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Abstract. A linear space is a system of points and lines such that any two

distinct points determine a unique line; a Steiner k-system (for k > 2) is a linear

space such that each line has size exactly k. Clearly, as a two-sorted structure,
no linear space can be strongly minimal. We formulate linear spaces in a (bi-

interpretable) vocabulary τ with a single ternary relation R. We prove that for

every integer k there exist 2ℵ0 -many integer valued functions µ such that each
µ determines a distinct strongly minimal Steiner k-system Gµ, whose algebraic

closure geometry has all the properties of the ab initio Hrushovski construction.

Thus each is a counterexample to the Zilber Trichotomy Conjecture.

1. Introduction

Zilber conjectured that every strongly minimal set was (essentially) bi-inter-
pretable either with a strongly minimal set whose associated acl-geometry was
trivial or locally modular, or with an algebraically closed field. Hrushovski [Hru93]
refuted that conjecture by a seminal extension of the Fräıssé construction of ℵ0-
categorical theories as ‘limits’ of finite structures to construct strongly minimal
(and so ℵ1-categorical) theories. In this paper we modify Hrushovski’s method
to construct 2ℵ0-many strongly minimal Steiner systems that also violate Zilber’s
conjecture. The examples arising from Hrushovski’s construction have been seen as
pathological, and there has been little work exploring the actual theories. The new
examples that we construct here are infinite analogs of concepts that have been
central to combinatorics for 150 years.

Our construction of strongly minimal linear spaces via a Hrushovski construc-
tion might lead in two directions: (i) explore infinite Steiner systems investigating
combinatorial notions appearing in such papers as [Cam94, CW12, GW75, Ste56];
(ii) search for further mathematically interesting strongly minimal sets with exotic
geometries. This paper is an essential prerequisite for the sequel [Bal19], where we
address both issues by showing the examples here admit no parameter-free defin-
able binary function, expand the techniques used here to construct strongly minimal
quasigroups, and extend the combinatorial analysis of [CW12] to those quasigroups.

Our construction combines methods from the theory of linear spaces/combina-
torics and model theory. A linear space (Definition 2.2) is a system of points and
lines such that any two points determine a unique line. A Steiner k-system is a
linear space such that all lines have size k. We explain strong minimality below
and explore its connection with Steiner systems in Section 2.2.
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The key ingredient of our construction is the development in [Pao] of a new
model theoretic rank function inspired by Mason’s α-function [Mas72], which arose
in matroid theory. Using this new rank to produce a strongly minimal set requires
a variant on the Hrushovski construction [Hru93] with several new features. This
is the first of a series of papers exploring these examples. Here are the main results
of this paper; they depend on definitions explained below.

• Theorem 2.5: The one-sorted (Definition 2.1) and two-sorted (Defini-
tion 2.2) notions of linear space are bi-interpretable.
• Theorem 2.9(2): For each k, with 3 6 k < ω, there are 2ℵ0-many strongly

minimal theories Tµ (depending1 on an integer valued function µ) of infinite
linear spaces in the one-sorted vocabulary τ that are Steiner k-systems.
• Conclusion 5.26: Each theory Tµ admits weak2 elimination of imaginar-

ies, its geometry is not locally modular, but it is CM-trivial and so it does
not interpret a field. Thus, it violates Zilber’s conjecture.

The last two results make sense only in the one-sorted vocabulary τ (see below for
a more detailed explanation of this). This phenomena is symptomatic of the inter-
play among model theory, finite geometries and matroid theory. Notions in these
areas are ‘almost’ the same. Sometimes ‘almost’ is good enough and sometimes
not. The same intuitive structures are formalized in different vocabularies and in
different logics depending on the field. Theorem 2.5 addresses this issue; further
refinements on bi-interpretability appear in Section 2.1 and even more in [Bal19].

Much of the current research on strongly minimal theories (as opposed for exam-
ple to the strongly minimal sets discovered in differentially closed fields) focuses on
classifying the attached acl-geometry. Work of Evans, Ferreira, Hasson, and Mer-
melstein [EF11, EF12, HM18, Mer18] suggests that up to arity or more precisely,
purity, (and modulo some apparently natural conditions3) any two acl-geometries
associated with strongly minimal Hrushovski constructions are locally isomorphic.
This analysis is orthogonal to our program, which focuses on the particular strongly
minimal theories constructed.

A key difference from the finite situation is that k-Steiner systems of finite car-
dinality v occur only under strict number theoretic conditions on v and k. In
contrast, for every k, we construct theories with countably many models in ℵ0 and
one in each uncountable power that are all Steiner k-systems. But the number the-
ory reappears when we attempt to find algebraic structures associated with these
geometries. One goal is to coordinatize the Steiner systems by nicely behaved alge-
bras. A substantial literature [Ste57,Ste56,GW75,GW80] builds a correspondence
between k-Steiner systems and certain varieties of universal algebras. But while
this correspondence is a bi-interpretation for k = 3, it does not rise to that level
in general. Indeed, for k > 3, we show [Bal19] that none of the strongly minimal
Steiner systems constructed here interpret a quasi-group4. We also prove there that

1The theory of course depends on the line length k; k is coded by µ so we suppress the k.
2In view of Lemma 5.25 and Notation 5.24 our argument may, in very special cases, require

naming finitely many constants to guarantee that acl(∅) is infinite.
3In [EF11,EF11], the class of finite structures is restricted only by the dimension function and

properties of mu, that satisfy several technical conditions, which don’t hold in some constructions
in [Bal19], as opposed to such axioms as ‘two points determine a line’ here or the existence of a
quasigroup structure in [Bal19].

4A quasigroup is a structure (A, ∗) such that specification of any two of x, y, z in the equation
x∗y = z determines the third uniquely. This roughly corresponds to the current usage of groupoid.
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for q a prime power, and V an appropriate variety, for each of our theories Tµ there
is a theory Tµ,V of a strongly minimal quasigroup in V that interprets a q-strongly
minimal Steiner system.

Section 2 provides background on strong minimality and linear spaces, and proves
the bi-interpretablity between the one and two-sorted approach. Sections 3 and 4
lay out the distinctions in the basic theory between the general Hrushovski approach
and the specific dimension function for linear spaces studied here. In Section 5
we prove the main existence theorem for strongly minimal Steiner systems and
discuss the connection with recent work on the model theory of Steiner systems.
For space reasons, this paper has been substantially shortened from a version at
https://arxiv.org/abs/1903.03541 that contains a few proofs hinted at here
and much more extensive discussion of the background for the results. We thank
the referee for a very helpful report.

2. Linear Spaces

In this section firstly we explore the relationships between the one-sorted ap-
proach to linear spaces (Definition 2.1) and the two-sorted approach (Definition 2.2),
and show that the two approaches are bi-interpretable (Theorem 2.5). We then
show how the assumption of strong minimality imposes very strong conditions on
a linear space (Fact 2.7): all lines are finite and of bounded length.

2.1. One and Two-Sorted Formalization

Definition 2.1 (Linear Spaces in τ). Let τ contain a single ternary relation symbol
R which holds of sets of 3 distinct elements in any order. K∗, the class of linear
spaces, consists of the τ -structures that satisfy: any two distinct points determine a
unique line when R is interpreted as collinearity. That is, R(x, y, z)∧R(x, y, w)→
R(x,w, z). Each pair of elements is regarded as lying on a (trivial) line; each non-
trivial line is a maximal R-clique.
K∗0 denotes the collection of finite structures in K∗.

Definition 2.2 (Linear Spaces in τ+). A linear space is a structure S for a vo-
cabulary τ+ with unary predicates P (points) and L (lines) and a binary relation I
(incidence) satisfying the following properties:

(A) any two distinct points lie on at exactly one line;
(B) each line contains at least two points.

