
EXPLORING THE GENEROUS ARENA

JOHN T. BALDWIN
UNIVERSITY OF ILLINOIS AT CHICAGO

So my suggestion is that we replace the claim that set theory is a
(or the) foundation for mathematics with a handful of more precise
observations: set theory provides Risk Assessment for mathemati-
cal theories, a Generous Arena where the branches of mathematics
can be pursued in a unified setting with a Shared Standard of Proof,
and a Meta-mathematical Corral so that formal techniques can be
applied to all of mathematics at once.

What do we want a foundation to do? Maddy (2019)

We view this analysis as a real step forward in foundational studies. Maddy
considers several further criteria and concludes that set theory (specifically ZFC
+ large cardinals (LC)) serves as an ambient basis for mathematics that meets all
the authentic criteria except Proof Checking and Essential Guidance. Mac Lane
articulated a quite different view:

It is an open scandal that the classical method of applying Zermelo-
Fraenkel set theory as foundation for all practice of Mathematics is
no longer adequate to the practice of Category Theory. The device
of having both large and small categories in some Gödel-Bernays
set theory was a convenient arrangement when it was first proposed
by Eilenberg Maclane 23 years ago, but it no longer convenes1 for
functor categories (with large domain category) or the category of
all categories as used in the theory of fibred categories or Ben-
abou’s profunctors. The alternative arrangement of categories in
a Grothendieck Universe has been effective for getting on with the
development of Mathematics, but it introduces assumptions as to
inaccessible cardinals which palpably have nothing to do with the
case, and it leaves unsettled (as yet) a variety of questions resulting
from a shift of universe.

What should we conclude? The happy security provided by one
‘monolithic’ foundation has been lost. First Principia Mathematica
and then Zermelo-Fraenkel had this monolithic character, that all
working Mathematics could be formulated within one system. This
provided a convenient division of labor, between Mathematicians
who just ‘used’ the system (usually in a naive form) and the Logi-
cian who investigated within the system various classical problems.
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The paradise is irretrievably lost; it is high time that open-minded
young Mathematicians set to work to construct a new one – perhaps
less monolithic.” (MacLane, 1969, 130-131)

(Maddy, 2019, 22) thinks that whether set theory or category theory is ‘more foun-
dational’ does not make for a productive debate. Rather she urges ‘a concerted
study of the methodological questions raised by category theory’. To begin such
a study, we propose a distinction between Foundation and organization (§ 1). We
consider category theory and model theory as ‘scaffolds’ and discuss their comple-
mentary virtues for specific mathematical areas (§ 2). We analyze in § 3 comparable
claims to be Foundations by material and structural set theories. Finally, in § 4,
we summarise the properties of the scaffolds and assess whether the Foundational
‘paradise’ is lost.

1. Foundations and Organization

Russell and Whitehead (1910) opine ‘the chief reason in favour of any theory on
the principles of mathematics must always be inductive, i.e., it must lie in the fact
that the theory in question enables us to deduce ordinary mathematics.’ Maddy
agrees with that assessment and so we understand Russell and Maddy as taking
Foundation with a capital F – a system for deducing ordinary mathematics2. And
for Maddy, such a Foundation is justified not by an external consistency proof
but on its success in grounding mathematics at large. As Maddy stresses in Maddy
(2017, 2019), this grounding is not reflected in the daily practice of theorem proving.
For her, it is a belief that mathematical research, vaguely thought of as carried out
in naive set theory, can be reduced to a formal set theoretic foundation. She calls
this belief shared standard of proof.

Secondly, Maddy requires a Generous Arena that encompasses all of mathemat-
ics. (Maddy, 2019, 13) asserts: ‘the axioms of set theory imply the existence of
(surrogates for) all the entities of classical mathematics – a simple affirmation of set
theory’s role as Generous Arena.’ She stipulates that the surrogates are elements
of the universe of sets, V .

Although we focus on these two criteria, Maddy posits three others satisfied
by ZFC +LC: risk assessment, meta-mathematical corral, and elucidation; two
reasonable (essential guidance, proof checking) not satisfied by ZFC, and rejects two
(metaphysical insight, epistemic source). We generally agree with her judgements,
but regard the two reasonable criteria as tasks for scaffolds, not Foundations.

In a section entitled ‘Foundation or Organization’ (MacLane, 1986, 406) is un-
satisfied with ZFC (or well-pointed topos) as a foundation3. On the next page he
describes both ZFC and category theory as not wholly successful organizations
for mathematics. We adopt this distinction and use it to refine Maddy’s criteria.

In contrast to a global Foundation, we describe a scaffold as an organization
that includes both local foundations for various areas of mathematics and productive
guidance in how to unify them. In a scaffold the unification does not take place by a
common axiomatic basis but consists of a systematic ways of connecting results and

2This f/F distinction arose on the Foundations of Mathematics listserve in the late 90’s. Bald-
win (2018) describes other variants (5, fn. 14) and studies small f foundations.

3He argues on page 406 that the Gödel incompleteness theorems prevent any ‘security blanket’.
The longer quote better represents Mac Lane’s long term skepticism of the relevance of ZFC to
category theory.
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proofs in various areas of mathematics. The scaffolds, model theory and category
theory, provide local foundations including two flavors of set theory (§ 3.2).

Notation 1.0.1. The familiar material set theory takes the notions of element and
set as fundamental; structural set theory takes function and set as fundamental
Shulman (2019). In pure (without ur-elements) ZFC elements are sets. In contrast,
the elements of a set X in structural set theory are not sets; they are functions from
a terminal object 1 (For every object C, there is a unique morphism from C to 1.)
to the object (set) X. Both material (vocabulary: ε,=) and structural (vocabulary
has symbols for: objects, arrows, domain, codomain, equality, and composition)
are first order theories.

Although there are many variants of either sort of set theory, all have an ex-
tensional notion of equality. The model theory scaffold gives local foundations for
material set theory, ZFC. Various structural set theories extend ETCS (Elementary
Theory of the Category of Sets Notation 3.2.1). We will examine whether these
alternatives satisfy Maddy’s criteria of Generous Arena and Shared Standard of
Proof.

