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Abstract
We give a model theoretic proof, replacing admisssible set theory by the Lopez-

Escobar theorem, of Makkai’s theorem: Every counterexample to Vaught’s conjecture
has an uncountable model which realizes only countably many Lω1,ω-types. The fol-
lowing result is new. Theorem If a first order theory is a counterexample to the
Vaught conjecture then it has 2ℵ1 models of cardinality ℵ1.

In this paper we prove several properties of counterexamples to the Vaught conjecture.
Specifically, results concern the number of models the counterexample has in power ℵ1. One
of these results was proved 30 years ago using admissible model theory; we give a more
straightforward argument. The following question guides our discussion. Is the Vaught
Conjecture model theory?

Here are some possible ways in which this question would have a clear answer. Shelah,
Buechler, Newelski have shown using rather difficult techniques from stability theory that
the conjecture holds for first order theories that are ‘simple’ from the stability theoretic
standpoint: ω-stable or superstable with finite U -rank. If a counterexample were found for a
first order theory of slightly greater complexity (e.g. a stable but not superstable first order
theory), this would indicate the issue was a model theoretic one. If on the other hand, a
uniform proof for sentences of Lω1,ω were given using methods of descriptive set theory, then
it would not be a model theoretic problem. The results below give partial answers to the
following methodological questions.

What specific model theoretic as opposed to descriptive set theoretic techniques can
attack the problem? Can one use more direct model theoretic arguments to obtain some
result of admissible model theory?

I would argue the problem is model theoretic if its solution is different for Lω,ω and Lω1,ω.
So we will investigate the differences between properties known about counterexamples to
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the Vaught Conjecture formulated in Lω,ω and Lω1,ω. Note that Theorem I of the abstract
(for first order logic) is proved in ZFC; we ask whether it can be extended to Lω1,ω, perhaps
with additional set theoretic hypotheses.

Much of model theory is concerned with models of arbitrary cardinality and with proper-
ties that in some way depend explicitly on cardinality. We pursue the theme, ‘Do uncountable
models count?’ by noticing several results about the Vaught conjecture which revolve around
the properties of uncountable models (and even the role of arbitrarily large models). Must
a counterexample to VC in Lω1,ω have a model of power ℵ2 or even ℵ1? Hjorth’s contri-
bution to this volume provides an answer to the last question– showing that if there is a
counterexample to Vaught’s conjecture then there is one with no model of cardinality ℵ2.

In Section 1, we provide some background on the nature of ‘complete’ sentences in Lω1,ω

and note that issues arise with both the upward and downward Löwenheim-Skolem theorem
when generalizing to infinitary logic. We make a brief excursion into Abstract Elementary
clases to illustrate quintessentially ‘model theoretic’ techniques and then adapt methods of
Shelah to provide a model theoretic proof of Makkai’s theorem in Section 2. In Section 3,
we prove the Theorem from the abstract and expound some old but not widely known facts
about models of sentences of Lω1,ω with cardinality at most ℵ2.

1 Complete Sentences

Using both the upward and downward Löwenheim-Skolem theorem, it is easy to see that a
first order theory that is categorical in some infinite cardinality is complete. The analog in
the Lω1,ω-case requires some analysis. To begin with there are several possible meanings of
complete depending on how much of Lω1,ω is considered. Let us formalize what constitutes
a useful piece of Lω1,ω.

Definition 1.1 A fragment ∆ of Lω1,ω is a subset of Lω1,ω closed under subformula, substi-
tutions of terms, finitary logical operations and such that: whenever Θ ⊂ ∆ is countable and
φ,

∨
Θ ∈ ∆ then

∨{∃xθ : θ ∈ Θ}, ∨{φ ∧ θ : θ ∈ Θ}, and
∨

({φ} ∪Θ) are all in ∆.

Definition 1.2 Let φ ∈ ∆ ⊂ Lω1,ω.

1. φ is complete for Lω1,ω (or just complete) if for every sentence ψ of Lω1,ω, either φ → ψ
or φ → ¬ψ.