K+ denotes the collection of τ+-structures that are linear spaces.

Remark 2.3. We omit in Definition 2.2 the usual non-trivality condition that
there are at least three points not on a common line. It will of course be true of
the infinite structures that we construct, but allowing even the empty structure is
technically convenient.

The switch from a 2-sorted to a 1-sorted formalism leads to some peculiar no-
tation. In the two-sorted world, a line in (M ;PM , LM ) can gain points when M
is extended. In the one-sorted context a line is a subset of the universe which is
definable from any two points lying on it. But this definition is non-uniform. If
the line is trivial (only two points) the definition is x = a ∨ x = b; if the line is

But, in the literature mentioned in the paragraph a groupoid is an algebra with a single binary
function.
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non-trivial the definition is R(a, b, x). As a model M is extended, not only may a
line gain points, but the correct such definition can change.

In the next definitions, we regard a linear space in the vocabulary τ+ (cf. Def-
inition 2.2) as a τ -structure (cf. Definition 2.1); this is easily done. Given a τ+-
structure B as in Definition 2.2, define a τ -structure A by letting A be P (B),the
points of B, and define R(a, b, c) to hold if and only there is line ` in B such
that each of a, b, c is on `.

Remark 2.4. We now show that the class K∗ (Definition 2.1) of single-sorted
linear spaces is bi-interpretable with the class K+ of linear spaces in the two-
sorted vocabulary τ+ (cf. Definition 2.2). Notice that conditions (A) and (B) of
Definition 2.2 imply that every pair of distinct lines intersects in at most one point.
Also, recall that we allow models with no points or lines.

We now define a pair of mutually inverse bijections from the models of a class
of τ -structures to a class of τ+-structures and back that are uniformly definable,
respect isomorphism, and preserve substructure.

Theorem 2.5. (1) There is an interpretation F of K+ into K∗. That is, for every
A ∈ K∗ there is a τ+-structure F (A) ∈K+ definable without parameters in A.

(2) There is an interpretation G of K∗ into K+. That is, for every B ∈ K+ there
is a τ -structure G(B) ∈K∗ definable without parameters in B.

(3) For any A ∈K∗, G(F (A)) is definably isomorphic to A and for any B ∈K+,
F (G(B)) is definably isomorphic to B. Thus we have a bi-interpretation.

Proof. We prove (1). Let A ∈ K∗. Set P = {(a, a) : a ∈ A} as the set of points of the
τ+-structure F (A). Towards describing the lines, define the following equivalence
relation E on A2−P by declaring (a, b)E(c, d) if and only if the following condition
is met:

(?) {a, b} = {c, d} or {a, b} ∪ {c, d} is an R-clique.

We verify that E is transitive. To this end, suppose that (a, b)E(c, d) and (c, d)E(e, f),
e 6= f , {a, b} 6= {c, d} and {c, d} 6= {e, f}. Since each pair is of distinct elements
both {a, b, c, d} and {c, d, e, f} are R-cliques and since two points determine a line
{a, b, c, d, e, f} is an R-clique and transitivity is established. Now, let

L = {[(a, b)]E : (a, b) ∈ A2 such that a 6= b}
be the set of lines of F (A). For (p, p) ∈ P and [(a, b)]E ∈ L define the following
point-line incidence relation:

(p, p)I[(a, b)]E ⇔ ∃(c, d) ∈ [(a, b)]E such that p ∈ {c, d}.
Clearly, F (A) is definable in the τ -structure (A,R). We show that F (A) ∈ K+,
i.e. Definition 2.2 is satisfied. Obviously, Axiom (B) is satisfied. We prove axiom
(A). Towards this goal, let `1 and `2 be two distinct lines of F (A) that intersect
(via the definition of I) in two distinct points (b1, b1) and (b2, b2). By hypothesis
`1 6= `2 and so, we can assume `1 = [(b1, b2)]E and there is (c, d) ∈ A2 such that
c 6= d, ¬E((b1, b2), (c, d)) and (c, d) ∈ `2. Note that any E-equivalence class of
element with more than 3 elements consists of an R-clique and distinct R-cliques
can intersect in only one point; so, we finish.

We prove (2). Let B ∈K+. Define the τ -structure G(B) = (A,R) by letting A be
the points of B and defining R(a, b, c) if and only if a, b, c are distinct and there is
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a line ` in B such that each of a, b, c is on `. Since B is a linear space the axioms
of K∗ are immediate.

We prove (3) by showing that up to definable isomorphism G is F−1. Fix A
and F (A) from (1). We analyze the composition G(F (A)) and show the image
is definably isomorphic to A. The set of points, PF (A), is the diagonal ∆(A2)
of A2. Map (a, a) to a. The set of lines of F (A) is LF (A) = (A2 − ∆(A2))/E.
Let m ∈ LF (A) and suppose (a0, a0), (a1, a1), (a2, a2) are on m, where the ai are
distinct. By the definition of I in F (A), for each i < 3 there exists an a′i such that
for i 6= j, [(ai, a

′
i)]E = [(aj , a

′
j)]E . By (∗) this implies the ai, a

′
i for i < 3 (some may

be repeated) form an R-clique in A. Thus G(F (A)) is definably isomorphic to A.
Now we reverse the procedure and show that for B ∈ K+, F (G(B)) is definably
isomorphic to B. This is even easier. If a, b, c are collinear in B, then G(B) |=
R(a, b, c) (Note PB is the domain of G(B)). For this, recall the argument in part
(1) showing F (A) ∈ K∗ takes collinear points of A into a clique composed of
elements of the diagonal of G(B), which correspond to a clique in B. Applying this
argument to G(B) completes the proof.
Finally, this shows, in the case at hand, the essential point of [Mak18], that F is
onto from K∗ to K+.

2.2. Strongly Minimal Linear Spaces

Strong minimality imposes significant restrictions due to the following easy con-
sequence of the compactness theorem:

Fact 2.6. If M is strongly minimal, then for every formula ϕ(x, y), there is an
integer k = kϕ such that for any a ∈ M , (∃>kϕx)ϕ(x, a) implies that there are
infinitely many solutions of ϕ(x, a), and thus finitely many solutions of ¬ϕ(x, a).

Fact 2.6 has an immediate consequence for any strongly minimal linear space,
(M,R) ∈ K∗ (cf. Definition 2.1), where all lines have at least 3 points: there can
be no infinite lines. Suppose ` is an infinite line. Choose A not on `. For each
Bi, Bj on ` the lines ABi and ABj intersect only in A. But each line Bi has a
point not on ` and not equal to A. Thus ` has an infinite definable complement,
contradicting strong minimality. More strongly, we observe:

Fact 2.7. If (M,R) is a strongly minimal linear space, then there exists an integer
k such that all lines have length at most k.

As, R(x, y, z) means5 x, y, z are collinear, i.e. x is on the line determined by
y, z, applying Fact 2.6 we see that there is k = kR such that (∃>kRx)R(x, a, b)
implies the line through a, b is infinite, which contradicts the preceding paragraph.
In particular, there can be no strongly minimal affine or projective plane, since in
such planes the number points on a line must equal the number of lines through a
point (+1 in the finite affine case).

Definition 2.8. Let K ⊆ ω. We say that the linear space S is a K-Steiner system
if any line of S is finite and its size is in K. When K = {k} we simply write
k-Steiner system instead of {k}-Steiner system.

The main goal of our paper is to prove item (2) of the next theorem, where item
(1) is just a reformulation of Fact 2.7.

5We require any triple satisfying R to be of distinct points.
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Theorem 2.9. (1) A strongly minimal infinite linear space in the vocabulary τ
(cf. Definition 2.1) is a K-Steiner system for some finite set K ⊆ ω.

