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ABSTRACT. In recent philosophy of mathematics a variety of writers have presented
“structuralist” views and arguments. There are, however, a number of substantive differ-
ences in what their proponents take “structuralism” to be. In this paper we make explicit
these differences, as well as some underlying similarities and common roots. We thus
identify systematically and in detail, several main variants of structuralism, including
some not often recognized as such. As a result the relations between these variants, and
between the respective problems they face, become manifest. Throughout our focus is on
semantic and metaphysical issues, including what is or could be meant by “structure” in
this connection.

1. INTRODUCTION

In recent philosophy of mathematics a variety of writers – including
Geoffrey Hellman, Charles Parsons, Michael Resnik, Stewart Shapiro,
and earlier Paul Benacerraf – have presented “structuralist” views and
arguments.1As a result “structuralism”, or a “structuralist approach”, is
increasingly recognized as one of the main positions in the philosophy of
mathematics today. But what exactlyis structuralism in this connection?
Geoffrey Hellman’s discussion starts with the following basic idea:

[M]athematics is concerned principally with the investigation of structures of various types
in complete abstraction from the nature of individual objects making up those structures.
(Hellman 1989, vii)

Charles Parsons gives us this initial characterization:

By the “structuralist view” of mathematical objects, I mean the view that reference to
mathematical objects is always in the context of some background structure, and that the
objects have no more to them than can be expressed in terms of the basic relations of the
structure. (Parsons 1990, 303)

Such remarks suggest the followingintuitive theses, or guiding ideas, at
the core of structuralism: (1) that mathematics is primarily concerned with
“the investigation of structures”; (2) that this involves an “abstraction from
the nature of individual objects”; or even, (3) that mathematical objects
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“have no more to them than can be expressed in terms of the basic relations
of the structure”. What we want to do in this paper is to explore how one
could and should understand theses such as these.

Our main motivation for such an exploration is the following: When one
tries to extract from the current literature how structuralism is to be thought
of more precisely – beyond suggestive, but vague characterizations such as
those above – this turns out to be harder and more confusing than one might
expect. The reason is that there are a number ofsubstantive differencesin
what various authors take structuralism to be (as already hinted at in the
distinction between (2) and (3)). Moreover, these differences are seldom
acknowledged explicitly, much less discussed systematically and in detail.2

In some presentations they are even blurred to such a degree that the nature
of the view, or views, under discussion remains seriously ambiguous.3

Our main goals is, then, to make explicit the differences between various
structuralist approaches. In other words, we want to exhibit thevarieties of
structuralismin contemporary philosophy of mathematics.

At the same time, the emphasis of our discussion will be systematic
rather than exegetical. That is to say, while keeping the current literature
in mind, we will attempt to lay out a coherentconceptual grid, a grid into
which the different variants of structuralism will fit and by means of which
the relations between them will become clear. This grid will cover several
ideas and views – by W. V. Quine, Bertrand Russell, and others – that are
usually not called “structuralist” in the literature, an aspect that will make
our discussion more inclusive than might be expected. The discussion will
also have a historical dimension, in the sense that we will identify some of
the historical roots of current structuralist views. On the other hand, we will
restrict our attention to structuralist views in thephilosophy of mathemat-
ics, not beyond it. As a consequence the paper will center around certain
semanticandmetaphysicalquestions concerning mathematics, including
the question what is or could be meant by “structure” in this connection.

2. BACKGROUND AND TERMINOLOGY

It will clarify our later discussion if we remind ourselves first, briefly, of
some basic mathematical and logical definitions, examples, and facts. For
many readers these will be quite familiar; but we want to be explicit about
them, especially since some of the details will matter later. We also want
to introduce some terminology along the way.

Our first and main example will bearithmetic, i.e., the theory of the
natural numbers 1, 2, 3, . . . . This is the central example in most discussions
of structuralism in contemporary philosophy of mathematics. In contem-
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porary mathematics it is standard to found arithmetic on its basic axioms:
the Peano Axioms; or better: theDedekind–Peano Axioms(as Peano ac-
knowledged their origin in Dedekind’s work). A common way to formulate
them, and one appropriate for our purposes, is to use the language of 2nd-
order logic and the two non-logical symbols ‘1’, an individual constant,
ands, a one-place function symbol (‘s’ for “successor function”). In this
language we can state the following three axioms:

∀x[1 6= s(x)],(A1)

∀x∀y[(x 6= y)→ (s(x) 6= s(y))],(A2)

∀X[(X(1) ∧ ∀x(X(x)→ X(s(x))))→ ∀xX(x)].(A3)

Let PA2(1, s), or more brieflyPA2, be the conjunction of these three
axioms.4

A second example we will appeal to along the way, although in less de-
tail, is analysis, i.e., the theory of the real numbers. Using 2nd-order logic
and the non-logical symbols ‘0’, ‘1’, ‘+’, and ‘·’ we can again formulate
certain corresponding axioms, namely theaxioms for a complete ordered
field. Let COF2 be the conjunction of these axioms. As a third example,
used mainly for contrast, we will occasionally look atgroup theory. Here
we can restrict ourselves to 1st-order logic and the non-logical symbols ‘1’
and ‘·’. Let G be the conjunction of the correspondingaxioms for groups.5

From a mathematical point of view it is now interesting to consider
PA2 as a certaincondition. That is to say, we can study various systems –
each consisting of a set of objectsS, a distinguished elemente in the set,
and a one-place functionf on it – with respect to the question whether
they satisfy this condition or not, i.e., whether the corresponding axioms
all hold in them. Analogously forCOF2 and forG. So as to be able to talk
concisely here, let us call the corresponding systemsrelational systems.
Thus a relational system is some set with one or several constants, func-
tions, and relations defined on it. Furthermore, let us call any relational
system that satisfiesPA2 a natural number system. Analogously forreal
number systemsand forgroups.6

Here are a few basic facts concerning natural number systems: Assume
that we are given some infinite setU (in the sense of Dedekind-infinite).7

Then we can construct from it a natural number system with underlying set
S ⊆ U , i.e., a relational system that satisfiesPA2. Actually, there is then
not just one such system, but many different ones – infinitely many (all
based on the same setS, and we can construct further ones by varying that
set). At the same time, all such natural number systems are isomorphic. A
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similar situation holds for real number systems. One noteworthy difference
is, of course, that here we have to start with a set of cardinality of the
continuum. (Remember that we are working with 2nd-order axioms, in
both cases.) Given one such set we can, again, construct infinitely many
different real number systems; and all of them turn out to be isomorphic. In
the case ofG the situation is quite different. Here we do not need an infinite
set to start with; and given some large enough set we can construct many
groups that are non-isomorphic. In usual mathematical terminology:PA2

andCOF2 arecategorical, whileG is not; and all of them aresatisfiable,
thusrelatively consistent, given the existence of a large enough set.

Let us recast these facts in a more thoroughly set- and model-theoretic
form. Assume, first, that we have standardZFC set theory (where we
deal merely with pure sets, not with additional urelements) as part of our
background theory. In this case, we have a large supply of pure sets at
our disposal, large enough for most mathematical purposes: all the sets
whose existenceZFCallows us to prove. We can also think of relations and
functions on these sets as pure sets themselves, namely as sets of ordered
pairs, triples, etc. As a consequence we can work withpurely set-theoretic
relational systems, themselves defined as certain set-theoreticn-tuples.
Next, assume that we treat our given arithmetic language explicitly as a
formal language, i.e., as uninterpreted. That allows us to talk, in the tech-
nical (Tarskian, model-theoretic) sense, about variousinterpretationsof
that language, as well as about various relational systems beingmodelsof
the axioms or not. (A model is a relational system considered relative to
a given set of axioms.) In fact, we can go one step further: we can treat
arithmetic language itself as consisting just of sets. If we do so, we can
conceive of interpretations, models, etc.entirely in set-theoretic terms.

Given this setup theZFC axioms allow us to prove a number of
familiar results. Consider the triple consisting of the set of finite von Neu-
mann ordinalsω, the distinguished set∅ in it, and the successor function
sN : x 7→ x ∪ {x} defined on it. This system is a natural number system.
Similarly, the finite Zermelo ordinalsω′, with distinguished element∅ in
it, and the alternative successor functionsZ : x 7→ {x} defined on it, form
a natural number system. Also, clearly these two relational systems are
not identical (in the sense that they consist of different sets), while they
are isomorphic. Finally, starting with either one of them we can construct
infinitely many additional natural number systems: by rearranging the ele-
ments of the systems in an appropriate way; by leaving out finite initial
segments; by leaving out all the “odd numbers”, all the “even numbers”,
or all the “prime numbers”; by adding new finite sets as initial segments;
etc.



STRUCTURES AND STRUCTURALISM 345

A main advantage of working with pureZFC set theory is that within
it everything is determined by explicit axioms and definitions. We can go
slightly beyond it by adding some sets that are not pure. The usual, precise
way to do so is by starting with a set, or even a proper class, ofurelements
and by then building the set-theoretic hierarchy on top of it. We then still
have all the pure sets at our disposal, thus all the relational systems from
above, but we can also build urelements into various new relational sys-
tems. In particular, we can form many further models ofPA2. To make
this result more graphic: We can start withanyobject – a grain of sand, the
Sears Tower, or the Moon – and buildit into a model ofPA2. That is to say,
any object whatsoever can be used as the base element of a natural number
system, or as its 2nd element, its 17th element, etc. Finally, if we assume
– a strong additional assumption, to be sure – that we have an infinite set
of urelements to start with, we can build models ofPA2 whose underlying
sets consistentirelyof such urelements. Analogously forCOF2 and forG.

3. FROM MATHEMATICAL PRACTICE TO FORMALIST STRUCTURALISM

So much for general background and terminology. We now want to identify
a certain structuralist approach that is shared by many contemporary math-
ematicians. As it concerns what mathematicians do, we will call it their
structuralist methodology. This methodology motivates, explicitly or im-
plicitly, many of the structuralist views in the philosophical literature, as
we will see later.

Consider the entities most contemporary mathematicians simply as-
sume in their everyday practice: the natural numbers, the integers, the
rational, real, and complex numbers, various groups, rings, modules, etc.,
different geometric spaces, topological spaces, function spaces, and so
forth. Mathematicians with a structuralist methodology stress the follow-
ing two principles in connection with them: (i) What we usually do in
mathematics (or, in any case, what we should do) is to study thestructural
featuresof such entities. In other words, we study them as structures, or
insofar as they are structures. (ii) At the same time, it is (or should be) of
no real concern in mathematics what theintrinsic natureof these entities
is, beyond their structural features. Thus, all that matters about the natural
numbers mathematically, however we think about them otherwise, is that
they satisfyPA2 (including, of course, what follows from that fact); all that
matters about the real numbers is that they satisfyCOF2. Similarly, what
matters is that various sets together with some given constants, functions,
and relations defined on them form groups, rings, modules, etc. Put briefly,
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the proper business of mathematics is to study these and similar structural
facts, andnothing else.

Looked at historically, this structuralist methodology is the result of
several important innovations in 19th and early 20th century mathematics.
To mention four of them, very briefly:8 First, there is the rise of “abstract
algebra”, i.e., the development of group theory, ring theory, field theory,
etc. as we know them today. Such theories involve a focus on certain
general, abstract features, like those defined by the group axioms, that
are shared by many different systems of objects. This leads naturally to
a structuralist attitude with respect to the subject matter of these fields;
actually, it is hard to see how else to think about them. Similarly for topo-
logy, functional analysis, etc. Second, even with respect to the older, more
“concrete” parts of mathematics – arithmetic, the Calculus, the traditional
study of geometry – we find the use of the formal, axiomatic method during
this period, i.e., the formulation of axiom systems likePA2, COF2, and
Hilbert’s axioms for geometry. With respect to these parts of mathematics,
too, a structuralist point of view is thus made possible, although it is not as
much forced on us as in the case of algebra and topology.

