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1 Introduction

We work throughout in a finite relational language L. Our aim is to analyze
in

as purely a model-theoretic context as possible some recent results of
Shelah et al in which 0 − 1-laws for random structures of various types are
proved by a specific kind of quantifier elimination: near model completeness.

In Section 2 we describe the major results of these methods ([12], [11]
etc.)

and some of their context. In Section 3 we describe the framework in
which these arguments can be carried out and prove one form of the

general quantification elimination argument. We conclude the section by
sketching a general outline of

the proof of a 0−1 law. The hypotheses of this theorem have a ‘back and
forth’ character. Establishing the ‘forth’ part depends heavily on probability
computations and is not

expounded here. The ‘back’ part is purely model theory. Section 4 carries
out

the ‘back’ portion of the proof in one context with some simplification
from Shelah’s original version.

∗Partially supported by NSF grant 9308768.
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In addition to our profound debt to Shelah who is responsible for most of
the results described in this paper, we acknowledge the careful reading and
resulting very helpful conversations with Kitty Holland and Marco Mazzucco.

2 Survey of 0− 1-laws

Consider a pair of relational languages: L ⊆ L+.

2.1 General Problem. An L-structure Mn (which in this paper will have
cardinality n) is expanded to an L+-structure

N with probability Pn(N). For L+ sentences ϕ, what are the possible
behaviors of the limit

lim
n→∞

Pn(ϕ)?

If L is equality, this is the standard case of finding the limit probabilities
of sentences.

2.2 Fact. The arguments described here work for any finite relational lan-
guage L+ such that for each relation symbol R(x)

1. For any permutation σ: R(a) ↔ R(σ(a)).

2. R(a) implies the elements of a are distinct.

However, for notational ease we restrict to expanding an L-structure Mn

by adding edges to form a random graph. Thus, L+ − L contains a
single binary relation symbol: E. Shelah [11] considers iterating the adding
of random relations. In this way, he extends to asymetric relations. E.g., a
random directed graph can be thought of as first choosing a pair that will be
connected and then choosing a direction.

2.3 Base Language. Here are the main examples:

1. Mn is ⟨n,=⟩.

2. Mn is ⟨n, S⟩ where S(i, j) if i < n− 1 and j = i+ 1.
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3. Mn is ⟨n, S∗⟩ where S∗(i, j) if i < n− 1 and j = i+ 1 or i = n− 1 and
j = 0.

4. Mn is ⟨n,<⟩.

In the definition of the probability measures below we rely on this exact
representation of Mn.

The reason that both examples 2 and 3 are considered is explained in
Paragraph 3.24(5).

2.4 Probability. We consider 5 main examples of probability functions. Mn

is a structure with universe n and n ≥ 2.
In each case the probability of an expansion N is determined from the

‘edge probability’ in the natural way.
Let α be an irrational number in (0, 1). In the following we write pi,j
for the probability that there is an edge between i and j. In some cases

this
edge probability depends only
on the size of the graph; Shelah writes pn in those cases.

1. pi,j = 1/2.

2. pi,j =
1

2|i−j|

3.

pi,j =

{
1
2α

if |i− j| = 1
1

|i−j|α if |i− j| ≥ 1

4. pi,j =
1
nα
,

5. pi,j =
1

2|i−j|
+ 1

nα
.

2.5 Convergence Results.

1/2 1
2|i−j|

1
|i−j|α

1
nα

1
2|i−j|

+ 1
nα

= 0-1 law 0-1 law 0-1 law 0-1 law 0-1 law
S conv conv conv 0-1 law conv
S∗ 0-1 law 0-1 law 0-1 law 0-1 law 0-1 law
< v.w. 0-1 law convergent v.w. v.w. v.w.
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In the first row, the first column is due to Fagin [6] (and Glebski et al).
The is from

[8], the fourth from [13] (see also [3]), the third and fifth from [12].
In the second and third rows, the first column is due to Lynch [9]. The

second column is from
[8], the fourth from [11], the third and fifth from [12]. For the first column

of the fourth row see [5]; the second is from [8], for the very weak 0-1 law,
see [14].

We use v.w. to abbreviate the very weak 0-1 law:

lim
n→∞

|(Pn+1(ϕ)− Pn(ϕ)| = 0.

2.6 Connections between the results. The family of results we are con-
cerned with center on the Spencer-Shelah 0− 1-law for random graphs with
edge probability nα (α irrational). Shelah has generalized these results in
two directions (usually in papers which contain both directions but whose
proofs emphasize one). The probability measure can be of type 2,3,5 from
Paragraph 2.4 (main point of [12]) or the base language can be 2 or 3 from
Paragraph 2.3 (main point of [11]). In [11] a general framework for the iter-
ation of adding a random relation is developed. Our focus in this paper is
on understanding the general argument and expounding a key point of the
extension to handle probabilites of type 3.