2. For any countable fragment ∆, φ is complete for ∆ if for every sentence ψ ∈ ∆, either
φ → ψ or φ → ¬ψ.

This is an important distinction because the downward Lowenheim Skolem theorem is
true for theories in any countable ∆ and thus for sentences in Lω1,ω but it is not true for
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arbitrary theories in Lω1,ω. In particular it easy to find examples of uncountable structures
which have no countable Lω1,ω-elementary submodel. Note that a sentence is complete if and
only if it is a Scott sentence (a sentence of Lω1,ω which completely describes a (countable)
model).

A complete sentence of Lω1,ω is ℵ0-categorical, trivializing Vaught’s conjecture. In Sec-
tion 2 we will use of ∆-complete counterexamples. And in Section 3 we will make crucial
use of sentences that are complete.

Definition 1.3 Let ∆ be a fragment of Lω1,ω.

1. A model is ∆-small if it realizes only countably many ∆-types over the empty set.

2. A model is small if it realizes only countably many Lω1,ω-types over the empty set. That
is, it is ∆-small for ∆ = Lω1,ω.

Note that M is small if and only M is Karp-equivalent (i.e. Lω1,ω-equivalent) to a
countable model. Recall:

Definition 1.4 A first order theory is small if for every n, it has only countably many
n-types over the empty set.

Note that by the downward Löwenheim-Skolem theorem every model of a complete sen-
tence of Lω1,ω is small. So every Lω1,ω-complete sentence is scattered in the following sense.

Definition 1.5 1. Sn(σ, ∆) denotes the collection of n-types in ∆ that are realized in
models of σ.

2. A sentence σ of Lω1,ω is scattered if for every countable fragment ∆ of Lω1,ω, Sn(σ, ∆)
is countable for each n.

Of course, there are scattered sentences which are not complete. But we show in Section 2
the following partial converse. If φ is scattered, there exists a complete φ′ with an uncountable
model such that φ′ → φ. More precisely, we prove below that:

Theorem 1.6 If the Lω1,ω-sentence ψ has a model of cardinality ℵ1 which is ∆-small for
every countable fragment ∆ of Lω1,ω, then ψ has a small model of cardinality ℵ1.

If σ is scattered and σ′ → σ, then σ′ is scattered. In his landmark proof that a coun-
terexample to Vaught’s conjecture has at most ℵ1 models of cardinality ℵ1, Morley [10]
established, by essentially descriptive set theoretic arguments:

Theorem 1.7 (Morley) If σ is a counterexample to VC, σ is scattered.
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Shelah ‘reduces’ Morley’s categoricity theorem for Lω1,ω to complete sentences. This
reduction involves a crucial model theoretic technique. Prove a theorem for arbitrary vocab-
ularies τ . In fact, this reduction applies to more general questions concerning the number of
models in ℵ1 if the sentence has few models in ℵ1.

Theorem 1.8 Let ψ be a complete sentence in Lω1,ω in a countable vocabulary τ . Then
there is a countable vocabulary τ ′ extending τ and a first order τ ′-theory T such that reduct
is a 1-1 map from the atomic models of T onto the models of ψ.

If ψ is not complete, the reduction is only to ‘finite diagrams’ [12]. This is a very
important distinction, the arguments given in Section 3 depend heavily on working in an
atomic class. This ‘reduction’ is not direct. In order to deduce categoricity for an arbitrary
Lω1,ω-sentence, stronger results than transfer of categoricity must be proved for complete
Lω1,ω sentences ([15] expounded in [3, 1]).

There are two different arguments to obtain this reduction. If the sentence ψ has arbitrar-
ily large models the result is is a fairly straightforward argument with Ehrenfeucht-Mostowski
models.

Theorem 1.9 Let ψ be an Lω1,ω(τ)-sentence which has arbitrarily large models. If ψ is
categorical in some cardinal κ, ψ is implied by a consistent complete sentence ψ′, which has
a model of cardinality κ.

Without this assumption, the argument is more difficult and relies on a theorem of Keisler
[7]; but this argument needs only few models in ℵ1, not ℵ1-categoricity.