Third, there is the introduction and progressive development of set
theory in the 19th and early 20th century, leading to the formulation of
the ZFC axioms. Set theory provides, then, a general framework in which
all the other parts of mathematics can be unified and treated in the same
way.9 That is to say, in set theory one can construct various groups, rings,
fields, geometric spaces, topological spaces, as well as models forPA2, for
COF2, etc. (see Section 2); and one can study them all in the structuralist
way described above. Fourth, such a structuralist approach to mathematics,
within the framework provided by set theory, is then made canonical, at
least for large parts of 20th century mathematics,10 with the influential,
encyclopedic work ofBourbakiand his followers. Consequently it is with
the name of Bourbaki that “structuralism in mathematics” is most often
associated in the minds of contemporary mathematicians.11

All of this concerns mathematical practice. From a philosophical point
of view one now wants to go a step further and ask: How should we
understand such a structuralist methodology in terms of itsphilosophical
implications? As it stands this is a rather general and vague question, i.e.,
it needs further specification. The way many contemporary philosophers
of mathematics (as well as philosophers of language and metaphysicians)
specify it further is this: How are we supposed to think aboutreference
and truth along these lines, e.g., in the case of arithmetic? And what
follows about theexistenceand thenature of the natural numbers, as
well as of other mathematical objects, even if the answer doesn’t matter
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mathematically? Put more briefly, what are thesemanticandmetaphysical
implications of a structuralist methodology?12

Adopting our structuralist methodology does not, in itself, answer these
questions. This methodology is relativelyneutral with respect to them.
For many mathematical and scientific purposes such neutrality is probably
an advantage. For philosophical purposes, on the other hand, especially
those informing much of contemporary philosophy of mathematics, it is
not really satisfying – since then the question becomes simply: Which
semantic and metaphysicaladditionsare most consonant, or at least con-
sistent, with a structuralist methodology? As we will see, there are several
different, competingways of adding to a structuralist methodology in this
sense. Let us briefly consider three of them which are rather “thin” or
“formalist” in the rest of this section, before turning in more detail to
several “thick” or “substantive” alternatives later.

A first and rather negative addition to our structuralist methodology,
now less common than it used to be, is to simply reject all questions
about the “real nature” of numbers, about “the referents” of numerical
expressions, and about “mathematical truth”. More particularly, one may
suggest that the corresponding semantic and metaphysical questions are
eithermeaninglessor in some other waymisguided; thus that they should
be avoided not only in mathematics, but also in the philosophy of math-
ematics. However, in this case it seems fair to ask back what exactly
is problematic about these questions, since on the surface they seem to
be meaningful and interesting. Various answers to that question may be
suggested in turn (e.g., along Carnapian or Wittgensteinian lines).

A second, still pretty negative or minimal, position is to fall back on
some kind of formalism (understood in a narrow sense) at this point. That
is to say, one can try to supplement our structuralist methodology with the
following thesis: What we really deal with in mathematics, or at least in
pure mathematics, are justempty signsin the end, i.e., signs used to play
certainformal games, but not to be, as such, “about” anything.13 In such a
case our philosophical questions above are not exactly rejected, but given
a deflationary or “thin” answer. But here, too, we can ask back: Is this not
too radical a response, i.e., isn’t there something “behind” the formalisms
in mathematics? Also, what exactly is meant by “playing formal games”
in this context? Such a response needs then again further elaboration and
defense.

Third and perhaps most promisingly, one can try to add the following
thesis to methodological structuralism: What mathematicians really study
are not any objects and their properties, but certain generalinference re-
lations or inference patterns. After all, doesn’t it seem that what we do
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in mathematics is primarily to study, in a systematic way, what can and
what cannot be inferred from various kinds of basic principles, e.g., from
PA2, COF2, or G? However, this proposal leads quickly to some new
questions, including: What exactly does speaking of “inference relations”
here involve; in particular, what are therelata: mere sentences (so that we
are back to some kind of formalism?), propositions (leading us beyond
formalism after all?), etc.? Or are we supposed to understand the nature of
the inference relations in some radically different way?14

Note that with suggestions such as the three just listed wehave re-
sponded to the semantic and metaphysical questions raised above, negative
or “thin” as these responses may be. To be able to contrast this general
kind of response with others later on, let us give it a name; let’s call it
formalist structuralism(“formal” now in a broader sense, as opposed to
“substantive”). Formalist structuralism consists, thus, in endorsing a struc-
turalist methodology for mathematics while responding to our semantic
and metaphysical questions by either rejecting or deflating them, in one of
the three ways mentioned.

Formalist structuralism is not the only philosophical position consistent
with adopting a structuralist methodology in mathematics. In fact, one
can admit that we need not be concerned about the deeper, real nature
of the natural numbers when doing arithmetic, but argue – on additional,
philosophical grounds – that they neverthelesshavesuch a nature. One can
even try to hold on to some kind ofplatonismor realismabout the natural
numbers in the sense of defending the thesis that they are special, particular
abstract objects, to be thought of in an essentially non-structuralist way.
However, such a move may now appear quite alien to, or at least curiously
unconnected with, mathematical practice. And this may lead us to several
more substantive variants of structuralism.15

4. RELATIVIST STRUCTURALISM

Formalist structuralism gives negative, minimal, or “thin” answers to the
semantic and metaphysical questions central to much contemporary philo-
sophy of mathematics. We now want to turn to one version of structuralism
that offers more substantive, “thick” answers to them. We will call this
versionrelativist structuralism, for reasons that will become clear shortly.
With respect to characterizing it our reminders above, about some basic
mathematical and logical facts, will be especially useful.

Let us start again by considering arithmetic, axiomatized in terms of
PA2, as our main example. Let us also assume, as earlier, that we use
only the two non-logical symbols ‘1’ and ‘s’. This means that the other
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arithmetic symbols, ‘<’, ‘+’, ‘ ·’, also ‘2’, ‘3’, etc., have all been defined
in terms of these two (using explicit and inductive definitions, as usual). If
we now consider some ordinary arithmetic sentencep, e.g., ‘2 + 3 = 5’ or
‘∀x∀y∀z[(x + y) + z = x + (y + z)]’, then there is atranslationp(1, s)
of it that contains only ‘1’ and ‘s’. And if we ask whatp is “about”, all we
have to do is this: to ask what the symbols ‘1’ and ‘s’ in p(1, s) refer to,
as well as what the quantifiers in it (if there are any) range over. Finally,
let us assume, at least initially, that some infinite set exists. Then we know
that there are infinitely many models ofPA2.

Given these assumptions, what can we say – along structuralist lines,
but not in the formalist sense – about the reference of ‘1’ ands’ and
about the range of the quantifiers inp(1, s)? A relativist structuralist offers
the following response: We simplypick one particular modelM of PA2,
consisting of a domainS, a distinguished elemente in S, and a successor
functionf onS (hereM can be some model that is particularly convenient
for the purposes at hand, but it doesn’t have to be); and westipulatethat
‘1’ refers toe, that ‘s’ refers tof , and that the range of the quantifiers isS.
At the same time, we note that we could also have pickedany othermodel
M ′ of PA2. In that case ‘1’ would have referred to the base elemente′ in
its domainS ′, ‘s’ to the successor functionf ′ on S ′, and the range of the
quantifiers would have beenS ′. Still, having made it we keep our initial
stipulationfixeduntil further notice.

Based on the setup above such stipulations determine the referents for
all our arithmetic terms; or at least they do so as long as we stick to our
initial choice of a model. That is to say, relativist structuralism works with
a notion of reference (modeled on the notion of interpretation in model
theory) that isrelativeto such a choice – thus its name. On the basis of such
reference it is also determined what is meant by “the natural numbers”;
namely the particular modelM of PA2 that has been chosen initially. Of
course this choice is largely arbitrary, since we could have picked any other
model ofPA2 instead. But that does not matter. All that matters, from this
point of view, is that we areconsistentabout our choice. As W. V. Quine
notes in his article “Ontological Relativity”:

The subtle point is thatanyprogression [i.e., natural number system] will serve as a version
of number so long and only so long as westick toone and the same progression (Quine
1969, 45, our emphasis)

In addition, we can now talk abouttruth in a determinate way as well.
Namely, we can say thatp(1, s), thusp, is true if and only ifp(1, s) is
true in the chosen modelM (as defined along familiar Tarskian, model-
theoretic lines).
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But why does such relativity of reference not cause problems, in par-
ticular with respect to truth? The answer is, of course: because all models
of PA2 are isomorphic. Thus we will always agree on the truth value of
a given statements in the language of arithmetic, no matter which model
we have picked initially.16 In other words, while truth has beendefined
in a relative way, a non-relative notion of “truth in arithmetic” is actually
implied: truth in all models ofPA2. Analogously for the real numbers.
Note, at this point, that in the case of group theory the situation is quite
different. Here we do not arrive at the same non-relative notion of truth.
More precisely, while we can still talk about those sentences in the lan-
guage of group theory that are true in all groups, we cannot rely on one
particular group to determine them.

Let us dwell a bit more on the core idea in relativist structuralism:
its relative notion of reference. What a relativist structuralist does is, in
a certain sense, to take arithmetic statements “at face value”. That is to
say, on the basis of the initial choice of a model ‘1’ is treated as an object
name (a singular term), i.e., as referring to a particular object; similarly,
‘s’ is treated as a function name, i.e., as referring to a particular function;
and variables are taken to range over a particular set of objects. However,
in another sense arithmetic statements are not taken “at face value”: not
only does such reference always depends on an initial stipulation, we can
also always switch things around by making a different stipulation. This
last, variable aspect of relativist structuralism can perhaps be compared
profitably to our ordinary use of indexical expressions, e.g., ‘my car’ or
‘my house’. As with them we are here dealing with a case ofsystematic
referential ambiguity– in a sense we are always talking about “my number
1”, “my successor function”, etc.17 Note also, however, that in the present
case it is not just ambiguity for one or a few related expressions, but for
the whole language together.

Two other basic observations about relativist structuralism should be
added. First, if we want to understand arithmetic along these lines, we
have to assumethe existence of an infinite set. Otherwise there simply
is no model to pick, and the proposed semantics just runs empty – arith-
metic terms have no reference, arithmetic sentences no truth value. Such
an existence assumption is, thus, a necessary presupposition for relativist
structuralism, or at least for its applicability. Second, a relativist structural-
ist usually assumesthat some infinite set is given to us independently from
arithmetic. More particularly, it is assumed that we can talk about such an
infinite set, indeed a variety of such sets, independently from our use of
arithmetic language. Otherwise the approach would be unmotivated – its
main point is precisely to provide arithmetic with a semantics. Of course



STRUCTURES AND STRUCTURALISM 351

both of these assumptions are natural and unproblematic if we work with
set theoryas part of our background theory. Thus inZFC the axiom of
infinity guarantees the existence of an infinite set; similarly the power set
axiom, the axiom of replacement, etc. guarantee the existence of larger
infinite sets. And we can make statements about these sets by means of
our set-theoretic language, a language whose terms are taken to already
have a reference.

For many working mathematicians, especially those presupposingZFC
as part of their background theory, a relativist structuralist approach will
seem quite natural. Such mathematicians will construct not only various
set-theoretic natural number systems, but also corresponding set-theoretic
real number systems, complex number systems, etc. They will then single
out one of these systems as “the natural numbers”, another as “the real
numbers”, etc. As an explicit example from the mathematical literat-
ure, consider what Andrew Gleason, after describing the corresponding
constructions in detail, writes in hisFundamentals of Abstract Analysis:

[I]t does not make the slightest difference which simple chain [i.e., natural number system],
complete ordered field, or complex number system we consider. If however, a reference to
the real number 1, say, is to make sense, we must make a definite choice. A convenient
choice is one which makes a real number just a special complex number. (Gleason 1991,
132).

Note here that Gleason is not a formalist, but a relativist structuralist. Note
also that along these lines set theory functions as thefoundationfor all of
mathematics in the following sense: All mathematical theories – except,
of course, set theory itself – are to be treated in the relativist structuralist
way described above. That is to say, models for all of them are constructed
within set theory; and talk about reference, truth, “the natural numbers”,
“the real numbers”, etc. is then taken to be relative to such constructions.

