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Abstract

We introduce the concept of a locally finite abstract elementary class and develop the theory of ex-
cellence for such classes. From this we find a family of complete Lω1,ω sentences φr such that a) φr is
r-excellent but b) φr homogeneously characterizes ℵr (improving results of Hjorth [8] and Laskowski-
Shelah [9] and answering a question of [14]) while c) the φr provide the first example of an abstract
elementary class where the spectrum of cardinals on which amalgamation holds contains more than one
interval.

1 Introduction
Amalgamation, finding a modelM2 in a given class K into which each of two extensions of a modelM ∈K
can be embedded, has been a theme in model theory in the almost 60 years since the work of Jónsson and
Fraı̈ssé. An easy application of compactness shows that amalgamation holds for every triple of models of a
complete first order theory. For an Lω1,ω-sentence, φ, the situation is much different; there can be a bound on
the cardinality of models of φ and whether the amalgamation property holds can depend on the cardinality
of the particular models. Shelah generalized the Jónsson context to that of an abstract elementary class by
providing axioms governing the notion of strong substructure. He introduced the notion of n-dimensional
amalgamation in a cardinal λ and used it to prove that excellence (r-dimensional amalgamation in ℵ0 for
every r < ω) implies φ has arbitrarily large models. We show the requirement on all r < ω is necessary1 by
constructing for each r a sentence φr which satisfies r-dimensional amalgamation in ℵ0 but has no model in
ℵr+1.

In [8], Hjorth finds, by an inductive procedure, for each α < ω1, a complete sentence φα ∈ Lω1,ω

which characterizes ℵα (φα has a model of that cardinality but no larger model). This procedure was non-
uniform in the sense that he showed one of two sentences worked at each φα; it is conjectured [15] that it
may be impossible to decide in ZFC which sentence works. In this note, we show a simplification of the
∗AMS classification 03C48, 03C75, key words: characterize cardinals, amalgamation, abstract elementary classes, Lω1,ω
†Research partially supported by Simons travel grant G5402
‡Research supported by the Austrian Science Fund (FWF) at the Kurt Gödel Research Institute. Lise Meitner Grant M1410-N25
§Partially supported by NSF grant DMS-1308546
1Hart-Shelah [7] provided an earlier example showing there are φr categorical up to ℵr but then losing categoricity. Those examples

have arbitrarily large models and satisfy amalgamation in all cardinals [2].
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Laskowski-Shelah example (see [9, 4]) gives a family of Lω1,ω-sentences φr, which homogeneously (see
Definition 4.21) characterize ℵr for r < ω.

The (finite) amalgamation spectrum of an abstract elementary class K is the set XK of n < ω such that
K has a model in ℵn and satisfies amalgamation2 in ℵn. There are only a few known spectra.

For complete sentences of Lω1,ω there are many examples where the spectrum is either ∅ or ω. The first
example of a complete sentence failing amalgamation in ℵ0 is due to Kueker [10].

Well-orderings of order type at most ℵr under end extension have spectra {0, 1, . . . , r}. Note however
that the Löwenheim number is the same as the size of the maximal model and these classes are not Lω1,ω

axiomatizable. An incomplete sentence with finite amalgamation spectrum ω − {0} is given in [5].
We show in ZFC that for each r ≥ 1, {0, 1, . . . , r−2}∪{r} is an amalgamation spectrum by a complete

Lω1,ω sentence φr thus making the strongest requirement on the way the class is defined while getting
the most unusual spectrum. More precisely, the Lω1,ω-sentence φr has disjoint 2-amalgamation up to and
including ℵr−2; disjoint amalgamation and even amalgamation fail in ℵr−1 but hold (trivially) in ℵr; there
is no model in ℵr+1. The previous best result in this direction [5] had disjoint amalgamation up to ℵk−3, no
model in ik and the sentence was not complete.

We have formulated these results in terms of abstract elementary classes for further applications. But the
reader can follow the proof thinking only of the concrete results being proved.

We thank Ioannis Souldatos for conversations leading to clearer formulation of the problem and Will
Boney for a discussion redirecting our focus to excellence.

