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In this short note we first sketch four proofs of the Hardy-Weinberg prin-
ciple. The first two are in the modern context of working from the allele
frequency. The second two, due to Hardy and Weinberg work more directly
with genotype frequency. In particular, Hardy’s criterion only require know-
ing the genotype frequency.

My special thanks to Brendan Boyle of St. John’s college who pointed
out a mistake in previous version. For more detail and examples see [1].

1 Why the Hardy-Weinberg principle holds

Consider the simplest situation of a monogenic Mendelian trait: a pair of
alleles, one dominant A and the other recessive a, and suppose the frequency
of the allele A is p and that of a is q.

Hardy-Weinberg Equilibrium Principle: Consider a population sat-
isfying biological conditions 1-6 that are listed below. If in a certain gen-
eration the allele frequencies are p and q and the genotype frequencies are
p2, 2pq, q2 then BOTH the genotype and allele frequencies remain the same
for as many generations as conditions 1-6 continue to hold.

Hardy implicitly and Weinberg explicitly used the reasoning of a Punnett
square of frequencies to verify:

Crucial H-W Insight: Under fully random mating, the frequency of
AA homozygotes in the next generation is p2, of heterozygotes is 2pq, and of
aa homozygotes is q2.

The contribution of Hardy and Weinberg is to see that this principle holds
regardless of the allele frequency in the first generation. It was known by a
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number of people (e.g. Yule, Pearson) for p = 1/2.
We first give a proof that came later as biologists began looking at the

evolution of a population rather than the purely genetic question of what
happens between parents and their children. So we must introduce some
conditions (1 -4) that are absent from the Hardy and Weinberg papers.

Biological Conditions
Suppose the following conditions hold (with respect to a particular gene):

1. There is no migration (”gene flow”) in or out of the population.

2. Natural selection is not occurring.

3. Mutation is not occurring.

4. Each member of the population is equally likely to breed.

5. The population is infinitely large.

6. (Full random mating) Each pair from the population is equally likely
to breed

It is easy to see using only reasoning about biology that:
Observation 1. As long as a population satisfies biological conditions

1-5 the allele frequencies (p and q) are the same in each generation.

We give two arguments here, which differ in certain details, for the Hardy
Weinberg principle. In later sections we review the arguments of Hardy and
Weinberg, giving four slight different proofs.

The ‘least math’ proof When a population satisfies conditions 1-5,
Observation 1 ensures that allele frequencies will remain unchanged in ev-
ery succeeding generation satisfying those conditions. Applying condition
6 and the crucial H-W insight, in each generation, therefore, the genotype
frequencies are p2, 2pq, q2.

A proof separating the ‘biological’ from the ‘random’ conditions
This version1 isolates where the biological hypotheses are used.

1Herron-Freeman[2] has the same general idea –but as in the ‘least math’ version–
building in the evolutionary hypotheses.
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Fact 1.1 (From genotype frequency to allele frequency) In any pop-
ulation basic Mendelian genetics allows us to determine the allele frequencies
from the genotype frequencies (in cases where all three genotypes can be iden-
tified).

This is easily seen: In ANY population, the frequency of the dominant al-
lele of a Mendelian pair is the sum of two times the number of dominant
homozygotes (AA) + the number of heterozygotes (Aa) divided by the total
number of these alleles (i.e twice the number of individuals).

We can view this statement in terms of genotype frequencies. Noting
that the number of alleles is 2 times the number I of individuals, this means
frequency of the dominant allele is

2 × (number of AA individuals)

2I
+

number of Aa individuals

2I
.

This is:

number of AA individuals

I
+

number of Aa individuals

2I
.

So (*) the frequency of the dominant allele in the second generation is
the frequency of AA plus 1

2
the frequency of Aa.

Now we get the result for one generation which does not involve biological
hypotheses 1-4. We assume there are no mutations taking place during the
mating process.

One generation HW principle: If an infinite population with al-
lele frequencies p and q for the parental generation has full random
mating then at birth the second generation has the allele frequen-
cies p and q.

