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1 Introduction

This paper addresses a number of fundamental problems in logic and the philosophy
of mathematics by considering some more technical problems in model theory and set
theory. The interplay between syntax and semantics is usually considered the hallmark
of model theory. At first sight, Shelah’s notion of abstract elementary class shatters that
icon. As in the beginnings of the modern theory of structures ([Cor92]]) Shelah studies
certain classes of models and relations among them, providing an axiomatization in the
Bourbaki ([Bou50]]) as opposed to the Godel or Tarski sense: mathematical require-
ments, not sentences in a formal language. This formalism-free approach ([Kenl13[])
was designed to circumvent confusion arising from the syntactical schemes of infini-
tary logic; if a logic is closed under infinite conjunctions, what is the sense of studying
types? However, Shelah’s presentation theorem and more strongly Boney’s use [Bon]|
of aec’s as theories of L,, ., (for & strongly compact) reintroduce syntactical arguments.
The issues addressed in this paper trace to the failure of infinitary logics to satisfy the
upward Lowenheim-Skolem theorem or more specifically the compactness theorem.
The compactness theorem allows such basic algebraic notions as amalgamation and
joint embedding to be easily encoded in first order logic. Thus, all complete first or-
der theories have amalgamation and joint embedding in all cardinalities. In contrast
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these and other familiar concepts from algebra and model theory turn out to be heavily
cardinal-dependent for infinitary logic and specifically for abstract elementary classes.
This is especially striking as one of the most important contributions of modern model
theory is the freeing of first order model theory from its entanglement with axiomatic
set theory ([BallSal], chapter 7 of [Ball5bl]).

Two main issues are addressed here. We consider not the interaction of syntax
and semantics in the usual formal language/structure dichotomy but methodologically.
What are reasons for adopting syntactic and/or semantic approaches to a particular
topic? We compare methods from the very beginnings of model theory with semantic
methods powered by large cardinal hypotheses. Secondly, what then are the connec-
tions of large cardinal axioms with the cardinal dependence of algebraic properties in
model theory. Here we describe the opening of the gates for potentially large inter-
actions between set theorists (and incidentally graph theorists) and model theorists.
More precisely, can the combinatorial properties of small large cardinals be coded as
structural properties of abstract elementary classes so as to produce Hanf numbers
intermediate in cardinality between ‘well below the first inaccessible’ and ‘strongly
compact’?

Most theorems in mathematics are either true in a specific small cardinality
(at most the continuum) or in all cardinals. For example all, finite division rings are
commutative, thus all finite Desarguesian planes are Pappian. But all Pappian planes
are Desarguean and not conversely. Of course this stricture does not apply to set theory,
but the distinctions arising in set theory are combinatorial. First order model theory, to
some extent, and Abstract Elementary Classes (AEC) are beginning to provide a deeper
exploration of Cantor’s paradise: algebraic properties that are cardinality dependent. In
this article, we explore whether certain key properties (amalgamation, joint embedding,
and their relatives) follow this line. These algebraic properties are structural in the
sense of [Cor04].

Much of this issue arises from an interesting decision of Shelah. Generaliz-
ing Fraissé [Fra54] who considered only finite and countable stuctures, Jonsson laid
the foundations for AEC by his study of universal and homogeneous relation systems
[J6n56,J6n60]. Both of these authors assumed the amalgamation property (AP) and the
joint embedding property (JEP), which in their context is cardinal independent. Vari-
ants such as disjoint or free amalgamation (DAP) are a well-studied notion in model
theory and universal algebra. But Shelah omitted the requirement of amalgamation in
defining AEC. Two reasons are evident for this: it is cardinal dependent in this context;
Shelah’s theorem (under weak diamond) that categoricity in x and few models in <™
implies amalgamation in x suggests that amalgamation might be a dividing line.