Maddy interprets Mac Lane’s complaint (MacLane, 1986, 407) that there is
too much ‘sand4’ in ZFC as a proposal that a Foundation should provide Essen-
tial Guidance, ‘that would guide mathematicians toward the important structures
and characterize them strictly in terms of their mathematically essential features’
(Maddy, 2019, 19). She takes this as a plausible Foundational goal, though not
a goal of ZFC. As she cogently argues, this goal conflicts with Generous Arena.
So, with Mac Lane, we see guidance as organizational rather than Foundational.
Indeed, in (Mathias, 1992, 119) Mac Lane asserts, ‘But I see no need for a single
foundation — on any one day it is a good assurance to know what the foundation of
the day may be — with intuitionism, linear logic or whatever left for the morrow.’

2. Two Scaffolds

Bourbaki wrote,

Today, we believe however that the internal evolution of mathemat-
ical science has, in spite of appearance, brought about a closer unity
among its different parts, so as to create something like a central
nucleus that is more coherent than it has ever been. The essential
aspect of this evolution has been the systematic study of the rela-
tions existing between different mathematical theories, and which
has led to what is generally known as the ‘axiomatic method.’

(Bourbaki, 1950, 223)

The Bourbaki treatise proceeds by the axiomatization of various fields (local
foundations), establishes a common notation, and documents the links among them.
This provides one component of a scaffold for mathematics. Rather than attempt-
ing a precise, full definition of scaffold, we discuss the goals of scaffolding with
two examples: category theory and model theory. Along with local foundations a
scaffold should promote unity across mathematics by providing a method for trans-
porting concepts and results from one area to another. There is no requirement
that the scaffold encompass all of mathematics but only that it makes connections

4In other places MacLane (1988) objects that ZFC allows too many unproductive investigations
such as the normal Moore Space conjecture.
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among a number of topics. A successful scaffold contributes to generous arena and
shared standard of proof. Proofs are built on prior assumptions. One does not prove
a new result in mathematics directly from the material or structural set theoretic
axioms; there must be a chain of arguments and constructions/definitions from the
foundational axioms to the result at hand. A scaffold helps to organize the modules
of proofs that involve various areas and provides Productive Guidance. I replace
essential by productive as various scaffolds will give different advice depending on
their framework. The success of the mathematics is the measure of the guidance.

Both scaffolds adopt local foundations by studying the properties of certain
classes. The delineation of these areas differs among Bourbaki, model theory, and
category theory. Bourbaki axiomatizes classes of structures in the informal way of
Euclid or Hilbert (1971). Model theory posits fully formalized theories and Tarski
semantics. Category theory gives mathematical definitions (commonly in naive set
theory) of its basic classes and morphisms without semantics.

A formalism-free (Kennedy (2013)) approach to mathematics defines in naive
set theory or natural language a class of objects. Often, the exact vocabulary of
the class is unclear. In contrast the modern notion of an axiomatic system requires
a distinction between a class of structures (defined set theoretically) and a formal
language in which axioms are stated. Thus, Bourbaki and Category theory are
formalism-free. While, model theory makes essential use of formalization5.

These are not the only scaffolds. E.g., Descriptive Set Theory scaffolds results
in many subjects that are captured by Polish spaces, while the Langlands program
expands on Weil’s Rosetta stone to unify number theory with harmonic analysis
(and points in between) (Frenkel (2013)).

2.1. The Model Theoretic Approach

Benis-Sinaceur summarised the source of model theorists’ ability to discover
analogies across different fields of mathematics.

Model theory deals specifically with logical analogies among math-
ematical procedures and theories. It proceeds by means of an anal-
ysis of the language of theories while exploring the reciprocal re-
lations between this language and the mathematical models that
satisfy it. (Benis-Sinaceur, 2000, 282)

In this section we a) describe fundamental model theoretic ideas which clarify the
role of ZFC as a generous arena and also as a metamathematical corral, b) explain
how the classification of theories serves as a unifying principle to treat different areas
of mathematics, c) provides a wild/tame distinction to give productive guidance
and d) (§3.1) demonstrates and uses properties of cardinality in exploring Cantor’s
paradise. See Baldwin (2018) for much more detail.

We concentrate on first order logic, as the so far most successful logic for orga-
nizing mathematics by providing and connecting formal local foundations. All the
logics are based squarely in ZFC with occasional use of large cardinals and indepen-
dence results. Examining a particular mathematical topic, the investigator selects
certain concepts as fundamental. The vocabulary6 is a set τ of relation symbols,

5Remark 2.2.1, (Baldwin, 2018, Chapter 14), and Kennedy (2020) give (non-first order) excep-

tions to this claim. § 3.2 shows that, for full strength, structural set theory must use formulas.
6To avoid ambiguity, I have chosen the word ‘vocabulary’ rather than such rough synonyms as

language, similarity type, signature or, even rougher, logic.
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function symbols, and constant symbols chosen to represent these basic concepts.
A τ -structure with universe A assigns (e.g., to each n-ary relation symbol R an
RA ⊆ An).

Definition 2.1.1. A full formalization involves the following components.

(1) Vocabulary: specification of primitive notions.
(2) Logic:

(a) Specify a class of well formed formulas.
(b) Specify truth of a formula from this class in a structure.
(c) Specify a formal deductive scheme for these sentences

(3) Axioms: specify the basic properties of the situation in question by sentences
of the logic.

Remark 2.1.2 (The value of formalization). Formalization provides a number of
clarifications and solutions for both imagined and real problems.

Category theorists (e.g. Leinster (2014)) often raise tendentious arguments that
a mathematician might confusedly ask of two real numbers, ‘Is π ∈ 2?’ The notion
of fixing a vocabulary describes exactly when this question makes sense – only if ∈
is in the vocabulary. Mathematicians don’t actually make this mistake; Shulman
(2008) makes a more subtle distinction between two uses of ∈.

Shelah’s 1974 proof of the independence (from ZFC) of the famous topologist
(J.H.C.) Whitehead (motivated by complex analysis and algebraic topology) con-
jectured any Whitehead group7 is free. The conjecture is stated strictly in the
vocabulary (+, 0) of Abelian groups. Shelah constructed a specific structure in the
vocabulary (∈,+, 0) that under V = L is free as abelian group and under Martin’s
Axiom is not. Thus the metamathematical corral of independence results available
in ZFC extends beyond technical problems about ZFC to problems arising in tra-
ditional mathematics. Shelah’s construction is not directly available in category
theory where objects don’t have elements (Leinster, 2014, 403). As a further exam-
ple, consistently, there are regular cardinals (e.g. κ = ℵ1) and groups A (|A| = κ)
such that every strictly smaller group is free but A is not free. Shelah’s singular
cardinal theorem show this fails for any singular cardinal κ and places the result in
a general framework Eklof and Mekler (2002); Magidor and Shelah (1994)). Vasey
(202x) transfers the result via internal size to accessible categories (Remark 2.2.1).