Theorem 1.10 For any Lω1,ω-sentence ψ and any fragment ∆ containing ψ, if ψ has fewer
than 2ℵ1 models of cardinality ℵ1 then for any M |= ψ of cardinality ℵ1, M realizes only
countably many ∆-types over the empty set

Theorem 1.11 Let ψ be an Lω1,ω(τ)-sentence If ψ has fewer than 2ℵ1 models of cardinality
ℵ1, ψ is implied by a consistent complete sentence ψ′, which has a model of cardinality ℵ1.

Proof. By Theorem 1.10, there is a model of power ℵ1 which is ∆-small for every countable
fragment ∆. But then by Theorem 1.6, there is an uncountable small model N of ψ and the
Scott sentence of N is as required. ¤1.11

2 Constructing models of larger power

In this section we reprove (in one case much more simply) old theorems showing that a
counterexample to Vaught’s conjecture must have two models in power ℵ1. But we first take
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a brief excursion through Abstract Elementary Classes to see what I take as the essence of
‘model theoretic’ methods – arguments involving the direct constructions of models.

Vaught’s conjecture concerns the set of countable models of a ‘theory’. An Abstract
Elementary Class (AEC) is one of the most abstract formulations of ‘theory’ [18, 17, 4, 1]. A
class of L-structures and a notion of ‘strong submodel’ ≺, (K,≺), is said to be an abstract
elementary class if both K and the binary relation ≺ are closed under isomorphism and
satisfy a collection of conditions generalizing those of Jonsón’s for constructing homogeneous
universal models. In particular, the class must be closed under ≺-increasing chains. The
class is presented as a collection of models and a further crucial requirement is the existence
of a Löwenheim number for the class.

So a more extreme form of ‘Vaught’s conjecture is model theory’ would be to prove it for
any AEC. But this fails. The set K = {α : α ≤ ℵ1} with ≺ as initial segment is an AEC
with ℵ1 countable models. But the counterexample has no large models. (The Löwenheim
number requirement forbids using all ordinals as the example.) The upward Lowenheim-
Skolem theorem is true for Lω,ω but not Lω1,ω. So this excursion into the abstract leads us
to some more precise questions.

In the absence of the upward Löwenheim-Skolem theorem, how can one construct models
of larger cardinality? For the moment we continue in the context of AEC.

Definition 2.1 M ∈ K is maximal if there is no N 6= M with M ≺ N .

We begin my mentioning some fairly easy principles. Much more technical arguments
are need to obtain the hypotheses of these lemmas. Obviously,

Lemma 2.2 In any AEC, if there is no maximal model of size λ, there is a model of size
λ+.

As,

Lemma 2.3 In any AEC, if there a strictly increasing ≺-sequence Mα, α < λ+ of models
of size λ, there is a model of size λ+.

Even more,

Lemma 2.4 If the AEC K is λ categorical and there exists N a proper extension of M with
cardinality λ, there is a model of cardinality λ+.

Now we specialize to Lω1,ω. We sketch the analysis of Harnik and Makkai [5] to show every
counterexample to VC has an uncountable ‘large’ (not small) model. For this they introduce
another technical meaning for large; now describing a sentence rather than a model.
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Definition 2.5 A sentence σ of Lω1,ω is large if it has uncountably many countable models.
A large sentence σ is minimal if for every sentence φ either σ ∧ φ or σ ∧ ¬φ is not large.

By a tree argument [5] show:

Lemma 2.6 (Harnik-Makkai) For every counterexample σ to Vaught’s conjecture, there
is a minimal counterexample φ such that φ |= σ.

Our goal is to show any counterexample to Vaught’s conjecture has an uncountable
model which is not small. Fix a minimal counterexample σ to Vaught’s conjecture. For any
countable fragment ∆ containing σ, define

T∆ = {σ ∧ φ : φ ∈ ∆ and σ ∧ φ is large }.

Note that T∆ is consistent and complete for ∆. Keisler [7] with no use of admissible model
theory shows that the ‘prime’ part of Vaught’s fundamental paper on countable models of
complete first order theories [19] goes through for scattered σ. This translation is fairly
straightforward without any appeal to admissible model theory. In particular,

Fact 2.7 A theory T that is complete for a countable fragment of Lω1,ω and has only count-
ably many types over the empty set has a prime model.

