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Very Preliminary
We show the concept of an Abstract Elementary Class provides a unifying notion

for several properties of classes of modules. The important definitions and proof
from the study of modules can be found in [GT06] and [EM02]; concepts of AEC
are due to Shelah but collected in [Bal]. The easiest result to state is:

Theorem 0.1. (1) For an abelian group N , the class (⊥N,≺N ) is an abstract
elementary class if and only if N is a cotorsion module.

(2) For any R-module N , over an hereditary ring R, if N is a pure-injective
module then the class (⊥N,≺N ) is an abstract elementary class.

Theorem 0.2. For an abelian group N ,
(1) In any case(⊥N,≺N ) has the amalgamation property.
(2) (⊥N,≺N ) is stable in all λ with λω = λ and for some N this is best

possible.

We discuss Theorem 0.1 in Section 1 and Theorem 0.2 in Section 2.

1. WHEN IS (⊥N,≺N ) AN AEC?

We will begin by describing the three main concepts, then prove the theorem.
Then we will state several variations. We recall the precise definition of an AEC
since checking these axioms is the main content of the note.

Definition 1.1. A class of τ -structures, (K,≺K), is said to be an abstract el-
ementary class (AEC) if both K and the binary relation ≺K are closed under
isomorphism and satisfy the following conditions.

• A1. If M ≺K N then M ⊆ N .
• A2. ≺K is a partial order on K.
• A3. If 〈Ai : i < δ〉 is continuous ≺K -increasing chain:

(1)
⋃

i<δ Ai ∈K;
(2) for each j < δ, Aj ≺K

⋃
i<δ Ai

(3) if each Ai ≺K M ∈K then
⋃

i<δ Ai ≺K M .
• A4. If A,B, C ∈K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.
• A5. There is a Löwenheim-Skolem number LS(K) such that if A ⊆ B ∈

K there is a A′ ∈K with A ⊆ A′ ≺K B and |A′| ≤ |A|+ κ(K).

We use ‘module’ to mean a right R-module; we will work with various proper-
ties of R.
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Definition 1.2. (1) ⊥N = {A : Ext(A,N) = 0}
(2) For A ⊆ B both in ⊥N , A≺NB if B/A ∈ ⊥N .

This notion generalizes the concept of a Whitehead group; that is the special
case: ⊥Z. There is a great deal of work on such classes and on their duals, so-called
cotorsion pairs in [GT06] and [EM02]. And the notion ≺N that we have chosen
for our notion of ‘strong submodel’ arose in abelian group context in the guise of
a C-filtration. It was independently developed by the ‘Abelian group group’ of the
AIM workshop on Abstract Elementary Classes in July 2006.

Definition 1.3. A module N over a ring R is cotorsion if it satisfies the following
condition:

Ext(F,N) = 0 for every flat F .

If R is a Dedekind (= hereditary) domain then the condition is equivalent to
Ext(J,N) = 0 for every torsion-free J and to the condition that Ext(Q(R), N) =
0; we will use this condition when studying Abelian groups below.

While the class of cotorsion modules is complex, the torsion free cotorsion
Abelian groups are more fully understood; they are the pure-injective Abelian
groups.

The Whitehead groups, ⊥Z do not form an AEC with ≺N for N = Z; this can
be seen directly since they don’t satisfy A.3.3 or by the theorem here, since Z is
not a cotorsion module.

We will begin the proof of the main theorem and return to the notion of cotorsion
when it is needed for the argument. We check that each axiom is satisfied.

A1 is trivial.
A2 requires a small observation. We want to show A≺NB and B≺NC implies

A≺NC; that is that Ext(C/A,N) ∈ ⊥N . We have an exact sequence:

B/A→ C/A→ C/B.

This induces the exact sequence

Ext(B/A, N)← Ext(C/A,N)← Ext(C/B, N).

Since the end terms are 0, so is the middle one.
A3 is much more complicated. The first key point is ‘Eklof’s Lemma’.

Lemma 1.4. Let C be a module. Suppose that A =
⋃

α<µ Aα with A0 ∈ ⊥N and
for all α < µ, Aα+1/Aα ∈ ⊥N then A ∈ ⊥N .