Grossberg [Gro02, Conjecture 9.3] first raised the question of the existence of
Hanf numbers for joint embedding and amalgamation in Abstract Elementary Classes
(AEC). We define four kinds of amalgamation properties (with various cardinal param-
eters) in Subsection [I.1] and a fifth at the end of Section 3.1} The first three notions
are staples of the model theory and universal algebra since the fifties and treated for
first order logic in a fairly uniform manner by the methods of Abraham Robinson. It



is a rather striking feature of Shelah’s presentation theorem that issues of disjointness
require careful study for AEC, while disjoint amalgamation is trivial for complete first
order theories.

Our main result is the following:

Theorem 1.0.1. Let s be strongly compact and K be an AEC with Lowenheim-Skolem
number less than k. If K satisﬁes{]_-] AP/JEP/DAP/DJEP/NDJEP for models of size
[1, < k), then K satisfies AP/JEP/DAP/DJEP/NDJEP for all models of size > .

We conclude with a survey of results showing the large gap for many prop-
erties between the largest cardinal where an ‘exotic’ structure exists and the smallest
where eventual behavior is determined. Then we provide specific question to investi-
gate this distinction.

Our starting place for this investigation was second author’s work [Bonl| that
emphasized the role of large cardinals in the study of AEC. A key aspect of the defini-
tion of AEC is as a mathematical definition with no formal syntax - class of structures
satisfying certain closure properties. However, Shelah’s Presentation Theorem says
that AECs are expressible in infinitary languages, L .,, which allowed a proof via suf-
ficiently complete ultraproducts that, assuming enough strongly compact cardinals, all
AEC’s were eventually tame in the sense of [GV06].

Thus we approached the problem of finding a Hanf number for amalgamation,
etc. from two directions: using ultraproducts to give purely semantic arguments and
using Shelah’s Presentation Theorem to give purely syntactic arguments. However,
there was a gap: although syntactic arguments gave characterizations similar to those
found in first order, they required looking at the disjoint versions of properties, while
the semantic arguments did not see this difference.

The requirement of disjointness in the syntactic arguments stems from a lack
of canonicity in Shelah’s Presentation Theorem: a single model has many expansions
which means that the transfer of structural properties between an AEC K and it’s
expansion can break down. To fix this problem, we developed a new presentation
theorem, called the relational presentation theorem because the expansion consists of
relations rather than the Skolem-like functions from Shelah’s Presentation Theorem.

Theorem 1.0.2 (The relational presentation theorem, Theorem [3.2.3). To each AEC
K with LS(K) = k in vocabulary T, there is an expansion of T by predicates of arity
r and a theory T in 1L ary+ .+ such that K is exactly the class of T reducts of models
of T*.

Note that this presentation theorem works in L2x)+ .+ and has symbols of
arity £, a far cry from the L(2x)+ ,, and finitary language of Shelah’s Presentation
Theorem. The benefit of this is that the expansion is canonical or functorial (see

I'This alphabet soup is decoded in Deﬁnitionm



Definition [3.0.6). This functoriality makes the transfer of properties between K and
(Mod T™, C,+) trivial (see Proposition|3.0.7)). This allows us to formulate natural syn-
tactic conditions for our structural properties.

Comparing the relational presentation theorem to Shelah’s, another well-
known advantage of Shelah’s is that it allows for the computation of Hanf num-
bers for existence (see Section E[) because these exist in L, . However, there is
an advantage of the relational presentation theorem: Shelah’s Presentation Theorem

works with a sentence in the logic ]L(QL s Kyt and there is little hope of bring-

ing that cardinal dowrﬂ On the other hand, the logic and size of theory in the rela-
tional presentation theorem can be brought down by putting structure assumptions on
the class K, primarily on the number of nonisomorphic extensions of size LS(K),
H(M,N)/=: M <g N from KLS(K)H'

We would like to thank Spencer Unger and Sebastien Vasey for helpful dis-
cussions regarding these results.

1.1 Preliminaries

We discuss the relevant background of AECs, especially for the case of disjoint amal-
gamation.

Definition 1.1.1. We consider several variations on the joint embedding property, writ-
ten JEP or JEP[j1, K) .

