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Zilber’s hope

The initial hope of this author in [Zil84] that any uncountably
categorical structure comes from a classical context (the
trichotomy conjecture), was based on the belief that logically
perfect structures could not be overlooked in the natural
progression of mathematics.
[PS98]. ([Zil05])

We show some exotics are a bit more classical than expected.
What are classical structures?
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Overview

1 Strongly Minimal Theories

2 Classifying strongly minimal sets and their geometries

3 Coordinatization by varieties of algebras

4 Interactions with Combinatorics

Thanks to Joel Berman, Gianluca Paolini, and Omer Mermelstein.
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Latin Squares

Klein 4-group

Stein 4-quasigroup
A Latin square is an n × n square matrix whose entries consist of n
symbols such that each symbol appears exactly once in each row and
each column.
By definition, this is the multiplication table of a quasigroup.
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Definitions

A Steiner system with parameters t , k ,n written S(t , k ,n) is an
n-element set S together with a set of k-element subsets of S (called
blocks) with the property that each t-element subset of S is contained
in exactly one block.

We always take t = 2.

Steiner systems are ‘coordinatized’ by Latin squares.

John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Helsinki January 28, 2019 5 / 59



Some History
Steiner triple systems were defined for the first time by W.S.B.
Woolhouse in 1844 in the Lady’s and Gentlemen’s Diary and he posed
the question.

For which v’s does an S(2, k , v) exist?

Necessity: Kirkman ( 1847) for k = 3 by Rev. T.P. Kirkman:
k ≡ 1or 3 (mod 6) is necessary.

Sufficiency: (Bose 6n + 3, 1939) Skolem ( 6n + 1, 1958)
k ≡ 1or 3 (mod 6) is sufficient.
(Bose 6n + 3, 1939) Skolem ( 6n + 1, 1958)

Unaware of Kirkman’s work, Jakob Steiner (1853) reintroduced triple
systems, and as this work was more widely known, the systems were
named in his honor.

Keevash 2014: for any t and sufficiently large v , if k is not obviously
blocked, there are (t , k , v)-Steiner systems.
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Strongly Minimal Theories
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STRONGLY MINIMAL

Definition
T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition
a is in the algebraic closure of B (a ∈ acl(B)) if for some φ(x ,b):
|= φ(a,b) with b ∈ B and φ(x ,b) has only finitely many solutions.
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ℵ1-categorical theories

Morley Lachlan Zilber

Theorem
A complete theory T is strongly minimal if and only if it has infinite
models and

1 algebraic closure induces a pregeometry on models of T ;
2 any bijection between acl-bases for models of T extends to an

isomorphism of the models

These two conditions assign a unique dimension which determines
each model of T .
Strongly minimal sets are the building blocks of structures whose
first order theories are categorical in uncountable power.
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ℵ1-categorical theories

Definition
A model M of a complete theory T is prime over a subset X if every
morphism from X into a model N of T extends to a morphism of M into
N.

Theorem (Baldwin-Lachlan)
If T is categorical in some uncountable power, there is a definable
strongly minimal set D such that every model M of T is prime over
D(M).

Thus, the dimension of D(M) determines the isomorphism type of M.
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Combinatorial Geometry: Matroids

The abstract theory of dimension: vector spaces/fields etc.

Definition
A closure system is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following axioms.
A1. cl(X ) =

⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X )
A3. cl(cl(X )) = cl(X )

(G, cl) is pregeometry if in addition:
A4. If a ∈ cl(Xb) and a 6∈ cl(X ), then b ∈ cl(Xa).

If cl(x) = x the structure is called a geometry.
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Classifying strongly minimal sets and their geometries
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The trichotomy

Zilber Conjecture
The acl-geometry of every model of a strongly minimal first order
theory is

1 disintegrated (lattice of subspaces distributive)
2 vector space-like (lattice of subspaces modular)
3 ‘bi-interpretable’ with an algebraically closed field (non-locally

modular)

Hrushovski’s example showed there are non-locally modular which are
far from being fields; the examples don’t even admit a group structure.
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Aside: Strongly minimal sets and analysis

Axiomatic analysis studies behavior of fields of functions with
operators but without explicit attention in the formalism to continuity but
rather to the algebraic properties of the functions. The function
symbols of the vocabulary act on the functions being studied; the
functions are elements of the domain of the model.