(2) For each 3 6 k < ω, we construct continuum-many strongly minimal infinite
linear spaces in the vocabulary τ that are k-Steiner systems.

3. The Specific Context

We develop in this section the basic properties of the essential ingredient in the
construction of our strongly minimal Steiner systems, a new predimension function
δ (cf. Definition 3.3), introduced in [Pao]. It was inspired by Mason’s α-function
[Mas72], a well-known measure of complexity for matroids. We define this function
explicitly without exploring the α-function. For the connection see [Pao, Section 3].

Notation 3.1. (1) For any class L0 of finite structures for a vocabulary σ that is

closed under substructure, L̂0 denotes the class of all σ-structures M such that
every finite substructure of M is in L0.

(2) Given an arbitrary class of structures L for a vocabulary σ we denote by L0 the
class of finite structures in L. (For convenience, we allow the empty structure.)

(3) We write w for isomorphism and X ⊆ω Y for finite subset.

The following notation will clarify the distinction between 2-element lines (a.k.a.
trivial lines) which are understood to hold of arbitrary pairs of elements from models
in K∗ and lines where the relation symbol R is explicit (cf. Definition 2.1).

Definition 3.2. Let A ∈ K∗ and A ⊆ B with B ∈ K∗ (cf. Definition 2.1).

(1) The subspace closure clR(X) in A, is the smallest subset B of A containing X
such that if a ∈ A satsfies R(b1, b2, a) with the bi ∈ B, then a ∈ B.

(2) A line of A is an R-closed subset X of A such that all the points from X are
collinear. In particular, if two points a 6= b ∈ A and there is no c ∈ A with
R(a, b, c), then {a, b} is a line. We call such lines ‘trivial’.

(3) We denote the cardinality of a line ` ⊆ A by |`|, and, for B ⊆ A, we denote by
|`|B the cardinality of ` ∩B.

(4) We say that a line ` contained in A is based in B ⊆ A if |` ∩ B| > 2, in this
case we write ` ∈ L(B).

(5) The nullity of a line ` contained in a structure A ∈ K∗ is:

nA(`) = |`| − 2.

Note that if B ⊆ A are both in K∗, and ` ⊆ A is a line then ` ∩ B may be in
L(B) (if it has at least two points) but may not be R-closed in A (i.e. if `−B 6= ∅).
We introduce the new rank δ that is central to this paper6. It has two key features:
(i) it is based on the notion of ‘dimension’ of a line; (ii) the associated geometry is
flat, and so we get counterexamples to Zilber’s conjecture.

Definition 3.3. For A ∈ K∗0 (recall Definitions 2.1 and 3.1( 2)), let:

δ(A) = |A| −
∑

`∈L(A)

nA(`).

6Mermelstein [Mer18] has independently studied variants on this rank, but only in the infinite
rank case so the intricate analyis of primitives in this paper did not arise in his work.
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Definition 3.4. (1) Let:

K0 = {A ∈ K∗0 such that for any A′ ⊆ A, δ(A′) > 0},

and (K0,6) be as in [BS96, Definition 3.11], i.e. we let A 6 B if and only if:

A ⊆ B ∧ ∀X(A ⊆ X ⊆ B ⇒ δ(X) > δ(A)).

(2) We write A < B to mean that A 6 B and A is a proper subset of B.
(3) For any X, the least subset of A containing X that is strong in A is called the

intrinsic or self-sufficient closure of X in A and denoted by iclA(X) or X.

Since in the current situation we are dealing with integer coefficients, for our
δ the intrinsic closure of every finite set is finite. Note that K0 has many fewer
structures that K∗0. In particular, no projective plane (except the Fano plane,
Example 4.3) or space A over a finite field is in K0; as, for each such A, δ(A) < 0.

We give a general conceptual analysis for submodularity7 and flatness of δ that
clarifies the proofs of Lemmas 3.7 and 5.26 (flatness of d).

Definition 3.5. (1) For a sequence F1, ..., Fs of elements of K0. For ∅ ( S ⊆
{1, ..., s}, we let FS =

⋂
i∈s Fi and F∅ =

⋃
16i6s Fi. We say that f is flat if for

all such F1, ..., Fs we have:

(∗) f(
⋃

16i6s

Fi) 6
∑
∅6=S

(−1)|S|+1f(FS).

(2) Suppose (A, cl) is a pregeometry on a structure M with dimension function d
and F1, ..., Fs are finite-dimensional d-closed subsets of A. Then (A, cl) is flat
if d satisfies equation (∗).

In the basic Hrushovski case, δ is flat because it is the difference between two
functions, the cardinality of each set, which satisfies inclusion-exclusion, and count-
ing the number of occurrences of R in each set, which undercounts. We now note
our δ is similarly represented and that δ is modular on the appropriate notion of
free amalgam: A⊕C B in K0.

Definition 3.6. Let A ∩ B = C with A,B,C ∈ K0. We define D := A ⊕C B as
follows:

(1) the domain of D is A ∪B;
(2) a pair of points a ∈ A − C and b ∈ B − C are on a non-trivial line `′ in D if

and only if there is a line ` based in C such that a ∈ ` (in A) and b ∈ ` (in B).
Thus, in this case, `′ = ` (in D).

Lemma 3.7.3 follows from submodularity and the particular definition of free
amalgam which is driven by ‘two points determine a line’.

Lemma 3.7. (1) δ is flat (Definition 3.5(1)).
(2) Let A,B,C ⊆ D ∈ K∗0, with A ∩ C = B. Then:

δ(A/B) > δ(A/C),

which an easy calculation shows is equivalent to submodularity:

δ(A ∪ C) 6 δ(A) + δ(C)− δ(B).

7This result is proved by computation in [Pao].
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(3) If E∩F = D, D 6 E and E,F,D ∈K0 then G = F⊕DE is in K0. Moreover,
δ(A ⊕C B) = δ(A) + δ(B) − δ(C) and any D with C ⊆ D ⊆ A ⊕C B is also
free. Thus, F 6 G.

Proof. (1) Recall δ(A) = |A| −Σ`⊆A(|`| − 2). Observe that if A,B are sets and ` is
a line in A ∪B, then:

|`| = |` ∩A|+ |` ∩B| − |` ∩ (A ∩B)|.
But in computing δ(

⋃
16i6s Fi) on the right hand of (*) one must sum for each S

only over those lines based in FS . Thus for example, in the case of two sets A,B,
if a line is based in A − B and has a single point in C − B (and none in B) that
point will not be counted on the right-hand-side but will be on the left. So the
subtracted term of δ(FS) is under-counted and δ(FS) is over-counted. This is not
corrected at the next step because no ` is based there. Thus, δ is flat.
(2) For such combinations of counting functions, submodularity is just the notion
of flat for two sets.
(3) We need to check that each pair of points a0, a1 determine a unique line in
G. Without loss of generality, one is in F − D and the other in E. Suppose for
contradiction there are two distinct lines on which both of a0, a1 are incident. If
both lines are contained in F , the claim is obvious. But, if not, Definition 3.6
guarantees that both of a0, a1 are on a unique line based in D.
By the general submodularity argument, δ(A⊕CB) 6 δ(A)+δ(B)−δ(C). But the
definition of the free amalgamation guarantees that each line that intersects A−B
and C − B in based on two points in B. There is no undercount as there may be
in (2) so we have equality.

Reference [BS96] provides a set of axioms for strong substructure. These axioms
can be seen to hold in our situation using Lemma 3.7.