From this result, A3.1 is immediate for any R and any N . Lemma 1.4 is proved
on page 113 of [GT06]; another proof is XII.1.5 of the second edition of [EM02].

For any R and any N , A3.2 follows from A3.1. To see this, suppose 〈Ai :
i < α〉 is a ≺N continuous increasing chain with union A. We must show each
A/Ai ∈ ⊥N . Note that A/Ai =

⋃
j>i Aj/Ai so by A3.1 it suffices to show each

Aj/Ai ∈ ⊥N and each Aj/Ai≺NAj+1/Ai. The first follows from the definition
of the chain and induction using transitivity and A3.1 for limit stages. The second
requires that

(Aj+1/Ai)/(Aj/Ai)
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be in N . But this last is Ai+1/Ai which is in ⊥N by hypothesis.
To check A3.3, we need the hypothesis that N is cotorsion for the first time.

In the following we mean that the class ⊥N is closed under arbitrary direct limits
of homomorphisms, not just under direct limits of strong embeddings which is a
well-known consequence of A3.1.

Lemma 1.5. For an abelian group N , N is cotorsion if and only if ⊥N is closed
under direct limits.

Proof. Suppose ⊥N is closed under direct limits. Since every free groups is
in ⊥N (for any N ) and every torsion free group is a direct limit of free groups,
every torsion free group is in ⊥N , so by characterization 1) of the definition N is
cotorsion.

Conversely, Theorem 3.2.7 of [GT06], (see also [ET00]), if N is cotorsion then
⊥N is closed under arbitrary direct limits.

There will be extensions of this result depending on the ring R.

Now to verify A3.3, suppose 〈Ai : i < α〉 is a ≺N continuous increasing chain
with union A and each Ai≺NB. We must show B/A ∈ ⊥N . But B/Ai is the
direct limit of the family of surjective homomorphism fi,j : B/Ai → B/Aj , for
i < j.

A4 is rather straightforward but this is where we require that the ring R is hered-
itary. One of the many equivalent definition of an hereditary ring is exactly what
we need. Since the ring of integers is hereditary, the results here apply to abelian
groups.

Definition 1.6. R is hereditary if and only if for every pair A ⊂ B of R-modules
and any N , Ext(B,N) = 0 implies Ext(A,N) = 0.

Lemma 1.7. If R is a hereditary ring, A4 holds for (⊥N,≺N ).

Suppose A ⊆ B ⊆ C with A≺NC and B≺NC. To show A≺NB, we need only
show B/A ∈ ⊥N . But this is immediate since B/A ⊂ C/A from the following
fact.

Remark 1.8. We didn’t use the hypothesis B≺NC. The key monotonicity of Ext
property holds because Z is a hereditary ring.

Verifying A5 again relies on important concept from homological algebra. We
modify the notation in [ET00].

Definition 1.9. For any right R-module A and any cardinal κ, a (κ, N)-refinement
of length σ of A is a continuous chain 〈Aα : α < σ〉 of submodules such that
A0 = 0, Aα+1/Aα ∈ ⊥N , and |Aα+1/Aα| ≤ κ for all α < σ.

It is not clear that both the notion of refinement and filtration are needed. But for
this version I am using both, so that I can quote directly from both [ET00] and
[vT]
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Definition 1.10. A admits a C-filtration if A can be written as the union of contin-
uous chain Ai where Ai+1/Ai is in C and A0 = 0.

I state now Theorem 6 of [vT]. I omit some of the conclusions which are not
needed here.

Lemma 1.11 (Generalized Hill Lemma). Suppose M admits a C-filtration: 〈Mα :
α ≤ σ〉, where C is a set of < κ-presented modules. There is a family F of
submodules of M = Mσ such that:

(1) Mα ∈ F for all α ≤ σ.
(2) F is closed under arbitrary intersections and unions.
(3) Let N ⊂ P with both in F. Then P/N admits a C-filtration.
(4) If N ∈ F and X ⊂M with |X| < κ, then there is a P ∈ F with N∪X ⊂ P

and P/N is < κ presented.

Lemma 1.12. If every module in ⊥N admits a (κ, N)-refinement then (⊥N,≺N )
has Löwenheim-Skolem number κ.