Differential Algebra
The axioms for differentially closed fields are a first order sentences in
the vocabulary (+,×,0,1, ∂) (where ∂f is interpreted as the derivative
The first order formulation is particularly appropriate because many of
the fields involved are non-Archimedean.
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Differentially closed fields II

Hrushovski and Itai lay out as an application of ‘Shelah’s philosophy’
the following model theoretic fact (based on Buechler’s Dichotomy) is
fundamental to the study of differential fields:
‘an algebraically closed differential field K is differentially closed if
every strongly minimal formula over K has a solution in K ’.

Even more, by the general theory of superstability, their study reduces
to the study of strongly minimal sets and definable simple FMR groups
that are associated with strongly minimal sets.

Consider the theory of differentially closed fields with constant field the
complex numbers C.
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Painlevè equations
In 1900 Painlevè began the study of nonlinear second order ordinary
differential equations (ODE) satisfying the Painlevè property (no
movable singularities). In general such an equation has the form

y ′′ = f (y , y ′)

with f a rational function (i.e. in C(t1, t2)).

He classified such equations into 50 canonical forms and showed that
44 of these were solvable in terms of ‘previously known’ functions.
Here is a canonical form for the third of the remaining classes; the
Greek letters are the constant coefficients; t is the independent
variable satisfying t ′ = 1 and the goal is to solve for y .

PIII(α, β, γ, δ) :
d2y
dt2 = 1

y

(
dy
dt

)2
− 1

t
dy
dt + 1

t (αy2 + β) + γy3 + δ
y
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Problem 1

Show that a generic equation (i.e. the constant coefficients are
algebraically independent) of each of the six forms is irreducible.
For this, one must take on the logicians task: ‘What does not reducible
mean’?
By reducible Painlevè meant, solvable from ‘known functions’.
The Japanese school clarified ‘solvable’ to mean, roughly speaking:
generated from solutions to order one ordinary differential equations
(ODE) and algebraic functions through a fixed family of constructions
(integration, exponentiation, etc.).

In the formal setting, this is equivalent to showing that:
If an order two differential equation is strongly minimal; then there can

be no classical solutions.

This problem was solved (without the formalization) in each of the six
cases by the Japanese school (led by Umemura) in the late 1980’s.
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Problem II

Conjecture
If there are n algebraically independent solutions of a generic strongly
minimal Painlevè equation then that set along with its first derivatives is
also algebraically independent.

The model theoretic step is to invoke the Zilber trichotomy which holds
for differentially closed fields.
To reduce to a disintegrated strongly minimal set. Pillay and Nagloo
show the other alternatives are impossible in this situation and indeed
that the strongly minimal set is ℵ0-categorical. Using the geometric
triviality (from the Zilber trichotomy) heavily and tools from the
Japanese analysts

Theorem: Nagloo-Pillay
The conjecture is true.
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Classify non-locally modular geometries of SM sets

Definition: Flat geometries
A geometry given by a dimension function d is flat if the dimension of
any set E covered by d-closed sets E1, . . .En is bounded by applying
the inclusion exclusion principle to the Ei .

Fact
If the geometry of a strongly minimal set M is flat.

1 Forking on M is not 2-ample.
2 M does not interpret an infinite group.
3 Thus, the geometry is not locally modular and so not disintegrated.
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Classifying Hrushovski Construction

The acl-geometry associated with Hrushovski constructions
Work of Evans, Ferreira, Hasson, Mermelstein suggests that up to arity
or more precisely, purity, (and modulo some natural conditions)

any two geometries associated with Hrushovski constructions
are locally isomorphic.