2.7 Classifying the limit theories. We briefly sketch a classification of
the complexity of the limit theories. The notation that follows is rather
standard for model theorists. See for example Section III.1 of [1]. We make
no further use of this material in this paper; perhaps the model theoretic
consequences of this classification will have a future application.

Definition. A complete first order theory T has the tree property if
there is a formula ϕ(x, y), an integer k, and tuples aα for α ∈ ω<ω such that
for any α ∈ ω<ω,

the set of formulas
{ϕ(x, aα⌢n) : n < ω}

is k-inconsistent but for any β ∈ ωω,

{ϕ(x, aβ|n) : n < ω}
is consistent.
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Definition. A complete first order theory T is complex
if it uniformly interprets every symmetric finite relation. A complete first

order theory T is simple
if it does not have the tree property.
The notion of a simple theory was introduced by Shelah in the early 70’s;

it has lately arisen in the study of finite
fields. For our purposes, it is a measure of tractability. Every stable

theory is simple but not vice versa. See [10] [7].
Definition. An incomplete theory is simple or complex if every comple-

tion of it is.
In the following table we describe the theory consisting of the almost sure

sentences for the specified probability and set of base models.

1/2 1
2|i−j|

1
|i−j|α

1
nα

1
2|i−j|

+ 1
nα

= simple complex complex stable complex
S simple complex complex stable complex
< complex complex complex complex complex

These results are observations about the theories.

3 Context and Strategy

3.1 Notation. Let K∞ be a class of
finite structures closed under substructure and
isomorphism and containing the empty structure. Denote by Kn the

collection of members of K∞ that have cardinality n. Let K be the
universal class determined by K∞ and let
K be an arbitrary subclass of K.
Our main object of study is the pair (K∞,≤i) where
A ≤i B is a binary relation on pairs of structures A ⊆ B from K∞. Read

≤i as B is an intrinsic extension of A. Naturally, we insist that this relation
be preserved by isomorphism. We will consider several ways to define the
notion ≤i, but dealing with ≤i axiomatically allows us to provide a unified
proof of near model completeness for a number of different contexts.

3.2 Notation. Let B ∩ C = A.
The free amalgam of B and C over A, denoted
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B
⊗

AC,
is the structure with universe BC
but no relations not in B or C. If A,B,C are contained in N and N

imposes the structure of B
⊗

AC on BC (short for B ∪C), we say B and C
are freely amalgamated over A in N .

We write A ⊆ω B to mean A is a finite subset of B.
For any notion A ≤x B we will write A <x B for the same concept but
with the additional assertion that A ̸= B. A structure A is called discrete

if there are no relations among the
elements of A.

3.3 Definition. Let A be a finite substructure of M ∈ K with A ⊆ B ∈ K.

1. χM(B/A) is the number of distinct copies of B over A

in M .

2. χ∗
M(B/A) is the supremum of the cardinalities of maximal

families of disjoint (over A) copies of B over A in M .

3.4 Examples. 1. For a fixed function f , from N×N to N,

A ≤i B if for every C ∈ K∞, and every embedding g of A into C,
χC(gA,B) < f(|A|, |B|).

2. A ≤i B defined in terms of a dimension function as in [4].

3. A ≤i B if for every ϵ > 0, and for every sufficiently large C ∈ K∞, and
every embedding g of A into C,

χC(gA,B) < |C|ϵ.

4. A ≤i B defined in terms of a wtλ function as follows.
It is shown in [3] that the first two examples are actually the same and in

[12] that the last two are. We stray from our general discussion of intrinsic
extension to develop

a few facts about weight to clarify the fourth example. This example will
be explored in more

detail in the last section.
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3.5 Definition. Let A ⊆ B ⊆ N ∈ K. Let λ be an equivalence
relation on B − A and let E(A,B) be the set of all such equivalence

relations.
B′ with A ⊆ B′ ⊆ B is λ-closed if every λ-equivalence class
which intersects B′ is contained in B′.
If λ ∈ E(A,B) and A ⊆ B′ ⊆ B, we continue to
denote by λ the equivalence relations λ|B′ ∈ E(A,B′) and,
when B′ is λ-closed, λ|(B −B′) ∈ E(B′, B).

1. vλ(B/A) is the number of equivalence classes of λ.

2. eλ(B/A) = |{(c, d) ∈ B ×B − A× A : R(c, d)&¬λ(c, d)}|.

3. wtλ(B/A) = vλ(B/A)− αeλ(B/A).

3.6 Definition. For a class of models equipped with a weight function as
in

Definition 3.5, we define the notions of intrinsic extension
(≤i) and strong extension
(≤s) as follows.

1. A ≤i B if for every B′ with A ⊆ B′ ⊆ B, and every λ ∈ E(B′, B),
wtλ(B/B

′) < 0.