Proof. Note that a (κ, N)-refinement yields a filtration by the < κ-generated
elements of ⊥N . Note also that if A ∈ F, then by Eklof’s lemma and 2) of Theo-
rem 1.11, A′≺NM . Write an arbitrary X ⊂ M as

⋃
i<µ Xi where |Xi| < κ and

µ = |X|. Then inductively, using condition 4, construct Ni so that:
(1) N0 = 0;
(2) Ni+1 ⊇ Ni

⋃
Xi;

(3) Ni+1/Ni is < κ-presented.
Then Nµ is as required.

Remark 1.13 (Summary). We have shown that if ⊥N admits refinements and sat-
isfies A3.3, then (⊥N,≺N ) is an AEC.

But the question of when refinements exist is rather complicated.

Lemma 1.14. Each member of ⊥N admits a (|R|+ ℵ0, N)-refinement under any
of the following conditions.

(1) N is pure-injective and R is arbitrary.
(2) N is cotorsion and R is a Dedekind domain.
(3) (V=L) N is arbitrary and R is hereditary.

Proof. These results are in [ET00]. 1) is Theorem 8; 3) is Theorem 14; 2)
follows from (ii) of Theorem 16 and Theorem 8.

In view of Remark 1.13, the classes described in (1) when R is hereditary and
(2) of Lemma 1.14, (⊥N,≺N ) are AECs. This leads to several questions.

Question 1.15. (1) Can the question of whether a class is an AEC (e.g.
(⊥N,≺N ) R a hereditary ring be independent of ZFC?
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(2) Can the question of whether a class(e.g. Whitehead groups) is a PCΓ-
class (defined as the reducts of models of say a countable theory that omit-
ting a family of types be independent of ZFC? (Note that under V = L,
‘Whitehead=free’ and the class is easily PCΓ.

Lemma 1.16. For a cotorsion Abelian group N , ⊥N is first order axiomatizable.

Proof. Let PN be the set of primes p such that Ext(Z/p,N) 6= 0. By Theorem
16.i of [ET00], ⊥N is the class of modules is the class of modules satisfing TN

where TN asserts that there is no p-torsion for each p ∈ PN

Remark 1.17. Note however, that while the class is elementary the definition of
≺N remains unusual. Even knowing the axiomatizability, we would have the defi-
nition A≺NB iff B/A ∈ TN .

We have shown that if N is a cotorsion Abelian group then (⊥N,≺N ) is an
AEC. Now for the converse, suppose (⊥N,≺N ) satisfies A.3.3. We show that N
is cotorsion. Specifically, by criteria 2) for cotorsion it suffices to show Q ∈ ⊥N .
We prove the following more general lemma.

Lemma 1.18. Suppose (K,≺K) is an AEC of abelian groups where A ≺K B
means A ⊆ B and A,B, B/A ∈ K. Then if K contains all free abelian groups,
Q ∈K.

Proof. So we want to write Q as B/
⋃

i Ai for some B,Ai ∈K. Fix B as
∑

Zn

where each Zn ≈ Z and choose K so that B/K = Q. Then let

Ai = (
∑
n<i

Zn) ∩K.

Let Bi denote
∑

n<i Zn/Ai. Now,

B/Ai = Bi ⊕ (
∑
n≥i

Zn)

(since Ai ⊆
∑

n<i Zn). Note that Bi is torsion-free and finitely generated so free;
thus, B/Ai is free and so in K. Each Ai is a submodule of a free and so in K; we
have Ai ≺K B, for each i. To check Ai ≺K Ai+1, we need Ai+1/Ai ∈K. Now
Ai+1/Ai maps into the free B/Ai so Ai+1/Ai is free and in K. So the Ai are an
increasing ≺N -chain with union K and by A.3.3, B/K = Q ∈K as required.

Remark 1.19. There are a number of extensions that one can make.
The ring R needed to be hereditary to guarantee axiom A4. If we study ⊥

∞N
instead of ⊥N , we can evade this requirement.

⊥
∞N = {A : Exti(A,N) = 0, for all i }.