2 Fraı̈ssé Constructions and locally finite AEC
{two}

In [9] Laskowski-Shelah constructed by a Fraı̈ssé construction, which is easily seen to satisfy disjoint amal-
gamation in the finite, a complete sentence φLS in Lω1,ω such that every model in ℵ1 is maximal and so
characterizes ℵ1. The idea was to exhibit a countable family of binary functions that give rise to a locally
finite closure relation, and then to note that any locally finite closure relation on a set of size ℵ2 must have
an independent subset of size three. They also asserted that they had a similar construction to characterize
all cardinals up to ℵω , but there was a mistake in the proof.3

Here, we use the induction principles introduced by Shelah in the development of excellent classes to
uniformly construct families of functions that do give rise to locally finite closure relations that characterize
ℵr for any integer r ≥ 1.

For a fixed r ≥ 1, let τr be the (countable) vocabulary consisting of countably many (r+1)-ary functions
fn and countably many (r+1)-ary relations Rn. We consider the class Kr of finite τr-structures (including
the empty structure) that satisfy the following three sentences of Lω1,ω:

• The relations {Rn : n ∈ ω} partition the (r + 1)-tuples;

• For every (r + 1)-tuple a = (a0, . . . , ar), if Rn(a) holds, then fm(a) = a0 for every m ≥ n;

• There is no independent subset of size r + 2.

The third condition refers to the closure relation on a τr-structure M defined by iteratively applying the
functions {fn}, i.e., for every subset A ⊆ M , cl(A) is the smallest substructure of M containing A. A set
B is independent if, for every b ∈ B, b /∈ cl(B \ {b}).

2For the precise definitions of amalgamation see Definition 4.21 and Remark 4.4. We say amalgamation holds in κ in the trivial
special case when all models in κ are maximal. We say amalgamation fails in κ if there are no models to amalgamate.

3Specifically, the closure relation defined in Lemma 0.7 of [9] is not locally finite.
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We develop two classes of models from the class Kr of finite structures. The first is defined directly
from Kr, while the second can be viewed interchangeably as the class of atomic models of an associated
first order theory or the models of a complete sentence in Lω1,ω .

Definition 2.1. K̂r denotes the class of all τr-structuresM (including the empty structure) with the property
that every finite subset A ⊆ |M | is contained in a (finite) substructure N ∈Kr of M .

We make one change from the standard ([13] or [1]) definition of abstract elementary class by replacing
the usual notion of Löwenheim-Skolem number by the following.

{lfaec}
Definition 2.2. A class K of structures and a substructure relation ≺K is a locally finite abstract ele-
mentary class if it satisfies the normal axioms for an AEC except the usual Löwenheim-Skolem condition is
replaced by: If M ∈ K and A ⊂ M of M ) is finite, there is a finite N ∈ K with A ⊂ N ≺K M (read N
is a strong substructure).

Clearly the class K̂r, equipped with the ordinary substructure relation as≺K , is a locally finite abstract
elementary class.

Definition 2.3. Let (K,≺K ) be a (locally finite) abstract elementary class

1. The modelM is finitely K-homogeneous or rich if for all finiteA,B ∈K,A ≺K M,A ≺K B ∈K
implies there exists B′ ≺K M such that B ∼=A B′.

2. The model M is generic if M is rich and M is an increasing union of finite substructures that are
strong in M .

With Corollary 4.2 we will see that the class K̂r has a (unique) countable generic model Mr. Let φr

denote the Scott sentence of Mr and let T r denote the first order theory of Mr. Moreover, Mr will be seen
to be an atomic model of T r and a τr-structure N is an atomic model elementarily equivalent to Mr if and
only if N realizes the Lω1,ω-sentence φr (See chapter 6 of [1].). Consequently we write:

Notation 2.4. The class Atr consists of all atomic models of T r (i.e. all models of φr). When equipped
with elementary substructure as ≺K , (Atr,≺K ) is an abstract elementary class with Löwenheim-Skolem
number ℵ0.

It is easy to check that Kr satisfies the amalgamation property, indeed the disjoint amalgamation prop-
erty. See Definition 3.2 for precise definitions, [4] for the general background, the case r = 1 of Lemma 4.1
for a detailed argument and Remark 4.4 for various notions of amalgamation.

Following [8] and [4] we vary from Fraı̈ssé’s original construction by a) allowing function symbols in
the language b) not insisting the class is closed under substructure but c) guaranteeing local finiteness by
axiomatizing with the Scott sentence. Disjoint amalgamation greatly simplifies the arguments that follow.
We establish below various levels of amalgamation for K̂r and then transfer them to Atr.