The mantra, ‘model theory is the study of definable sets’ depends on using ZFC
to define structures. Fräıssé and Jónsson constructions further illustrate the signifi-
cance of internal structure in ZFC. Although the properties of the construction are
easily expressed in appropriate categories, translating the natural model theoretic
proof into structural set theory would seem unnatural8. The existence of isomorphic
structures that are not identical is essential. This framework underlies the notion
of saturation (§ 3.1), the theory of random graphs (connection in Blass and Harary
(1979)), even with edge probability n−α (Baldwin and Shelah (1997)), Abstract
Elementary Classes, the study of exotic strongly minimal sets (Hrushovski (1993)),
and Zilber’s generalization to the complex exponential field.

7Call A a Whitehead group if for any f,B such that f : B → A is a surjective (i.e. onto) group
homomorphism whose kernel is isomorphic to the group of integers Z then B is isomorphic to the
direct sum of Z and A. Any free Abelian group A is Whitehead (and conversely if A is countable).

8Either the notion of universally axiomatized class or the use of set theory to define ‘class
closed under substructure’ is needed.
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An informal notion of tame/wild mathematics developed during the 20th cen-
tury. Roughly, wild mathematics includes the ‘wilderness’ of point set topology;
Pillay in (Buss et al. (2001)) includes any area exhibiting the Gödel phenomena,
undecidability and coding of pairs (thus, no notion of dimension). Shelah’s Classi-
fication theory divides complete9 first order theories by syntactical conditions into
a small number of classes. Theories in the same class share mathematically sig-
nificant properties. Bourbaki (1950) posits three great mother-structures: groups,
order, and topology and suggest vague notions of particularizing and combining
them to study classical mathematics (e.g. topological groups). Shelah’s classifica-
tion refines the Bourbaki program by enabling (by meta-theory or more often by
analogy) the transfer of results from one theory to another in the same class and
provides guidance to distinguish the wild from the tame. The crudest distinction,
between stable and unstable, echoes Bourbaki’s mother-structure: order. Stable
structures have no infinite subsets that are definably linearly ordered. Theories
have increasing degrees of tameness as conditions such as superstability, ω-stability
and strong minimality10 hold. Among the unstable theories o-minimality yields a
collection of dramatically tame theories. Instability divides into theories that satisfy
the strict order property11 (strop or sop) and those with the independence property
(ip). Those with both (strop) and (ip) are thoroughly wild (e.g., Peano arithmetic
and ZFC); despite the connotation, the meaning is: very different methods will be
needed to study these topics.

The wildness of first order arithmetic did not prevent the great twentieth century
advances in number theory. But these advances come not from working in the first
order theory of arithmetic but embedding the natural numbers in tame structures,
such as (stable expansions of) strongly minimal ACFp. In Baldwin (2018), we
describe the classification and in Chapter 6 stress two paths (stable/o-minimal)
to pick out tame areas of mathematics. They share a common feature, missed
in Bourbaki’s list of mother-structures: combinatorial geometry (matroid theory)
organizes dimensions of subsets of models of tame theories.

We look first at the stable side. The success of model theory in studying solu-
tions of equations arises as equations define sets. And in theories with elimination
of quantifiers (e.g. differentially or algebraically closed fields (DCF, ACF) they
control all definable sets. The use of first order axiomatizations, interpretations
among theories, and stability theory for results in Diophantine geometry, number
theory, and automorphic functions demonstrate the value of formalizing these the-
ories (Bertrand and Pillay (2010); Bouscaren (1999); Freitag and Scanlon (2018);
Hrushovski et al. (2018)). Note in particular, that while in algebra the domain of a
structure is naively thought of as a set of points, the study of the (ω-stable) theory

9Incomplete theories such as the theory of R-modules permit closure under natural operations
such as product and homomorphism so interact with universal algebra. Concentrating on complete

theories enables the classification.
10We omit the easily available technical definitions of the stability hierarchy. A strongly min-

imal set is a definable set such that every definable subset is finite or co-finite. An algebraically

closed field ACF is strongly minimal; so too is the set of solutions to the differential equation defin-
ing the Weierstrass j-function (Freitag and Scanlon (2018)). Some of the notions arising in abstract

stability theory that are now applied across mathematics include: regular type, prime/minimal

models, forking/rank, (non)-orthogonality, canonical base and (elimination) of imaginaries, and
classification of combinatorial geometries (matroids).

11T is unstable and there is a formula φ(x,y) that defines a chain on some (likely not definable)
subset of n-tuples.



EXPLORING THE GENEROUS ARENA 7

of differentially closed fields (DCF ) focuses on models where the elements are func-
tions. Model theory treats morphisms in two ways: i) ‘algebraic homomorphisms’
between models (specializing to elementary embedding); ii) definable maps between
definable sets. Thus, in algebraic geometry definable rational functions correspond
to the morphisms in the category: Zariski topologies on ACF with continuous maps
(Poizat, 2001, 4.3). Recent work on DCF (Nagloo and Pillay (2016)) invokes sta-
bility theoretic tools to solve and refine one-hundred year old Painlevé problems of
classification and transcendence of solutions of partial differential equations.

Turning to the unstable case, Grothendieck described his motivation (clarifying
Mac Lane’s reference to ‘too much sand’ (§ 2)) for a notion of ‘tame topology’.

I would now say, with hindsight, that ‘general topology’ was developed
(during the thirties and forties) by analysts and in order to meet the
needs of analysis, not for topology per se, i.e. the study of the topological
properties of the various geometrical shapes. That the foundations
of topology are inadequate is manifest from the very beginning, in
the form of ‘false problems’ (at least from the point of view of the
topological intuition of shapes) such as the ‘invariance of domains’,
even if the solution to this problem by Brouwer led him to introduce
new geometrical ideas. (Grothendieck, 1997, 258)

A theory of a linearly ordered structure is o-minimal if every definable subset
(perhaps in a much richer language than order) is a finite union of intervals. No-
tably, Wilkie extended the ur-example, real closed fields, to the real exponential
field. Wilkie (Wilkie (2007), (Baldwin, 2018, 160))argues that o-minimality is a
direct response to Grothendieck’s call because o-minimality:

(1) is flexible enough to carry out many geometrical and topological construc-
tions on real functions and on subsets of real Euclidean spaces.