2. A ≤s B if for every B′ with A ⊆ B′ ⊆ B, and some λ ∈ E(A,B′),
wtλ(B

′/A) ≥ 0.

3. A ≤k
s B if for every B′, A ⊆ B′ ⊆ B and |B′| < k, A ≤s B

′.

From the notion of intrinsic substructure, we define a notion of intrinsic
closure.

3.7 Definition. Let A ⊆ M ∈ K. The intrinsic closure of A in M is
iclM(A) = ∪k<ωicl

k
M(A) where for any M ∈ K, any k ∈ ω, and any A ⊆M ,

iclkM(A) = ∪{B : A ∩B ≤i B ⊆M&|B| < k}.

That is, the k-intrinsic closure of A in M is the union of those
substructures of cardinality less than k of M
which are intrinsic extensions of their intersection with A.
Since k-intrinsic closure is not transitive, we need a notion for iterating

iclkM.
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• iclk,0M (A) = iclkM(A)

• iclk,m+1
M (A) = iclkM(icl

k,m
M (A))

3.8 Definability. Note that iclk is first order definable in the following sense.
For each finite n, k, there is a formula θn,k(x, y) such that for anyM ∈ K, and
any sequence a of length n from M , M |= θn,k(a, b) if and only if b ∈ iclkM(a).
Thus, we can define in each M , (suppressing n and k) a set Am = AmM(a) =
iclk,mM (a).

3.9 Remark. To clarify later computations, we gave the definition of
≤s explicitly in terms of wtλ. It is equivalent to give the
general definition: for A ⊆ B ∈ K∞, A ≤s B if and only
if there is no B′ with A ≤i B

′ ⊆ B. This definition is extended to possibly
infinite A

and B by A ≤s B if for every finite X ⊆ A, iclA(X) = iclB(X).
The setting here differs from the similar one in [3] in one immaterial
and several material ways. The immaterial difference is that we have

chosen to axiomatize
≤i rather than ≤s. A more significant difference is that there is no re-

quirement
that the dimension function is hereditarily nonnegative on members of

K∞. That is, ∅ ≤s A for all A ∈ K∞
is not required (and is false in Example 3/4). If ∅ ≤s A for all A ∈ K∞

then amalgamation for strong strong substructures entails the joint embed-
ding property (for strong embeddings) in K∞.

Still more significantly, the bound on the number of
allowable copies of an intrinsic extension of a structure is raised from a

constant in Example
1/2 to a slow-growing function in Example 3/4.

3.10 Basic Axioms. A1 If A ≤i B and B ≤i C then A ≤i C.

A2 If A ⊆ B and A ≤i C then B ≤i BC.

A3 If A ≤i B and f : B 7→ B′ is a 1− 1-homomorphism, then fA ≤i fB.
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It is easy to check that both Axioms A1 and A2 are verified in the ex-
amples in Paragraph 3.4. Axiom A3 is equally easy if the dimension/weight
viewpoint (i.e. looking at Example 1 or 3) is taken.

The definition of intrinsic closure yields the following immediately.

3.11 Lemma.

1. For every A ⊂ω M ∈ K, every k < ℓ,

iclkM(A) ⊆ iclℓM(A)

2. For every natural number k, if A ⊆ B ⊆ C and iclkC(A) ⊆ B then
iclkC(A) = iclkB(A).

Axioms A1 and A2 respectively immediately yield the following properties
of intrinsic closure.

(See [3].)

3.12 Lemma. For every k,m, ℓ, there exists t such that for every M ∈ K
and every a ∈M of length ℓ,

iclk,mM (a) ⊆ icltM(a).

3.13 Lemma. For any k and any M ∈ K, if A ⊆ B ⊆ M , then iclkM(A) ⊆
iclkM(B).

We make the following additional demand on (K,≤s).

3.14 Axiom A4. For every s, k ∈ ω, there are k∗ and m such that for every
M ∈ K, and every a ∈ M of length s and b ∈ M the following conditions
hold. Let H = iclkM(ab) and for each i, Ai denotes icl

k∗,i
M (a):

Am ∩H ≤s H.

This ‘back’ condition is analogous to what Shelah [12] calls ‘the universal
demand’ in defining such concepts as ‘simply almost nice’. Our demand is
stronger than Shelah’s in that we have specified exactly how to construct Am
rather than relying on a B with desirable

properties and we require this Am to be a strong submodel rather than
something ‘elementarily’ equivalent to it. Thus, with this definition it is
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easier to prove the model completeness result but more difficult to verify
the hypothesis (this condition). Nevertheless, we establish the hypothesis in
Section 4, when the base language contains only equality. When successor or
< is allowed in the base language the situation becomes more complicated.