Locally isomorphic means that after localizing one or both at a finite
set, the geometries are isomorphic.
[EF11, EF12, HM18]

We are concerned not with the acl-geometry but with the Object
language geometry.
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‘Object Language’ geometries

Strong minimality asserts the ‘rank’ of the universe is one and imposes
a combinatorial geometry whose dimension varies with the model.
We study here structures which are ‘geometries’ in the object
language. E.g.

Projective Planes: [Bal94]
There is an almost strongly minimal (rank 2) projective plane.
An example with the least possible structure in the Lenz-Barlotti class
was constructed [Bal95].
In particular, the ternary function of the coordinatizing field cannot be
decomposed into an ‘addition’ and a ‘multiplication’.
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How is algebraic structure lost?
Algebraic view

1 field
2 integral domain (lose inverses)
3 matrix ring (lose commutativity)
4 alternative ring (weaken associativity)

geometric view
1 field (Pappian plane)
2 division ring(Desarguesian plane: lose commutativity)
3 nearfield (lose left distributive)
4 quasifield( multiplication is a quasigroup with identity)
5 alternative algebra (Moufang plane: lose full associativity)
6 ternary ring (lose associativity and distributivity and even

compatible binary functions, but still have inverse)
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Linear Spaces
Definition (2-sorted)
A linear space [BB93] is a collection of points and lines such that
2 points determine a line;
consequently two lines intersect in at most one point.

Definition (2-sorted)
The vocabulary τ contains a single ternary predicate R,
interpreted as collinearity.
K ∗0 denotes the collection of finite 3-hypergraphs that are linear
systems. K ∗ includes infinite linear spaces.

1 R is a predicate of sets (hypergraph)
2 Two points determine a line

There are natural generalizations:
1 k -points determine a line.
2 allow a finite number of line lengths

Mermelstein and Hasson [HM17] have investigations along these lines.John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Helsinki January 28, 2019 21 / 59



2-sorted vrs 1-sorted

In a two-sorted formulation, i.e. points and lines, clearly no strongly
minimal theory has both infinitely many points and infinitely many lines.

Even in 1-sort, there cannot be two lines with infinitely many points.

Note that this does not preclude bi-interpretability between 1-sorted
and 2-sorted descriptions. Because, interpretations do not need to
preserve Morley rank.
In this case the universe of the two-sorted structure is interpreted as a
set of pairs in the 1-sorted structure.

Theorem [BP18]
K ∗0 and the class of two-sorted linear spaces are biinterpretable.
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Strongly minimal linear spaces I

Fact
Suppose (M,R) is a strongly minimal linear space where all lines have
at least 3 points. There can be no infinite lines.

Suppose ` is an infinite line. Choose A not on `. For each Bi ,Bj on `
the lines ABi and ABj intersect only in A. But each has a point not on `
and not equal to A. Thus ` has an infinite definable complement,
contradicting strong minimality.

Corollary
There can be no strongly minimal affine or projective plane, since in
such planes the number of lines must equal the number of planes
(mod aleph0).
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Strongly minimal linear spaces II

An easy compactness argument establishes

The fundamental corollary of strong minimality

If M is strongly minimal, then for every formula ϕ(x , y), there is an
integer k = kφ such that for any a ∈ M, (∃>kφx)ϕ(x ,a) implies there
are infinitely many solutions of ϕ(x ,a) and thus finitely many solutions
of ¬ϕ(x ,a).

Corollary
If (M,R) is a strongly minimal linear system, for some k , all lines have
length at most k . So it is a K -Steiner system.
K = {3,4 . . . k}.
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Specific Strongly minimal Steiner Systems

Definition
A Steiner (v ,2, k)-system is a linear system with v points such that
each line has k points.

Theorem (Baldwin-Paolini)[BP18]
For each k ≥ 3, there are an uncountable family Tµ of strongly minimal
(∞, k ,2) Steiner-systems.
The theory is 1-ample (not locally modular) and CM-trivial (not
2-ample).