3 Excellence and disjoint amalgamation
{excsec}

The key to this investigation is the study of excellence in locally finite abstract elementary classes. In
this section we develop general methods for building models in larger cardinals. Our main construction in
Section 4 will take the K of this section as K̂r. Substructure is the natural substructure relation on K̂r since
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the axioms are all universal. For Atr, first order elementary submodel is the natural submodel relation. It is
however easy to see that here this is the same as L∞,ω-submodel.

Excellence was first formulated [11, 12] in an ω-stable context. Shelah develops there a substantial appa-
ratus to define ‘independence’ and excellence concerns ‘independent systems’. The applications here require
much less machinery because we are able to exploit disjoint amalgamation. ‘Independent amalgamation’ in
the usual sense implies disjoint amalgamation (but not strong disjoint amalgamation) as defined below. In
using our next definition of (< λ, k)-system, we take advantage of the fact that one can always rearrange the
data of an amalgamation problem so the domains intersect exactly where required. In general, of course, the
embeddings then force identifications.

Definition 3.1. A set of K-structures N = 〈Nu : u ( k〉 is a (< λ, k)-system for K if for u, v ( k:

1. ‖Nu‖ < λ;

2. if u ⊂ v then Nu ⊂ Nv;

3. Nu ∩Nv = Nu∩v .

{genapdef}
Definition 3.2. We say that K has disjoint (< λ, k)-amalgamation if

1. k = 0 and there is M ∈K with ‖M‖ = µ for all µ < λ.

2. k = 1 and for all µ < λ, each M ∈K with ‖M‖ = µ has a proper extension.

3. k ≥ 2 and for any (< λ, k)-system N there is a model M ∈ K such that for every u ( k: Nu is a
substructure of M .

We now use the standard idea of excellence: going up a cardinal loses one dimension of the amalgama-
tion. But the argument is much simpler than in [12, 1] or even [5]. (There is an exposition in [3].) We give
the full proof to show the core idea of the method in transparent way. For this induction step we need the
notion of a filtration of a (< λ, n)-system. We use standard notation: P−(n) denotes the subsets of n that
have at most n− 1 elements.

Definition 3.3. Suppose S = 〈Ms : s ∈ P−(n)〉 is a (< λ, n)-system. A filtration of S is a system
〈Sα :α < λ〉 where each Sα = 〈Mα

s :s ∈ P−(n)〉 such that:

1. each ‖Mα
s ‖ = |α| if α is infinite and finite if α is finite;

2. for each s in P−(n), {Mα
s :α < λ} is a filtration of Ms;

3. for each α, Sα is an (< α∗, n)-system where α∗ is ℵ0 if α is finite and |α|+ if α is infinite.
{exc}

Claim 3.4. For any s < ω, if (K,≺K ) has the disjoint (< λ, s + 1)-amalgamation property, then it has
the disjoint (< λ+, s)-amalgamation property.

Proof. We first note that the case s = 0 is easy. We get a model in λ by taking the union of an
increasing chain of smaller models by (λ, 1)-amalgamation. For s = 1, filter a model M of cardinality λ
by 〈Mi : i < λ〉; take an extension N0 of M0; amalgamate N0 with M1 over M0 to get N1; by disjoint
amalgamation N1 is a proper extension of M1; iterate.

Now let s ≥ 2 and let S = N = 〈Nt : t ∈ P−(s)〉 be a (< λ, s)-system. Choose a filtration
〈Sα : α < λ〉 = 〈Nα

t : t ∈ P−(s), α < λ〉 of S. We will define a sequence 〈Nα : α < λ〉 of models of
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cardinality < λ whose union is the required amalgam of S and auxiliary (< λ, s+1) systems Ŝα for α > 0.
Let N0 be the amalgam of the system S0. If we have amalgamated Ŝα to obtain a model Nα, we define
Ŝα+1 to have models 〈Nα

t : t ∈ P−(s)〉 ∪ {Nα} ∪ 〈Nα+1
t : t ∈ P−(s)〉 with the embeddings given by the

filtration from Nα
t to Nα+1

t and by the given maps within Sα and Sα+1. 3.4

In the case of strong disjoint amalgamation Nα has the same domain as Sα but has had further functions
defined to make it a member of K̂. A vastly more complicated version of this result is expounded in chapters
20 and 21 of [1]; Corollary 21.7 most closely approximates the construction here.