3.15 Definition. The model M is (K∞,≤s)-semigeneric, or
just semigeneric, if

1. M ∈ K

2. If A ≤s B ∈ K∞ and g : A 7→M , then for each

finite m there exists an embedding ĝ of B into M which

extends g such that

(a) iclmM(ĝB) = ĝB ∪ iclmM(gA)

(b) M |iclmM(gA)ĝB is the free join over gA of

iclmM(gA) and ĝB.

The following ‘forth’ condition corresponds to the existential demand in
Shelah’s definition. There exist semigenerics; indeed with probability one
each structure is semigeneric.

That is, each of the ϕmA,B,C defined in [3], which together axiomatize the
semigeneric structures (see next lemma), has limit probability 1.

3.16 Lemma. There is a collection of sentences ϕmA,B,C indexed
by appropriate triples of finite structures such that
a structure N ∈ K is
semigeneric, if and only if for each appropriate ⟨A,B,C⟩,
N |= ϕmA,B,C

3.17 Definition. A theory T is said to be nearly model complete if every
formula is equivalent in T to a Boolean combination of Σ1-formulas.

Thus, T is nearly model complete if the type of any finite sequence is
determined by exactly the family of Σ1-formulas it satisfies. Near model
completeness lies strictly in strength between model completeness and 1-
model completeness (every formula is equivalent to a Σ2-formula). Note
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that, in contrast to the random graph with edge probability 1/2, the axioms
for a nearly model complete theory will be Π3 not Π2.

Now, we want to prove that under these conditions, the class of semi-
generic structures is nearly model complete.

The proof is practically identical to that in [3] and is included
only for convenience. However, the hypotheses have
been weakened to
give a more general result applying to Example 3/4 as well as 1/2. In

particular, the hypotheses
are formulated entirely in terms of ≤i and ≤s. Thus a
weight function only enters the quantifier elimination argument to estab-

lish A1-A4.

3.18 Theorem. If (K,≤i) satisfies Axioms A1 through A4,
then for every formula ϕ(x) there is a Boolean combination
of existential formulas ψϕ(x) such that if M is
(K,≤i)-semigeneric then ψϕ(x) is equivalent
to ϕ(x) on M .

Proof. We actually show:

3.19 Lemma. For any formula ϕ(x1 . . . xr) there is an integer ℓ = ℓϕ, such
that for any pair of semigenerics M,M ′ ∈ K and any r-tuples a ∈ M and

a′ ∈M ′ if icl
ℓϕ
M(a) ≈ icl

ℓϕ
M′(a′) then M |= ϕ(a) if and only if M ′ |= ϕ(a′).

To deduce the elimination of quantifiers result from this formulation
note that it implies that the type of any sequence (in any semigeneric
structure M ∈ K) is determined by the Σ1 and Π1

formulas it satisfies.
Proof. The proof is by induction on formula complexity; the Boolean
connectives are easy. So suppose ϕ(x) = (∃y)ψ(x, y). Suppose M |= ϕ(a)

so there is a b such that M |= ψ(a, b). Let H = iclkM(ab) and for each i,
Ai = iclk,iM (a):

Apply Axiom A4, to a, b with k = ℓψ to obtain k∗ and m such that
Am ∩H ≤s AmH.

Now applying
Lemma 3.12, choose ℓϕ so that for every a
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of length r, and every semigeneric N , ANm+1(a) ⊆ icl
ℓϕ
N (a).

We want to show that for any semigenerics M and M ′, for any
a ∈M r, a′ ∈M ′r, and b ∈M if

icl
ℓϕ
M(a) ≈ icl

ℓϕ
M′(a′) then there is a b′ ∈M ′ with

icl
ℓψ
M (a, b) ≈ icl

ℓψ
M′(a′, b′).

Fix g which maps a to a′ and

icl
ℓϕ
M(a) isomorphically onto

icl
ℓϕ
M(a′).

By the choice of ℓϕ, for each i ≤ m+ 1, g maps
AMi (a) isomorphically onto AM

′
i (a′). (Use

Lemma 3.11 and induct.)
To avoid superscripts,
for each i, let A′

i denote the image of Ai = AMi under g.
Since M ′ is semigeneric, M ′ |= ϕAm,H,Am+1 .
Thus,
there is an isomorphism ĝ extending

g and mapping H into M ′ with icl
ℓϕ
M′(A′

mĝH) = icl
ℓϕ
M′(A′

m) ∪ ĝH and so
that

M ′|(iclℓϕM′(A′
m)ĝH) is a free join of icl

ℓϕ
M′(A′

m) and
ĝH
over A′

m.
Let H ′

1 = ĝH

and b′ = ĝ(b). We need to show icl
ℓψ
M (a, b) ≈ icl

ℓψ
M′(a′, b′).

By the choice of
ĝ and H ′

1,
A′
mH

′
1
≃= AmH which

contains icl
ℓψ
M (a, b),

so it
suffices
(by
Lemma 3.11)
to show
A′
mH

′
1

contains icl
ℓψ
M′(a′, b′).