IN ENGLISH
There is no infinite group definable in any Tµ. More strongly,
Associativity is forbidden.
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Hrushovski construction for linear spaces

K∗0 denotes the collection of finite linear systems in the vocabulary
τ = {R}.
A line in M is a maximal R-clique
L(A), the lines based in A, is the collections of lines in (M,R) that
contain 2 points from A.

Definition: Paolini’s δ

[Pao] For A ∈ K∗0, let:

δ(A) = |A| −
∑
`∈L(A)

(|`| − 2).

K 0 is the A ∈ K ∗0 such that B ⊆ A implies δ(B) ≥ 0.

Mermelstein [Mer13] has independently investigated Hrushovki
functions based on the cardinality of maximal cliques.
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Amalgamation and Generic model
Definition

Let A ∩ B = C with A,B,C ∈ K 0. We define D := A⊕C B as follows:
(1) the domain of D is A ∪ B;
(2) a pair of a ∈ A− C and b ∈ B − C are on a line `′ in D if and only if

there is a line ` ⊆ D based in C such that a ∈ ` (in A) and b ∈ ` (in
B). Thus `′ = ` (in D).

Definition

The countable model M ∈ K̂ 0 is (K 0,≤)-generic if
(1) If A ≤ M,A ≤ B ∈ K 0, then there exists B′ ≤ M such that B ∼=A B′,
(2) M is a union of finite closed subsets (Ai ≤ M).

Theorem: Paolini [Pao]
There is a generic model for K 0; it is ω-stable with Morley rank ω.
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Primitive Extensions and Good Pairs

Definition

Let A,B,C ∈ K0.
(1) A ≤ B if A ⊆ B and there is no B0, A ( B0 ( B with δ(B0/A) < 0.
(2) B is a 0-primitive extension of A if A ≤ B and there is no

A ( B0 ( B such that A ≤ B0 ≤ B and δ(B/A) = 0.
(3) We say that the 0-primitive pair B/A is good if for every A′ ( A we

have that δ(B′/A) > 0.
(4) For any good pair (A,B), χM(A,B) is the number of copies of B

over A appearing in M.

α is the isomorphism type of ({a,b}, {c}).

John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Helsinki January 28, 2019 28 / 59



Overview of construction

1 K ∗0: all finite linear τ -spaces.
2 K 0 ⊆ K ∗0: δ(A) hereditarily ≥ 0.
3 Kµ ⊆ K 0: µ bounds number of ‘good pairs’.
4 Kµ,d = mod(Tµ) strongly minimal.

John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Helsinki January 28, 2019 29 / 59



Basic case

α is the isomorphism of the good pair ({a,b}, {c} with R(a,b, c).

Context
Let U = U be the collection of functions µ assigning to every
isomorphism type β of a good pair C/B in K 0:

(i) a natural number µ(β) = µ(B,C) ≥ δ(B), if |C − B| ≥ 2;
(ii) a number µ(β) ≥ 1, if β = α

The length of a line in Tµ is µ(α) + 2.

Tµ is the theory of a strongly minimal Steiner (µ(α) + 2)-system

If µ(α) = 1, Tµ is the theory of a Steiner triple system bi-interpretable
with a Steiner quasigroup.
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K µ

Definition

1 For µ ∈ U , Kµ is the collection of M ∈ K 0 such that
χM(A,B) ≤ µ(A,B) for every good pair (A,B).

2 X is d-closed in M if d(a/X ) = 0 implies a ∈ X (Equivalently, for
all finite Y ⊂ M − X , d(Y/X ) > 0.).

3 Let Kµ
d consist of those M ∈ Kµ such that M ≤ N and N ∈ K̂µ

implies M is d-closed in N.
Moreover, if M ∈ Kµ

d , and B ≤ M, for any good pair (A,B),
χM(A,B) = µ(A,B).
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Main existence theorem

Theorem (Baldwin-Paolini)[BP18]
For any µ ∈ U , there is a generic strongly minimal structure Gµ with
theory Tµ.
If µ(α) = k , all lines in any model of Tµ have cardinality k + 2.
Thus each model of Tµ is a Steiner k -system and µ(α) is a
fundamental invariant.