Since σ is scattered, each T∆ has a prime model (for ∆).

Lemma 2.8 If σ is a counterexample to the Vaught Conjecture and ∆ is smallest fragment
containing σ, there is a strictly increasing ≺∆-sequence Mα, α < ℵ1 of countable models.

Proof. Fix a minimal counterexample σ to Vaught’s conjecture and let ∆0 be a countable
fragment containing σ ({σ} = T0). Define by induction 〈∆α, Tα,Mα〉 such that

1. If β < α, the Scott sentence ψβ of Mβ is in ∆α.

2. Tα = T∆α

3. Mα is the ∆α prime model of Tα.

For this, let ∆α be the minimal fragment containing
⋃

β<α ∆β and the Scott sentence of
each Mβ for β < α. The Mα are as required. The chain is strictly increasing since Mα |= ¬ψβ

if β < α. And each Mα ≺∆0 Mβ for α < β since the ∆i and Ti are increasing. That is, Mα

is the prime model of Tα and Mβ |= Tα. ¤2.8

Theorem 2.9 (Harnik-Makkai) If σ ∈ Lω1,ω is a counterexample to VC then it has a
model N of cardinality ℵ1 which is not small.
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Proof. We continue the argument from Lemma 2.8. Now if M =
⋃

α Mα, M does not
satisfy any complete sentence of Lω1,ω, as any sentence θ true on M is true on a cub of Mα;
so it has more than one countable model and cannot be complete. ¤2.9

Our goal now is to show that any counterexample to Vaught’s conjecture has small
uncountable models. This was first obtained by Makkai, using (in contrast to Keisler’s study
of prime models) notions of saturated models in admissible set theory and some reasonably
elaborate machinery devised by Ressayre [11] (basic to admissible model theory but much
more than we will use here).

Before turning to that proof which passes through the existence of an uncountable model
that may not be small, we detour to note a very natural approach.

Lemma 2.10 A sentence σ of Lω1,ω has an uncountable small model iff it has a pair of
countable models such that M0 is a proper substructure of M1, M0 and M1 are isomorphic
and M0 ≺L M1, where L is the smallest fragment containing the Scott sentence of M0.

Proof. If N is an uncountable small model of σ, let ψ be the Scott sentence of N and
L the fragment generated by ψ. Then take M0 an L-elementary submodel of N and M1 an
L-elementary submodel of N which properly extends M0. Conversely, construct an chain
〈Mi : i < ℵ1〉 where (Mi,Mi+1) is isomorphic to (M0,M1). This construction goes through
limits by taking unions since for countable δ, all Mδ are isomorphic. Then every type realized
in Mω1 is realized in M0 so it is a small uncountable model.ψ. ¤2.10

Continuing our methodological queries, is there any direct way (using only countable
models) to deduce the existence of such a pair of countable models directly from the failure
of Vaught’s conjecture?

During the conference Sacks sketched a positive reply to this question by a nice argument
using admissible sets and Barwise compactness which gave the result via a construction on
countable models. In essence Makkai’s original argument [9] also provides a positive answer
using the technology of admissible set theory.

Now we modify an argument of Shelah to provide a proof which trades the mechanism
of admissible sets for a model theoretic coding to analyze models of cardinality ℵ1. We rely
on the following result which combines results of Lopez-Escobar, Morley, and Keisler. The
ingredients are in [7].

Theorem 2.11 Let τ be a similarity type which includes a binary relation symbol <. Sup-
pose ψ is a sentence of Lω1,ω, M |= ψ, and the order type of (M, <) imbeds ω1. There is a
model N of ψ with cardinality ℵ1 such that the order type of (N,<) imbeds Q.

Now we describe the proof (Shelah [13]; see Section 7.3 of [1]) of Theorem 1.6. Note that
the hypothesis is satisfied by any scattered Lω1,ω-sentence that has an uncountable model.
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Proof of Theorem 1.6: If the Lω1,ω-τ -sentence ψ has a model of cardinality ℵ1 which is
∆-small for every countable τ -fragment ∆ of Lω1,ω, then ψ has a τ -small model of cardinality
ℵ1.