Note by Lemma 3.13, icl
ℓψ
M′(a′, b′) ⊆ icl

ℓϕ
M′(a′, b′) ⊆ icl

ℓϕ
M′(A′

mĝH) = A′
m+1H

′
1.

By
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Lemma 3.11,

icl
ℓψ
M′(a′, b′) = icl

ℓψ
A′

m+1H
′
1
(a′, b′).

Since A′
m+1 and H ′

1 are freely joined over A′
m,

ĝ−1 ∪ g−1 is a 1− 1 homomorphism from

A′
m+1H

′
1 onto Am+1H. Applying Axiom A3 and since H = icl

ℓψ
M (a, b) we

see icl
ℓψ
A′

m+1H
′
1
(a′, b′) ⊆ A′

mH
′
1 whence icl

ℓψ
A′

m+1H
′
1
(a′, b′) = icl

ℓψ
A′

mH′
1
(a′, b′).

The next corollary follows exactly as in [3].

3.20 Corollary. Suppose there is a (K,≤i)-semigeneric L-structure. The
theory of the class of (K,≤i)-semigeneric L-structures is
nearly model complete.

The next result follows from the definability of the intrinsic closure (Para-
graph 3.8).

3.21 Lemma. There is a collection of first order sentences Φ such that if
M |= Φ, for each m, iclmM(∅) = ∅.

An immediate application of Lemma 3.19 yields:

3.22 Corollary. Any consistent theory T which contains both Φ, the set of
sentences expressing that iclM(∅) is empty, and Σ,
the sentences axiomatizing the semigeneric models, is complete.

3.23 A strategy for proving 0− 1-laws. 1. Define a notion of ≤i sat-
isfying the axioms in this section.

2. Show by a model theoretic argument that this notion of ≤i satisfies the
‘back’ condition.

3. Establish the ‘forth’ condition by proving that the sentences defining
semigeneric structures have probability one.

4. Apply Corollary 3.20 to conclude that the class of semigenerics is nearly
model complete.

5. If for each semigeneric M , iclM(∅) = ∅, completeness follows by Corol-
lary 3.22.
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3.24 Remarks. 1. We establish the ‘back’ condition when icl is defined
in terms of λ-weight in Section 4.

2. Two major extensions of [12] are to allow extension of successor and to
allow edge probability 1

2|i−j|
. The definition of semigeneric given here is

appropriate for the more general probability situation but only working
over equality. The language extension problem is treated in more detail
in [11] and [2].

3. We have not dealt with the exact relationships among the probability,
λ-weight, and ≤i. See [12].

4. The proof of steps 2 and 3 requires further direct use of the weight
function.

5. The problem of nonempty closure is illustrated by expanding (n, S).

The first element (and much more) is in the closure of the empty set.
Transferring to the circle (S∗), is one way to dodge this bullet.

6. More generally, when iclM(∅) ̸= ∅,
we have reduced the theory of a semigeneric M to the sequence of
structures

⟨iclmM(∅) : m < ω⟩.
So completeness follows if this sequence does not depend on the choice
of M . This situation arises when considering expansions of successor
and edge probability n−α.

7. Strictly speaking, it is not near model completeness but the more tech-
nical Lemma 3.19 which is applied to obtain completeness.

8. Suppose iclmM(∅) depends on M . For any sentence ϕ, Lemma 3.19 re-
duces the truth of ϕ in M to the isomorphism type of iclmM(∅), for
appropriate m. If (e.g. expanding successor with edge probability

1
2|i−j|

) a probability can be assigned to the isomorphism type of iclmM(∅),
convergence is obtained even though the 0− 1-law is not.
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4 The ‘back’ argument

We want to establish the following principle, Axiom A4, when icl is defined
in terms of λ-weight. This is a key model theoretic step in generalizing
the 0 − 1-law from a random graph with edge probability n−α to one with
edge probability 1

|i−j|α . These arguments reformulate the results in Section

6 of [12]. We do not deal here with the difficulties of showing the sentences
expressing semigenericity have probability one.

4.1 Axiom A4. For every s, k ∈ ω, there are k∗ and m such that for every
M ∈ K, and every a ∈ M of length s and b ∈ M the following condition
holds. Let H = iclkM(ab) and for each i, if Ai denotes icl

k∗,i
M (a):

Am ∩H ≤s H.

Shelah [12] has introduced the following terminology.

4.2 Definition. (K,≤i) smooth if whenever B and C are freely amalga-
mated over A inside N , B ≤i BC if and only if A ≤i C.

While this condition is related to A3 and plays a similar role in Shelah’s
proof of the quantifier elimination result to that played by A3 here (in the
sense that the other hypotheses are the same), the conditions are

quite different.
Note that by smoothness, if Am andH are free over Am∩H, the conclusion

of A4 is equivalent to

Am ≤s AmH.