Proof follows Holland’s [Hol99] variant of Hrushovski’s original
argument.
New ingredients: choice of amalgamation, analysis of primitives,
treatment of good pairs as invariants (e.g. α).
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Pure Steiner systems: (M,R) |= Tµ

Definition

A ⊆ M |= T has essentially unary definable closure if
dcl(A) =

⋃
a∈A dcl(a).

Theorem
If A ≤ M |= Tµ, µ ∈ U and µ(α) > 1, then A has, at worst, essentially
unary definable closure.
In particular, it does not interpret a quasigroup.

Proof sketch:
Let A ≤ M and c ∈ dcl(A) ⊂ acl(A). Without loss of generality, c 6∈ A.
So d(c/A) = 0 and for some good pair (B,C) with B ⊆ A, c ∈ C.
If |B| ≥ 2, by Definition 26, c is not definable over A.
If |B| = 1, there may be (depending on µ) a definable unary function.
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Coordinatization by varieties of algebras
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Coordinatizing Steiner Systems

Definition
A collection of algebras V ”weakly coordinatizes” a class S of
(2, k)-Steiner systems if

1 Each algebra in V definably expands to a member of S
2 The universe of each member of S is the underlying system of

some (perhaps many) algebras in V .
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Coordinatizing Steiner triple systems

Example
A Steiner quasigroup (squag) is a groupoid (one binary function) which
satisfies the equations:
x ◦ x = x , x ◦ y = y ◦ x , x ◦ (x ◦ y) = y .

Steiner triple systems and Steiner quasigroups are biinterpretable.
Proof: For distinct a,b, c:

R(a,b, c) if and only if a ∗ b = c

Theorem
Every strongly minimal Steiner (2,3)-system given by Tµ with µ ∈ U is
coordinatized by the theory of a Steiner quasigroup definable in the
system.
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2 VARIABLE IDENTITIES

Definition
A variety is binary if all its equations are 2 variable identities: [Eva82]

Definition
Let q be a prime power.
Given a (near)field (F ,+, ·,−,0,1) of cardinality q and an element
a ∈ F , define a multiplication ∗ of F by x ∗ y = y + (x − y)a. An
algebra (A, ∗) satisfying the 2-variable identities of (F , ∗) is a
block algebra over (F , ∗)
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Coordinatizing Steiner Systems

Key fact: weak coordinatization [Ste64, Eva76]
If V is a variety of binary, idempotent algebras and each block of a
Steiner system S admits an algebra from V then so does S.

Consequently
If V is a variety of binary, idempotent algebras such that each
2-generated algebra has cardinality k , each A ∈ V determines a
Steiner k -system.
(The 2-generated subalgebras.)
And each Steiner k -system admits such a coordinatization.

But we showed the coordinatization cannot be defined in the pure
Steiner system.
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Forcing a prime power

Theorem
If a (2,q) Steiner systems is weakly coordinatized k must be a prime
power.

Proof: As, if an algebra A is freely generated by every 2-element
subset, it is immediate that its automorphism group is strictly
2-transitive. And as [Ś61] points out an argument of Burnside [Bur97],
[Rob82, Theorem 7.3.1] shows this implies that |A| is a prime power.

Are there any strongly minimal quasigroups (block algebras)?

John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Helsinki January 28, 2019 38 / 59



Interpretability

Theorem
For every prime power q there is a strongly minimal Steiner q-system
whose theory is interpretable in a strongly minimal block algebra.