Add to τ a binary relation <, interpreted as a linear order of M with order type ω1.
Using that M realizes only countably many types in any τ -fragment, write Lω1,ω(τ) as a
continuous increasing chain of fragments Lα such that each type in Lα realized in M is a
formula in Lα+1.

Extend the similarity type to τ ′ by adding new 2n + 1-ary predicates En(x,y, z) and
n + 1-ary functions fn.

Let M satisfy En(α, a,b) if and only if a and b realize the same Lα-type.
Let fn map Mn+1 into the initial ω elements of the order, so that En(α, a,b) implies

fn(α, a) = fn(α,b).
Notice the following facts.

1. En(β,y, z) refines En(α,y, z) if β > α;

2. En(0,a,b) implies a and b satisfy the same quantifier free τ -formulas;

3. If β > α and En(β, a,b), then for every c1 there exists c2 such that En+1(α, c1a, c2b)
and

4. fn witnesses that for any a ∈ M each equivalence relation En(a,y, z) has only countably
many classes.

All these assertions can be expressed by an Lω1,ω(τ ‘) sentence φ. Let ∆∗ be the smallest
τ ‘-fragment containing φ ∧ ψ. Now by Lopez-Escobar (Theorem 2.11) there is a structure
N of cardinality ℵ1 satisfying φ ∧ ψ ∧ χ such that < is not well-founded on N . Fix an
infinite decreasing sequence d0 > d1 > . . . in N . For each n, define E+

n (x,y) if for some i,
En(di,x,y). Now using 1), 2) and 3) prove by induction on the quantifier rank of φ for every
Lω1,ω(τ)-formula φ that N |= E+

n (a,b) implies N |= φ(a) if and only if N |= φ(b).
For each n, En(d0,x,y) refines E+

n (x,y) and by 4) En(d0,x,y) has only countably many
classes; so N is small. ¤1.6

We conclude the result proved by Makkai[9] using admissible model theory.

Theorem 2.12 (Makkai) If σ ∈ Lω1,ω is a counterexample to VC then it has an uncount-
able model N which is small.

Proof. By Lemma 1.7, ψ is scattered. By Theorem 2.9, it has a model of power ℵ1 and
then by Lemma 1.6, it has a small uncountable model. ¤2.12

We have shown:

Corollary 2.13 There is no ℵ1-categorical counterexample to Vaught’s conjecture.
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3 The number of models in ℵ1

We have shown that any counterexample to Vaught’s conjecture has at least two models of
cardinality ℵ1. Why stop there? The following result seems to be new.

Theorem 3.1 If a first order theory is a counterexample to the Vaught conjecture then it
has 2ℵ1 models of cardinality ℵ1.

But it is easy from two well-known but difficult theorems:

Theorem 3.2 (Shelah) If a first order T is not ω-stable T has 2ℵ1 models of cardinality
ℵ1.

This argument uses many descriptive set theoretic techniques. See Shelah’s book [14] or
Baldwin’s paper [2].

Theorem 3.3 (Shelah) An ω-stable first order theory satisfies Vaught’s conjecture.

Proof of 3.1: If T has less than 2ℵ1 models of cardinality ℵ1 then by Theorem 3.2, it is
ω-stable and then by Theorem 3.3, it satisfies Vaught’s conjecture. ¤3.1

We now discuss the possibility of assuming the weak continuum hypothesis (2ℵ0 < 2ℵ1), to
extend the previous theorem to Lω1,ω. This provides an excuse for describing the role of the
weak continuum hypothesis in some nice constructions of Shelah and Keisler concerning the
spectrum of sentences of Lω1,ω. Shelah observed that under the weak continuum hypothesis,
Theorem 1.10, few models in ℵ1 yields few types over the empty set, implies:

Fact 3.4 (2ℵ0 < 2ℵ1) If a sentence ψ ∈ Lω1,ω is not ω-stable it has 2ℵ1 models of cardinality
ℵ1.