The key points (proved in Theorem 4.3) for our application to K̂r and its ‘existential completion’, Atr,
are that disjoint 2-amalgamation in ℵs for K̂r implies that any member of K̂r extends to a model in Atr

and even that we have a disjoint (not strongly disjoint) amalgamation in ℵs for Atr for s ≤ r − 2. These
imply that for s ≤ r− 2 every model of Atr in ℵs+1 has a proper extension and so T r has an atomic model
in ℵs+2, thus in particular in ℵr.

4 Characterizing ℵn and the amalgamation spectra
{results}

We begin by studying Kr, the finite models in K̂
r
. Then we use the general properties established in

Section 3 to construct models in certain cardinals. We then note the combinatorial Fact 4.5 and deduce from
it the negative results: non-existence and failure of amalgamation in certain cardinals.

We will verify here a slightly stronger notion: strong disjoint amalgamation: replace in Definition 3.2.3
‘Nu is a substructure of M ’, by ‘the universe of M is

⋃
u(k |Nu|’.

{genap}
Theorem 4.1. For each r ≥ 1, Kr has strong disjoint (< ℵ0, r + 1)-amalgamation. Further, Kr does not
have disjoint (< ℵ0, r + 2)-amalgamation.

Proof. Fix a (< ℵ0, r + 1) system 〈Nu :u ∈ P−(r + 1)〉 from Kr. Let D =
⋃
u∈P−(r+1) |Nu| and fix

an enumeration 〈di : i < t〉 of D, where t = |D|. Call an (r + 1)-tuple b ∈ Dr+1 unspecified if b 6∈ Nr+1
u

for any u ( (r + 1). If our amalgam M is to have universe D with each Nu a substructure of M , we need
only define the functions fn and the relations Rn on unspecified tuples.

For every unspecified b = (b0, . . . , br), put RMt (b) and define

fMi (b) =

{
di if i < t
b0 otherwise

To see that M ∈ Kr, we show that there are no independent subsets of size r + 2. Choose any B ⊆ M
of size r + 2. Let {uj : j < r + 1} list the subsets of (r + 1) of size r. If B ⊆ Nuj for any j, then B is
not independent since Nuj ∈ Kr. However, if B is not contained in any Nuj , then there is an unspecified
b ∈ Br+1. In this case, B is contained in the closure of b, so again B is not independent.

For the second sentence, choose a (< ℵ0, r + 2)-system 〈Nu : u ∈ P−(r + 2)〉 from Kr with the
property that for every j ∈ r + 2, there is an element bj ∈ |N{j}| \ |N∅|. Suppose M ∈ Kr contains⋃
{|Nu| : u ∈ P−(r + 2)}. We claim that B = {bj : j ∈ r + 2} is independent in M , contradicting the

definition of Kr. To see this, let Bk = B \ {bk} for any k ∈ r + 2. Then Bk ⊂ |N(r+2)\{k}| and it follows
that in M , cl(Bk) ⊂ |N(r+2)\{k}|. In particular, cl(Bk) does not contain bk. 4.1

{Fraisse}
Corollary 4.2. The class Kr has a Fraı̈ssé limit Mr. It is countable, generic, and is an element of K̂r. It
is the unique countable atomic model of its first order theory T r. Moreover, a τr-structure N is in Atr if
and only if (1) every finite subset A ⊆ N is contained in a finite substructure of N that is an element of Kr

and (2) N is Kr-rich.
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Proof. The existence of a countable, rich structure Mr ∈ K̂r follows from the fact that Kr satisfies
disjoint amalgamation, and this fact follows immediately from Theorem 4.1. To see that Mr is atomic, note
that for any finite substructures B,C ⊆ Mr, both containing a substructure A, any isomorphism from B to
C fixing A pointwise extends to an automorphism of Mr. In particular, tp(B/A) is isolated by a formula
describing which Rn(b) holds, as well as the values of fi(b) for every i < n, for every (r + 1)-element
sequence from B. 4.2

The following formula uses ℵ−1 where < ℵ0 is used above.
{getmod}

Theorem 4.3. For each r with 1 ≤ r < ω and −1 ≤ s ≤ r, Kr has strong disjoint (r − s)-amalgamation
in ℵs for s ≤ r. This implies there are atomic models of T r of cardinality ℵs for s ≤ ℵr.

Proof. The first sentence is just a calculation from Theorem 4.1 and Claim 3.4. In particular, just reading
off from Definition 3.2 we get models up to ℵr for K̂

r
.