Fact 3.8. (K0,6) satisfies Axiom A1-A6 from [BS96, Axioms Group A], i.e.:

(1) if A ∈K0, then A 6 A;
(2) if A 6 B ∈K0, then A is a substructure of B;
(3) if A,B,C ∈K0 and A 6 B 6 C, then A 6 C;
(4) if A,B,C ∈ K0, A 6 C, B is a substructure of C, and A is a substructure of

B, then A 6 B;
(5) ∅ ∈K0 and ∅ 6 A, for all A ∈K0;
(6) if A,B,C ∈K0, A 6 B, and C is a substructure of B, then A ∩ C 6 C.

We use the following notion of genericity:

Definition 3.9. The countable model M ∈ K̂0 is (K0,6)-generic when:

(1) if A 6M,A 6 B ∈K0, then there exists B′ 6M such that B wA B′;
(2) M is a union of finite substructures.

4. Primitive Extensions and Good Pairs

Using only the δ function one can build up models in K0 from well-defined
building blocks: primitive extensions and good pairs (Definition 4.1). This section
is an analysis of these foundations. In the next section we use them to study the
complete theories we are constructing.

Definition 4.1. Let A,B ∈K0.
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(1) We say that A is a primitive extension of B if B 6 A and there is no A0 with
B ( A0 ( A such that B 6 A0 6 A. Equivalently, we may describe a primitive
pair as (B,A) where B and A are disjoint (and so BA is the set in the initial
description).

(2) If δ(A/B) = 0, we write 0-primitive. We stress that in this definition while B
may be empty, A cannot be.

(3) We say that the 0-primitive pair A/B is good if there is no B′ ( B such
that (A/B′) is 0-primitive. When discussing good pairs, usually A and B are
disjoint; for ease of notation, sometimes A is confused with A ∪B.

(4) If A is 0-primitive over B and B′ ⊆ B is such that we have that A/B′ is good,
then we say that B′ is a base for A (or sometimes for AB).

(5) If the pair A/B is good, then we also write (B,A) is a good pair.

Remark 4.2. Note that if C is primitive over the empty set then the unique base
for C is ∅. For, if there is B 6= ∅ with B ( C with C based on B, then ∅ 6 B and
B ( C contradicting that C is primitive over the empty set.
This does not forbid the existence of C ∈ K0 such that δ(C/∅) = 0 but C is not
primitive over ∅; on this see Lemma 5.25.

Example 4.3. Some sets are based on the empty set. In particular, if C is the
τ -structure representing the unique 7 point projective plane (often called the Fano
plane), then δ(C) = 0. And it is easy to see (∅, C) is a good pair.

In earlier variants of the Hrushovski’s construction one could prove the existence
of a unique base B′ for any given 0-primitive extension A/B. Unfortunately, this
assertion is false in the current situation; cf. Example 4.4. We make up for this with
a careful examination of the structure of good pairs that almost regains uniqueness.

Example 4.4. For A ∈ K0 containing m + 2 points p1, ..., pm+2 on a line ` and
for some c such that c 6∈ {p1, ..., pm+2} but c is on ` in A ∪ {c}; we have that c is
0-primitive over A, and any pair of points in ` ∩A constitutes a base for c/A.

The following preparatory results allow us to characterize primitive extensions
and eventually prove amalgamation for (Kµ,6) (cf. Conclusion 5.13).

Proposition 4.5. Let B ∈K0 and b ∈ B such that b does not occur in any R-tuple
from B, then δ(B) = δ(B − {b}) + 1.

Proof. As b is on no line based in B−{b} this follows from Definitions 3.2 and 3.3.

Using the above proposition, we can see:

Proposition 4.6. Let A,B ∈K0 with A∩B = ∅, AB ∈K0 and B 6 AB. Then:

(1) if there exists b ∈ B such that b does not occur in any R-tuple from AB, and
B′ denotes B − {b}, then δ(A/B) = δ(A/B′).

(2) if the 0-primitive pair A/B is good (cf. Definition 4.1(2)), then for every b ∈ B
we have that b occurs in an R-tuple from AB.

Proof. It suffices to prove (1), and (1) is clear by applying Proposition 4.5 to AB
as follows:

δ(A/B) = δ(AB)− δ(B) = (δ(AB′) + 1)− (δ(B′) + 1) = δ(AB′)− δ(B′).
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We omit the short proof, using Proposition 4.5, of Lemma 4.7.

Lemma 4.7. Suppose C is a primitive extension of B such that |(C − B)| > 2,

then every non-trivial line ` with ` ∩ Ĉ 6= ∅ intersects B in at most one point.
Furthermore, if C is 0-primitive, then any point in (C −B) lies on two lines based
in (C −B).

The next lemma is the fundamental tool for our analysis of primitive extensions.

Lemma 4.8. Let B 6 C ∈K0 be a primitive extension. Then there are two cases:

(1) δ(C/B) = 1 and C = B ∪ {c};
(2) δ(C/B) = 0.

(2.1) There is c ∈ (C − B) incident with a line ` based in B if and only if
|(C − B)| = 1. In that case, any B′ ⊆ B with B′ ⊆ ` and such that
|B′| = 2 yields a good pair (B′, c). Furthermore, c is in the relation R
with an element b ∈ B if and only if b is on the unique line based in B′.

(2.2) If |(C − B)| > 2 then there is a unique base B0 in B for C. Moreover,
suppose b ∈ B and c ∈ (C −B). If b and c lie on a nontrivial line, then
b ∈ B0. And every b ∈ B0 lies on such a line, which must be based in
(C −B).

Proof. We follow the case distinction of the statement of the lemma:
Case 1. Suppose δ(C/B) > 0 and there are distinct elements in (C −B) that are
not on lines based in B, then any one of them gives a proper intermediate strong
extension of B that is strong in C. Thus C must add only one element to B yielding
Case 1.
Case 2. Suppose δ(C/B) = 0.
Case 2.1. Suppose there is an element c ∈ (C − B) which is on a line with two
points in B, say b1, b2, and |(C −B)| > 2. Then clearly Bc is a primitive extension
of B and Bc � BC. Thus, (C − B) must be {c}. Furthermore, ({b1, b2}, c) is a
good pair. So C is based on {b1, b2} and for any b ∈ B, b is R-related to c if and if
R(b1, b2, b); otherwise c would be on two lines based in B (contradicting B 6 C).
Conversely, if |(C −B)| = 1 then c must be on a line based in B since δ(C/B) = 0.
Case 2.2 |(C −B)| > 2 and δ(C/B) = 0.
By Lemma 4.7, each line ` ∈ L((C − B)) intersects B in at most one point b`.
If there is no such b`, then there is no R-relation between (C − B) and B, so by
Proposition 4.6(2), B = ∅ and C is based on ∅. As argued in Remark 4.2, that base
must be unique.
If there is such a b`, let B0 be the collection of all the b`, ` ∈ L((C − B)). By
Lemma 4.6.(1), δ(C/B0) = δ(C/B), and so (B0, C) is a good pair. Further B0 is
the unique base for C as these are the only elements of B on lines that intersect
(C −B).

Omer Mermelstein provided us with an example showing there are infinitely
many primitives based on a single three element set. But the study of (a, b) cycles
in [Bal19] led to stronger and simpler examples over smaller base sets. Recall
that any linear space with 3-point lines is an example of Steiner triple system
(Definition 2.8.2). In the next definition, used to prove Lemma 4.10, we generalize
the notion from [CW12]] of an (a, b)-cycle graph in a Steiner triple system.
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Definition 4.9. Fix any two points a, b of a Steiner m-system S = (P,L). An
(a, b)-cycle, Ck is a sequence c1, c2, . . . c4k of length 4k such that R(a, c2n+1, c2n+2)
for 0 6 n 6 2k, R(b, c2n+2, c2n+3) for 0 6 n < 2k, and R(b, c1, c4k).