As noted above, for first order logic, few models in ℵ1 implies ω-stable. And this result
even holds (in ZFC) for sentences in Lω1,ω, which have arbitrarily large models. The arbi-
trarily large models give us access to Ehrenfeucht-Mostowski models. But for an arbitrary
sentence in Lω1,ω, to show few models in ℵ1 implies ω-stable, requires weak CH. Shelah [13]
first provided a counterexamples in Lω,ω(Q) using Baumgartner’s order. But examples can
be found in Lω1,ω [18, 1].

This leads us to some natural generalization of Theorem 3.3. The notion of an excellent
class [15, 16, 3, 20] plays a crucial role in the model theory of infinitary logic.

Question 3.5 Does Vaught’s conjecture hold for ω-stable sentences in Lω1,ω? For excellent
classes?
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These questions pose two difficulties. As Rami Grossberg pointed out the questions are
not really well-formed. The work in [15, 16] on ω-stable and excellent classes is restricted
to atomic classes – the translation of complete sentences of Lω1,ω. All such classes are ℵ0-
categorical. So the first step is to adapt the stability theory machinery for the translations of
arbitrary sentences in Lω1,ω. These are finite diagrams in the sense of [12]. But the machin-
ery of that paper is primarily directed at the study of uncountable models and makes the
additional assumption that there is a homogeneous model. Once an appropriate framework
is found that circumvents these difficulties, the real task begins. The proof that an ω-stable
first order theory has either ℵ0 or 2ℵ0 countable models has two parts. On the one hand
various conditions are shown to imply the existence of 2ℵ0 countable models; on the other
the conjunction of the negations of these properties are shown to allow such control over
the structure of models that the theory has only countably many models. This second part
might be easier with the greater expressive power of Lω1,ω. But the loss of compactness may
greatly complicate the first.

Many of the difficulties in studying Lω1,ω stem from the difficulty of proving the amalga-
mation property. Recall that a sentence σ in a fragment ∆ of Lω1,ω satisfies the amalgamation
property if M0 ≺∆ M1,M2 implies M1 and M2 have a common ∆-elementary extension.

Theorem 3.6 (Shelah) (2ℵ0 < 2ℵ1) If a sentence σ in Lω1,ω has fewer than 2ℵ1 models of
cardinality ℵ1 then the countable models of σ have the amalgamation property.

The argument for this can be found in [18, 4, 1]. The weak CH is used to apply the
Devlin-Shelah diamond; this use is necessary and counterexamples are in the same place.
Consider the following theorem of Shelah.

Theorem 3.7 An ℵ1-categorical sentence ψ in Lω1,ω has a model of power ℵ2.

This result actually was first proved in more generality for Lω1,ω(Q) (adding the quantifier,
‘there exists uncountably many’), but for Vaught conjecture considerations we restrict to
Lω1,ω. The original proof [13] used diamond and developed a considerable amount of stability
theory for Lω1,ω. In ([18], see also [1]) a beautiful proof of Theorem 3.7 is given in ZFC.
The crux is to use another application of Lopez-Escobar to construct a properly increasing
pair of cardinality ℵ1. Then as in Lemma 2.4, categoricity in ℵ1 yields a model in ℵ2. The
argument below weakens categoricity to few models in ℵ1. The condition that there is some
proper pair in ℵ1 is strengthened to showing there is no maximal model of power ℵ1 and
then the model of power ℵ2 follows as in Lemma 2.2.

By the reductions of Section 2.2, we may work with an atomic class: the class of atomic
models of a complete first order theory. In the next theorem, which appears to be newly
remarked (although of course implicit in [15] if not [13]), we weaken the hypothesis of ℵ1-
categoricity in Theorem 3.7 to ω-stability; we are still working in ZFC.
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As in [13, 15] and expounded in [1, 8], we develop the notion of an ω-stable atomic class.
(Warning, many words (type, ω-stable, independent etc.) have subtly different meanings
in this context. So new arguments are needed for what at first appear to be old results.)
Most crucially, all amalgamation questions are slippery. A notion of independence, M ^

N
P ,

is defined (based on splitting), which has many of the properties of the first order notion
of ‘nonforking’. One is able to show that countable models in K admit a form of free
amalgamation. See the chapter on independence in ω-stable atomic classes of [1] for a recent
detailed exposition of the next few theorems.