1. Given a class of cardinals F and an AEC K, K r denotes the collection of
M € K such that |M| € F. When F is a singleton, we write K, instead of
K (..y. Similarly, when F is an interval, we write < r in place of [LS(K), k);
< k in place of [LS(K), k|; > k in place of {\ | A > k}; and > k in place of
{A| A >k}

2. AnAEC (K, < f¢) has the joint embedding property, JEP, (on the interval [, k))
if any two models (from K, .)) can be K -embedded into a larger model.

3. If the embeddings witnessing the joint embedding property can be chosen to
have disjoint ranges, then we call this the disjoint embedding property and write
DJEP.

4. An AEC (K, <) has the amalgamation property, AP, (on the interval [ju, k))
if, given any triple of models Mo < My, Mz (from K, ,.)), My and Mz can be
K -embedded into a larger model by embeddings that agree on M.

5. If the embeddings witnessing the amalgamation property can be chosen to have
disjoint ranges except for My, then we call this the disjoint amalgamation prop-
erty and write DAP.

’Indeed an AEC K where the sentence is in a smaller logic would likely have to have satisfy the very
strong property that there are < 255 (K) many 7(K) structures that are not in K



Definition 1.1.2. /. A finite diagram or EC(T,T')-class is the class of models of a
first order theory T’ which omit all types from a specified collection T" of complete
types in finitely many variables over the empty set.

2. Let I be a collection of first order types in finitely many variables over the empty
set for a first order theory T in a vocabulary 7. A PC(T,T,7) class is the
class of reducts to T C 11 of models of a first order T -theory T which omit all
members of the specified collection " of partial types.

2 Semantic arguments

It turns out that the Hanf number computation for the amalgamation properties is im-
mediate from Boney’s “Lo§’ Theorem for AECs” [Bonl, Theorem 4.3]. We will sketch
the argument for completeness. For convenience here, we take the following of the
many equivalent definitions of strongly compact; it is the most useful for ultraproduct
constructions.

Definition 2.0.3 ([Jec06].20). The cardinal k is strongly compact iff for every S and
every k-complete filter on S can be extended to a k-complete ultrafilter. Equivalently,
for every X\ > K, there is aﬁnzﬂ k-complete ultrafilter on P.A = {o C X\ : o] < Kk}.

For this paper, “essentially below x” means “LS(K) < k.”

Fact 2.0.4 (Lo$” Theorem for AECs). Suppose K is an AEC essentially below r and
U is a k-complete ultrafilter on 1. Then K and the class of K-embeddings are closed
under k-complete ultraproducts and the ultrapower embedding is a K-embedding.

The argument for Theorem [2.0.5] has two main steps. First, use Shelah’s pre-
sentation theorem to interpret the AEC into L ., and then use the fact that L, , classes
are closed under ultraproduct by «-complete ultraproducts.

Theorem 2.0.5. Let k be strongly compact and K be an AEC with Lowenheim-Skolem
number less than k.

o If K satisfies AP(< k) then K satisfies AP.

o If K satisfies JEP(< k) then K satisfies JEP.

e If K satisfies DAP(< k) then K satisfies D AP.

Proof: We first sketch the proof for the first item, AP, and then note the
modifications for the other two.

3U is fine iff G(c) := {z € Px()\)|a € 2} is an element of U for each o < .



Suppose that K satisfies AP(< &) and consider a triple of models
(M, My, My) with M < e My, My and [M| < [My]| < |[M| = A > k. Now we
will use our strongly compact cardinal. An approximation of (M, My, M) is a triple
N = (NN NN NNy e (k.,)? such that NNV < M, NN < m,, NN < NN

for £ = 1,2. We will take an ultraproduct indexed by the set X below of approxima-
tions to the triple (M, My, Ms). Set

X :={N € (K_.,)?: N is an approximation of (M, My, M>)}

For each N € X, AP(< k) implies there is an amalgam of this triple. Fix
fejv : NZJV — N*]V to witness this fact. For each (A, B,C) € [M]|<"® x [M;]<" x
[M2]<*, define

G(A,B,C):={NeXx:Ac NN Bc NN cc NN}

These sets generate a x-complete filter on X, so it can be extended to a x-complete
ultrafilter U on X; note that this ultrafilter will satisfy the appropriate generalization of
fineness, namely that G(A, B, C) is always a U-large set.