Theorem

Let q = pn and let V be a specified variety of (2,q)-block algebras over
Fq. Let τ ′ contain ternary relations R and F . For each µ ∈ U , there is a
strongly minimal τ ′-theory Tµ′,V such that the reducts to R are strongly
minimal q-Steiner systems and the reducts to F are strongly minimal
block algebras in the variety V with each line being a copy of F2(V ),
the free V -algebra on two generators.
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Interpretability: Details if appropriate
Fix a vocabulary τ̂ with ternary predicates F ,R.

Theorem
Fix a variety V of block algebra with F2(V ) = q If µ ∈ U , and the lines
in Tµ have length q = pn. There is a strongly minimal theory Tµ′,V such
that if (A,F ,R) |= Tµ′,V then A � R is a Steiner q-system and A � F is
in V .

Proof: Do the construction for structures (A,F ,R) in a vocabulary τ̂
with δ(A,F ,R) = δ(A,R).
Modify K 0 to K̂ 0 by including only structures such that every line has
length 2 or q.
Expand each line by interpreting the relation F as the graph of F2(V ).

For each τ̂ isomorphism type of µ(A,F ,R) with reduct (A,R) that
represents a good pair, let µ′(A,F ,R) = µ(A,R).

With this modification, we return to the usual proof.
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What do we know about coordinatizing algebra

Fact
Steiner quasigroups are congruence permutable, regular, and uniform.
The variety of Steiner quasigroups is not residually small. Finite
members are directly decomposable.

We can show that models of the Tµ are not locally finite.

Question
1 Are these ℵ1-categorical block algebas subdirectly irreducible or

even simple? Surely they are not free?!
2 How does the variety associated with Tµ depend on µ?

Note that we can certainly get different theories T̂µ for the same µ
because we had to specify the variety of the block algebra.
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III. Interactions with Combinatorics
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Infinite linear spaces

There is no theory of infinite linear spaces comparable to the
enormous amount known about finite linear spaces. This is
due to two contrasting factors. First, techniques which are
crucial in the finite case (notably counting) are not available.
Second, infinite linear spaces are too easy to construct;
instead of having to force our configurations to close up, we
just continue adding points and lines infinitely often! The
result is a proliferation of examples without any set of tools to
deal with them.
Cameron, [Cam94]

1 Find families (namely the models of a complete first order theory)
of infinite linear spaces that are similar both combinatorially and
model theoretically.

2 Borrow one from one field to the other.
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Hrushovski sm-classes

A Hrushovski sm-class is determined by a triple (L∗, ε,U).

L∗ is a collection of finite structures in a vocabulary σ, not necessarily
closed under substructure.

ε is a function from members of L∗ to natural numbers satisfying the
conditions that gives a ‘predimension’.

L0 is the subset of L∗ consisting of those with hereditarily non-negative
ε-rank, perhaps restricted by other conditions using ε.

Lµ is the subset of L0 such that:
Each isomorphism type β of (m.s.a., good pair, 0-primitive) models
and each B ∈ A ∈ Lµ, there are less than µ(β) copies of C over B in A.

If Lµ satisfies amalgamation there is a strongly minimal theory Tµ and
a generic structure Gµ.
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The cycle graph of a Steiner triple system

This is a standard topic in finite combinatorics, extended to infinite
system by e.g. Cameron and Webb. [CW12]

Definition
1 Fix any two points a,b of a Steiner triple system S = (P,L). The

cycle graph G(a,b) has vertex set P − {a,b, c} where (a,b, c) is a
block. There is an edge coloured a (resp., b) joining x to y if and
only if axy is a block (resp., bxy is a block).

2 a proper initial segment of an (a,b)-cycle is called an (a,b)-chain.
3 It is uniform if the graphs G(a,b) are pair-wise isomorphic.

Corollary
If (M,R) |= Tµ is 2-transitive (M,R) is uniform.
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Getting 2-transitivity of models of Tµ:

Lemma
If for any B ∈ K 0 with |B| ≥ n, δ(B) ≥ n then, for any µ the number of
n-types in Gµ is bounded by the number of quantifier free n-types.