Proof. By the crucial insight noted in the introduction the genotype
frequencies in the second generation are p2, 2pq, q2.

So, by (*) the frequency p1 of the dominant allele in the next generation
is p1 = p2 + pq. By basic algebra, p1 = p2 + pq = p(p + q) = p and this
equation is exactly true because the population is infinite. That is, the allele
frequency is the same in both generations.
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The general HW principle: If a population satisfies the Hardy-
Weinberg criteria in one generation, the genotype and allele fre-
quencies remain the same for as many generations as conditions
1-6 continue to hold.

Biological conditions 1 -4 guarantee that the allele frequency is still p1 = p
when the second generation mates. Repeating the 1-generation argument,
the genotype and allele frequencies are the same in the third generation and,
indeed, as long as the biological conditions continue to hold.

2 Hardy and Weinberg

In this section we will consider the proofs of Hardy and Weinberg who are
studying genetics, not evolution. They completely ignore external influences
on the allele pool.

2.1 Hardy’s Criterion

Hardy[3] works entirely with genotype frequencies (never actually mentioning
the allele frequency) and provides a condition (that we consider below) on
genotype frequencies which guarantees that they repeat. We probably don’t
use this argument now because it concerns a triple proportion: D:H:R, where
D,H,R are the frequencies of the homozygous dominant, heterozygote, and
homozygous recessive genotype. I have reformulated this proportion in mod-
ern mathematical terminology.

In the usual formulations, determining whether H-W eq exists in ONE
generation of a population can only be done when both the allele frequencies
and the genotype frequencies are known. In practice, of course, for most
species the generation time is too long to be able to compare phenotype
frequencies over several generations and thus some method is needed to de-
termine whether or not a population is at equilibrium for a given gene at a
particular time. Hardy[3] provided an ingenious way to determine H-W eq
in a single generation in terms of genotype frequencies alone. By Fact 1.1 we
can always compute the allele frequency from the genotype frequency2, so
this method is only a convenience. But it also provides another proof of the

2The frequency of the dominant ideal is twice the frequency of homozygous individuals
plus the frequency of heterozygotes.
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general principle; the biological conditions 1-6 imply the genotype frequen-
cies remain constant from generation to generation. According to Hardy, in
mathematical terms equilibrium (’stability’) exists when H2 = DR, where
D,H, and R are defined as follows.

1. D is the number of homozygous dominant individuals,

2. 2H is the number of heterozygous individuals, and

3. R is the number of homozygous recessive individuals.

The frequency of the recessive allele is

R + H

D + 2H + R
Generation 1.

(If we actually count alleles we double each of R,H,D and then factor
out a 2.)

Therefore, if all the criteria are met, the number of homozygous reces-
sive individuals in the next generation is the result of all possible matings
among the H Heterozygotes who contribute a recessive and the R homozy-
gous Recessives: (H+R)2. The total number of individuals in the entire next
generation is (D + 2H + R)2. The FREQUENCY of homozygous recessive
individuals, therefore, is:

(H + R)2

(D + 2H + R)2
Generation 2.

Thus, the frequency of the homozygous recessive is the same in both genera-
tions if and only if the following genotype equation holds.

(H + R)2

(D + 2H + R)2
=

R

D + 2H + R
.

Now we do some pure algebra; to clear fractions, multiply both sides of
the equation by (D + 2H + R)2, getting:

(H + R)2 = R(D + 2H + R).

So H2 + 2HR + R2 = DR + 2HR + R2 and subtracting 2HR + R2, we
get the required H2 = DR.
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2.2 Weinberg’s argument

Weinberg [5] gives almost the same argument. He starts with allele frequen-
cies; computes (as proportions) the genotype frequencies in second gener-
ation: that is, he writes out the crucial insight. Then he uses the same
reasoning on the genotype frequencies in the second generation: he squares
D + H + R to compute the genotype frequency in the third generation. He
then simplifies the algebraic express to see that the second and the third
generation have the same genotype frequency. Thus equilibrium has been
established.

Interestingly neither Hardy nor Weinberg point out that the allele fre-
quency is also constant.
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