For the second sentence, note first that T r has an atomic model in ℵs for s ≤ r − 2 because the strong
2-amalgamation of K̂r of structures of size bounded by ℵs implies that every M ∈ K̂r of size ℵs has
an extension N ∈ Atr, which is also of size ℵs. [To see this, use the characterization of Atr given in
Corollary 4.2 and construct N as a union of a chain, each time taking one step toward richness.]

Arguing similarly, we see that for s ≤ r− 2 the class Atr has disjoint (not strongly disjoint) amalgama-
tion in ℵs. From this it follows that Atr has an element of size ℵs+1 and, moreover, every N ∈ Atr of size
ℵs+1 has a proper extension. Thus, Atr has an element of size ℵs+2. Taking s as r − 2 gives the second
sentence. 4.3

{apprem}
Remark 4.4 (Other amalgamation notions). Clearly strong disjoint amalgamation implies disjoint amalga-
mation and the argument of Claim 3.4 works for either.

We say M is strongly embedded in N if there is an isomorphism f such that f [M ] ≺K N . The more
usual notion of the 2-amalgamation property is given by replacing in Definition 3.2 ‘Nu is a substructure
of M ’ by ‘each Nu is strongly embedded in M ’. For n > 2 there are more complicated conditions for
‘independent amalgamation’, to maintain the conditions on coherence of maps, which are described in [1, 13]
and somewhat less technically in [3]. Disjoint amalgamation implies amalgamation but as we will now see,
the converse fails.

We use a slight modification of Lemma 2.3 of [4] to obtain our negative results. The proof of the
following Fact is included as a convenience for the reader.

{comb1}
Fact 4.5. For every k ∈ ω, if cl is a locally finite closure relation on a set X of size ℵk, then there is an
independent subset of size k + 1.

Proof. By induction on k. When k = 0, take any singleton not included in cl(∅). Assuming the Fact for
k, given any locally finite closure relation cl on a set X of size ℵk+1, fix a cl-closed subset Y ⊆ X of size
ℵk and choose any a ∈ X \Y . Define a locally finite closure relation cla on Y by cla(Z) = cl(Z∪{a})∩Y .
It is easily checked that if B ⊆ Y is cla-independent, then B ∪ {a} is cl-independent. 4.5

{allmax}
Lemma 4.6. For every r ≥ 1, K̂r

1. has only maximal models in ℵr and so (disjoint) 2-amalgamation is trivially true in ℵr;

2. fails 2-amalgamation in ℵr−1.
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Proof. Fix M ∈ K̂r of size ℵr and assume by way of contradiction that it had a proper extension
N ∈ K̂r. Let cl denote the locally finite closure relation on N given by the family of functions {fn}. As in
the proof of Fact 4.5, fix a ∈ N \M and define a closure relation cla on M by cla(Z) = cl(Z ∪ {a}) ∩M .
As cla is locally finite, it follows from Fact 4.5 that there is a cla-independent subset B ⊆ M of size r + 1.
But then, B ∪ {a} would be a cl-independent subset of N of size r + 2, contradicting N ∈ K̂r.

For the second part, we just modify this argument and show that an amalgamation problem
(M0,M1,M2) of elements from K̂r of size ℵr−1 with M0 a substructure of both M1 and M2 is solvable if
and only if Mi is embeddable into M3−i over M0 for either i = 1 or 2. To see the non-trivial direction, sup-
pose a triple (M0,M1,M2) are chosen as above and there is M3 ∈ K̂r and embeddings f :M1 → M3 and
g :M2 →M3, each over M0, with elements f(a1) 6∈ g(M2) and g(a2) 6∈ f(M1). We obtain a contradiction
by considering the closure relation on M0 defined by

cl∗(Z) = cl(Z ∪ {f(a1), g(a2)}) ∩M0

with the latter closure relation cl computed in M3. As cl∗ is locally finite, it follows from Fact 4.5 that there
is a cl∗-independent subset B ⊆ M0 of size r. We obtain a contradiction to M3 ∈ K̂r by showing that the
set B ∪ {f(a1), g(a2)} is cl-independent. To see this, first note that since B ∪ {f(a1)} ⊆ f(M1), g(a2) 6∈
cl(B ∪ {f(a1)}). Similarly, f(a1) 6∈ cl(B ∪ {g(a2)}). But, for any b ∈ B, the cl∗-independence of B
implies that b 6∈ cl((B\{b}∪{f(a1), g(a2)}), completing the argument characterizing which amalgamation
problems are solvable.