(2) builds in restrictions so that we are a priori guaranteed that pathological
phenomena can never arise. In particular, there is a meaningful notion
of dimension for all sets under consideration and any constructed by the
means of 1)

(3) is able to prove finiteness theorems that are uniform over fibred collections.

Some of the successes of this program, beyond the basic Dries (1999), include
a case of the Andre-Oort conjecture (Karp Prize 2013) (Pila (2011)) (relying on
Peterzil and Starchenko (2010); Pila and Wilkie (2006)), the developing subfields
in o-minimal algebraic topology Berarducci and Otero (2002), and now o-minimal
Hodge theory (Bakker et al. (2020)). The 2018 Karp prize winning book, Aschen-
brenner et al. (2017), on asymptotic analysis brings to fruition notions of Hardy.
The universal domain is the proper class of surreal numbers (Dries and Ehrlich
(2001); Ehrlich (2012)).

The developments outlined above are guided by the following strategies.

Remark 2.1.3 (Model Theory Strategies).

(1) Fix an appropriate vocabulary τ to study the subject.
(2) Give a (first-order) axiomatization T of the area involved.
(3) Study definable relations on the structure to obtain tameness.
(4) Modify your vocabulary to reduce quantifier complexity of formulas.
(5) Use syntactic conditions (stability hierarchy, o-minimality) and the dividing

line strategy to guide your search for analogies.
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Problem 1. Give a philosophically meaningful definition of tame. What is sand?
Does structural set theory, even as weak as ETCS, actually eliminate sand and if
so how? What are examples?

2.2. Category Theoretic Approach

Category theory describes classes of structures (which have no internal anatomy)
by maps (morphisms) between them. It provides an axiomatic operational descrip-
tion of constructions which apply across mathematics and sufficient conditions for
a category to be closed under them. We examine certain results and discuss why
they are only awkwardly justified in ZFC + LC. Our analysis is limited to the
‘first generation’ (6 1975) of general category theory. Dependent type theory and
the HOTT program raise important issues (The Univalent Foundations Program
(2015) and Voevodski (2014) lecture 3 slide 11) not dealt with here.

While model theory relies heavily on material set theory, the objects of a cat-
egory have no elements. Thus a group is defined as a category12 with one object
and whose morphisms are all isomorphisms (i.e. invertible). §2.1 described the
benefits of internal structure. The gain here is that the properties of constructions
used in many areas are defined axiomatically without involving ‘irrelevant’ internal
information.

We indicate some underlying causes of the wide influence of category theory in
homological algebra, algebraic topology, and algebraic geometry13. Lou Kauffman
explains14, ‘We would never have regarded topological spaces as morphisms in a
monoidal category, as is part and parcel of TQFT [topological quantum field theory]
and Quantum Topology, without a category theoretic point of view15. Categories
make possible conceptual shifts that a strictly set theoretic point of view would not
see.’

Category theory began with the conceptual shift engendered by the realization
that problems Eilenberg was studying on the continuous side (homology theories in
topology) were reflected in problems Mac Lane was studying on the discrete side
(group extensions). They described their goals:

In a metamathematical sense our theory provides general concepts
applicable to all branches of abstract mathematics, and so con-
tributes to the current trend towards uniform treatment of different
mathematical disciplines. In particular, it provides opportunities

12A usual group (G,×, 1) induces a category Ĝ and the elements of G acting as morphisms

of Ĝ by left-multiplication. Conversely, take each morphism as an element and 1G as the unit.
Isomorphisms between material groups become functors.

13 Other areas include K-theory, scheme theory, Langlands program, and model categories.
Krömer (2007) and Marquis (2009) insightfully unite historical, philosophical and mathematical

expositions of category theory.
14Foundations of Mathematics Listserve: January 23, 2020
15Blass and Gurevich (2018) give a more detailed example. Lawvere and Schanuel (1997), a

high school text written from a ‘function-first’ viewpoint, is built around age-appropriate ‘real
world’ examples. The book is slow reading because ‘almost familiar’ ideas appear in a strange
guise – conceptual shift.
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for the comparison of constructions and of the isomorphisms occur-
ring in different branches of mathematics; in this way it may occa-
sionally suggest new results by analogy (Eilenberg and MacLane,
1945, 236).

Category theory describes families of objects and morphisms between them.
Morphisms implement the intuition of a function as a rule while hiding the actual
rule but studying only the patterns of composition of morphisms like homotopy
type. Thus f is a 1-1 function becomes: for every g, h: fg = gh implies g = h
(monomorphism). De Toffoli (2017) argues that commutative diagrams and the
technique of ‘diagram chasing’ are an effective hybrid of diagrammatic and lin-
guistic elements that supports reasoning. The operational definition enables the
discovery of common constructions (e.g. adjoint functor § 3.1) for diverse subjects.

Problem 2. Must formal reasoning be represented linearly? What is lost/gained
in transforming diagramatic to linear reasoning?

In contrast to model theory, equations are not studied as ‘nice’ definable sets. As,
there are no definable sets. Rather, for example, the family of possible equations is
considered as a vector space of linear transformations and the kernel (in the dual
space) of such a transformation contains the solutions. The same tools are now
available for both the ‘syntax’ and the semantics. Moreover, the same abstract
formulation applies in many different areas.