Definition 3.8 A and B are freely amalgamated over C in N , if A^
C

B and AB ⊂ M ∈ K.

Fact 3.9 If M0 ≺ M1,M2 then there exists M ′
1 ≈ M1 and M3 with M ′

1 and M2 freely
amalgamated over M0 in M3.

Theorem 3.10 If the atomic class is ω-stable then it has a model of power ℵ2.

Proof. As in Lemma 2.2, it suffices to show every model N in K of cardinality ℵ1 has a
proper elementary extension M in K. Write N as a continuous increasing chain 〈Ni : i < ℵ1〉.
By Theorem 3.2, K is ω-stable. Now define an increasing sequence 〈Mi : i < ℵ1〉 such that
Ni ≺ Mi, Mi is freely amalgamated with Ni+1 over Ni in Mi+1. Since independent sets
intersect only where they have to, M0 properly extends N0. The union of the Mi is the
required proper extension of N . The construction is routine taking unions at limits. The
successor stage is also easy from the following claim, replacing 0, 1, 2 by α, α + 1, α + 2 but
keeping N fixed.

Claim 3.11 Let N0 ≺ N1 ≺ N2 ≺ N . Given M0 ^
N0

N2, with M0 and N1 freely amalgamated

over N0 in M ′
2, we can choose M2 and M ′

3 so that N2,M1 ≺ M2 and M2 and N2 are freely
amalgamated over N1 in M ′

3.

¤3.10.

Now we can strengthen Theorem 3.7 replacing categoricity in ℵ1 by few models in ℵ1

at the cost of assuming 2ℵ0 < 2ℵ1 . The following corollary is immediate since with this
set-theoretic hypothesis, few models in ℵ1 implies ω-stability (Lemma 3.2).

Corollary 3.12 (Shelah) [2ℵ0 < 2ℵ1] If the atomic class K has fewer than 2ℵ1 models of
cardinality ℵ1 then it has a model of power ℵ2.

Recall Hjorth [6] proved:
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Theorem 3.13 (Hjorth) If there is a counterexample to Vaught’s conjecture, there is one
with no model of size ℵ2.

Note that by Lemma 3.12, under the weak continuum hypothesis we see that Hjorth’s
example has 2ℵ1 models of cardinality ℵ1. The number of models in ℵ1 does not appear to
be controlled by the construction. This leads to a number of specific problems.

Is it possible to construct from a sentence φ with a specified number of models in ℵ0 a
sentence φ′ with the same number of countable models and fewer than 2ℵ1 models (perhaps
with the same number of models) in cardinality ℵ1? Even more, is it possible to combine
such a construction with Hjorth’s and preserve the spectrum in ℵ1 and ℵ2 while having no
model in ℵ2. In view of Theorem 3.12 this is a strategy for settling Vaught’s conjecture (at
least modulo the weak continuum hypothesis).

In the other direction can one just prove directly that any counterexample to Vaught’s
conjecture has 2ℵ1 models of cardinality ℵ1. A natural strategy for this is to return to the
initial Harnik-Makkai argument, Lemma 2.9, and code stationary sets into the construction
of the tree. But this requires some notion of how different ‘tops’ are put on the limits of
countable chains and there is nothing of this sort evident (to me) in the proof. And such
an argument might not avoid the set theory since Devlin-Shelah diamond is used in many
such arguments. Moreover, the proof of the first order case involves a deep analysis of the
models; it would be very striking to avoid this.

This conference exhibited a striking interaction among logicians of various stripes. This
paper is one example; I raised the question of whether a counterexample to Vaught’s con-
jecture necessarily had a model of cardinality ℵ2 early in the conference; Sacks elaborated
on the question in his second presentation; Hjorth heard the problem in Sack’s lecture and
had the tools to solve it. And in writing up my contribution, I saw that Hjorth’s solution
suggests some new strategies for attacking Vaught’s conjecture itself.
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