To complete part 2) we must establish (*): There exists a triple (N0, N1, N2) consisting of elements of
K̂r, each of size ℵr−2 such that for i = 1, 2, each of N3−i contains an element whose type over N0 is not
realized in the other.

For this, choose M ∈ K̂r of cardinality ℵr−1 and two finite structures M1,M2 ∈ K̂r such that M1 ∩
M = M1 ∩M = N0 but M1 and M2 are not isomorphic over N0. Now disjointly amalgamate each Mi

with M over N0. The resulting triple is as required. 4.6

Part 1) of Lemma 4.6 extends immediately to structures in Atr. We now give the considerably more
involved argument that Atr fails 2-amalgamation in ℵr−1. The difficulty is that we must establish (*) for
Atr rather than K̂r. For most of this discussion, we work with the class K̂r, passing to Atr only at the
end. We require the following new notion.

Definition 4.7. Fix any infinite U ⊆ ω. For any s ≤ r − 2, and any s-system 〈Nu :u ∈ P−(s)〉 from K̂
r
,

a U -amalgam is any strong, disjoint amalgam M with the additional property that for every unspecified
(r + 1)-tuple b, if M |= Rt(b), then t ∈ U . (As in the proof of Theorem 4.1, unspecified means here that b
is not contained in any element of the system.)

{U}
Lemma 4.8. For any infinite U ⊆ ω, Theorems 4.1 and 4.3 go through word for word, using ‘U -
amalgamation’ in place of ‘strong, disjoint amalgamation’. In particular, by Theorem 4.3, any triple
(N0, N1, N2) of elements of K̂

r
with N1 ∩N2 = N0, each of size at most ℵr−2 has a U -amalgamation.

Definition 4.9. Suppose N ∈ K̂r, B ⊆ N , and a ∈ N \ B. A relevant (r + 1)-tuple is an element of
(B ∪ {a})r+1 with exactly one occurrence of a. We define the species of a over B in N .

spN (a/B) = {t ∈ ω : N |= Rt(c) for some relevant c}

The subscript N is necessary since while the species of a/B is a property of sequences from B ∪ {a},
the predicates are specified on those elements only by the model N . The next few lemmas describe basic
constructions with U -amalgamation. The definition of U -amalgamation allows us to ‘extend the base’.
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{exbase}
Lemma 4.10. Fix any infinite subset U ⊆ ω. For any N0 ⊆ N1 and N0 ⊆ N ′0, all from K̂r, with
N1 ∩N ′0 = N0, every U -amalgam N ′1 ∈ K̂r satisfies for every a ∈ N1 \N0:

spN ′1(a/N
′
0) \ spN1

(a/N0) ⊆ U.

Definition 4.11. Let M ⊆ M1 ⊆ M2 each be in K̂
r

and V ⊆ ω. We write M1 ≺M,V M2 if for each
a ∈M2 −M1, spM2

(a/M) ∩ V is finite.
{finex}

Lemma 4.12. Fix infinite disjoint U, V ⊆ ω. Suppose N1 ∈ K̂r is of size at most ℵr−2, M ⊆ M ′ ∈ Kr

(hence finite) withM ′∩N1 =M . Then any U -amalgamN2 ofM ′ andN1 overM satisfies: N1 ≺M,V N2.

Proof. If a ∈ N1, there are no new relevant tuples to be assigned values. Any a ∈ N2 \ N1 is in
M ′ \M . The only sequences that are not assigned a value from U are from M ∪ {a} ⊆ M ′, and there are
only finitely many of them. 4.12

{getat}
Lemma 4.13. Fix an infinite-coinfinite U ⊂ ω. Suppose M0 ⊆M1 are in K̂r and have cardinality at most
ℵr−2. Then then there is an M∗ ∈ Atr such that for any V ⊂ ω that is disjoint from U , M1 ≺M0,V M∗

Proof. We obtain M∗ by modifying the induction of the second paragraph of the proof of Theorem 4.3
to build a sequence of models Mα with union M∗. At each stage α, U -amalgamate a finite A ∈ Kr with
Mα over A ∩Mα. Then for any a ∈ M∗, it first appears in some Mα and the species of a/M0 in Mβ

is defined only for β ≥ α. Further, for any β > α, spM∗(a/M0) = spMβ
(a/M0) = spMα

(a/M0) and
spMα

(a/M) ∩ V is finite. It is easy to organize the construction so M∗ ∈ Atr. 4.13

We now define the notion of obstruction (to amalgamation). Of course, we can overcome that obstruction
in cardinals at most ℵr−2. But we will construct an obstruction of cardinality ℵr−1 which by Lemma 4.6
cannot be overcome.