In the Steiner triple system case a triple a, b, c1 with c1 not on (a, b) determines
a unique cycle as described in Definition 4.9. For m-Steiner systems with m > 3,
we can choose such cycles but not uniquely. Note that the lines determined by the
pairs of points cn, cn+1 in Definition 4.9 must be distinct.

Lemma 4.10. There are infinitely many mutually non-embeddable primitives in
K0 over a two-element set. In fact, there are infinitely many mutually non-
embeddable primitives in K0 over the empty set and similarly over a 1-element set.

Proof. Over any a, b for each k build an (a, b)-cycle Ck , as in Definition 4.9. Ck
has 4k points and ({a, b} ∪ Ck) ∈K0 has 4k 3-element lines. So δ({a, b} ∪ Ck)) =
2 = δ({a, b}). Primitivity easily follows since if the cycle is broken, the δ-rank goes
up. So ({a, b}, Ck)) is a good pair whose isomorphism type we denote by γk.

To get primitives over ∅, let c be on ab and add the relations R(c, c1, c2k+1) and
R(c, ck+1, c3k+1). Now the entire structure Dk has 4k + 3 points and 4k + 3 lines
and can easily be seen to be 0-primitive over the empty set. (Note that for k = 1,
this is another avatar of the Fano plane.)

Remove one of the last two instances of R and the result is primitive over a or b.

5. The Class Kµ

We now introduce the new classes of structures needed to obtain strong minimal-
ity. Recall that we have two classes: (i) K0 is a class of finite structures; (ii) K̂0

is the universal class generated by K0. The new class Kµ ⊆ K0 adds additional
restrictions so that the generic model for Kµ is a strongly minimal linear space,
and, in fact, a Steiner k-system for some k. Using Definition 5.6, we axiomatize
the subclass Kµ

d of K̂µ (the universal class generated by Kµ) of those models that
are elementarily equivalent to the generic for Kµ.

The following notation singles out the effect of the fact that our rank depends
on line length rather than the number of occurrences of a relation.

Notation 5.1 (Line length). We write α for the isomorphism type of the good pair
({b1, b2}, a) with R(b1, b2, a) (cf. Lemma 4.8(2.1)).

Definition 5.2. Recall the characterization of primitive extensions from Lemma 4.8.

(1) Let U be the collection of functions µ assigning to every isomorphism type β of
a good pair (B,C) in K0 (we write µ(B,C) instead of µ((B,C))):

(i) an integer µ(β) = µ(B,C) > δ(B), if |C −B| > 2;
(ii) an integer µ(β) > 1, if β = α (cf. Notation 5.1).

(2) For any good pair (B,C) with B ⊆ M and M ∈ K̂0, χM (B,C) denotes the
number of disjoint copies of C over B in M . Of course, χM (B,C) may be 0.

(3) Let Kµ be the class of structures M in K0 such that if (B,C) is a good pair,
then χM (B,C) 6 µ(B,C).

(4) K̂µ is the universal class generated by Kµ (cf. Notation 3.1(1)).

In [Bal19], we change the set U in various ways (and explore the combinatorial
consequences of this change in the resulting generic model). In this paper, we
assume µ ∈ U unless specified otherwise.
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The value of µ(α) is a fundamental invariant in determining the possible com-
plete theories of generic structures; in particular we will see that it determines the
length of every line in the generic and thus in any model elementary equivalent to it.

Remark 5.3. We analyze the structure of extensions governed by good pairs with
isomorphism type α from Notation 5.1. Suppose {b1, b2, a} ⊆ F ∈ Kµ with
R(b1, b2, a). The 0-primitive extensions C of B = {b1, b2} with |(C − B)| = 1
are exactly the points on the line ` through b1, b2. Any pair of points e1, e2 from F
that are on ` form a base witnessed by ({e1, e2}, a) with R(e1, e2, a) ∧R(b1, b2, a).

Most arguments for amalgamation in Hrushovski constructions (e.g. [Bal88,Hol99,
Hru93, Zie13]) depend on a careful analysis of the location of the unique base of
a good pair. Here, when |(C − B)| = 1, the uniqueness disappears and one must
focus on the line rather than a particular base for it.

There are two general approaches to showing existence of complete strongly
minimal theories by the Hrushovki construction. One divides the construction into
two pieces, free and collapsed [Goo89, Zie13]. The final theory is taken as the
sentences true in the generic model. The second, as the original [Hru93], provides a
direct construction of the strongly minimal set. We choose here to follow Holland’s
version of this approach8. She insightfully emphasised axiomatizing the theory
of the class Kµ

d of d-closed structures [Hol99], which we now define, by clearly
identifiable π2-sentences. This established the model completeness that was left
open in [Hru93]. In fact, we axiomatize the theory Tµ of the class Kµ

d , prove it is
strongly minimal, and then observe that the generic satisfies Tµ.

Definition 5.4. Fix the class (K0,6) of τ -structures as defined in Definition 3.4.

(1) For A ∈ K̂0, X ⊆ω A and a ∈ A, we let:

dA(X) = min{δ(Y ) : X ⊆ Y ⊆ω A},
and

dA(a/X) = dA(aX)− dA(X).

(2) [d-closure] For M ∈ K̂µ, and X ⊆ω M :

cldM(X) = {a ∈M : dM (aX) = dM (X)}.
For infinite X, a ∈ cldM(X) if a ∈ cldM(X0) for some X0 ⊆ω X.

(3) [d-closed] For M ∈ K̂µ and X ⊆M , X is d-closed in M if d(a/X) = 0 implies
a ∈ X (equivalently, for all Y ⊆ω M −X, d(Y/X) > 0).

(4) Let Kµ
d consist of those M ∈ K̂µ such that M 6 N and N ∈ K̂µ imply M is

d-closed in N .

The switch from δ to d is designed to ensure that X ⊆ Y implies d(X) 6 d(Y );
the submodularity of d is verified as in e.g. [BS96,Hol99,Hru93,Zie13], and so the
function d is truly a dimension function, thus inducing a matroid structure.

Fact 5.5. The d-closure operator cldM (cf. Definition 5.4(2)) induces a combinato-

rial pregeometry on any M ∈ K̂µ.

8Holland provides a common framework for both ab initio constructions and fusions. The

generality introduces considerations that are not relevant here, and our new predimension and the
restriction to linear spaces introduce complications to her argument. Thus, for the convenience of

the reader, we rephrased the argument for our situation.
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We use good pairs to build our axiomatization, Σµ, of the theory of the classKµ
d .

We write Σµ as the union of four sets of first-order τ -sentences: Σ0
µ, Σ1

µ, Σ2
µ and

Σ3
µ. Before listing them, we explain the origin of the third group: Σ2

µ. We would
like to just assert the collection of universal-existential sentences: for all good pairs
(B,C) with B ⊆ M , χM (B,C) = µ(B,C). Unfortunately, some good pairs may
conflict with each others, and so, as far as we know, the equality may fail for some
good pairs when the base B is not strong in the model. Basically, this could happen
because if (P,G) and (Q,F ) are good pairs with QF contained in PG then realizing
(P,G) implies that (Q,F ) is automatically realized. In particular, note that the C
of the good pair (B,C) of Example 5.7 contains a new good pair (B′, C ′).

The distinguishing property of models M ∈ Kµ
d is that since every 0-primitive

extension over a finite strong subset of M can be embedded in M , by Lemma 5.17,
no proper 0-primitive extension of M is in K̂µ. In fact, this property characterizes
the models that are elementarily equivalent to the generic. A salient point about
the generic for Kµ, denoted Gµ (Notation 5.14), is that Gµ ∈ Kµ

d . This fact is
not used directly in the proof of strong minimality of Tµ; we will observe it in
Proposition 5.16.