A relativist structuralist approach, in particular in combination with
set theory, has several merits. One is that it allows for a comprehensive,
unified treatment of many otherwise separate branches of mathematics:
arithmetic, analysis, group theory, topology, etc. Another merit is that, as
mentioned above, in set theory all the basic assumptions are made explicit
and definite in terms of the axioms, including all the existence assumptions
concerning relational systems. A number of contemporary philosophers of
mathematics want to go a step further, though. They want to claim that the
real merit of such an approach is one of “ontological economy”. Consider
the following remark by Quine:

[To say] what numbers themselves are [along relativist structuralist lines] is in no evident
way different from justdropping numbersand assigning to arithmetic one or another new
model, say in set theory. (Quine 1969, 43–44, our emphasis)
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The suggestion is this: A relativist structuralist approach withZFC (or
some equivalent theory) in the background allows us to restrict our “on-
tological commitments” in mathematics to one kind of entities only: sets.
We don’t need numbers in addition, as some other kind of mathematical
entities, in order to understand what arithmetic is about; so “just drop
them”.18

This suggestion leads, however, directly to some new questions. Notice,
in particular, that such an approach isnotstructuralist at one crucial point:
the basic level of sets (which is why views like Quine’s above are usually
not called “structuralist”, although they do deserve that name partly). How
are we then to think about sets; do we have to accept them as a special
kind of abstract objects, to be thought of in a “platonist” or “realist” sense;
and if so, what exactly does that mean? Also, what is so special about
sets that they deserve to be treated differently, i.e., granted some special,
non-structuralist kind of reality? Put the other way around, if we can treat
sets that way, why not the natural numbers, the real numbers, and other
mathematical objects as well?

At this point in the discussion some philosophers of mathematics want
to turn in a different direction: strict nominalists, e.g., Goodman, the early
Quine, and more recently Hartry Field.19 Such nominalists want to be even
more economical in their ontology: they want to reject the appeal toall
abstract objects, including sets. Interestingly, along such lines a relativist
structuralist approach may still be attractive, if pushed a step further. The
idea is this: Why not use only nominalistically acceptable objects, includ-
ing mereological sums etc.20, to form the basic relational systems we need?
In other words, why not defend relativist structuralismon a nominalist
basis?

Of course, such an approach raises several questions in turn. To begin
with, if we want to be able to deal with arithmetic along these lines, we
know that a model for it requires an infinite set, or sum, of objects as its
basis; but where are we supposed to find these objects? Suppose the answer
is simply: let’s use physical objects. Then we are faced with the prob-
lem that the existence of infinitely many physical objects is not a trivial,
unproblematic assumption, as the physical universe may be finite. Also,
should we really have to rely on such empirical assumptions about the
universe to ground mathematics? A modified nominalist answer might then
be: let’s use space-time points; or, along somewhat different lines, quasi-
abstract objects such as strokes ‘|’, ‘||’, ‘|||’, etc. However, arguably such
entities bring with them their own peculiar problems; in fact, it is not clear
that they are really better understood than the natural numbers themselves.
In addition, note that we do not just need an infinite sum of objects to form
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a model ofPA2, we also need a successor function defined on it. How
is this function to be understood now, if not along set-theoretic or similar
“abstract” lines? In other words, is there a nominalistically acceptable way
of dealing with the functions we need in arithmetic? Finally, all these
questions become even harder to answer once we go beyond arithmetic,
i.e., when we turn to parts of mathematics (including set theory itself) in
which uncountable collections of objects, more complicated functions, etc.
are at the center of attention.

We do not want to answer any of these questions here. Instead, reflect-
ing on the corresponding versions of relativist structuralism – based on set
theory or on some other restricted “ontological commitments” – we want to
make the following more general observation: In many cases structuralist
approaches in the philosophy of mathematics are pursued because they
are taken to involve a kind ofeliminativism. This is in particular true for
relativist structuralism, and we can now clearly see why. Actually, there are
two separable issues involved, or two aspects to the eliminativism: First,
according to relativist structuralism we can restrict ourselves toone kind
of basic entities, e.g., sets. Second and more subtly, we can account for
arithmetic, say, without appealing to aspecial, unique system, “the natural
numbers”, distinct from all the other models ofPA2. In fact, even if there
were such a special system it would not matter. All we are interested in,
from this point of view, are models of arithmetic –any such models –
just insofar as they are models. Consequently the assumption of a special
system simply isn’t needed (neither mathematically nor semantically or
metaphysically); so applyOccam’s Razorto it.

The second eliminativist aspect just identified is related to an additional
“structuralist” argument that has some prominence in the literature. Re-
member, again, that there are various models ofPA2 in set theory; and
from our current point of view all of them are equivalent. This equivalence
has two sides: (i) any of these models iscapableof playing the role of “the
natural numbers”; (ii) none of them isprivileged in this capacity. So far
we have focused on the first side. But note how Paul Benacerraf uses the
second in remarks such as the following:

If numbers are sets, then they must beparticular sets, for each set is some particular set.
But if the number 3 is really one set rather than another, it must be possible to give some
cogent reason for thinking so; for the position that this is an unknowable truth is hardly
tenable. But there seems to be little to choose among the accounts. Relative to our purposes
in giving an account of these matters, one will do as well as another, stylistic preferences
aside. (Benacerraf 1965, 284–285, emphasis in the original)21

Similarly, Charles Parsons writes:
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[I]f one identification of the natural number sequence with a sequence of sets or ‘logical
objects’ is available, there are others such that there are no principal grounds on which to
choose one. (Parsons 1990, 304)

In these passages both Benacerraf and Parsons address, or challenge, the
question what the natural numbers “really are” or what they should be
“identified with” in an absolute sense. Translated into our present frame-
work the argument is then: None of our relative choices of set-theoretic
models, say, is preferable to any other, at least beyond merely “stylistic” or
“non-principled” considerations. But then we shouldn’t consider any one
of these models to be, in an absolute sense, “the natural numbers”. To put
the conclusion more briefly, if slightly misleadingly: in an absolute sense
there are no natural numbers.22

Coming back to our general discussion, we have seen that relativ-
ist structuralism is not without its difficulties. In particular, it requires
either a separate treatment of set theory or, alternatively, the assumption
of infinitely many, continuum many, etc. other basic objects, as well as a
corresponding account of functions. Let us add one final comment about
relativist structuralism. Remember that according to this position we ini-
tially pick one model of, say, arithmetic and we then stick to that model.
Note that, later on, weneverhave to appeal to any properties peculiar to
the objects in that model, at least not as far as arithmetic is concerned. In
other words, we can “abstract away” from all such properties, in the sense
of ignoring them completely – that is, in fact, the main sense in which
this view is “structuralist” (compare guiding idea (2) from Section 1). But
if that is the case, couldn’t we instead understand arithmetic sentences to
be aboutall models ofPA2 at the same time, not aboutany one of them
relatively speaking? Such a shift – the move from “any” to “all” – leads to
a variant of structuralism that deserves separate treatment.

5. UNIVERSALIST STRUCTURALISM (INCLUDING MODAL VARIANTS )

According to relativist structuralism a term like ‘1’ is understood to refer
to a particular object, namely to the base element of some chosen model
of PA2. In that sense ‘1’ is treated as a singular term, even if a somewhat
unusual, relative one. In contrast, according touniversalist structuralism
we want to treat ‘1’ as referring, somehow, toall base elements of models
of PA2 at the same time; similarly for ‘s’ etc. Is there a way to make this
basic idea more precise?

In order to be both precise and explicit here, let us start with a slight
modification of the way in which the Dedekind–Peano Axioms are formu-
lated. Instead of using two primitive, non-logical symbols, ‘1’ and ‘s’, we
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use three, i.e., we add a one-place predicate symbol ‘N ’ (where “N(x)”
is to be understood as “x is a number”, or better “x is a natural number
object”); we alsorestrict all the quantifiers involved toN . This means that
our axioms for arithmetic look as follows:

N(1),(A1′)

∀x[N(x)→ N(s(x))],(A2′)

∀x[N(x)→ (1 6= s(x))],(A3′)

∀x∀y[((N(x) ∧N(y)) ∧ (x 6= y))→ (s(x) 6= s(y))],(A4′)

∀X[(X(1) ∧ ∀x((N(x) ∧X(x))→ X(s(x))))(A5′)

→ ∀x(N(x)→ X(x))].

Let PA2(1, s, N) be the conjunction of these five axioms. We can now,
once more, consider various systems that satisfy this condition, i.e., mod-
els of PA2(1, s, N), where such models consist of a setS (the general
domain), a distinguished elemente in S (corresponding to ‘1’), a one-place
functionf onS (for ‘s’), and a subsetS ′ of S (for ‘N ’).

Letp be an arbitrary sentence of arithmetic. Our basic question is: How
should we understand whatp is about? More particularly, do any of the
terms in it refer; if so, to what; and what do the quantifiers range over? In
the case of relativist structuralism we introduced a corresponding sentence
p(1, s), with only ‘1’ and ‘s’ as primitive symbols, when answering that
question. In the present case we proceed in a slightly more complicated
way, consisting of three steps: First, parallel to the move fromPA2(1, s)
to PA2(1, s,N) we translatep into a sentence in which only ‘1’ and ‘s’
are used asprimitive symbolsand in which all the occurrences ofquan-
tifiers are restricted to N (see, e.g., (A4′) above). Letp(1, s,N) be the
resulting sentence. Second, rather than working directly with this sentence
we introduce anif-thenstatement containing it, namely:

PA2(1, s,N)→ p(1, s,N).

Third, wequantify outthe terms ‘1’, ‘s’, ‘N ’ so that we end up with the
following:

∀x∀f ∀X[PA2(x, f,X)→ p(x, f,X)].23
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In this last sentence we use, as usual in 2nd-order logic, three kinds of
variables: ‘x’ for objects, ‘f ’ for one-place functions, and ‘X’ for one-
place predicates or sets. Altogether, letq be the universal if-then statement
we have just constructed out ofp.24

This construction, or translation, puts us in a position to make clear
what the core of universalist structuralism is. It is again asemantic thesis,
namely the following: Whenever we use an arithmetic sentencep to assert
something, what we really assert is a universal if-then statement, as made
explicit in q. Several basic aspects of this thesis should be pointed out at
once. First, note the specificif-then character ofq, i.e., the way we have
built a material conditional right into it. This aspect distinguishes univer-
salist structuralism immediately from relativist structuralism. Second, note
that we again “abstract away” – now bygeneralizing– from what is pe-
culiar about any particular model ofPA2. That is the main sense in which
the position is “structuralist” (compare again intuitive thesis (2)). In fact,
third, any reference to specific models ofPA2, or to particular objects and
functions in them, has disappeared completely (even in a relative or model-
theoretic sense). Instead, what we assert with an arithmetic statementp is
now something aboutall objects,all one-place functions, andall one-place
predicates or sets; since the main logical operators inq are unrestricted
universal quantifiers.

This third aspect of universalist structuralism, which makes it really
“universalist”, may seem odd at first. Note that, along these lines, even a
sentence like ‘2 + 3 = 5’ is used to make not a particular, but a universal
statement. A universalist structuralist is willing to bite that bullet; in fact,
it is seen as exactly appropriate for mathematics. Here is how Bertrand
Russell, an early defender of such a view (although not under this name),
endorses it in his article “Recent Work in the Philosophy of Mathematics”:

Pure mathematics consists entirely of assertions to the effect that, if such and such a pro-
position is true ofanything, then such and such another proposition is true of that thing.
(Russell 1901, 76–77, emphasis in the original)

Similarly Russell’sPrinciples of Mathematicsstarts with the following
declaration:

Pure mathematics is the class of all propositions of the form “p impliesq”, wherep and
q are propositions containing one or more variables, the same in the two propositions, and
neitherp nor q contains any constants except logical constants. (Russell 1903, 3)

(As becomes clear later on inPrinciples, the variables in “propositions of
the form ‘p implies q’ ” have to be understood as universally quantified
and the “implies” as the material conditional. Thus all the ingredients of
universalist structuralism are present.)
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Relativist and universalist structuralism are obviously related to each
other. To clarify their relation further we can briefly consider a proposal
that is half way between the two, although this proposal is probably not
stable in the end. Going back toPA2 andp(1, s) one may want to suggest
this: Why not say that in assertingp(1, s) we talk about the various models
of PA2 all at once, not just one at a time as in relativist structuralism?
That is to say, why not stipulate that the constant ‘1’ inp(1, s) refers
to all the things that function as base elements in the various models,
not just to a particular one; similarly for ‘s’ etc. (where the reference of
‘1’, ‘ s’, and everything defined in terms of them is again understood as
“coupled together”)? In other words, why not adopt the universalist aspect
of universalist structuralism while ignoring its if-then aspect? The result
is, however, the following: ‘1’ is now supposed torefer to all objects
whatsoeverat the same time, since any objects can play the role of the
base element in a model ofPA2. That seems an odd kind of reference, if
it can be worked out in a coherent way at all.