{obs}
Definition 4.14. Fix pairwise disjoint, infinite U, V,W ⊆ ω. An obstruction is a triple (N0, N1, N2)

consisting of elements of K̂r, such that N1 ∩N2 = N0 and

• There is exactly one a ∈ N1\N0 such that spN1
(a/N0) has infinite intersection with V andN0 ≺N0,V

N2. (That is, for any b ∈ N2 \N0, spN1
(b/N0) ∩ V is finite.)

• There is exactly one b ∈ N2\N1 that spN2
(b/N0) has infinite intersection withW andN0 ≺N0,W N1.

(That is, and for any a ∈ N1 \N2, spN1
(a/N0) ∩W is finite.)

An obstruction is said to have cardinality κ if each Ni has cardinality κ. An extension of an obstruction
(N0, N1, N2) is an obstruction (N ′0, N

′
1, N

′
2) satisfying Ni ⊆ N ′i and N ′i ∩ (N1 ∪ N2) = Ni for each

i. An extension is proper if all three of the structures increase. An atomic obstruction is an obstruction
(M0,M1,M2) in which every Mi is in Atr.

‘Obstruction’ has a hidden parameter: ‘with respect to disjoint V , W ’. In order to work with the notion
we need a third set U disjoint from each of them. We will keep fixed disjoint, infinite subsets U, V,W of
ω in the following construction. Now we will create obstructions.

{create}
Lemma 4.15. For any N0 ∈ K̂r of size ℵ0, there is a 1-point extension N1 ∈ K̂r with universe N0 ∪ {a}
such that spN1

(a/N0) is an infinite subset of V .
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Proof. Fix any nested sequence 〈Mk : k ∈ ω〉 of elements of Kr (hence finite) such that N0 =⋃
kMk. Inductively assume that we have constructed an element Mk,a of K with universe Mk ∪ {a}

satisfying spMk,a
(a/Mk) ⊆ V and | spMk,a

(a/Mk)| ≥ k. Fix any element t∗ ∈ V that is larger than
both max{spMk,a

(a/Mk)} and ||Mk+1||. Then construct an extension with universe Mk+1 ∪ {a} using the
procedure in the proof of Theorem 4.1, saying thatRt∗(b) holds for every unspecified (r+1)-tuple. 4.15

{start}
Lemma 4.16. For every N ∈ K̂r of size ℵ0, there is a 2-point extension N∗ with universe N ∪ {a, b} such
that

• spN∗(a/N) is an infinite subset of V ; and

• spN∗(b/N) is an infinite subset of W .

Thus there is a countable obstruction in K̂r.

Proof. Apply Lemma 4.15 with V and W to create two one point extensions and then use U -
amalgamation to construct N∗. The required obstruction is (N,Na,Nb). 4.16

{chain}
Lemma 4.17. Suppose r ≥ 2. Any obstruction (N0, N1, N2) of cardinality ≤ ℵr−2 has a proper atomic
extension.

Proof. Let (N0, N1, N2) be an obstruction with U -amalgam N∗. Choose by Theorem 4.3 a proper
extension N4 ∈ Atr of N0 such that N4 ∩ N∗ = N0. Let N7 be a U -amalgam of N4 and N∗; it contains
U -amalgams N5 of N4 and N1 and N6 of N4 and N2. By Lemma 4.10, (N4, N5, N6) is an obstruction.
Apply Lemma 4.13 twice to construct N ′5, N

′
6 ∈ Atr such that N5 ≺N4,V N ′5 and N6 ≺N4,W N ′6. Then,

(N4, N
′
5, N

′
6) is as required. 4.17

{atob}
Lemma 4.18. For r ≥ 1 there is an atomic obstruction (M0,M1,M2) of cardinality ℵr−1.

Proof. Build by Lemma 4.17 an increasing ℵr−1 chain of atomic obstructions. To get started, use Lemma
4.16. 4.18

{atfail}
Proposition 4.19. For any r ≥ 1, Atr fails amalgamation in ℵr−1.