One reason for the difficulty in the axiomatization is that the function µ is de-
fined on arbitrary substructures, not strong substructures. Restricting to strong
substructure would inhibit if not prevent the π2-axiomatization as the strong sub-
structure relation (A 6M) is only type-definable. Thus, in Lemma 5.10, we cannot
assume D is strong in both E and F . In the following definition we rely on the
terminology introduced in Definitions 4.1 and 5.2.

Definition 5.6. Σµ is the union of the following four sets of sentences:

(1) Σ0
µ is the collection of universal sentences axiomatizing K0 as in Definition 3.4.

(2) Σ1
µ is the collection of universal sentences that assert:

B ⊆M ⇒ χM (B,C) 6 µ(B,C).

(3) Σ2
µ is a collection of universal-existential sentences ψB,C , depending on the good

pair (B,C), such that for every occurrence of B if M |= ψB,C then for some
good pair (A,D) with AD ⊆ BC, any structure N containing MC satisfies
χN (A,D) > µ(A,D) and so violates Σ1

µ. See Lemma 5.18 for the explicit
formulation of these sentences

(4) Σ3
µ is the sentence asserting every non-trivial line has length µ(α) + 2.

Σ3
µ implies that every model is infinite. The argument in Lemma 5.10 that

underlies both the axiomatization of Kµ
d and the amalgamation for (Kµ,6) differs

from a mere amalgamation argument in one significant way: D ⊆ F but D 6 F is
not assumed (on the other hand, D 6 E is assumed). We require several technical
lemmas to address the difficulties arising from this fact. We will see that models
that satisfy Σµ are in Kµ

d by showing that if a model M satisfies Σµ, then we
can find sentences to prevent extensions in which M is not d-closed. The following
example shows the necessity for the complications in proving Lemma 5.10: new
primitives can occur in many ways.

Example 5.7. Construct the isomorphism type β of a good pair (B,C) defined as
follows. Let B be two points d1, d2 and C consists of six points ci for i = 1, . . . 6.
Let the non-trivial lines be {d1, c1, c2, c3},{d2, c4, c5, c3}, {c4, c1, c6} and {c5, c2, c6}.
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So C has 6 points and 4 lines each of nullity 1 so rank 2. And BC has 8 points and
4 lines, 2 of nullity 1 and 2 of nullity 2 so BC also has rank 2. Check primitivity
by inspection.

Now turn this example on its head. Consider the following example of the set-
ting of Lemma 5.10. Set µ(α) = 4 and µ(β) = 2 Let D = {c1, c2}, F =
D ∪ {c3, c4, c5, c6, d2} and E = D ∪ {d1}. (D,E) is a good pair. Amalgamat-
ing F and E over D we get a new realization (B′, C ′) of the isomorphism type β of
the good pair (B,C), which is not contained in either D or E, but in F ∪E. This
example does not violate Lemma 5.10 as µ(α) = 2 (and has to be since there are
4-element lines in F ).

Remark 5.8. Example 5.7 shows that good pairs can conflict so we don’t know in
general that a model M of Tµ will satisfy χM (B,C) = µ(B,C) for all good pairs
(B,C) that appear in M . We first prove in Lemma 5.10 that each good pair (B,C)
can only conflict with finitely many pairs (B′, C ′) and that that can happen only if
one pair is included in the other. Following [Hol99], to guarantee that M ∈Kµ

d , we
assert by the formula ψB,C (cf. Definition 5.6(3)) that each conflicting pair (A,D)
is ‘almost realized’ in M so that adding points from C contradicts Σ1

µ.

Lemma 5.9 is a variant on [Zie13, Lemma 5.1] that is proved by replacing the
phrase ‘adds a relation to B’ in Ziegler’s proof by careful consideration of the lines
involved. See the archive version for details.

Lemma 5.9. Suppose F 6 G and F satisfies Σ0
µ. Suppose χG(B,C) > n with

n > δ(B). Then at least one of the following holds.

(1) B ⊆ F
(2) Some Ci lies in G− F .

Lemma 5.10. Let F,E |= Σiµ, for i < 2, D ⊆ F , and suppose that (D,E) is a
good pair (and so in particular D 6 E). Now, if G = E ⊕D F and for some good
pair (B,C) ⊆ G we have χG(B,C) > µ(B,C), then:

(A) if |C| = 1, C = {c} and c is on a line based on some B′ ⊆ D;
(B) if |C| > 2 then B ⊆ E and there exists C ′ with BC ′ w BC, with C ′ ⊆ (E−D).

Further, if D 6 F , there is a copy C ′′ of C over B with C ′′ = (E −D), and
B ⊆ D.

Proof. Since G = E ⊕D F we can use the notation and results of 3.6 and 3.7(3).
Note that F,D,E are in Kµ by the definition of the axioms Σµ. Let C be a set
of µ(B,C) + 1 disjoint copies of C over B in G, and list C as 〈C1, ..., Cm〉, for
m = µ(B,C) + 1.
Case A. |C| = 1. Then (B,C) witnesses the isomorphism type α from Defini-
tion 5.1. So, there must be a line ` of size µ(B,C) + 3 in G. Since E and F satisfy
Σ1
µ, there must be d ∈ F − D and c ∈ E − D that lie on `. By Definition 3.6(2)

of free almalgam ` must contain two points (say, comprising B′) in D that are
connected to c ∈ E −D. Since {c} is then primitive over D, E −D must be {c}.
We finish the first claim. Note χF (B′, C) = µ(B,C) as ` has µ(α) + 2 points in F .
Case B. |C| > 2.

Claim 5.11. If some Cj ⊆ E −D is good over B ⊆ F , then B ⊆ E.

Proof. We show B ⊆ E. If not, there is a b1 ∈ B∩(F−E) and since Cj ⊆ (E−D) a
line from b1 to some c ∈ Cj . Thus c is on a line based on D and so Cj = E−D = {c}.
This contradicts |Cj | > 2 so B ⊆ E.
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We split into two cases depending on Lemma 5.9

Case B.1. Suppose B ⊆ F . Since χF (B,C) 6 µ(B,C), there must be a Ci ∈ C
that intersects G − F = E − D. So, since F 6 G and C/B is primitive, Ci ⊆
G − F = E − D. But, since E is primitive over D, FE is primitive over F , so
Ci = E − D. By Case 2.2 of Lemma 4.8, B is the only subset of F on which Ci
is based. Hence, as BCi ⊆ E, we finish Case B.1 without using the supplemental
hypothesis for the ‘further’ of Case (B).

Case B.2. Suppose B 6⊆ F . By Lemma 5.9, we have the main claim; some Cj lies
in E −D. We prove the further. There must be a C ′ ∈ C that intersects F −D,
since E ∈ Kµ. But C ′ cannot split over E since, B ⊆ E by Claim 5.11. As we
now assume D 6 F , E 6 G; so C ′ ⊆ (F −D). But then C ′ is based on a unique
B′ ⊆ D since D 6 F . So B = B′ ⊆ D. But then Cj is primitive over D and based
on B ⊆ D, and so Cj = E −D. Hence, Cj is the required C ′′.

The argument for Lemma 5.12 differs from the standard only in requiring a
special case for extending a line.

Lemma 5.12. Suppose A and A′ are primitive over Y with δ(A/Y ) = δ(A′/Y ) = 0

and both are based on B ⊆ Y with isomorphic good pairs (B, Â) and (B, Â′), where

Â = A − Y and Â′ = A′ − Y . Then the map fixing Y and taking A to A′ is an
isomorphism.

We now show that any element of K̂µ (not just Kµ) can be amalgamated (pos-
sibly with identifications) over a (necessarily finite) strong substructure D of F

with a strong extension of D to a member E of K̂µ. Conclusion 5.13 follows from
Lemma 5.12, breaking into cases given by Lemma 5.10 A) and B).