The definitions of categories and functor exemplify par excellence ‘formalism-
free’ mathematics (§ 2). Yet the informal Eilenberg-Steenrod axioms (ES-axioms)
for homology required more complex formalizations than known in the 1940’s. A
homology theory on A (the category of pairs (X,A) of topological spaces with con-
tinuous maps as morphisms) assigns to each (X,A) a countable sequence of abelian
groups, and group homomorphisms. There were at least 5 such theories by 1945
when (Eilenberg and Steenrod, 1952, Chapter I) announced the ES-axioms that
unify those theories by provide a common basis, satisfied by each of the examples.
That is, axiomatizing functors from A to (sequences from) Abgrp (abelian groups)
and natural transformations among these functors. They can be formalized as a
theorem schemata in ZFC (or a theory in Gödel-Bernays). A key theorem asserts
that two homology theories fulfilling the axioms (and certain additional conditions)
are naturally equivalent and yield isomorphic homology groups for a given space
from an appropriate category of topological spaces. The ES axioms yield without
calculation important results, such as Brouwer’s fixed point theorem (‘without any
appeal to a concretely defined homology theory’ (Eilenberg and Steenrod, 1952,
298)). They remark (page viii), ‘Heretofore this [homology theory] has been an im-
precise picture which the expert could use in his thinking but not in his exposition.’
This exemplifies what Maddy later calls Elucidation 16.

Maddy dubs as surrogates, the constructions described by Burgess:

[this] common, unified starting point will have to be such as to make
provisions for all types of constructions by which new, auxiliary
spaces, or number systems or whatever are manufactured out of
old, traditional ones . . . . There are a handful of basic types of

16Elucidation replaces an imprecise, pre-theoretic notion which interferes with mathematical
practice with a precise, ‘set-theoretically defined one’ ((Maddy, 2017, 293).)
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constructions that keep being used over and over, in ever more
elaborate combinations (Burgess, 2015, 62)

Why does Mac Lane doubt that ZFC is adequate to support categorical reason-
ing? A category is concrete if it is equipped with a forgetful functor17 to the category
of sets. Applying this functor allows one to think of the objects of the category as
sets with additional structure, and of its morphisms as structure-preserving func-
tions (Adámek et al. (1990)). The most naive interpretation of finding surrogates
would consider only concrete categories. The fundamental classes studied in 20th
century mathematics: groups, topological spaces, etc. are concrete categories that
are usually defined in naive set theory. But there are categories which, intrinsically,
are not concrete.

Let H be the category, whose objects are topological spaces and morphisms are
homotopy classes of continuous functions. Freyd wrote in 1970, ‘H is not concrete.
There is no interpretation of the objects of H so that the maps may be interpreted
as functions (in a functorial way, at least). H has always been the best example of
an abstract category, historically and philosophically. Now we know that it was of
necessity abstract, mathematically’ (Freyd, 2004, 1).

It is easy to see that a morphism in H may be a proper class. Namely for any
cardinal κ, let Xκ be the κ-pointed star consisting of κ copies of the unit interval
which are disjoint except for one point common to all. Each space is contractible
(it can be continuously shrunk to a point), and so any pair of continuous maps
from one of these spaces into another (including the same space) are homotopic to
a constant map. Thus, this morphism has a proper class of members. Freyd shows
there is no other representation that avoids this problem.

Beyond products, unions, direct sums etc., Burgess points to quotients18 as a tool
for building the generous arena. Taking such quotients enables finding surrogates
in Gödel-Bernays set theory. Kucera (Kucera (1971) (Adámek, 1983, Chapter 6))
proved that every (possibly abstract) category can be represented as a quotient of a
(possibly large) concrete category. As in the homotopy case, the equivalence classes
may well be proper classes even though each object is a set. Suppose, as in MacLane
(1971), we work in one ‘universe’, i.e. assume a single inaccessible19 κ exists. Now
one can modify the Kucera argument by considering categories to have objects in
Vκ. Then, the surrogates for the morphisms in Kucera’s argument become sets of
cardinality κ. Thus, to guarantee surrogates are realized in a concrete category one
uses ZFC + an inaccessible cardinal.

The issue is even more complicated. The forgetful functor U : Hilbr → Set
gives the category Hilbr of Hilbert spaces with linear isometries the structure of a
concrete category. However, the necessity of taking the completion means that the
category is not closed under increasing unions. Moreover, Lieberman, Rosický, and
Vasey (Lieberman et al. (2019b)) prove there is no faithful functor from Hilbr to
Set which preserves directed co-limits (the appropriate abstraction of ‘union’). The
difficulty arises because, while one can choose representatives for the equivalences

17A forgetful functor is a map from a category C into sets that forgets the structure on the
elements of C and maps the morphisms to functions. A functor is faithful if it is injective (which
can defined in category theory terms) on morphisms.

18Recall the quotient group of a group G by a normal subgroup H is constructed by putting
a natural group structure on the collection of E-equivalence classes where aEb if ab−1 ∈ H.

19A cardinal κ is inaccessible if the Vκ is closed under power set and under unions indexed by

member of Vκ (i.e. κ is regular).
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classes, one cannot select one representative of each class in such a way that the
composition of two selected representatives is always a selected representative.

Remark 2.2.1. Accessible Categories/Abstract Elementary Classes (Adámek and
Rosický (1994), Baldwin (2009)) are treated by both scaffolds. AEC are Shelah’s
solution to the complications of syntax in infinitary logic. They provide a formalism-
free axiomatic treatment of classes of structures. That is, there are (naive set-
theoretic) axioms which describe the property of a pair (K,6), where K is a class
of τ -structures for some vocabulary τ , 6 is a notion of strong substructures where
the properties of ‘strong’ is specified axiomatically but include being a subset.
Although this definition depends heavily on the set theoretic notion of subset, the
axioms specify conditions on closure under union of chains which are such that
the class is closed under colimits and thus it becomes a special kind of accessible
category20 (Lieberman (2013)). Lieberman et al. (2020) exploit the connection
between (set theoretically defined) cardinality and internal size, defined in any
accessible cardinal to propose an exciting new generalized ‘eventual categoricity
problem’. Lieberman et al. (2019a) show how to generalize the fundamental study
of abstract independence relations from model theory to category theory.

(Riehl, 2016, 11) emphasizes the unifying aspect of category theory, ‘the action
of packaging each variety of objects into a category shifts one’s perspective from
the particularities of each mathematical sub-discipline to potential commonalities
between them.’

3. Foundations

In this section we explore how the category and model theoretic viewpoints differ
regarding size/cardinality. Then we study two approaches to the formalization of
set theory: material and structural set theory.