To see this, note that we have A ⊂ B ⊂ C with B/A, C/B ∈⊥∞ N ; we must
show C/A ∈⊥∞ N . We have the short exact sequence:

0→ B/A→ C/A→ C/B → 0.
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By the long exact sequence of Ext, we get for each n.

Extn(C/A,N)→ Extn(B/A, N)→ Extn+1(C/B, N)
but the end terms are 0 by the definition of ⊥∞N so we finish.

The other requirements behave for ⊥∞N as they do for ⊥N ???

2. AMALGAMATION AND STABILITY

Having established that (⊥N,≺N ) is an AEC for a number of N , we turn to
establishing the model theoretic properties of the AEC. In this section we show
first that for any N , (⊥N,≺N ) has the amalgamation property. Then we show that
for an Abelian group N , (⊥N,≺N ) is stable in λ if λω = λ.

Note that for any N , all projective and in particular all free R-modules are in
⊥N so (⊥N,≺N ) always has arbitrarily large models.

Now we show the second claim:

Lemma 2.1. (⊥N,≺N ) has the amalgamation property.

We just check if C≺NB and C≺NA then the pushout D of A and B over C is
in ⊥N and B≺NC, A≺ND. Consider the short exact sequence:

0→ C → B → B/C → 0.

By the universal mapping property of pushouts we get the diagram:

0 → A → D → B/C → 0
↑ ↑ ↑

0 → C → B → B/C → 0
Then by the long exact sequence of Ext, we deduce:

Ext(B/C, N)→ Ext(D,N)→ Ext(A,N)→ 0.

But the first and last entries are 0, so D ∈ ⊥N . Now the commutative diagram
shows D/A ≈ B/C so A≺ND. Performing the same construction starting with
0→ C → A→ A/C → 0, shows B≺ND and we finish.

Question 2.2. What about disjoint amalgamation?

Remark 2.3 (Conclusions). We can now see:
(1) (⊥N,≺N ) has a monster model in usual sense of AEC, (see [Bal]).
(2) (⊥N,≺N ) has EM-models and models generated by indiscernibles.

To study stability, we must define it.

Definition 2.4. (1) Define

(M,a,N) ∼= (M,a′, N ′)
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if there exists N ′′ and strong embeddings f, f ′ taking N,N ′ into N ′′

which agree on M and with

f(a) = f ′(a′).

(2) ‘The Galois type of a over M in N ’ is the same as ‘the Galois type of a′

over M in N ′’ if (M,a,N) and (M,a′, N ′) are in the same class of the
equivalence relation generated by ∼=.

(3) ga− S(M) denotes the collection of Galois-types over M .
(4) (K,≺K) is λ-stable if for every M with |M | = λ, ga− S(M) = λ.

We begin our specific study with a definition and observation from [BS]

Definition 2.5. We say the AEC (K,≺K) admits closures if for every X ⊆M ∈
K, there is a minimal closure of X in M . That is, the structure with universe⋂
{N : X ⊆ N ≺K M} is a strong submodel of M . If so, we denote it: clM (X).

With this hypothesis we have the following check for equality of Galois types.
The relevance of the second clause is that even in the absence of amalgamation
it shows that equality of Galois types is determined by a basic relation, not its
transitive closure. By M1 � clM1(M0a1) we simply mean the structure M1 induces
on the minimal K substructure containing M0a1.

Lemma 2.6. Let (K,≺K) admit closures.
(1) Suppose M0 ≺K M1,M2 with ai ∈ Mi for i = 1, 2. Then

tp(a1/M0,M1) = tp(a2/M0,M2) if and only if there is an isomorphism
over M0 from M1 � clM1(M0a1) onto M2 � clM2(M0a2) which maps a1

to a2.
(2) (M1, a1, N1) and (M2, a2, N2) represent the same Galois type over M1 iff

M1 = M2 and there is an amalgam of N1 and N2 over M1 where a1 and
a2 have the same image.

Definition 2.7. For an Abelian group N and X ⊂ B ∈ ⊥N , define clB(x) as the
closure of X with respect to divisibility by p for each p ∈ PN (see Lemma ).

We can see immediately:

Lemma 2.8. For an Abelian group N and X ⊂ B ∈ ⊥N , clB(x) witnesses that
(⊥N,≺N ) admits closures. Note that for any a and M≺NM1 ∈ ⊥N , clM1(Ma)
is countably generated over M .

