amalgamation and joint embedding properties. We used amalga-
mation heavily to get monster models and thus get the group theoretic definition
of Galois-type. By using the more complicated definition of a Galois type as an
equivalence relation on triples, many of these notions can be extended to classes
without amalgamation. And one can even prove [15, 1], saturation equals model
homogeneity with no amalgamation hypothesis whatsoever. However, I don’t know
anyway to prove the existence of either saturated model homogeneous models in
general AEC without at least some amalgamation hypothesis.
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