3.1. Size

Most mathematical theorems apply either to structures of bounded cardinality
(e.g., classifying 3-manifolds) or to structures of arbitrary cardinality. Category
theory aims at uniform results for objects (e.g. topological spaces) of all cardi-
nalities. But the techniques require recourse to proper classes21. So, Eilenberg
and MacLane (1945) introduced the concept of category theory with foundations in
Gödel-Bernays set theory. ‘Cardinality’ does not appear in the index to Mac Lane’s
text, MacLane (1971). He considers three sizes: finite, small, and large. (Enayat
et al., 2017, 3/4) distinguish relative and absolute solutions to the foundational
issues arising from the small/large problem. An absolute solution, e.g. one inacces-
sible (MacLane (1971)) or Gödel-Bernays (Eilenberg and MacLane (1945)), fixes
the distinction once and for all. Grothendieck adopted a relative view and built his
general cohomology theory on the basis of universes, essentially the existence of a
(proper class) of inaccessible cardinals. Countably many universes suffices for most
purposes. As argued in McLarty (2010), Grothendieck uses universes to provide a

20For regular λ, a category is λ-accessible if it has λ-directed colimits, has only a set (up to
isomorphism) of λ-presentable objects , and every object can be written as a λ-directed colimit

of λ-presentable objects.
21Recall that in ZFC classes are definable pieces of the universe which are equinumerous with

the universe. Gödel-Bernays set theory treats these as a different kind of object.
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smooth general framework. Authors presume, but rarely detail, that this assump-
tion is not needed in specific applications. In contrast, comparing cardinalities is a
central feature of the model theoretic study of algebraic phenomena. In this sec-
tion we study the necessity of the small/large distinction in category theory and
the impact of cardinality on mathematics as mediated by model theory.

One of the main achievements of category theory is to prove theorems (not
meta-theorems), e.g., the adjoint functor theorem, that apply in many areas of
mathematics. To see how proper classes arise in even formulating that theorem we
need a few technical definitions but avoid others not essential here.

Definition 3.1.1. (Awodey, 2010, 24) A category is small if it has only a set of
objects and there is only a set of morphisms between every pair of objects. Otherwise
it is large and locally small if each ‘hom-set’ is a set. It is complete if it has all small
limits. (For the moment just think, ‘all unions indexed by a set are included22’.)

We do not define the notion23: ‘the functor U has a left adjoint’. The three page
list of examples in (MacLane, 1971, 85) includes: the left adjoint to the forgetful
functor24 from groups to sets is a free group; from fields to integral domains is
the field of quotients, and from complete metric spaces to metric spaces is the
completion. An adjoint functor theorem provides sufficient conditions on a category
C and a functor F for the existence of a left adjoint to F . A natural candidate for
a general sufficient condition to obtain adjoints is a result of Freyd:

Theorem 3.1.2. If C is a complete small category then every functor from C to
another category D that preserves limits has a left adjunct.

The hypotheses of Theorem 3.1.2 is too strong in two ways. First, as a short
Cantor diagonal argument shows, any such category satisfies a quite restrictive

condition25. (Otherwise a set of size 2|C| is imbedded in C.) This well-known
result is expounded in (Enayat et al., 2017, Theorem 1) or in more detail (Awodey,
2010, Chap. 9).) Moreover, the hypothesis doesn’t apply to large categories such
as Set or Grp. The standard solution is to weaken the hypothesis by considering
locally small categories and replacing ‘preserves limits’ by a more technical solution
set condition that allows multiple morphisms between a pair of objects. Further
applicable sufficient conditions for left adjoints apply in many contexts. Yet, the
small/large dichotomy is inevitable.

(Baldwin, 2018, Chapter 8) describes the intricate history of interactions among
first order model theory, ZFC, cardinality, and cardinal arithmetic. One of the most
influential problems in modern model theory asked about the function, I(T,ℵα),
the number of (non-isomorphic) models a countable theory T has with cardinality
ℵα. Morley conjectured that this function was non-decreasing for every T (except
possibly from ℵ0 to ℵ1). Shelah (1990) solved the conjecture using his dividing
line strategy ((Baldwin, 2018, 13.3), Baldwin (2021), Shelah (2020)). This strategy
successively splits theories by syntactic properties until arriving at two classes: i)
unclassifiable theories have the maximal number of models in every uncountable

22See § 2.2 and the text Awodey (2010) for details. Shulman (2008) and Enayat et al. (2017)
give a fuller explanation of the category terminology and different resolutions of the issue.

23See Chapters 4 and 5 of Marquis (2009) for the impact of Kan’s work on adjoint functors.
24See footnote 17.
25It is a preorder; that is, it has at most one morphism between any two objects.
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cardinality and there is no uniform way to assign invariants determining isomor-
phism; ii) classifiable theories have a local and sometimes global dimension theory;
each model is determined by a tree of invariants with countable height; and I(T,ℵα)
is bounded by a function of |α|. Both the classification of theories and the crucial
tools for the main gap proof permeate applications across mathematics.

The notion of a universal object for a diagram is fundamental in category theory
(MacLane, 1971, page 2). (MacLane, 1971, 123) observes in a particular case that
the size of the universal object is bounded in terms of the size of the diagram
and the objects in it. But no actual cardinal calculations appear in the book. In
contrast, (Hausdorff, 2005, H 1908) introduces a form of universality that is seminal
for model theory: M is κ-universal for a class K if |M | = κ, if N ∈K and |N | 6 κ
then there is an embedding of N into M . He proves the existence of ℵn+1-universal
linear orders if ℵn+1 = 2ℵn .

Generalizing ideas of Hausdorff, Fräıssé, and Jónsson, Morley and Vaught (1962)
proved the existence of saturated26 models of any complete theory in all regular
cardinals using the GCH. A minor variant (special) extends the result to singular
cardinals. An important consequence of Shelah’s classification theory is that GCH
can be replaced by model theoretic hypotheses for ‘tame’ theories: A stable theory
T has a saturated model in cardinality κ if and only if κω = κ and a superstable one
has saturated models in any cardinal > 2ℵ0 . Intriguing problems in in axiomatic
set theory arise from determining which theories have universal models in which
cardinals (Shelah (2020); Baldwin (2021)).

The notion of a saturated (homogeneous-universal) model M plays a funda-
mental role in model theory for finding ‘universal domains’. Model theory papers
routinely begin, ‘we work in a suitable monster model’. This means choose a do-
main (necessarily, for an arbitrary theory, whose cardinality is strongly inaccessible)
large enough to encompass any construction from the objects actually under study
(Baldwin, 2018, 5.2). As in the last paragraph, for ‘sufficiently tame’ theories, these
inaccessible cardinals are not necessary.