Conclusion 5.13. If D 6 F ∈ K̂µ and D 6 E ∈ Kµ then there is G ∈ K̂µ that
embeds (possibly with identifications) both F and E over D. Moreover, if F ∈Kµ

d ,
then F = G. In particular, (Kµ,6) has the amalgamation property, and there is a

generic structure Gµ ∈ K̂µ for (Kµ,6).

Notation 5.14. Let Gµ denote the generic for (Kµ 6) (cf. Conclusion 5.13).

Notice that it follows from Corollary 5.13 that every member of Kµ is strongly
embeddable in Gµ.

Definition 5.15. Let (K0,6) be as in the context of Fact 3.8. The structure M is

rich for the class (K̂0,6) (or (K̂0,6)-rich) if for any finite A,B ∈ K0 with A 6M
and A 6 B there is a strong embedding of B into M over A.

Clearly, a generic is rich. Even more, since the definition of Kµ
d requires the

embedding only of finite extensions with dimension 0, we have:

Proposition 5.16. Every rich model, and so in particular Gµ, is in Kµ
d .

Proof. We show that every (Kµ,6)-rich model M is in Kµ
d . Suppose for contra-

diction that there is an N ∈ K̂µ with M 6 N and there is a C ⊆ (N −M) such
that C is 0-primitive over M . By Lemma 4.8, C is based on some finite B ⊆ M .
Since M 6 N , C is also primitive over B0 = iclM (B). Since M is rich there is a
copy C1 ⊆ M of C over B0. Now let B1 = iclM (C1). Applying richness again we
can choose another embedding C2 of C into M over B1. Continuing in this fashion,
after less than µ(B,C) + 1 steps we have contradicted M ∈ K̂µ.
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We provide two sufficient condition for µ(B,C) to be realized in a d-closed model.

Corollary 5.17. Suppose M ∈Kµ
d . If either

(1) (B,C) represents α or
(2) (B,C) is a good pair with |C| > 1 and B 6M

then

χM (B,C) = µ(B,C).

In particular, if µ(α) = m, then the length of every line in M is m+ 2.

Proof. In either case, since M is d-closed, M ⊕B C 6∈ K̂µ (Definition 5.4.3). In the
first case this obviously implies the conclusion. In the second, By the ‘further’ of
Lemma 5.10(B).2, the violation of Σ1 is given by the new copy of the pair (B,C),
and so χM (B,C) = µ(B,C).

The requirement in (2) that B 6 M guarantees that the obstruction is exactly
the extension we are trying to make. Without that requirement the corollary seems
unlikely.

Now we explain the interaction between the axioms Σ1
µ and Σ2

µ. No extension

of a model of Σ2
µ by a good pair is in K̂µ. This will yield the axiomatization of

the theory of the d-closed structures and thus of the generic (by Proposition 5.16).
We proved Lemma 5.10 without assuming D 6 F (given by a type), precisely so we
could quantifier over a definable set ρ in equation 2 in the proof of Lemma 5.18.

Lemma 5.18. The family of first-order sentences Σµ (Definition 5.6) defines the
class of d-closed models.

Proof. We use the notation of Lemma 5.10. For M ∈ K̂µ, we say M ⊕D E is bad
if for some good pair (B,C) with BC ⊆ DE, χM⊕DE(B,C) > µ(B,C).

We first define for each good pair (D,E) the formula ψ(D,E) described in Defini-
tion 5.6. For each duo of good pairs (D,E) and (B,C) with BC ⊆ DE define the

formula ϕ(D,E),(B,C) as follows. Fix a model M0 ∈ K̂µ; choose a copy of D ⊆ M0

such that M0⊕DE is bad witnessed by (B,C). If |C| > 1 choose by Lemma 5.10.B
C1, . . . Cr (where r = µ(B,C) + 1) that are disjoint copies of C over B contained
in M0⊕D E and let s enumerate H = (

⋃
i Ci)−D)∩M0. Let χ(v, x) be a possible

atomic diagram of H ∪D ⊆M , where lg(v) = lg(s), for pairs (M0, D) as M0 varies

over K̂µ and D varies over possible embeddings into M0. Let

(1) ϕ(D,E),(B,C) :
∨
i

(∃v)χi(v, x)

where the χi are the finitely many possible such diagrams χ. We have chosen
ψ(D,E)(B,C) so that for any M ∈ K̂µ if M ⊕D E is a bad extension witnessed by
(B,C) then M |= ψ(D,E)(B,C).

Let ρ(x) be the atomic diagram of D. Now we define Σ2
µ and Σ3

µ to assert a) each
line has cardinality µ(α) + 2 and b) each of the following (countable) collection of
sentences (for all good pairs (D,E)), where ρ(x) is the atomic diagram of D.

(2) ψ(D,E) : (∀x)[ρ(x)→
∨

BC⊆DE

ϕ(D,E),(B,C)(x)].

Now, if M |= Σµ then M is d-closed. Since if not, there is an N ∈ K̂µ such that
for some (D,E), M ⊕D E ⊆ N . If |E| = 1 then condition a) is violated.
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Suppose M |= ψ(D,E) witnessed by (B,C). If |C| = 1 condition a) is again
violated by Lemma 5.10.A. But, if |C| > 1 some χi from Equation 1 will be satisfied
in M . And, by Definition 3.7. 3, χ(v, x) ∪ diagqf(E) |= diagqf(HE) where H is, as
before, the interpretation of v. This implies χM⊕DE(B,C) > χHE(B,C) > µ(B,C)
and we finish.

Recall (Definition 5.4) that a finite set X is d-independent when each x 6∈ cld(X−
{x}), i.e. d(X) > d(X − {x}) for each x ∈ X. It is then easy to establish the first
of the following assertions by induction and the others follow.

Lemma 5.19. Let M ∈ K̂µ and let Y be d-independent in M . For every finite
X ⊆ Y we have:

(i) d(X) = |X|;
(ii) X 6M , and so iclM (X) = X;

(iii) there are no R-relations among elements of X.

We follow Holland’s proof to show Σµ axiomatizes the complete theory of Kµ
d .

Lemma 5.20. Moreover, Σµ is an axiomatization of the complete theory Tµ of the
class Kµ

d .

Proof. By Lemma 5.18, it suffices to show Kµ
d is κ-categorical for κ > ℵ0. This

follows by Lemmas 5.19 and 5.13 as each model is the algebraic closure of a basis.
(See Lemma 25 of [Hol99] or the archive version of this article for details.)

Having followed the outline of her proof, we have the analog to Holland’s result
[Hol99] that the strongly minimal Hrushovski constructions are model complete.

Remark 5.21. Since the axioms Σµ are universal-existential and Tµ is ℵ1-cate-
gorical, it is model complete by Lindstroms’s ‘little theorem’: that π2-axiomatizable
theories that are categorical in some infinite power are model complete [Lin64].

Our theories Tµ uniformize the result that there are only finitely many finite
line lengths in any strongly minimal linear space (cf. Fact 2.7). We show in Corol-
lary 5.22 using Lemma 4.10 that there are continuum-many strongly minimal the-
ories Tµ such that in each of them all lines have fixed length µ(α) + 2.

Corollary 5.22. There are continuum-many µ ∈ U (cf. Definition 5.2(1)) which
give distinct first-order theories of Steiner systems. That is, there is V ⊆ U such
that |V| = 2ℵ0 and µ 6= ν ∈ V implies that Th(Gµ) 6= Th(Gν) (recall Notation 5.14).

Proof. For any X ⊆ ω, let µX assert that µ(γk) (from the proof of Lemma 4.10) is
3 if k ∈ X and 2 if not (recall that it must be at least 2). Then, if k ∈ X \ Y , then
TµX

6≡ TµY
(cf. Notation 5.14), since there are three extensions in the isomorphism

type µ(γk) of some pairs {a, b} in models of TµX
but not in models of TµY

.