Proof. By Lemma 4.18 when r ≥ 2, we have an atomic obstruction (M0,M1,M2) of cardinality ℵr−1.
For such an obstruction, Mi does not embed into M3−i over M0 for i = 1, 2, so by the argument justifying
the second sentence of 4.6, this triple cannot be amalgamated into any element of K̂r, much less an element
of Atr. 4.19

Now we sum up the properties of the example.
{sumup}

Theorem 4.20. For every r ≥ 1, the class Atr satisfies:

1. there is a model of size ℵr, but no larger models;

2. every model of size ℵr is maximal, and so (disjoint) 2-amalgamation is trivially true in ℵr;

3. disjoint 2-amalgamation holds up to ℵr−2;

4. 2-ap fails in ℵr−1.

9



Proof. By Theorem 4.3, Lemma 4.6, and Proposition 4.19. 4.20

This improves with a much simpler argument the result of [5] that found examples of abstract elementary
classes with disjoint amalgamation up to ℵk−3 but no model of cardinality > ik.

Recall from e.g. [14] the definition of homogenous characterizability.
{newdefhom}

Definition 4.21. κ is homogeneously characterized by a complete sentence φκ of Lω1,ω if φκ characterizes
κ and there is a predicate V such that V defines a set of absolute indiscernibles in the countable model
(every permutation of V (M) extends to an automorphism of M ) and there is a model N with |V (N)| = κ.

In order to find the homogeneous characterization we modify the class Kr slightly. We extend the
vocabulary with unary predicates U and V , and a unary function p. The additional axioms assert that
p projects U onto V ; the (r + 1)-ary functions fn and relations Rn are defined only on U and satisfy the
axioms of Section 2 onU . We let Kr

h denote the class of finite structures in the expanded language satisfying
these constraints. By e.g., [4], the class Kr

h satisfies disjoint amalgamation and thus has a Fraı̈ssé limit Mh.
Let φrh denote the Scott sentence of Mh.

{homchar}
Theorem 4.22. The sentence φrh characterizes ℵr homogenously.

Proof. Use disjoint amalgamation as in the proof of Theorem 1.10 of [4] to show that V (Mh) is a set of
absolute indiscernibles, and then apply Claim 3.4, noting that the disjoint amalgamation guarantees that the
interpretation of the predicate V has full cardinality in every model. 4.22

Remark 4.23. The number of models in the characterized cardinal We noted above that if an AEC has
disjoint amalgamation in ℵs it has a model in ℵs+2. Thus on general grounds we knew K̂r fails disjoint
amalgamation in ℵr−1. But to show amalgamation failed we had to use our particular combinatorics in
Lemma 4.6.2. We don’t have a ‘soft’ argument that ‘ordinary’ amalgamation must fail in ℵr−1. But, if
an AEC has the amalgamation property in κ and all models in κ+ are maximal, the models in κ+ can be
amalgamated on a model of size κ.4 Then there is a 1-1 map from models of cardinality κ+ to models of
cardinality κ: Map M of cardinality κ+ to a submodel M ′ of cardinality κ. If M and N map to the same
model, they have a common extension. But both are maximal, so they must be isomorphic. So the number
of models in ℵr is no more than the number in ℵr−1.

We show that the anomalous situation of the last remark does not hold in our examples. Since no really
new techniques are introduced and there could be many variants on the methods here, we just sketch the
argument.

Remark 4.24. We show each of the classes K̂
r

and Atr have 2ℵs models in ℵs for 1 ≤ s ≤ r. In
addition, K̂

r
has 2ℵ0 models in ℵ0. As in the earlier arguments in this paper one first proves the result

for K̂
r
. Relativizing the construction to permit indices on the Rn only for n in a fixed infinite W ⊂ ω

gives a situation that differs from the original only by notation. So any family of distinct sets Wi for i < ω

gives continuum many countable models of K̂
r
. Ad hoc arguments or the existence of algebraic chains

in the sense of (Baldwin,Laskowski, Shelah forthcoming) shows there are 2ℵ1 models of K̂
r

in ℵ1. Now
induction on s using properties of U -amalgamation shows K̂

r
has 2ℵs models in ℵs for 1 ≤ s ≤ r. Finally,

when s > 1 a similar argument allows one to close non-isomorphic M,N ∈ K̂
r

to non-isomorphic models
in Atr. The last two arguments rely on the notion of a V -component: A V -component E of a ∈ N is a
maximal uncountable subset of N such that for any tuple e ∈ E if every permutation f of ea satisfies Rt(f)
then t ∈ V .

4The straightforward argument is written out for ℵ1 in [6].
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Question 4.25. Is there a (complete) sentence of Lω1,ω which characterizes κ and has fewer than 2κ models
of cardinality κ?
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