Problem 3. Further explore the distinctions between relative and absolute ‘solu-
tions of size’. What are the mathematical consequences of the choices; what are the
philosophical justifications?

3.2. Material and Structural Set Theories as Foundations

Notation 3.2.1 (Weak set theories). A well-known27 family of bi-interpretable
weak set theories (Mathias (2001); Shulman (2019)) include these four.

(1) structural set theories:
(a) a well-pointed topos with a natural numbers object and with the axiom

of choice;
(b) ETCS, Elementary Theory of the Category of Sets; (Lawvere (1964)).

(2) material set theories:
(a) BZC, bounded Zermelo with choice28;
(b) Mac Lane set theory (finite order arithmetic McLarty (2020)).

26κ saturated means κ-universal and κ-homogeneneous: isomorphic strictly smaller submodels
of M are automorphic in M . M is saturated means |M |-saturated.

27These equivalences date back to Mitchell (1972).
28BZC has comprehension only for Σ0-formulas. We add C to any such abbreviation when

choice is added. The Bourbaki foundation omitted the axioms of foundation and replacement.
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Each of these weak theories omit the axiom of replacement. Thus they do not
have the cardinals29 ℵω or iω.

From a set theoretic standpoint ETCS is very weak. Mathias (2001) identifies
Vω+ω as a natural model for Mac Lane set theory and gives the axioms in ε-style
and a chart organizing various weak set theories. Shulman is a precise reference
for the known ability to extend the axioms of ETCS by considering axioms which
vastly strengthen ETCS: including full separation, collection, and replacement ax-
ioms. These extensions leave the formalism-free world and require explicit set
theoretic syntax to formulate axiom schemes. He concludes that ETCS plus ‘struc-
tural replacement’, is equi-consistent and indeed mutually interpretable30 with ZFC
((Shulman, 2019, Cor. 8.53)).

Remark 3.2.2 (Large Cardinals). As a first approximation, any cardinal whose
existence implies the consistency of ZFC is termed ‘large’. Thus, any inaccessible
cardinal is large. From the set-theoretic standpoint merely inaccessible cardinals are
quite small. Since large cardinal axioms (e.g. measurable cardinals) are properties
of a particular cardinal κ they can usually be easily rephrased as category theoretic
properties of the cardinal κ. There is no real difficulty in extending structural set
theories by large cardinal axioms.

Unlike category theory, set theory and model theory use the gradations of large
cardinals. In particular, (Maddy, 2011, 47-51) expounds the equivalences between
appropriate large cardinals, the projective hierarchy on first order definable subsets
of (R,+,×, 0, 1, N), and determinacy axioms.

In a little known example (Shelah (1982) (Baldwin, 2021, 2.3)), Shelah invokes a
smallish large cardinal (a beautiful cardinal31) to give an account of the main gap
that, by counting non-mutually embeddible rather than non-isomorphic models, is
more resistant to forcing. Several recent results on eventual categoricity in AEC,
(e.g., Boney (2014); Shelah and Vasey (2018), Remark 2.2.1), require the existence
of a proper class of strongly compact cardinals, while other AEC results require
much smaller large cardinals. Thus, large cardinals are essential to placing all of
model theory in the generous arena.

Remark 3.2.3 (CCAF). Lawvere (1966) introduces the ‘category of categories’
as a foundation for mathematics’ as a first order theory with no ambient set the-
ory. Enayat et al. (2017) lay out in detail two distinct goals for category theory,
as Feferman had articulated in a series of works on Lawvere’s proposal, labeled
R: (‘unrestricted existence’, e.g. to have the category of all categories32 (CAT )
exist) and S: (the desire to contrast small and large sets: e.g. Grp vs. GRP ).

29More algebraically, (Mathias, 2001, 9.32) notes that Mac Lane set theory cannot prove that
for every n, one can iterate the process of taking the dual vector space n-times (starting with

R[x]). Mathias (1992) has an interesting dialog between Mathias and Mac Lane.
30(MacLane and Moerdijk, 1992, 343), citing Mitchell (1972) write that the basic interpreta-

tions are actually invertible and so a bi-interpretation of (a weak version) of replacement holds.
31A beautiful cardinal is much larger than ω universes, but still smaller than a weakly compact.
32Expanding on Enayat et al. (2017), Gorbow regards the following definition of CAT as

appropriate for (R): ‘The category determined by (1) having the set of all categories as objects,

(2) for any categories A, B, having the set of all functors from A to B as morphisms from A to

B, (3) having identity functors as identity morphisms, and (4) having composition of morphisms
defined by composition of functors.’ Contra to Lawvere (1966); McLarty (1991), he does not

require that CAT admit both finite products and exponentiation.
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The first suggests Russell’s paradox (but to establish the paradox one needs in-
formation (included in R) about the ability to construct from given categories).
The precise meaning of property R is central. In Ernst (2015)’s understanding,
such a system must be inconsistent. Enayat et al. (2017) summarise and extend
the different interpretations ( Feferman (2004) and Shulman (2008)) and show con-
sistency of certain meanings of (R) with respect to various material set theories
e.g. NFU (New Foundations with ur-elements), NFUA etc. Note that while the
consistency of NF remains contentious, Jensen proved the extension NFU (by al-
lowing ur-elements) is consistent relative to ZFC. NFU has a stratified notion of
membership and admits a universal set. Thus Enayat et al. (2017) characterize
various notions of natural implementability depending on the image of the usual
category theoretic notions (Cat, Set) in the interpreting theory. Under their weak-
est notion of natural interpretability they show NFUA interprets ZFC plus n Mahlo
cardinals, for each standard n, on a part of its domain and a small/large distinc-
tion. Therefore, the category theory of MacLane (1971) can be implemented in
NFUA on that subdomain. But the salience of the precise meaning of natural im-
plementation is emphasized as McLarty (1992) showed that under any reasonable
definition of function’, after such an interpretation the category SET of all sets is
not closed under direct products and exponentiation. On the other hand, Forster
(2007) points out that such issues have frequently appeared with NF and solved by
finding a different definition of the troublesome concept (that is equivalent in ZFC).
Gorbow (in correspondence) has emphasized the need for further investigation of
the methodological gain for category theoretical consideration of CAT and SET.