We will need the following properties which are easily seen to hold for
λ-weight.

4.3 Fact. 1. There exists an ϵn > 0 such that if |B − A| < n and
wtλ(B/A) < 0 then wtλ(B/A) < −ϵn.

2. If ≤s is defined from λ-weight then (K,≤s) is smooth

(Definition 4.2).
We will be dealing with sequences ⟨Ci : i < α⟩ of structures containing a

fixed set B and of bounded size. For every t, a long enough such sequence
(> g(t)) contains an extremely homogeneous subsequence of size t:
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4.4 Lemma. There is a function g from natural numbers to natural numbers
with the following property for each t.

Suppose for i < g(t), A ⊆ B ⊆ Ci ⊆ N ∈ K where |Ci| ≤ r. Let
C∗ =

∪{Ci : i < g(t)} and let λ be an equivalence relation on C∗ − A.
Denote λ|Ci by λi. There exists u ⊆ g(t) and X with B ⊆ X ⊆ ∩i∈uCi such

that

1. |u| ≥ t.

2. |B| ≤ |X| < r.

3. If i, j ∈ u then

(a) Ci ∩ Cj = X

(b) λi|X = λj|X and there is an L-isomorphism ψi,j between Ci and
Cj over X that also maps λi to λj.

(c) Each λ-equivalence class intersects either a unique Ci −X or in-
tersects all Ci −X.

Proof. The ∆-system lemma establishes 2 and 3a) for some u′ ⊆ g(t).
Then selecting a fixed quantifier-free type in the language L ∪ {λ}, we

determine the ψi,j for 3b). Applying Ramsey’s theorem yields 3c). The
partition is defined by (i, j) ∈ Ps

(for s ∈ 2k) if and only if for each ar ∈ Ci, r < k, λ(ar, ψi,j(ar))
s(r)). ( For

any ϕ, ϕs(r) denotes
ϕ if s(r) = 1 and ¬ϕ if s(r) = 0.) The function g(t) can be computed

from the bounds for the ∆-system lemma and Ramsey’s theorem, and the
number of quantifer free k-types in L ∪ {λ}.

4.5 Remark. The function g depends uniformly on |A|, |B|, and r. These
will be parameters of the main result (where r is derived from the k mentioned
in the main theorem).

Given such a homogeneous sequence, we establish some further nomen-
clature.

4.6 Notation. 1. We say c ∈ Ci is large if c ∈ Ci − X. (Actually, it is
the orbit of c over X that is large.)
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2. We say c/λ is isolated if c/λ ⊆ Ci −X.

3. Finally, c/λ is dense if c/λ ∩ Ci ̸= ∅ for all i.

Note that if b ∈ B, then b/λ is dense. The following lemma will be
exploited in the proof of Theorem 4.9 and Lemma 4.15.

4.7 Lemma. Suppose ⟨Ci : i < t⟩ is a homogeneous sequence as in the
conclusion of Lemma 4.4

and let C∗ denote the union of the Ci. Thus, |Ci| < r; choose ϵr as in
Fact 4.3. Suppose λ ∈ E(A,C∗) and

λi denotes λ|Ci. Suppose further that there is c in Ci with c large and
c/λ is not dense.

If t > r/ϵr and for all i, B ≤i Ci then wtλ(C
∗/A) < 0.

Thus if wtλ(C
∗/A) > 0, then for any c ∈ C∗, if c is large, c/λ is dense.

Proof. Let C ′ denote the union of the dense λ-equivalence classes.
Note that X ⊆ C ′ and C ′ is λ-closed.
Further, the number of dense classes is bounded by the cardinality of Ci

so wtλ(C
′/A) ≤ r. Thus, for each i:

wtλ(Ci/(C
′ ∩ Ci)) < −ϵr.

wtλ(C
∗/A) ≤ wtλ(C

′/A) + wtλ((C
∗ − C ′)/C ′)

≤ wtλ(C
′/A) +

∑
i<twtλ(Ci/(C

′ ∩ Ci)
≤ r + (t×−ϵr) < 0.

4.8 Definition. We say A is m-strong in B and write A ≤m
s B if for every

B′

with A ⊆ B′ ⊆ B and |B| < m, A ≤s B
′.

Now we can establish the following local principle.
This principle is immediate with k∗ = ℓ if there is an ℓ with |iclkM(B)| < ℓ

whenever |B| < n (as when the edge probability is n−α). But when the size
of the intrinsic closure is unbounded (as when the edge probability is 1

|i−j|α )
a serious argument is needed.