Theorem 2.9. For an Abelian group N , (⊥N,≺N ) is stable in λ if λω = λ.

Proof. We work in the monster model M of (⊥N,≺N ), which exists by
Lemma 2.1. Note first that the Galois type over M of any element a is determined
by the isomorphism type over M (and thus the first order quantifier-free type) of
the countably many generators over M of clM(Ma). This gives the upper bound.

Now we want a lower bound on the number of Galois types. For this, introduce
a further concept.
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Definition 2.10. (1) Fix a family ∆ of first order formulas such that if φ(x) ∈
∆ and a ∈M ≺K N then M |= φ(a) if and only if N |= φ(a).

(2) The τ -type p ∈ S∆(M) is acceptable if there is an N ′ ∈ K with N ≺K
N ′ and p is realized in N ′.

(3) We denote the set of acceptable 1-types over M by Sa(M).

For example, if A ≺K B implies A is pure in p the following lemma holds
where ∆ is the existential formulas. (Positive existential should suffice.)

Lemma 2.11. Let N ∈ K, p ∈ S∆(N) is acceptable if and only if there is an
N ′ ∈K with N ≺K N ′ and p is realized in N ′.

Proof. By clause 2b) of the presentation theorem, if there are such N,N ′, they
can be expanded to models witnessing the definition of acceptable. And the con-
verse is 2a) in the presentation theorem. �2.11

Corollary 2.12. For any M , |Sa(M)| ≤ ga− S(M).

The stability section needs some work. The idea is that a) there is an upper
bound of λω on the number of Galois types since they are determined by the
quantifier free type of a countable. b) this bound will be realized because there
are models which have λω distinct syntactic types over them that are realized in
⊥N . (This was clearer to me when ‘pure’ was in the definition of≺N so that the
existential formulas had to be preserved. I have left a start of a proof below. But
it is probably confused both by the question of purity and my algebraic problems
with whether there have to be many submodules of infinite index.

Lemma 2.13. Let ∆ be the collection of existential formulas.
(1) If r(x) ∈ S∆(M) is consistent and for each m ∈ M , r does not assert

p|(x−m), then r(x) is acceptable.
(2) If there is M ∈ ⊥N such that there are infinitely many q 6∈ PN such that

M 6= qM then (⊥N,≺N ) is not Galois-stable in any µ with ω ≤ µ ≤ 2ℵ0 .
(3) If there is M ∈ ⊥N such that there are infinitely many q 6∈ PN such that

M/qM is infinite then (⊥N,≺N ) is not Galois-stable in λ unless λω = λ
.

Proof. For the first, by compactness let a realize p along with the existential
diagram of M in M1 |= TN . The second is easier than the third so we do only the
third. By compactness choose M |= Np so that for each of indicated q, |M/qM | =
λ. Now each type given by assigning for each such q a coset of M/qM to x
determines a distinct acceptable type over M . By Corollary 2.12, we finish.

Remark 2.14. The stability spectrum problem for arbitrary AEC has not been
solved. There are explicit results for tame AEC in [GV06] and [BKV00]. See also
for example [She99].

Question 2.15. (1) Does the condition that (⊥N,≺N ) is stable in all cardi-
nals (or all cardinals beyond the continuum) provide any further algebraic
conditions on N?
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(2) Are the implications in 2) and 3) of Lemma 2.13 reversible?

3. FURTHER DIRECTIONS

Question 3.1. (1) What are the tameness properties of (⊥N,≺N )?
(2) Is (⊥N,≺N ) finitary in the sense of Hyttinnen-Kesala [HK]

Question 3.2. (1) When, if ever is (⊥N,≺N ) an excellent class. Note that for
a cotorsion Abelian group this question is clearly specified. I mean excel-
lence in the sense of Shelah [She83a, She83b]. For other classes one have
to define an appropriate notion of independence to formulate excellence.

(2) For which R and N is (⊥N,≺N ) axiomatizable (in infinitary logic)? One
might expect to use Lκ,ω if the ring had cardinality κ.

(3) What can we say about the number of models in various cardinalities of
(⊥N,≺N )?
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