Remark 3.2.4 (Metamathematical Corral). Most work in the corral is driven
by the goal of finding implications among various principles and truly sufficient
conditions which are not overly broad. Set theory itself is driven by internal prob-
lems such as the singular cardinals problem and problems arising in combinatorial
set theory. Friedman’s Friedman (1998) program produces concrete combinatorial
properties of the natural numbers which require large cardinals. Examples arising
from ordinary mathematical practice include the Whitehead problem and others
(Section 2.1). Farah’s ICM address (Farah (2014)) indicates the impact of model
theory, descriptive set theory, and forcing constructions on the study of operator
algebras. In these examples, material set theorists have the advantage; despite the
interpretablity discussed above, ZFC provides a friendlier workplace.

4. Comparisons

We quickly assess how our two scaffolds meet three characteristics of a scaffold: i)
local foundations, ii) unifying methods, iii) productive guidance. Local foundations
are found by specifying in first order logic either a complete theory or a category
with appropriate morphisms. Unity33 and Guidance are provided by the hierarchi-
cal classification34 of first order theories or by Grothendieck style axiomatization of
families of categories such as abelian category, additive category, topos.

33Unity arises in several ways: Bi-iterpretablity in model theory and natural equivalences

in category theory connect different areas. Category theorem may view the same concept from

different perspectives; (Ashfaque, 2020, 1.6) gives twelve categories for studying elliptic curves.
34See the map of the universe at http://www.forkinganddividing.com.

http://www.forkinganddividing.com
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Major differences are: a) explicit syntax/semantics vs. formalism-free and b) use
of cardinality vs. large/small. Independence results in algebra and topology are nat-
urally expressed through ZFC and model theoretic formalization (Remark 2.1.2).
Reformulating these in category theory would not only require mimicking the forc-
ing arguments in material set theory but formulating categories where the ‘internal
structure’ of algebras was revealed.

Particular structural and material set theories are bi-interpretable at all levels
from BZ to ZFC + LC (§ 3.2). Thus, if we consider Shared Standard of Proof
to be a question of which statements are theorems in the system35, and Generous
Arena as giving surrogates for all mathematical entities there is nothing to choose
between the approaches. The level within each approach makes a huge difference.
Both model theory and set theory apply replacement, large cardinals, and forcing
to obtain results in traditional mathematics (§ 2.1, Remark 3.2.4).

As noted in our introduction, Mac Lane proclaimed, ‘inaccessible cardinals pal-
pably have nothing to do with [category theory]’. We argued (§2.2) that Kucera’s
theorem exhibits the connection if the foundation is to be in set theory rather than
class theory. Either material or structural set theories admit conservative exten-
sions to class theory at each level. Recall that Mac Lane set theory sees no cardinal
numbers > ℵω. As Mclarty has observed, there is a proper class containing ex-
actly the ℵn in the natural class extension of Mac Lane set theory. So Mac Lane
requires proper classes (§2.2, 3.1) that are seen in ZFC as much smaller than inac-
cessibles. The McLarty (2020) proof that Fermat’s conjecture is provable in Mac
Lane set theory, using a suitable conservative class theory extension, demonstrates
that only very weak class theory is needed for a classical problem. To obtain all
of contemporary mathematics the Generous Arena requires a set theoretic bases of
both replacement (Borel determinacy Friedman (1971)) and large cardinals.

Mathematicians of various stripes might object to the naturalness/accessibility
of surrogates or proofs in either of the proposed foundations. Indeed, Tao suggests
the Ax-Grothendieck theorem36 supports the following:

I have always been fond of the idea that model-theoretic connec-
tions between objects (e.g. relating two objects by comparing the
sentences that they satisfy) are at least as important in mathemat-
ics as the more traditional category-theoretic connections (where
morphisms are the fundamental connective tissue between objects)
or topological connections (where the objects are gathered into
some common topological space or metric space in order to compare
them). Terry Tao 37

A great advantage of ZFC is the simple set-up in terms of a single binary
membership relation. In Lemma 2.1.2 we noted that fixing a vocabulary suitable to
the topic studied resolves purported ambiguities about membership. This is a very
soft and uniform form of typing. As Shulman (2013) points out, category theory
provides a more rigid type system.

Alternatively, (Scott, 1974, 10) provocatively asserted, ‘there is only one satis-
factory way of avoiding the paradoxes, use some form of the theory of types. That

35This is a mathematical question as opposed to the ‘sociological’ ((Maddy, 2017, 296)) stan-

dard of belief in (§1) of proof from a common foundation (ZFC).
36A 1-1 polynomial map between algebraic varieties is onto (e.g. (Baldwin, 2018, 102))
37https://quomodocumque.wordpress.com/2012/09/03/mochizuki-on-abc/?#comment-10506

https://quomodocumque.wordpress.com/2012/09/03/mochizuki-on-abc/?#comment-10506
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was the basis of both Russell’s and Zermelo’s intuitions.’ He goes on to outline a
cumulative theory of types where all the sets up to a certain level form a partial
universe which is a set. And the type of a set is the level at which it appears.

Problem 4. We have given descriptions of the mathematical and methodological
differences between two scaffolds to engage the following problems. Provide a more
systematic philosophical analysis and justification of criteria for a successful scaf-
fold. Find a notion of ‘grounding’ which accounts for the unease category theorists
feel with ZFC (and model theorists with structural set theory) as the Foundation
despite the equivalences between material and structural set theories.

Celluci (2000) distinguishes between open and closed systems. He requires a
closed system to have an immutable set of axioms. Maddy’s notion of metamath-
ematical corral, recognizes the essence of Gödel incompleteness; there must be a
continuing search for new axioms. All of mathematics may be an open system
consisting of cooperating (and perhaps changing) closed systems.

We described two Foundational systems. They pursue different conceptions of
‘set’; each allows revision of axioms. Why choose between them? Rather than a
Foundationalist view, one may just consider several mutually reinforcing Founda-
tions as an open system of Mathematics.
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Adámek, J., Herrlich, H., and Strecher, G. (1990). Abstract and Concrete Cate-
gories: The Joy of Cats. Pure and Applied Mathematics. John Wiley and Son.
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Lieberman, M., Rosický, J., and Vasey, S. (2019a). Forking independence from the
categorical point of view. Advances in Mathematics, 346:719–772.
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