4.9 Theorem. For every m,n, k there exists a k∗ such that for every A,B
with |A| < m, |B| < n and everyM ∈ K, if A ≤k∗

s iclkM(B) then A ≤s icl
k
M(B).
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Proof. Let H denote iclkM(B). Let r = 2k and fix t with t > r/ϵr. Let k0 = r
and

ki+1 = r × 2ki
2
. Let p = g(2t) and let k∗ = kp. For i < p and each

appropriate µ ∈ E(A,Ei) we will define a structure Di,µ with |Diµ| < 2k.
Then Ei+1 denotes

∪{Di,µ : µ ∈ E(A,Ei)}.
Note that for each i, |Ei| < k∗ so A ≤s Ei.

4.10 Definition. Suppose B ⊆ E ⊆ H and A ≤s E.

1. For c ∈ H−E and e ∈ E, R∗(c, e) holds if there are a Cc with B ≤i Cc,
|Cc| < k and a path from c to e with all intermediate points contained
in Cc − E.

2. For µ ∈ E(A,E), we say (E, µ) is secure in H if µ witnesses A ≤s E
and

(a) for every c ∈ H − E there is at most one µ-class of an element
e ∈ E with

R∗(c, e).

(b) There do not exist c, d ∈ H and a, b ∈ E with R(c, d), R∗(c, a),
R∗(d, b) and

¬µ(a, b).

3. We say E is secure if for some µ ∈ E(A,E), (E, µ) is secure in H.

We will eventually deduce that for some i < p, Ei is secure in H.

4.11 Claim. If A ≤s E ⊆ H and E is secure in H then
A ≤s H.

Proof. Fix λ ∈ E(A,E) such that for every B′ with A ⊆ B′ ⊆ E, wtλ(B
′/A) ≥

0 and (E, λ) is secure in H. Now extend λ to λ∗ ∈ E(A,H)
as follows. For c ∈ H − E and e ∈ E, λ′(c, e) holds just
if R∗(c, e) and for c, d ∈ H − E, λ′(c, d) holds if neither R∗(c, e) nor

R∗(d, e) holds for any e ∈ E. λ∗ is the transitive closure of λ ∪ λ′.
Since E is secure in H, λ∗ is well-defined. Now by the first clause in

the definition of secure, vλ∗(H/A) = vλ(B/A) + 1 and by the second clause
eλ∗(H/A) = eλ(B/A). This completes the proof of the claim.
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Now we continue the main construction. If at step i, Ei is secure; stop.
If not, for each µ ∈ E(A,Ei) choose Di,µ as follows. One of the two clauses
in the definition of secure is violated. In the following we deal with the

second clause; the first is a simpler version obtained by identifying ci and di.
First, find ai, bi, ci, di with ai, bi ∈ Ei and ci, di ∈ H−Ei so that R∗(ci, ai),

R∗(di, bi), R(ci, di) and ¬µ(ai, bi).
Since H = iclkN(B), for j < 2, choose Cj

i,µ with

B ≤i C
j
i,µ, |C

j
i,µ| < k, with C0

i,µ and C
1
i,µ witnessing R

∗(ci, ai) and R
∗(di, bi)

respectively. LetDi,µ be the union of the C0
i,µ and C

1
i,µ and Ei+1 = Ei∪∪µDi,µ.

Suppose for contradiction, no Ei for i < p is secure in H so p structures
Ei are chosen. Let λ witness A ≤s Ep and

apply Lemma 4.4 (for r = 2k ) to the ⟨Di,λ|Ei⟩ with i < p to get a
homogeneous sequence

which we renumber as ⟨Di : i < t⟩. Since p = g(2t), we may assume
all Di violate the same clause of the definition of secure. We analyze the
slightly more complicated second clause. Without loss of generality we may
assume that the isomorphisms among the Di also respect ai, bi, ci, di. Fix a
particular Di for analysis.

Since ci, di ∈ H − Ei, they are both large. As remarked in Lemma 4.7,
since

A ≤s Ep, this implies that every element c of Ci, c/λ is dense.
getting (possibly by renaming) that If ci/λ is not dense, Lemma 4.7 con-

trary to hypothesis, as
Since there is a path from ai to bi in Di, we can find a pair of elements

x, y ∈ Di

such that R(x, y), ¬λ(x, y), and both are dense.
Now wtλ({[x/λ], [y/λ]}/A) = wtλ([x/λ]/[y/λ]A)+wtλ([x/λ]/A) ≤ 2−t <

0. This contradiction completes the proof.

4.12 Theorem. Axiom A4 holds.

Proof. Recall that H denotes iclkM(ab) and Ai = iclk
∗,i

M (a). It suffices to
find k∗ andm so that Am+1∩H ⊆ Am, as this inclusion implies Am∩H ≤k∗

s H;
the result then follows by Theorem 4.9.

We complete the proof by first establishing a dichotomy and then showing
that the undesirable alternative is impossible.
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4.13 Notation. For any A,B ⊆ N ∈ K, R(A,B) denotes the set of edges
between A and B.