We will now take the ultraproduct of the approximations and their amalgam.
In the end, we will end up with the following commuting diagram, which provides the
amalgam of the original triple.

M, I NN U

S
-

M } nnN ju nNN /U
\ N 4
M, - AN
2

First, we use £o§’ Theorem for AECs to get the following maps:
h:M— 1NN U
he: My - TINN /U fort=1,2

h is defined by taking m € M to the equivalence class of constant function N — z;
this constant function is not always defined, but the fineness-like condition guarantees
that it is defined on a U-large set (and Ky, ho are defined similarly). The uniform
definition of these maps imply that hy | M = h | M = ho | M.

Second, we can average the fe]V maps to get ultraproduct maps

N . uvN v - uvN ju



These maps agree on IIN N /U since each of the individual functions do. As each M,
embeds in IIN, L,]V /U the composition of the f and h maps gives the amalgam.

There is no difficulty if one of My or M; has cardinality < ; many of the
approximating triples will have the same first or second coordinates but this causes
no harm. Similary, we get the JEP transfer if My = (). And we can transfer disjoint

amalgamation since in that case each V. 1]V N NQN = NV and this is preserved by the

ultraproduct. g

3 Syntactic Approaches

The two methods discussed in this section both depend on expanding the models of K
to models in a larger vocabulary. We begin with a concept introduced in Vasey [Vasa,
Definition 3.1].

Definition 3.0.6. A functorial expansion of an AEC K in a vocabulary T is an AEC K
in a vocabulary T extending T such that

1. each M € K has a unique expansion toalM € K,
2. iff+ MM then f: M= M and

3. if M is a strong substructure of M " for K, then M is strong substructure of M’
for K.

This concept unifies a number of previous expansions: Morley’s adding a
predicate for each first order definable set, Chang adding a predicate for each L,
definable set, 7¢?, [CHL85] adding predicates R, (x,y) for closure (in an ambient
geometry) of x, and the expansion by naming the orbits in Fraisse modeﬂ

An important point in both [Vasa] and our relational presentation is that the
process does not just reduce the complexity of already definable sets (as Morley,
Chang) but adds new definable sets. But the crucial distinction here is that the expan-
sion in Shelah’s presentation theorem is not ‘functorial’ in the sense here: each model
has several expansions, rather than a single expansion. That is why there is an extended
proof for amalgamation transfer in Section[3.1] while the transfer in Section[3.2]follows
from the following result which is easily proved by chasing arrows.

Proposition 3.0.7. Let K 1o K be a functorial expansion. (K, <) has -
amalgamation [joint embedding, etc.] iff K has A\-amalgamation [joint embedding,
etc.].

4This has been done for years but there is a slight wrinkle in e.g. [BKLIS5] where the orbits are not first
order definable.



3.1 Shelah’s Presentation Theorem

In this section, we provide syntactic characterizations of the various amalgamation
properties in a finitary language. Our first approach to these results stemmed from the
realization that the amalgamation property has the same syntactic characterization for
L, . as for first order logic if k is strongly compact, i.e., the compactness theorem
hold for L, ,,. Combined with Boney’s recognition that one could code each AEC
with L owenheim-Skolem number less than « in L, , this seemed a path to showing
amalgamation. Unfortunately, this path leads through the trichotomy in Fact[3.1.1] The
results depend directly (or with minor variations) on Shelah’s Presentation Theorem
and illustrate its advantages (finitary language) and disadvantage (lack of canonicity).

Fact 3.1.1 (Shelah’s presentation theorem). If K is an AEC (in a vocabulary T with
|7| < LS(K)) with Liwenheim-Skolem number LS(K), there is a vocabulary 71 2O T
with cardinality |LS(K) K)
partial types such that

, a first order Ti-theory Ty and a set T of at most 25

I. K={M'|r:M' =T and M’ omits I'},

2. if M’ is a T-substructure of N' where M',N' satisfy T1 and omit T' then
M'|t <g N'|1; and

3.0M < N € Kand M' € EC(T1,T) such that M'|t = M, then there is
N' € EC(Ty,T) such that M' C N’ and N'|t = N.