A good way to think about universalist structuralism is that it avoids this
oddity while preserving the universalist idea motivating such a proposal.
Again, that result is achieved by introducing a universal if-then sentence
q corresponding to each arithmetic sentencep. This brings us to a fourth
basic aspect of universalist structuralism that needs to be made explicit.
It concerns the nature of the relation betweenp andq. Note that, along
the lines above, the newly introduced sentenceq is meant to makeexplicit
what was, in some sense, alreadyimplicit in p. We can reformulate this
point slightly to bring out its real force: According to universalist structur-
alism every sentencep as used in arithmetic has a certain “surface form”,
namely its usualsyntactic form; but it also has a “deep form”, what one
may call itssemanticor logical form; the latter is what needs to be laid
bare to see what wereally meanwhen we usep in arithmetic; and it is laid
bare in terms of the syntactic form ofq.

In universalist structuralism we are, thus, not taking arithmetic lan-
guage “at face value”, not even in the relativist structuralist sense. Rather,
weanalyzeevery arithmetic statementp in a non-trivial way, as reflected in
the syntactic form ofq. Actually, it is possible to modify and weaken this
thesis somewhat, by appealing to the notion ofexplication(in a Carnapian
sense) instead ofanalysis. The modified claim will then be this: Whileq
does not make explicit what was already implicit inp, it is related top in
the sense of explicating it, i.e., of clarifying its content, sharpening it, and
in the end replacing it. But even in this modified form, it seems thatp andq
have to be related in some intrinsic way for the view to havephilosophical
significance.25
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Once more, the basic move in universalist structuralism is to replacep

by q. What are the consequences of that move with respect totruth in arith-
metic? Well, the truth ofp is simply understood in terms of the truth ofq;
and forq to be true something has to hold for all objects, for all one-place
functions, and for all one-place predicates or sets. Put that bluntly, this
looks like a very radical, revisionist suggestion. In the end it is, however,
not so different from a relativist structuralist view. It still holds – because
of the universal if-then form ofq – thatp is true if and only ifp(1, s,N) is
true in all models ofPA2(1, s,N) (in the model-theoretic sense); and the
latter is basically equivalent top(1, s) being true in any, thus in all models
of PA2(1, s). (At least it is equivalent if we presuppose that there are such
models, a necessary presupposition for relativist structuralism anyway.)

Like relativist structuralism, universalist structuralism can be seen as a
form ofeliminativism, again in two ways: first, as an eliminativism directed
against the unnecessary postulation of abstract objectsin general, with the
goal of eliminating their use as much as possible;26 second, as an elimin-
ativism in which the assumption of aspecial, uniquesystem of objects, to
be identified as “the natural numbers”, is avoided or “erased”. At the same
time, the exact form this erasure now takes is interestingly different from
relativist structuralism. Instead of treating ‘1’ as an ambiguously referring
expression we now treat it as avariable. Or more precisely, the constant
‘1’ is quantified outin the move fromp to the more complicated formula
q; similarly for ‘s’.

Universalist structuralism, like relativist structuralism, is not without its
difficulties. We just noted that every arithmetic sentencep turns out, in its
analyzed or explicated form, to amount to a universally quantified sentence
q. That aspect may at least seem surprising. But the main problem arises
when we ask: What is therangeof the three universal quantifiers, or of
the corresponding variables, inq supposed to be, respectively? Several
answers may be suggested in response. The most direct and simple answer
is: let x range overall objects; let f range over all first-level, one-place
functions; and letX range over all first-level, one-place predicates or sets
(along the lines of a Fregean “universalist” conception of logic). Actually,
to avoid Russell’s antinomy we need to be more careful with what is meant
by “all objects” here, i.e., we should add type restrictions along Russellian
lines (or some corresponding safeguard). Let us say, then, thatx ranges
over all objects that are themselves not sets, i.e., all objects of lowest type,
etc.

In this case we have to admit, right away, that some abstract entities
have not been eliminated after all: sets and functions of objects of low-
est type. But even if that is accepted as unavoidable, we are confronted
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with another difficulty, also already noted by Russell: what if there exist
only finitely many objects of lowest type? If so, then there simply are no
models of the Dedekind-Peano Axioms (either in the formPA2(1, s) or
PA2(1, s,N)), or at least there are no models built up out of the right kind
of objects. Note what that implies in our present context:all our arithmetic
statements turn out to betrue, since all of them have turned into universal
if-then statements whose antecedentsPA2(x, f,X) are never satisfied. In
other words, all arithmetic statements, even something like “1 = 2”, turn
out to bevacuously true– clearly not a result that is acceptable. This
is a serious problem for universalist structuralism, accordingly called the
non-vacuity problem.

What is the right response to the non-vacuity problem? Several sug-
gestions may again be considered. The most straightforward is to assume
an axiom of infinityfor the lowest type of objects, à la Russell. But with
what justification, e.g., as an empirical claim? Alternatively we can take a
modal turn. This can be done in at least two different ways. First, instead
of assuming that we quantify over all actual objects, why not quantify
over all possible objects, i.e., why not conceive of our basic domain of
quantification in such a broader way? However, that leaves us with many
tricky questions about suchpossibilia, including whether there are, in
some sense, enough of them available. Also, doesn’t it go directly against
the eliminativist intent which usually motivates a universalist structuralist
approach?

Instead we can “go modal” in a second way: we can add anecessity
operator, a box ‘�’, in front of our translationsq. More explicitly, instead
of usingq as the analysis ofp we now use�q. All arithmetic sentences
then turn out to have the following form:

�[∀x∀f ∀X(PA2(x, f,X)→ p(x, f,X))].
This move leads directly to the position worked out, in great detail, in
Geoffrey Hellman’s writings.27 Given our general framework it is clear
what we have arrived at: a version ofmodalized universalist structuralism;
or more briefly:modal structuralism.

Suppose we follow Hellman’s modal route. Are we then “home free”
as far as our earlier difficulties go? Not entirely. First, we are still left
with a version of the non-vacuity problem, although perhaps a weaker
one. It has this form: Is itpossibleto satisfy the antecedentof q, i.e.,
is ♦∃x∃f ∃XPA2(x, f,X) true; or equivalently (given the definition of
PA2(x, f,X)), is the existence of an infinite set of objects possible? (It is
not hard to see, with a little bit of modal logic, that we need to assume so,
since otherwise all our sentences�q turn out to be vacuously true again.)
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But then, is a positive answer to that question really easier to justify than
an axiom of infinity itself, or than the postulation of an infinity of numbers
or sets seen as abstract objects? That depends on how we interpret ‘�’ and
‘♦’, i.e., what kind of modality we adopt. More particularly, it depends on
what we take the necessary and sufficient conditions for the relevant kind
of possibility to be. Logical consistency is almost certainly a necessary
condition. But is it also sufficient? If not, what else is involved? As earlier,
such questions become even more pressing if we go beyond arithmetic,
i.e., turn to parts of mathematics in which higher infinities are involved,
starting with analysis.28

Second, the following challenge can also be brought up: Is it really
so plausible to take a sentence of the form�q to reveal what is always
already implicit inp? In other words, do our ordinary arithmetic sentences
really have such a complicated semantic or logical form hidden underneath
their usual syntactic form, including a modal component? That seems even
more questionable, or at least in need of further justification, than if we
just appeal toq. A third, related problem is this: Note that along modal-
structuralist lines mathematical truth turns into a kind of modal truth:p

is true if and only if�q is true, i.e., ifq is necessary. But is that really
an attractive view about mathematical truth? In response it might be said
that mathematical truths do, indeed, carry a kind of necessity with them, a
necessity nicely captured by modal structuralism, thus actually motivating
it further. Then again, at least contemporary mathematical practice, espe-
cially as guided by the structuralist methodology, doesn’t seem to involve
modality in any direct way, does it?29

So far we have considered adding an axiom of infinity, on the one
hand, and two ways of “going modal”, on the other, as responses to the
non-vacuity problem. But some other responses are possible, too, still
within the general framework of universalist structuralism. For instance,
we can try, once more, to appeal to space-time points in this context,
i.e., assume that they are included in our basic domain of quantification.
Similarly for quasi-abstract objects such as strokes etc. In other words,
we can try to defend universalist structuralismon nominalist or quasi-
nominalist grounds.30 Then again, along such lines we quickly encounter
familiar questions (see above). Also, in each case we now encounter a
corresponding version of the non-vacuity problem.

Finally, what about working withset theoryin the background? In other
words, can’t we combine a set-theoretic ontology with a universalist struc-
turalist semantics? In that case it will be the axioms of set theory, say
ZFC, that guarantee non-vacuity. In fact, within a set-theoretic framework
we can simplify our approach significantly: we can treat functions and
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relations as sets of ordered pairs, as usual; thus we can (with a few ob-
vious modifications in the formulation ofq) work with only one kind of
variable. As a consequence all our quantifiers can be taken to range over
one domain: the universe of sets. Of course we have then not eliminated
all abstract objects. But we have, once again, restricted ourselves to one
kind only. Similarly, this approach allows for a unified treatment of almost
all parts of mathematics, including arithmetic, analysis, and group theory.
It doesn’t answer the question of how to think about sets themselves,
though. And if we treat sets in an essentially non-structuralist way, the
corresponding position will be “structuralist” only up to a point (likewise
for a Russelian type-theoretic approach).

6. STRUCTURES: FROM PARTICULARS TO UNIVERSALS

So far we have discussed three main variants of structuralism: formalist,
relativist, and universalist structuralism (including modal sub-variants).
Looking back now, how do they compare to each other; and what is their
connection with mathematical practice?

As should have become clear, all three of these positions are compatible
with, even motivated by, our structuralist methodology. Both relativist and
universalist structuralism then add a substantivesemanticthesis to it, in
each case with interestingmetaphysicalconsequences: eliminativist etc.
Also, both of them can be combined, at least in principle, with various
basicontologies: from set-theoretic platonism to physicalist nominalism.
This is in sharp contrast to formalist structuralism, whose response to the
corresponding semantic and metaphysical questions is much more negative
or deflationary. At the same time, there is an interesting contrast between
the semantics at the core of relativist and universalist structuralism, related
as they are. In relativist structuralism the basic semantic idea is to pick
a particular model of the relevant theory and to explain the reference of
mathematical terms with respect to it; in universalist structuralism the ap-
peal to particular objects and the use of referring terms is simply quantified
away.

Let us go back to our initial, vague characterizations of “structuralism”
(in Section 1) in order to emphasize certain similarities and differences
further. Note that according to all three variants of structuralism discussed
so far our two initial intuitive theses hold: (1) that mathematics is primarily
concerned with the “investigation of structures”; and (2) that doing so in-
volves an “abstraction from the nature of individual objects”. However, the
abstractionin thesis (2) is conceived of in importantly different ways in the
three cases. In formalist structuralism it is done by denying that there are
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mathematical objects in any substantive sense; in relativist structuralism
by picking an arbitrary model of a theory and ignoring any additional
properties the objects in it may have; and in universalist structuralism by
talking about all objects at the same time, not about any particular ones.