4.14 Lemma. For every s, k ∈ ω, for every M ∈ K, and every a ∈ M of
length s and b ∈M , for any k∗ ≥ k, for every m∗, there is an m < m∗ such
that either

1. Am+1 ∩H ⊆ Am

or

2. R(H − Am, Am) > m∗/22k − k.

Proof.
If the first alternative fails,
for each j < m∗, there exist Cj, dj with dj ∈ Cj, |Cj| < k,
ab ∩ Cj ≤i Cj, and dj ∈ (Aj+1 − Aj) ∩ H. By the pigeon-hole principle

and the finite ∆-system lemma we can choose X ⊇ ab and u ⊆ m∗

with |u| ≥ m∗/22k such that for i, j ∈ u,
Ci ∩Cj = X and Ci ≈X Cj. Since X ⊆ ∩

i∈uCi, possibly decreasing u by
less than k elements, we can assume that if i ∈ u,

(Ai+1 − Ai) ∩ X = ∅. Let α be the minimal element of u and β the
maximal. Fix ℓ ∈ u, (at least third in increasing order on the elements of u.)

Let B1 = Cℓ ∩ Aα
and B2 = Cℓ ∩ Aβ.
By our last restriction on u, B2 ∩X ⊆ B1.
Claim. For each i ∈ u, R(Ci − B2, B2 − B1) = ∅ or alternative 2 holds

with m = β.
Proof of claim. Fix i and suppose (c, d) is an edge of M with
c ∈ Ci− (B2 −B1) and d ∈ B2 −B1. Then d is not in X so the images of

d in the various Ci give |u| distinct edges between iclkM(a, b)− iclk
∗,β

M (a) and
iclk

∗,β
M (a).
So if both alternatives of Lemma 4.14 fail, we have Cℓ − (B2 −B1) and

B2

are freely joined over B1.
But Cℓ − (B2 − B1) ≤i Cℓ. So by smoothness, B1 ≤i B2. But |B2| ≤

|Ci| < k so B2 ⊆ iclk
∗,α+1

M (a). This contradicts the
diagonalizing definition of B2 and yields Lemma 4.14.
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Now we want to show that the second alternative of Lemma 4.14 is im-
possible.

4.15 Lemma. For every s, k ∈ ω, for every M ∈ K, and every a ∈ M of
length s, there exists t such that for every m if b ∈M − Am, then

for sufficiently large k∗ ≥ k, letting H denote iclkM(ab) and Ai = iclk
∗,i

M (a):

|R(H − Am, Am)| < t.

Proof. Apply Fact 4.3 to choose ϵ ∈ ℜ 0 < ϵ < 1 such that for all λ, if
|C1| < k,

wtλ(C0, C1) ̸∈ (−ϵ, ϵ). Choose |u| so that
|u| > k/ϵ and α× |u| > 1.
Then choose t ≥ k2g(|u|). If the Lemma fails, let R(H − Am, Am) =

{(di, ci) : i < t}, where the edges are distinct.
For each i < t, choose Ci such that ab ∩ Ci ≤i Ci, |Ci| < k, and di ∈ Ci.

We will first show there exists D with Am ⊆ D ⊆ H with |D| > t/k2 and
ℓ < k such that Am+ℓ ∩D = D′ ≤s D.

Define

f(i) = µq(Am+q+1 ∩ Ci ⊆ Am+q).

Then f is a function from t to k. There exists a set u ⊆ t with |u| ≥ t/k2

such that

1. i, j ∈ u implies |Ci| = |Cj| =df p.

2. i in u implies f(i) =df ℓ.

Since k∗ ≥ k · t and t ≥ k2g(|u|), k∗ ≥ |u| · k. Let D =
∪
i∈uCi ∪Am. Let

D′ = iclk
∗,ℓ

M (a) ∩ D. By the choice of ℓ, D′ ≤s D. Let λ ∈ E(D′, D). Apply
Lemma 4.4 to obtain a homogeneous

sequence ⟨< Ci, λ|Ci >: i ∈ u⟩.
By Lemma 4.7, Y = di/λ is dense. so

wtλ(D
′, D′ ∪ Y ) = vλ(D

′, Y )− α× |R(D′, D ∪ Y )| ≤ 1− α× |u| < 0.

Since, D′ ≤s D, this is impossible.
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This contradiction completes the proof of
Lemma 4.15 and thus establishes Axiom A4.

The following corollary does not seem to be necessary for the argument
presented in Theorem 3.19. It appears in [12] as part of Conclusion 6.11

and may be necessary for the expansion of
nontrivial languages.

4.16 Corollary. In the situation of Axiom A4 there is a set B ⊆ Am, with
|B| < t,

with t computed as in Lemma 4.15 such that Am and HB are freely amal-
gamated over B.

Proof. Let B be the elements of Am that are connected to elements ofH−Am.
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