Corollary: Hrushovski example 5.2

If every B ∈ K−0 (don’t assume two point determine a line) satisfies
|B| ≥ 3, δ(B) ≥ 3, then every model of Tµ is a 2-transitive Steiner triple
system.
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2-transitivity of models of Tµ: Consequences

Lemma
For any µ ∈ U , if (M,R) |= Tµ, A ⊂ Gµ and |A| = 2 implies A ≤ Gµ then
the automorphism group of (M,R) acts 2-transitively on (M,R).

Proof.
Since all pairs (a,b) are isomorphic and each sits strongly in the
generic G, the result is immediate for G. But this property extends to all
models since if one model of a complete theory has a single 2-type, all
models do. And each model of a strongly minimal theory is finitely
homogeneous.
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From combinatorics to model theory

Lemma

There are infinitely many mutually non-imbeddible primitives in K 0 over
a two element set. In fact, there are infinitely many mutually
non-embeddible primitives in K 0 over the empty set and similarly over
a 1-element set.

Proof.
Over any a,b for each k build an (a,b)-cycle Ck , c1, c2, . . . c4k of
length 4k with c1bc4k and c1ac2. Ck has 4k points and
({a,b},Ck ) ∈ K 0 has 4k 3-element lines. So
δ({a,b},Ck )) = 2 = δ({a,b}). Primitivity easily follows since if the
cycle is broken, the δ-rank goes up.
Minor variants for ∅ and singletons.
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The length of cycles

Definition

We denote the isomorphism type of ({a,b},Cn) by γn.

Since for any n, µ(γn) is finite, we have

Lemma

For any µ ∈ U and any M |= Tµ, for every n, and every (a,b) there are
only finitely many (a,b)-cycles of length n. Since G(a,b) is infinite,
there must be arbitrarily long finite (a,b)-chains. Since Gµ is saturated
there is also an infinite cycle.
More careful analysis shows only the prime model can omit infinite
chains.
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Generalize to Strongly minimal q-Steiner Systems

Words: Cycle graph renamed path graph: For d not on the line a,b
consider paths beginning with d and alternating a ∗ dodd and b ∗ deven.
Repeat the analysis.

Propositions
Let (M,F ,R) |= Tµ′,V .

1 Except in the prime model M0 of Tµ there is a GMj (a,b) with at
least one infinite cycle.

2 If µ ∈ U , the dimension of the prime model of either Tµ or Tµ′,V is
at most 2. If the Fano plane is in Kµ then it is 0.
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Avoiding Finite Cycles I

Definition

Let B denote the set of µ ∈ U except that for every n, µ(γn) = 0.
We denote by KB,µ the class of finite structures such that for all B:

(∗) |B| > 1 implies δ(B) > 1 and µ ∈ B.

When KB,µ, we call the associated theory TB,µ.

(∗) implies that every two element subset of the generic is strong and
so every model is 2-transitive.
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Avoiding Finite Cycles II

Lemma

If µ ∈ B, KB,µ has the amalgamation property.

If µ ∈ B then for any model, (M,R), of TB,µ and any (a,b),
all (a,b)-cycles are infinite
and (M,R) is uniform.

Setting finitely many of the µ(γi) = mi for finitely many i allows finitely
many cycles.
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Questions
1 Verify that the Steiner spaces coordinatized as near vector spaces

or near Boolean algebras [GW80] cannot be obtained by
Hrushovski constructions. (There is a definable associative binary
operation.)

2 Are there other approaches to coordinatization (e.g. by r -ary
functions for larger r ), that provide greater algebraization?

3 Our constructions show there are continuum many first order
theories of strongly minimal block algebras. Do they represent
continuum many distinct varieties? I.e are the classes HSP(Gµ)
distinct for (sufficiently) distinct µ?

4 Is it possible to characterize those µ such that Tµ can be
interpreted in a quasigroup?

5 Can anything be gained from these properties of the quasigroup?
What is the algebraic structure of a strongly minimal block
algebra?
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