At this point in our discussion the appeal tostructuresin (1) also needs
to be addressed more directly. So far we have relied heavily onrelational
systemsin this connection, usually thought of in a set-theoretic sense,
sometimes in terms of nominalist variants. Such systems – e.g., a setS

with a distinguished elemente in it, a one-place functionf on it, such that
the triple satisfiesPA2 – are customary objects of study in contemporary
mathematics. In addition, it is exactlysuchsystems that are often called
“structures” in the literature, both in philosophy and in mathematics. As
an illustration from philosophy consider the following remark by Charles
Parsons:

What is meant by a structure is usually a domain of objects together with certain functions
and relations on the domain, satisfying certain general conditions. Paradigm examples
of structures are the elementary structures considered in abstract algebra. (Parsons 1990,
305).31

With respect to the mathematical literature, compare this passage from
Saunders Mac Lane’sMathematics: Form and Functionin which the focus
is on examples from algebra:

These [particular semi-groups, groups, rings, etc.] and many other cases illustrate the
general notion of an algebraic structure: A setX with nullary, unary, binary, ternary
. . . operations satisfying as axioms a variety of identities between composite operations
(Mac Lane 1986, 26)

As is implicit in Mac Lane’s remark, mathematicians often sub-divide the
whole class of such structures further: into “algebraic structures”, “or-
der structures”, and “topological structures”; and there are many “mixed
structures” as well.32

For the discussion in the rest of this paper it will be useful to have an-
other, more distinctive name for “structures” of this kind, i.e., for relational
systems in the sense discussed so far. Let us call themparticular structures,
since they consist of particular relational systems. Now, there is also a
second, quite different usage of “structure” in the literature, again both
in philosophy and in mathematics. This second usage is seldom explicitly
distinguished from the first, although it is probably just as common. Ac-
cording to it a “structure” isnot a particular relational system. Rather it is
what various such systemsshare(or what they don’t share); put differently,
it is what is (or isn’t)instantiatedby them. That is to say, a “structure” is
now auniversal, not a particular.33
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Such talk of “sharing”, “instantiation”, and “universals” may remind us
of the old (Platonic/Aristotelian) distinction between “matter” and “form”.
We may thus be led to the thesis, sometimes expressed by mathematicians
themselves, that mathematics is the study of form, not of matter. As Henri
Poincaré puts it inScience and Hypothesis:

Mathematicians do not study objects, but the relations between objects; to them it is a
matter of indifference if these objects are replaced by others, provided that the relations
do not change.Matter does not engage their attention; they are interested inform alone.
(Poincaré 1905, 20, our emphasis)

Of course, when mathematicians like Poincaré use expressions such as
“matter” and “form” in such passages, similarly when they use “structure”
in our second sense, they typically do so in an informal, loose way. In
particular, they do not attempt to clarify what exactly the corresponding
form or structure nowis, including whatkind of entityit might be. To do
so is not necessary for their mathematical purposes. For our philosophical
purposes, on the other hand, answering such questions is important. Let
us then give the corresponding “structures” a new name as well; let’s call
themuniversal structures. What we want to do in the next two sections is
to explore further how one could and should think about them.

7. PATTERN STRUCTURALISM

If we compare two different models ofPA2, say, what is it that they share?
Well, they are both models of these axioms, and this implies that they are
isomorphic (sincePA2 is categorical). In each of them there is, thus, a dis-
tinguished base element, then its immediate successor, then its successor,
etc., and by iterating this process we reach all its elements. We can, as it
were, lay the two models alongside each other and see that they “look”
the same – they exemplify the same “pattern”. To exploit this image a bit
further, with respect to such a pattern we can distinguish various “points”,
“positions”, or “roles”: one corresponding to all the base elements, one
corresponding to their immediate successors, etc. In a particular model of
PA2, on the other hand, its elements “occupy” the respective “points” or
“positions”, or they play the corresponding “roles”.

So far we have talked loosely and figuratively. If we take such talk about
patterns, positions, etc. more seriously – if we articulate them as substant-
ive semantic and metaphysical theses – we are led topattern structuralism.
According to this position what we really study in arithmetic, in the end,
are not the various particular models ofPA2, but something in addition to
them: a correspondingpattern. In the words of Stewart Shapiro, one of the
main proponents of such a view:
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The subject matter of arithmetic is a singleabstract structure, thepatterncommon to any
infinite collection of objects that has a successor relation with a unique initial object and
satisfies the (second-order) induction principle. (Shapiro 1997, 72, our emphasis)

Note that the natural number pattern, or structure, appealed to here is meant
to be different from all the relational systems corresponding to it. It is, in
fact, anew kind of abstract entity, as we will see more clearly soon.

Three basic aspects of patterns, as understood by a pattern structuralist
in our sense, need to be made explicit immediately. First, such patterns can,
and usually do, have many differentinstantiationsor exemplifications. We
have already seen, implicitly, that the natural number pattern is instanti-
ated in set theory by the finite Zermelo ordinals, the finite von Neumann
ordinals, etc. In addition, Shapiro gives the following examples:

The natural-number structure is exemplified by the string on a finite alphabet in lexical
order, an infinite sequence of strokes, an infinite sequence of distinct moments in time, and
so on. (ibid., 73)34

It is in this sense that a pattern is auniversal; or as Shapiro puts it:

(A) structure is a one-over-many. [. . . ] Thus, structure is to structured as pattern is to
patterned, as universal is to subsumed particular, as type is to token. (ibid., 84)

Note that, as such a universal, a pattern is different not only from particular
relational systems, but also from all other objects (as usually understood).

Second and in addition, patterns are supposed to have a special kind of
internal composition: they consist of “positions”, “points”, or “nodes” re-
lated to each other in a certain way. In this respect they differ not only from
ordinary objects, but also from other, more traditional universals (more on
that below). Third, the identity and the nature of the positions in a pattern
depend solely on their being part of that pattern, nothing else. In a sense
thereis nothing more to them; or as Michael Resnik, another defender of
pattern structuralism, puts it (in a passage quoted approvingly by Shapiro):

The objects of mathematics, that is, the entities which our mathematical constants and
quantifiers denote, are themselves atoms, structureless points, or positions in structures.
As such they have no identity or distinguishing features outside a structure. (Resnik 1997,
201)

Remember here also Charles Parsons’ characterization with which we
started this paper:

By the “structuralist view” of mathematical objects, I mean the view that [. . . ] the objects
have no more to them than can be expressed in terms of the basic relations of the structure.
(Parsons 1990, 303)

Note that a pattern structuralist thus explicitly subscribes to our initial
thesis (3), that mathematical objects “have no more to them than can be
expressed in terms of the basic relations of the structure”.
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Some philosophers with general sympathies to pattern structuralism
worry exactly about the third aspect just mentioned, i.e., the identity and
nature of positions in a pattern. Thus Paul Benacerraf writes in connection
with the natural number pattern:

Therefore, numbers arenot objects at all, because in giving the properties (that is, neces-
sary and sufficient) of numbers you merely characterize anabstract structure– and the
distinction lies in the fact that the ‘elements’ of the structure have no properties other than
those relating them to other ‘elements’ of the same structure. (Benacerraf 1965, 291, our
emphasis)

About ordinary objects he remarks, in contrast:

That a system ofobjectsexhibits the structure of the integers implies that the elements
of that system have some properties not dependent on structure. It must be possible to
individuatethose objects independently of the role they play in that structure. (ibid., our
emphasis)

Benacerraf’s worry can be put this way: Positions in patterns are distin-
guished by their systematic, ungrounded interdependency, i.e., by the fact
that they have “no properties other than those relating them to other ‘ele-
ments’ of the same structure”. But does that not exactly rule them out as
objects? Or stronger, are they thenacceptable entitiesat all?

Benacerraf’s concern is similar to one voiced by Bertrand Russell
earlier, already in hisPrinciples of Mathematics. Objecting basically to
a pattern structuralist view about the natural numbers, which he attributes
to Dedekind, Russell remarks:

[I]s is impossible that the [numbers] should be, as Dedekind suggests, nothing but the terms
of such relations as constitute a progression [i.e., a natural number system]. If they are to
be anything at all, they must beintrinsically something; they must differ from other entities
as points from instants, or colours from sounds. (Russell 1903, 242, our emphasis)

The core of Russell’s objection is this: If positions in a pattern are not “in-
trinsically something”, i.e., if they lack the characteristics that individuate
ordinary objects, then they “are nothing at all”, i.e., they can’t possibly
exist.

How exactly we should understand this Russellian objection, as well as
its precise relation to Benacerraf’s, depends on how we understand Rus-
sell’s distinction between “intrinsic” and “extrinsic” properties. We want
to leave this interpretive question aside. Let us just observe that recent
pattern structuralists such as Resnik and Shapiro are not deterred by this
objection, either in Benacerraf’s or Russell’s form. Their response is the
following: If we work with a notion of “object” that is motivated by and in
the end restricted to ordinary objects, in particular to physical objects and
perhaps sets (in the usual sense), then of course positions in patterns are
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not objects. But why not simply broaden our notion of “object” in a certain
way?

Shapiro explains this broadening by distinguishing two perspectives
one can take with respect to a given pattern, or better with respect to the po-
sitions or places in it: (a) the “places-as-offices” perspective where we treat
these places just as slots to be filled by ordinary objects; (b) the “places-
as-objects perspective” where we consider them in themselves, i.e., refer
to them with singular terms, talk about their relations to other places, etc.
He adds:

Arithmetic, then, is about the natural-number structure, and its domain of discourse con-
sists of the places in the structure, treated from the places-as-objects perspective. The same
goes for the other non-algebraic fields, such as real and complex analysis, Euclidean geo-
metry, and perhaps set theory. [. . . ] When the structuralist asserts that numbers are objects,
this is what is meant. (Shapiro 1997, 83)

For a pattern structuralist positions in patterns are, thus, objects in a weak
sense – a sense exactly appropriate for mathematics, as both Resnik and
Shapiro would insist.

Before reflecting further on this conception of positions and patterns,
let us observe four immediate consequences of pattern structuralism as
described so far. First, this position is clearlynot aneliminativistposition
in the sense of trying to do without abstract objects as much as possible.
In fact, its very core consists of the postulation of a new kind of abstract
entities, patterns, over and above ordinary physical objects, set-theoretic
objects (as usually understood), etc. Moreover, for Shapiro patterns or
universal structures are supposed to existprior to and independently of
their instantiations. In his own words:

Structures exist whether they are exemplified in a nonstructural realm or not. On this
option, statements in the places-are-objects mode are taken literally, at face value. (ibid.,
89)

This is why Shapiro calls his position “ante remstructuralism” (and “ante
remrealism”, as opposed to “in re realism), in analogy to a traditional view,
attributed to Plato, concerning universals more generally (ibid., 40–41).35

Second, Shapiro’s view is also not eliminativist in our second sense
above. According to him there exists aspecial, uniqueentity that deserves
the name “the natural numbers”, namely the natural number pattern (more
on its identity below). Third, given this natural number pattern we can
explainreferencein arithmetic in a relatively straightforward way: ‘1’ now
refers to the initial position in the pattern, ‘s’ to the successor function on
the pattern, and our variables range over the pattern. Fourth,truth can be
understood correspondingly, i.e., as truth-in-the-pattern (understood along
Tarskian lines, based on such reference). Of course, an arithmetic sentence
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is true in this sense if and only if all the “translations” corresponding to
its various instantiations are true as well, i.e., if and only if the sentence is
true in all models ofPA2 (in the usual model-theoretic sense).

Such explanations of reference and truth in arithmetic depend, however,
on the assumption that there is a unique, special natural number pattern in
terms of which they can be defined. This assumption is defended in detail
by Shapiro – but it depends on a certain decision that is resisted by other
pattern structuralist, e.g., Resnik. Shapiro’s decision is to rely on a specific
notion ofpattern identity, i.e., a criterion that allows us to decide whether
two patterns are identical or not. Resnik’s resistance is based on the view
that there is “no fact of the matter” with respect to such identities, both as
far as patterns and as far as positions across patterns are concerned. What
that means for Resnik comes out in passages such as the following:

Number theory, for example, is intended to deal with a certain structure; it has the means
to raise and answer questions concerning the identity of various numbers, but it cannot
even formulate the questions as to whether the number one is the real numbere. [. . . ] Each
theory [arithmetic, real analysis, set theory] was developed to speak only of elements of a
certain structure and has no means to identify or distinguish these from elements of another
structure. (Resnik 1997, 211)

Resnik’s view is this: There is “a fact of the matter” concerning a scientific
question if the relevant science has in principle a means to determine its
answer. But that is exactly not the case here: mathematics has no means to
answer questions about the identity or difference of the various patterns it
deals with, nor about the identity or difference of positions across patterns
(as opposed to within a given pattern).