Lemma 5.23. If M ∈ Kµ
d , then for every X ⊆ M , cld(X) = aclM (X). Thus, Tµ

is strongly minimal.

Proof. We first show that for M ∈ K̂µ, cld(X) = aclM (X). If Y is a finite subset
of M , δ(Y/X) = 0, Y is a union of a finite chain with length k < ω of extensions
by good pairs (Bi, Ci); each is realized by at most µ(Bi, Ci) copies, and so:

|Y | 6
∑
i<k

µ(Bi, Ci)× |Ci|.
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Thus, Y ⊆ aclM (X).

Concerning the other containment, let M ∈Kµ
d , a ∈M and X ⊆ω M . If d(a/X) >

0 and X0 is a maximal d-independent subset of X, then X0 ∪ {a} extends to
a d-basis for M . Furthermore, a detailed proof of Lemma 5.20 shows that any
permutation of a d-basis extends to an automorphism of M . Thus, if a /∈ cld(X) ,
then a /∈ aclM (X). Hence, cld(X) = aclM (X), as desired.

Strong minimality follows, since for any finite A there is a unique non-algebraic 1-
type over A, namely the type p of a point a such that: (i) a is not on any line based
in A (and so δ(a/A) = 1); (ii) Aa is strong in any model. Clause (ii) is given by the
collection of universal sentences forbidding any B ⊇ Aa with δ(B) < δ(Aa). Thus,
in Gµ we have that d(a/A) = 1 for any a realizing p. Hence, any two realizations a
and b of p are such that Aa 6 Gµ and Ab 6 Gµ, and thus they are automorphic by
the genericity of Gµ (cf. Conclusion 5.13). Hence, p is a complete type.

Notation 5.24. Let F be the Fano plane and F be the set of µ ∈ U such that:

µ(∅, F ) > 0.

Lemma 5.25 shows that for any µ ∈ F and M |= Tµ, we have that aclM (∅) is
infinite; by Ryll-Nardjewski, Tµ is not ℵ0-categorical. In view of Lemma 5.23, the
countable models correspond exactly to the models of dimension α for α 6 ℵ0.

Lemma 5.25. Let µ ∈ F . Neither the generic, Gµ, nor any model of Tµ is locally
finite with respect to cld = acl (cf. Lemma 5.23). Thus, Tµ is not ℵ0-categorical and
has ℵ0 countable models. Since the generic has infinite dimension, it is ω-saturated.

Proof. We show that the algebraic closure of the empty set is infinite. Construct a
sequence (Ai : i < ω) in Gµ by letting A0 to be the Fano plane, which (Example 4.3)
is easily seen to be 0- primitive over the empty set. Notice that there can only be
finitely many realizations of the Fano plane in any model of Tµ, and so A0 is in the
algebraic closure of the empty set. Now let a0, b0, c0 be the vertices of the triangle
in the standard picture of the Fano plane. Choose a1, b1, c1 disjoint from A0 so
that (a0, a1, c1), (b0, b1, c1), and (a1, b1, c0) are triples of collinear points. Then,
letting A1 = {a0, b0, c0, a1, b1, c1}, it is to see that A1 is a primitive extension of
A0. Now build A2 by taking a1, b1, c1 as the base and adding a2, b2, c2 as in the
construction of A1 from A0; and then iterate. Each stage (and hence the union) can
be strongly embedded as A′i in the generic. But then δ(A′i+1/A

′
i) = d(Ai+1/Ai) = 0.

By transitivity, with Aω denoting
⋃
i<ω Ai, we have that for any finite X ⊆ Aω,

d(X/A0) = 0. Since cld = acl (Lemma 5.23), we finish. We constructed this
sequence in the algebraic closure of the empty set, and so it occurs in the prime
model of T . Thus, aclM (∅) is infinite for any model M of Tµ. By Ryll-Nardjewski,
Tµ is not ℵ0-categorical. In view of Lemma 5.23, as in any strongly minimal theory,
these models correspond exactly to models of dimension α for α 6 ℵ0.

We now show that our examples have the characteristic properties of the ab
initio Hrushovski construction [Hru93].

Conclusion 5.26. For any µ ∈ U , the acl-pregeometry associated with Tµ is flat
(Definition 2). Thus, we have:

(1) Tµ does not interpret an infinite group and T is CM-trivial.
(2) If µ ∈ F , Tµ admits weak elimination of imaginaries.
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Proof. By Lemma 5.23, acl is the same as cld. For flatness, choose for each Fi a
finite Ei 6 M with cld(Ei) = Fi. Let Es = icl(

⋃
16i6s Fi); then, Es 6 M and

d(Es) = d(Fs). Since d(Es) = δ(Es) and δ is flat by Lemma 3.7.1, we have that d
is flat. Finally, (1) follows as in [Hru93], and (2) from [Pil99, Lemma 1.6].

We place our work in the context of a number of papers that use model theoretic
techniques and, in at least one case, the Hrushovski construction, to investigate lin-
ear spaces and Steiner systems. Our approach differs by invoking a predimension
function inspired by Mason’s α-function, and focusing on the combinatorial con-
sequences of strong minimality by investigating the family of similar (elementarily
equivalent) structures of arbitrary cardinality arising from a particular strongly
minimal k-Steiner system. In contrast, Evans [Eva04] constructs Steiner triple
systems using a variant of the Hrushovski construction without discussing their
stability class. Between these extremes, Hytinnen and Paolini [HP] show that the
Hall construction of free projective planes yields a strictly stable theory. Conant
and Kruckman [CK16] find an existentially closed projective plane and prove it is
NSOP1 but not simple. Their construction involves a generalized Fräıssé construc-
tion for the existential completeness as well as the Hall construction.

Remark 5.27. We compare our examples with the construction by Barbina and
Casanovas in [BC1x] of structures existentially closed for the class of all Steiner
quasigroups. At the opposite end of the stability spectra from our result, Barbina
and Casanovas [BC1x] find existentially closed Steiner triple systems that are TP2
and NSOP1 by a traditional Fräıssé construction. Note that Steiner quasigroups
are the quasigroups associated with Steiner triple systems in [BC1x].

(i) Their generic, denoted Msq, has continuum many types over the empty set,
satisfies TP2 and NSOP1, and it is locally finite (but not uniformly locally
finite) as a quasigroup. If µ ∈ U , then it is obvious that Tµ fails the first three
of these properties since it is strongly minimal. Furthermore, we showed in
Lemma 5.25 that our examples with µ ∈ F are not locally finite for acl =
cld. Strikingly, in Msq, the definable closure is equal to the algebraic closure
(dcl = acl). In [Bal19] we show that this equality fails drastically in any Tµ
with µ ∈ U .

(ii) The structureMsq is the prime model of its theory; our Gµ is saturated. While
the example in [BC1x] is quantifier eliminable, ours is only model complete.
The first is the model completion of the universal theory of Steiner quasi-
groups. Since each M ∈ Kµ can be extended to N ∈ Kµ

d , the second is the

model completion of the universal theory of K̂µ for the relevant µ. Quan-
tifier elimination does not follow since, despite the limited amalgamation in
Conclusion 5.13, K̂µ does not have amalgamation.

Thus, there are four techniques that construct infinite linear spaces in a range
of stability classes: taking all extensions in a given universal class but insisting on
finite amalgamation in a standard Fräıssé construction [BC1x], building one chain
of models carefully [HP], combining these two methods but allowing the amalgam of
finite structures to be countable [CK16], and, as here, restricting the amalgamation
class to guarantee a well-behaved acl-geometry.
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