What is at issue here can be illustrated as follows: Assume that we are
given a natural number pattern and a real number pattern, as understood by
a pattern structuralist. Then there exists a certain “subpattern” of the real
number pattern that is isomorphic to the natural number pattern, namely
that formed by “the real number one”, “the real number two”, etc. Now,
is this subpatternidentical with the given natural number pattern or not?
Relatedly, is “the (natural) number one” in the original natural number
pattern identical with “the (real) number one” in the new subpattern or
not? Resnik’s point is that neither arithmetic nor analysis can give us an
answer. Similarly if we consider natural number subpatterns in set theory;
in Resnik’s words again: “Nothing in science or mathematics, as ordin-
arily understood, counts as evidence for or against numbers being sets”
(ibid., 246). He refers to this aspect in general as the “incompleteness of
mathematical objects” (ibid.).

Initially Resnik’s position here might look attractive. But note what the
direct consequences for a pattern structuralist are: If there is no fact of
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the matter as to whether there exist one natural number pattern or several
different ones, then there is also no fact of the matter what ‘1’, ‘s’, etc.
refer to. In other words, the explanation of reference above, thus also that
of truth, can’t get a foothold. Resnik acknowledges this point:

But if there is no fact of the matter as to whether the positions in a pattern are the same or
distinct from those in one of its occurrences, then there is none as to whether general or
singular terms refer to the positions in the one rather than the positions in the other. (ibid.,
220)

On the other hand, he writes:

My claim is that there is enough slippage between our theories of patterns and the patterns
themselves to affect reference. But it does not affect truth. For the truths of a theory of a
pattern are invariant under all reinterpretations in patterns congruent in it. (ibid., 222)

At this point it is not clear, however, how exactly we are to think about
truth now. Perhaps Resnik has to fall back on ideas similar to those in
relativist structuralism at this point, i.e., on a relative notion of reference
and a corresponding relative notion of truth.

Actually, sometimes Resnik moves even further away from the pattern
structuralism exemplified in Shapiro’s work, e.g., when he allows himself
to talk about “the group structure”, “the ring structure”, or “the first-order
natural number structure” (ibid., 252). In these cases we can find mod-
els for the respective theories that are not only not identical, but also not
isomorphic. But in what sense is there thenonecorresponding structure,
so that the definite article “the” is justified? A pattern structuralist view
seems, thus, misplaced with respect to such cases (although we can still
talk about “structure” in a looser, more informal sense, as many mathem-
aticians do).36 For this reason Shapiro, in contrast to Resnik, distinguishes
between “algebraic theories”, such as group theory and ring theory, and
“non-algebraic theories”, such as arithmetic, analysis, and (to some de-
gree) set theory. And he wants to restrict a pattern structuralist approach to
the latter (Shapiro 1997, 40–41).

This still leaves Shapiro with the task of deciding about a notion of
pattern identity for the “non-algebraic” case.37 He considers two candid-
ates: (a)isomorphismof the corresponding instantiations (b)structure-
equivalence(a notion originally introduced by Resnik). The former cri-
terion should be clear after our earlier preparations. The latter is defined as
follows:

First, letR be a system andP a subsystem. DefineP to be afull subsystemofR if they have
the same objects (i.e., if every object ofR is an object ofP ) and if every relation ofR can be
defined in terms of the relations ofP . The idea is that the only difference betweenP andR
is that some definable relations are omitted inP . So the natural numbers with addition and
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multiplication are a full subsystem of the natural numbers under addition, multiplication,
and less-than. LetM andN be systems. DefineM andN to bestructure-equivalent, or
simply equivalent, if there is a systemR such thatM andN are each isomorphic to full
subsystems ofR. (Shapiro 1997, 91, emphasis in the original)

If we use this second criterion, we treat two patterns as identical if all their
instantiations are structure-equivalent, in the sense just defined. If we use
the first, we treat them as identical if all their instantiations are isomorphic.

Note that both of these criteria rely on equivalence relations for in-
stantiations of patterns. In addition, the first is more fine-grained than the
second, since it is more sensitive to variations in the language used, e.g., to
whether we use “less-than” in arithmetic as primitive or as defined. Now,
either criterioncouldbe adopted by a pattern structuralist. Shapiroprefers
to adopt the first one, based on isomorphism. He does so not because it is
“the right one”, but because it has certain pragmatic advantages. As he puts
it, it is “technically inconvenient” to use the second (ibid., 93). In any case,
picking either of them is a decision, not a discovery; that much has to be
granted to Resnik. Still, it makes sense to make such a decision, justified
by pragmatic arguments. Based on it we can, then, talk about “the natural
number pattern”, “the real number pattern”, etc.

No matter which of the two criteria we use, it follows that the identity
of patterns is thoroughlylanguage-relative. That is to say, which patterns
are considered identical depends, in one way or another, on what our
chosen language allows us to say (what it allows us to consider as an
isomorphism, to define, etc.). Shapiro explicitly acknowledges this point
when he writes: “In mathematics, at least, the notions of ‘object’ and
‘identity’ are unequivocally but thoroughly relative” (Shapiro 1997, 80).
Neither Shapiro nor Resnik considers such language-relativity to be a real
problem. For both it is simply an integral part of mathematics. Resnik goes
as far as suggesting: “[T]here is no reason why a theory of structures could
not recognize allL-structures for all choices of [languages]L” (Resnik
1997, 254). Shapiro concurs, although he does want to restrict himself to
structures corresponding to categorical theories.

Even if we agree that such language-relativity is no problem, there are
other difficulties that remain concerning pattern structuralism. One remain-
ing question is this: How exactly are we to think about the relation between
patterns and the positions in them? Presumably it is not that between
sets and their elements, i.e., elementhood. But what is it then, perhaps
that between part and whole; or is it different entirely?38 Second, there
is the question of how to think about functions and relations as defined
on patterns. As we want, presumably, again not to rely on a set-theoretic
understanding of them, do we have to take such functions and relations
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as primitive? If so, what does that entail? A third, perhaps more pressing
question is the following: How do we decide which patternsexist? Initially
we might want to answer that question by simply pointing to exemplific-
ations of patterns in non-structural realms. But note, again, that most of
the patterns we study in mathematics are infinite, e.g., the natural number
pattern and the real number pattern. It is a question then, where a pattern
structuralist can find corresponding non-structural exemplifications.

This brings us back to some old proposals and corresponding problems.
One such proposal is to rely on exemplifications involving physical ob-
jects. This makes mathematics once more depend on assumptions about the
physical world, not an appealing result for most pattern structuralists. Or
we can appeal to space-time points, to quasi-abstract objects like strokes,
etc., with all the corresponding questions those appeals raise in turn. Al-
ternatively we can bring in set theory again. More precisely, we can take
set-theoretic satisfiability of the corresponding theories as the criterion for
pattern existence. As Shapiro himself notes, this would actually be in line
with standard mathematical practice, since “in mathematics as practiced,
set theory (or something equivalent) is taken to be the ultimate court of
appeal for existence questions” (Shapiro 1997, 136). But then we will not
be able to deal with set theory itself along pattern structuralist lines, on
pain of circularity, something most pattern structuralists would want to be
able to do.

If all of these alternatives seem unattractive, there is one further pos-
sibility: we can try to develop a systematicpattern theory. Such a theory
should tell us axiomatically which structures exist, analogously to how
ZFC set theory tells us which sets exist. It should also shed some light on
our earlier questions: about the pattern-position relation, about functions,
relations, etc. In fact, this is Stewart Shapiro’s route, i.e., he proceeds to
sketch exactly such a pattern theory in his bookPhilosophy of Mathemat-
ics. Structure and Ontology(especially in chapter 3). It turns out to be a
theory closely modeled on set theory. Thus it includes an axiom of infinity,
axioms corresponding to the subset, powerset, replacement axioms, etc.
Beyond that, it includes axioms for “subtraction”, “addition”, etc. which
do not have direct set-theoretic correlates.

Such a proposal leads, however, to a new question: Why duplicate set
theory with such a structure theory, in particular if they turn out to be so
similar? In other words, why not simply work with set theory itself, since
we already know how to do so? Shapiro comments in this connection:

Anything that can be said in either framework can be rendered in the other. Talk of struc-
tures as primitive is easily ‘translated’ as talk of isomorphism or equivalence types over a
universe of (primitive) sets. In the final analysis, it does not really matter where we stand.
(ibid., 96)
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He also claims:

The fact that any of a number of background theories will do is a reason to adopt the
program ofante remstructuralism.Ante remstructuralism is more perspicuous in that the
background is, in a sense, minimal. (ibid.)

This leaves us with the question: In which sense exactly is the background
of pattern theory supposed to be “minimal”; and why should such minim-
ality be crucial? Finally, it is hard to imagine that something like Shapiro’s
structure theory will actually replace set theory in mathematical practice, in
particular since it does not contain any new insights into which structures
or sets exist in the end, as Shapiro himself admits.39

8. MATHEMATICAL PREDICATES

We started our discussion of pattern structuralism with the idea that all nat-
ural number systems share something important. In order to make sense of
that idea a pattern structuralist postulates a corresponding natural number
pattern, as a new kind of abstract entity. What all the relational systems
share is, then, that they instantiate this pattern. It might be thought that it
is the ability to give this answer that should make us favor pattern struc-
turalism over its alternatives. There is, however, a more traditional way
to go here as well. Namely, we can talk about apredicatethat applies to
these and only these relational systems. In fact, this predicate was already
implicit in our earlier talk about “natural number systems” – it is simply
the predicate “to be a natural number system”.

This basic idea can be made more formal and precise. To do so recall
how we proceeded in connection with universalist structuralism. We con-
structed, for each arithmetic sentencep, a corresponding universal if-then
sentenceq of the following form:

∀x∀f ∀X[PA2(x, f,X)→ p(x, f,X)].

In this sentence we used the expression:

PA2(x, f,X).

We arrived at it from the conjunction of the Peano Axioms, in the form
of PA2(1, s,N), by replacing ‘1’ by ‘x, ‘s’ by ‘ f ’, and ‘N ’ by ‘X’. The
suggestion now is this: ‘PA2(x, f,X)’ provides us with apredicatewhich
applies exactly to the relational systems of which the Peano Axioms are
true; and that suffices to make sense of what these systems share.
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Speaking about a “predicate” here raises the following question: Are
we just talking about the linguistic expression itself, as a mere formula?
In other words, is this suggestion supposed to be understood in some
narrowly formalist sense? Or is the formula supposed to correspond to
something “behind” it, especially because of its connection with the Peano
Axioms? The latter, non-formalist point of view can be spelled out in a
number of different ways again. For example, we can say that the formula
together with the axioms define a certainproperty; or, alternatively, that
they define a certainconcept(a second-level concept, along Fregean or
Russellian lines). In either case we do appeal to something in addition to
the formula itself, i.e., something ‘PA2(x, f,X)’ stands for, refers to, or
expresses – again some kind ofabstract universalor abstract structure. In
either case we are also left with various new questions: Are the relevant
concepts supposed to be identified extensionally or intensionally? Are the
properties supposed to exist just in the objects which have them or also, in
some sense, independently? etc.

A third alternative in this connection – one closer to current mathemat-
ical practice, especially against the background of set theory – might be the
following: We can appeal to theequivalence classof relational structures
determined by certain axioms, e.g., the class of all natural number systems.
One advantage of this alternative is that it avoid any appeal to properties
or concepts as additional mathematical entities. It amounts, in fact, to a
reduction of the “universal” to the “particular” – the property or concept to
its “extension”. Then again, it leads to all the well-known problems with
treating such “extensions” as particular objects. In particular, we cannot
treat them simply as sets, on pain of contradiction (Russell’s antinomy
etc.).

If we want to avoid the “reification” of predicates altogether – either as
properties or as concepts or as equivalence classes – but still not say that
we are dealing with ‘PA2(x, f,X)’ as a mere formula, there is, finally,
also the following route: We can maintain that what actually matters is the
formula in use. In other words, what is meant by talking about a “predic-
ate” in connection with it is simply that we can classify relational systems
according to whether they satisfy the corresponding axioms or not. Note
that this suggestion again accords quite well with common mathematical
practice, especially as guided by our structuralist methodology: to formu-
late various sets of axioms, to see them as expressing certain “conditions”
which relational systems satisfy or not, etc.40

We have just listed four different ways ofanalyzingour initial appeal
to “predicates”, and there are probably more. No matter which of these
analyses we adopt – a “thicker” or “thinner” one, a more or less “reify-
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ing” one – we can note the following: This general way of looking at the
situation is different from what we usually do in model-theoretic logic.
There we treat ‘PA2(x, f,X)’ as an expression in a formal language. As
such it is meaningless, i.e., it does not stand for anything, at least until
we specify some particular interpretation for the language. Under such
an interpretation some set is then assigned to it as its “meaning”. But
even then we are not interested in that “meaning” in itself; we are only
interested in which sentences containing ‘PA2(z, f,X)’ come out “true”
and which “false” under the given interpretation. In other words, model-
theoretic “meaning” is just a technical tool for making this determination;
it plays no further role. Here, on the other hand, we treat ‘PA2(x, f,X)’
as analreadymeaningful expression (in connection with using the Peano
Axioms), in the same sense in which “to be a natural number system”
is meaningful in informal mathematics. As such it is an expression with
which we can makeassertions, in particular assertions about various rela-
tional systems. That is to say, we canuseit, namely topredicatesomething
of such systems.

This last observation is what allows us to maintain the following: What
mathematicians are interested in, ultimately, is to understand better such
predications and predicates. In particular, mathematicians study the predic-
ates “to be a natural number system”, “to be a real number system”, “to be
a group”, etc.41 Of course, from a mathematical point of view a good way
to study them is by identifying and comparing the relational systems to
which they apply, e.g., the various natural number systems. In that respect
the general appeal to “predicates” is, once more, quite compatible with
methodological structuralism, indeed suggested by it.

Appealing to predicates instead of patterns may be seen to have sev-
eral advantages. First, predicates are arguably more ordinary and familiar
than the patterns postulated by pattern structuralism (especially if we think
of predicates merely as formulas “in use”). Thus, it is clear that we can
specify predicates axiomatically; mathematicians have routinely done so
for quite a while, at least implicitly. Second, we can appeal to them the
same way in arithmetic, analysis, and group theory; i.e., we don’t need
different treatments for “algebraic” and “non-algebraic” fields, or better for
categorical and non-categorical theories. Third, by talking about predic-
ates we avoid all the questions about the internal composition of patterns
mentioned above; since predicates simply do not have that kind of internal
composition (no matter which of our analyses above we adopt); similarly
for questions about the relation of different patterns to each other, etc. In
fact, from the present point of view we can see what the source of several
of these questions about patterns was: a pattern structuralist tries, in a



374 ERICH H. RECK AND MICHAEL P. PRICE

sense, to treat patterns and the positions in themboth as universalsand
as particulars. Predicates, on the other hand, are only supposed to play the
former role. The latter is delegated back to relational systems.

Then again, the appeal to predicates does not give us a full-fledged
semantics and metaphysics for mathematics, the way our earlier variants
of structuralism did. In other words, it does not, in itself, lead to another
substantive variant of structuralism. In fact, appealing to predicates does
not even, in itself, commit us to a “structuralist” view about mathematics
(as, e.g., a Fregean non-structuralist appeal to concepts illustrates).42

9. SUMMARY AND CONCLUSION

In this paper we have identified four main variants of structuralism in
the philosophy of mathematics – formalist structuralism, relativist struc-
turalism, universalist structuralism (with modal variants), and pattern
structuralism – as well as the more basic structuralist methodology that
informs much of current mathematical practice. Of these the first two are
seldom recognized explicitly as “structuralist” positions by contemporary
philosophers, although they are quite widespread among contemporary
mathematicians. The others all appear, more or less explicitly, in the re-
cent philosophical literature, especially a modal version of universalist
structuralism (Hellman, see also partly Parsons) and several slight variants
of pattern structuralism (Shapiro, Resnik, partly Benacerraf and Parsons).
Our main goal has been to establish, in a clear and systematic way, in
which sense they are allstructuralist, how they arerelated to each other,
and what isdistinctiveabout each of them.

Very briefly again, in formalist structuralism the philosophical ques-
tions which tempt us beyond the structuralist methodology itself – ques-
tions about reference and truth, about the existence and nature of “the
natural numbers”, “the real numbers”, etc. – are given a negative, defla-
tionary, or “thin” answer. Relativist, universalist, and pattern structuralism,
on the other hand, all answer these questions in a more substantive, “thick”
way. The specific answers they give are, in turn, significantly different from
each other, even conflicting in many ways. In particular, both relativist
and universalist structuralism are naturally understood to be eliminativist
views, in sharp contrast to pattern structuralism. More basically, the se-
mantic ideas at the core of relativist, universalist, and pattern structuralism
are meant to be mutually exclusive alternatives.

If we return one more time to our initial characterization of “structur-
alism”, the following should now be clear: All four of our variants are
structuralist in the sense of conforming to intuitive thesis (1): that math-
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ematics is primarily concerned with the “investigation of structures”. But
what is meant by “structure” varies considerably from case to case: it
is sometimes what we have called “particular structures”, i.e., relational
systems or models in the ordinary mathematical sense; at other times it
is “universal structures”, i.e., additional abstract entities. Moreover, the
latter can be understood in two different ways again: as “patterns” or as
“predicates”. Relatedly, several of our variants agree with intuitive thesis
(2): that doing mathematics involves “an abstraction from the nature of
individual objects”. However, how the corresponding “abstraction” is to
be thought of differs considerably between them. According to one variant,
(2) is even replaced by (3): that individual mathematical objects “have no
more to them than can be expressed in terms of the basic relations of the
structure”.

Two final remarks: First, the purpose of this paper wasnot to argue in
favor of one of our four variants of structuralism over against the others;
nor was it to argue for or against structuralism in general. Rather, it was
to show, in a more preliminary manner, that these variants aresignific-
antly differentfrom, as well asinterestingly relatedto, each other. The
difficulties raised in connection with each of them were, thus, meant to
highlight these differences and relations, not to decisively refute any of the
positions. Second, while we think that we have covered all the main struc-
turalist positions in the recent philosophical literature, our list of variants is
notmeant to be necessarilycomplete. In fact, we would claim that the posi-
tion of Richard Dedekind – the thinker often appealed to by contemporary
structuralists as their distinguished forefather – represents a noteworthy
additional variant of structuralism. Moreover, Dedekind’s structuralist po-
sition is in some ways more attractive than any of the currently prominent
ones. To defend these last two claims will, however, require another paper.
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NOTES

1 For references see the bibliography. Similar structuralist themes can also be found in
Steiner (1975) and Jubien (1977), among others. For historical sources see Dedekind
(1872, 1887) (we plan to come back to an investigation of his views in another paper;
compare also Tait (1996)), as well as the references to Bourbaki, Hilbert, Poincaré, Quine,
and Russell later in this paper.
2 Sometimes they are acknowledged in passing; see, e.g., Hellman (1996, 100): “As with
many ‘isms’, ‘structuralism’ is rooted in some intuitive views or theses which are capable
of being explicated and developed in a variety of distinct and apparently conflicting ways”.
After this opening remark Hellman goes on to focus exclusively on his own variant. The
most extended discussion of the corresponding differences can be found in Shapiro (1997,
chs. 3–7). Our discussion in this paper (conceived largely before the appearance of this
book) will overlap with Shapiro’s to some degree. Our conception of structuralism will,
however, be both broader and more fine-grained than his; i.e., we will discuss some variants
of structuralism not considered by him, add further historical references, and focus more
on semantic issues.
3 Two of the most interesting and influential discussions of structuralism in general,
Benacerraf (1965) and Parsons (1990), are, in our view, examples of such blurring of
distinctions (for details see later). In fact, it was puzzlement about what Parsons means
by “the structuralist view” that led the two present authors to work on this issue further.
(Parsons has since clarified his views, e.g., in Parsons (1997).)
4 One can, of course, also use the language of 1st-order logic plus set theory to formulate
the Peano Axioms (especially (A3), the induction axiom); see, e.g., Parsons (1990, 306),
and Gleason (1991, 89). But for our purposes this approach is less appropriate, since we do
not want to assume that the Peano Axioms are intrinsically set-theoretic (for reasons that
will become clear later).
5 For an explicit formulation of the axioms for a complete ordered field see, e.g., Mac
Lane (1986, 102–124), or Gleason (1991, 94–111); for the group axioms see Mac Lane
(1986, 23–26).
6 What we call “natural number systems” have also been called “simply infinite systems”
(Dedekind (1887)), “progressions” (Russell, Quine, etc., see the corresponding quotes later
on), and “ω-sequences” (Zermelo etc.). What we call “relational systems” are often called
“relational structures” or simply “structures” in the literature, especially when set theory
is taken as part of the background (see, e.g., Enderton (1977, 170), and van Dalen (1994,
56). As we will later want to distinguish between several different kinds of “structure” (in
Sections 6, 7, and 8), we use the more neutral “system” here (appropriated from Dedekind
(1887); compare also Shapiro (1997)).
7 A setS is Dedekind-infinite if and only if there exists a one-to-one functionf that maps
S into a proper subsetS′ of itself (Dedekind (1887), Definition 64). For the results that
follow in this section of the paper compare Dedekind (1887), Enderton (1977, ch. 4), and
Gleason (1991, ch. 7.)
8 For an interesting historical and philosophical discussion of how several of these de-
velopments arose in the 19th century see Stein (1988). For more on how they progressed
into the 20th century and how they relate to “structuralism” see Corry (1996), Dieudonné
(1979), Mac Lane (1996), and Shapiro (1997, ch. 5).
9 More recently an alternative framework – still within the general confines of our struc-
turalist methodology – has been provided by category theory. We will not try to explore
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the consequences of a shift from set theory to category theory in this paper. See Mac Lane
(1971, 1986, 1996), McLarty (1992, 1993), and Awodey (1996) for explicit categorical
perspectives on structures in mathematics and logic.
10 As a structuralist approach typically involves the use of full classical logic (infinite
sets, undecidable predicates, non-constructive existence proofs, etc.), constructivist and
intuitionist mathematicians have often resisted it, or at least its full development. An early,
classical example of such resistance is that of Kronecker to the work of Cantor and others,
as mentioned in Stein (1988).
11 For more on Bourbaki in this connection see again Dieudonné (1979), also Corry (1992,
1996).
12 Sometimes the epistemological implications of a structuralist approach are also at issue;
see Resnik (1982, 1997, chs. 6–9), and Shapiro (1997, ch. 4). For the sake of brevity we
suppress them here. – We are, we would like to emphasize, not claiming that such semantic,
metaphysical, and epistemological questions exhaust the philosophy of mathematics, nor
that they are the most interesting questions from a mathematical point of view. Their
discussion has, however, dominated large parts of recent philosophy of mathematics, thus
inviting a reflection on what is really at issue in them.
13 We have encountered this kind of response repeatedly in conversations with mathem-
aticians, especially when pressed on corresponding philosophical issues. David Hilbert’s
position is also often interpreted along these lines (although as we understand him Hilbert’s
formalism is really methodological, i.e., meant to justify various parts of mathematics
that are not completely meaningless in the end). Finally, compare the (somewhat cryptic)
formalist suggestions at the very end of Benacerraf (1965).
14 We are here close to what is sometimes called “if-then-ism” in the literature. For
references and further discussions see Putnam (1967) (whose suggestions, including his
“modal turn”, were later transformed into an explicit form of “universalist structuralism”
by Geoffrey Hellman; cf. Section 5 below) and Rheinwald (1984, ch. 2) (where if-then-ism
is discussed under the general rubric of “formalism”).
15 In our usage to qualify as a “variant of structuralism”, in the philosophical sense,
involves not just adopting the structuralist methodology, but also giving answers to our
semantic and metaphysical questions, more specifically answers that do not include essen-
tially anti-structuralist elements. The three versions of formalist structuralism considered
so far are, then, variants of structuralism, but only in a minimal or marginal sense. We
will identify three more central or substantive variants in what follows: what we will call
“relativist”, “universalist”, and “pattern structuralism”, respectively.
16 The qualification “in the language of arithmetic” is important. Consider, e.g., the finite
Zermelo ordinals and the finite von Neumann ordinals as forming two models of arithmetic.
Then there are “non-arithmetic” statements, such as “0∈ 2” or “1 ⊆ 2”, that are false in
the one, but true in the other model (similarly the other way around). But these differences
do not matter with respect to “truth in arithmetic”.
17 See here (Hodges, 1986, 148-150). Hodges compares the use of non-logical constants
explicitly to the use of ‘he’, ‘yesterday’, and ‘the latter’ in ordinary English.
18 While much of the recent focus on one’s “ontological commitments” in mathematics,
including the demand to be economic or parsimonious about them, seem to have their
source in Quine, the appeal to “ontological economy”, “Occam’s Razor”, etc. actually goes
back at least as far as Russell (as does the discussion of several other issues with which we
will be concerned later in this paper); see Russell (1903, 72), also (1919, 184). Then again,
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the claim that economy with respect to one’s mathematical ontology is a necessary, or even
a commendable, attitude is not universally shared; see Burgess (1998).
19 See Goodman and Quine (1947), Field (1980), partly also the corresponding discussion
in Parsons (1990).
20 For a comprehensive discussion of mereology and related issues see, e.g., Simons
(1987).
21 A few pages later Benacerraf goes even further: “I therefore argue, extending the ar-
gument that led to the conclusion that numbers could not be sets, that numbers could not
be objects at all; for there is no more reason to identify any individual number with any
one particular object than with any other (not already known to be a number)” (Benacerraf
1965, 290–291).
22 A less misleading formulation, suggested to us by an anonymous referee, would be this:
there are nonatural natural numbers. – Note that the argument just presented presupposes
that all relevant models ofPA2 are constructed within set theory or some analogous theory,
i.e., are “homogeneous” in a crucial way. Without this presupposition, in particular if we
allow the natural numbers to besui generis, the argument looses its force (in spite of what
Benacerraf writes elsewhere; compare the previous footnote.)
23 It is because of this third step, in particular because we want to quantify out ‘N’, that
we have formulated the Dedekind–Peano Axioms differently in this section. (We could, of
course, have used this second formulation already earlier; but that would have complicated
the semantics in Section 4 slightly.)
24 In this section our discussion is mostly guided by Hellman (1989, 1990a, 1990b, 1996),
to some degree also by Parsons (1990). Both of them make explicit use of universal if-then
sentences similar to ours. However, with respect to Parsons compare footnotes 3, 26, and
31; and with respect to Hellman we will have to come back to his modal “twist” later in
this section. Finally, for historical roots of this kind of view compare our quotations from
Russell later on in this section.
25 This aspect of universalist structuralism is seldom discussed in any depth in the current
literature, in spite of the fact that Russell was already explicit about it. Thus in Russell’s
Principles of Mathematicsit comes up early, as follows: “The above definition of pure
mathematics [as consisting of universal if-then sentences, see above] [. . . ] professes to
be, not an arbitrary decision to use a common word in an uncommon signification, but
rather aprecise analysisof the ideas which, more or less unconsciously, areimplied in the
ordinary employment of the term” (Russell 1903, 3, our emphasis). (In this passage Russell
talks primarily about analyzing the term ‘pure mathematics’; but this commits him also to
analogous views about analyzing individual mathematical propositions.)
26 To be precise here, the eliminativism aimed for in universalist structuralism may be
only partial, e.g., if we allow for sets, but want to eliminate all other abstract objects (see
below). On the other hand, compare Hellman who states quite strongly: “[W]e seek an
alternative, non-literal interpretation of mathematical discourse [. . . ] in which ordinary
quantification over abstract objects iseliminated entirely” (Hellman 1989, 2, our emphasis;
more on Hellman below). In Parsons (1990) both full-blooded and partial eliminativist
goals connected with universalist structuralism are discussed as well, although Parsons
himself endorses neither of them in the end.
27 See Hellman (1989, 1990a, 1990b, 1996). Note, in particular, his use of the modal calcu-
lusS5 to explain away the assumption ofpossibilia. For a different appeal to modality in a
similar context compare Kalderon (1996). Both Hellman and Kalderon present themselves
as influenced by Putnam (1967).
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28 Note that set theory can be seen as providing a sufficient, perhaps also a necessary,
condition for the possibility involved here: in the form of satisfiability in the set-theoretic
universe. A thoroughgoing modal structuralist will, however, avoid relying on set theory
that way; see Hellman (1990b). Compare in this connection also the discussion of “co-
herence” in Shapiro (1997, chs. 4 and 6), with explicit references to Hellman’s “logical”
modalities. (We will come back to the same problem in connection with Shapiro’s own
views later.)
29 Compare here Putnam (1967), Hellman (1989, chs. 1–2), Kalderon (1996), as well as
the related discussions in Resnik (1997, ch. 4), and Shapiro (1997, chs. 6–7). Note that
for Hellman the attraction of a modal-structuralist approach seems to come more from
underlying metaphysical considerations, in particular the felt need to do without abstract
objects, than from strong claims about what is implicit in mathematical practice (see Hell-
man 1989, Introduction). In addition, there is no indication that he wants to change ordinary
mathematical practice, say arithmetic, by somehow introducing modal considerations into
it.
30 In Parsons (1990) several such attempts are discussed in detail.
31 Note how different this characterization is from the one implicit in our original quote
from Parsons: “[M]athematical objects [. . . ] have no more to them than can be expressed
in terms of the basic relations of the structure” (ibid., 303). That quote suggests the idea of
a “pattern” (see Section 7).
32 For other examples of this use of “structure” in the current mathematical and logical
literature see, e.g., Gleason (1991, 55), and compare the references in the second half
of fn. 6. For historical sources see Bourbaki (1950), Dieudonné (1979), and Corry (1996).
Finally, see Bourbaki (1954–56, ch. IV), where a related, precise, but forbiddingly complex
general definition of “mathematical structure” is given.
33 Michael Dummett, also observing the ambiguous use of “structure” in the literature, has
recently proposed a similar distinction. As he puts it: “There is an unfortunate ambiguity
in the standard use of the word ‘structure’, which is often applied to an algebraic or rela-
tional system – a set with certain operations or relations defined on it, perhaps with some
distinguished elements; that is to say, to a model considered independently of any theory
which it satisfies. This terminology hinders a more abstract use of the word ‘structure’: if,
instead, we use ‘system’ for the foregoing purpose, we may speak of two systems as having
an identical structure, in this more abstract sense, just in case they are isomorphic. The
dictum that mathematics is the study of structures is ambiguous between these two senses
of ‘structure’ ” (Dummett 1991, 295). Note, however, that, while our distinction between
“particular” and “universal” structures corresponds closely to his between “concrete” and
“abstract” ones, Dummett’s use of “abstract” in this connection is potentially misleading
(as is Benacerraf’s, see (1965, 291) etc.). After all, a set-theoretic relational system such as
the finite von Neumann ordinals is already “abstract” in some sense, isn’t it? Thus a further
distinction between degrees or kinds of “abstractness” would be needed.
34 Note however, the following argument: Sequences of physical objects, temporal mo-
ments, etc. donot exemplify the natural number patternstrictly; or better, they do so only
if we conceive of them in anidealizedform. This point, derived from Plato, is emphasized
in Tait (1986a, 1986b). (It also constitutes a further difficulty for nominalist versions of
relativist and universalist structuralism; see Sections 4 and 5.)
35 Michael Resnik, in whose early writings on the topic a similar kind of realism was
proposed, has recently been more reserved. Thus with respect to “positing an ontology of
featureless objects, called ‘positions’, and construing structures as systems of relations or
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‘patterns’ in which these positions figure” he now wants to restrict himself to a “methodo-
logy of ontology” of mathematics, or to an “epistemic reading” (Resnik 1997, 269). What
exactly that means is, however, not immediately clear; for further elaboration see Resnik
(1997) (and compare fn. 38).
36 Resnik himself writes elsewhere: “Group theory does not posit a subject matter; when it
needs examples of groups it turns to other branches of mathematics” (Resnik 1997, 264).
He also acknowledges: “[I]t is more plausible that 2nd-order set theory is concerned with
a unique structure than that 1st-order set theory is” (ibid., 263).
37 As an anonymous referee has reminded us, Shapiro’s distinction between “algebraic”
and “non-algebraic theories” is not altogether happy. After all, there are various math-
ematical theories outside of algebra that have many non-isomorphic models, e.g., that of
Riemannian manifolds, of linear topological spaces, etc.; conversely, a number of algebraic
theories have only one model up to isomorphism, e.g., the theory of abelian groups of
exactly five elements. It is better, then, to make the distinction in terms of “categorical” vs.
“non-categorical theories” (as Shapiro himself does elsewhere implicitly).
38 Resnik acknowledges this as a problems when he writes: “[I do not] see how to express
the idea that a pattern ‘consists’ of a domain of positions and relations on that domain”
(Resnik 1997, 256). Actually, in the end Resnik treats the appeal to patterns, positions, etc.
as less than a full-fledged theoretical position anyway. He writes: “I have neither the talent
nor the taste for carrying out the project [of constructing a pattern theory]. Moreover, I see
no current mathematical need for doing so” (ibid., 257) This leads him, among others, to
be rather “cautious about asserting the existence of patterns” (ibid., 261; cf. footnote 35).
Shapiro, in contrast, explicitly proposes a systematic pattern theory (see below).
39 Shapiro puts this last issue in terms of questions about “coherence”; see Shapiro (1997,
132–136) etc. His explicit discussions of it, including various remarks about the related
notions of “consistency”, “satisfiability”, etc., are among the most interesting aspects of
his book. Still, their upshot is, as he himself makes clear, that his structure theory givesno
more nor lessof an answer to such existence questions than either set theory or Hellman’s
modal structuralism.
40 The proposal in the last paragraph is implicitly guided by a certain interpretation of
Dedekind’s work. Thus we see him as one of the first mathematicians to advocate such a
point of view, e.g., concerning the Dedekind–Peano Axioms in Dedekind (1887). (We plan
to come back to Dedekind’s views in a separate paper; compare also fn. 1 and the remark
at the very end of this paper.)
41 Another example is the predicate “to be a Euclidean Space” as determined by the list
of axioms given in Hilbert (1899). Note that, on a charitable interpretation, this is exactly
what Frege in his well-known debate with Hilbert took Hilbert’s axioms to do: to specify a
higher-order predicate (for him: concept); see Frege (1906). Frege himself seems, however,
not to have been entirely clear on this point, as the corresponding meta-theoretic point of
view was far from his usual way of thinking.
42 Predicates in our sense have not found much attention in recent philosophy of mathemat-
ics (but see the previous two footnotes for more historical references). On the other hand, in
contemporary philosophy of science they have played some role, and expressly in connec-
tion with a “structuralist program”; see Sneed (1971), more recently also Balzer, Moulines
and Sneed (1987). Note, in particular, remarks such as the following: “The essence of this
[structuralist] doctrine is that all such informal axiomatizations of mathematical theories
may be regarded as, more or less, adequate definitions of set-theoreticpredicates– that
is roughly,predicatesdefinable with the conceptual apparatus of set theory. (Sneed 1971,
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9, our emphasis). Note also that Sneed’s and his followers’ approach is partly based on
earlier work done by Patrick Suppes, e.g., in Suppes (1957). In Suppes’ work theories
from mathematical physics and from pure mathematics are treated correspondingly.
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