The exact assertion for part 3 is new in this paper; we don’t include the slight
modification in the standard proofs (e.g. [Bal09, Theorem 4.15]). Note that we have a
weakening of Definition caused by the possibility of multiple ‘good’ expansion
of a model M.

Here are the syntactic conditions equivalent to DAP and DJEP.

Definition 3.1.2. e U has < A-DAP satisfiability iff for any expansion by con-
stants ¢ and all sets of atomic and negated atomic formulas (in 7(¥) U {c})
d1(x,¢) and d2(y,c) of size < A if ¥ A Ix(Aoi(x,¢) AN A\x; #c¢j) and
U A3y (A a2y, c) AN\ vy # c;) are separately satisfiable, then so is

UAIX,y /\51(x,c)/\/\62(y,c) /\/\:m # yj

4,J

e U has < A\-DJEP satisfiability iff for all sets of atomic and negated atomic formu-
las (in 7(¥)) 61(x) and 02(y) of size < X\, if UAIx A\ §1(x) and UA3y A d2(y)

are separately satisfiable, then so is

U ATy /\51(X)/\/\52(Y) /\/\xi # Yj
]



We now outline the argument for DJE P; the others are similar. Note that
(2) — (1) for the analogous result with DAP replacing DJEP has been shown by
Hyttinen and Kesild [HKO06, 2.16].

Lemma 3.1.3. Suppose that K is an AEC, A > LS(K), and Ty and T are from
Shelah’s Presentation Theorem. Let @ be the L, S(K)+ w theory that asserts the satis-
faction of T1 and omission of each type in I'. Then the following are equivalent:

1. K.y has DJEP.
2. (BEC(Th,T'),C)y has DJEP.
3. ® has < A\-DJ E P-satisfiability.

Proof:

(1) <+ (2): First suppose that K . has DJEP. Let M§, My € EC(T1,T") < and set My :=
My | 7. By disjoint embedding for ¢ = 0,1, there is N € K such that each
M,y < N. Our goal is to expand N to be a member of EC(T1,T’) in a way that
respects the already existing expansions.
Recall from the proof of Fact[3.1.1]that expansions of M/ € K to models M* €
EC(T1,T) exactly come from writing M as a directed union of LS (K)-sized
models indexed by P,,|M]|, and then enumerating the models in the union. Thus,
the expansion of M, to M, come from {M;, € KLS’(K) | aM,}, where

M; .
|My.a| = {<F|Zal) ‘ (a) | i« < LS(K)}, where the functions F}, are from the

expansion. Because M7 and M, are disjoint strong submodels of N, we can
write IV as a directed union of {Na € Ko g, | a € N} such thata € M,
implies that M, , = N,. Now, any enumeration of the universes of these models
of order type LS(K) will give rise to an expansion of N to N* € EC(T3,T")

\N
by setting (F"a‘) (a) to be the ith element of | Ny|.
Thus, choose an enumeration of them that agrees with the original enumera-

tions from M that is, if a € My, then the ith element of |Na| = [Mya| is

o\ My
(Ffa‘) (a) (note that, as used before, the disjointness guarantees that there is
at most one ¢ satisfying this). In other words, our expansion N* will have

My

ae M, — (Flgl) (a) = (F‘Q‘)N* (a) forall i < LS(K)

This precisely means that M, C N*, as desired. Furthermore, we have
constructed the expansion so N* € EC(T},T'). Thus, (EC(T1,T"),C)<x has
DIJEP.

Second, suppose that EC(Ty,T") has A-DJEP. Let My, M; € K; WLOG, My N
M, = (). Using Shelah’s Presentation Theorem, we can expand to My, My €



EC(Ty,T). Then we can use disjoint embedding to find N* € EC(11,T) such
that M7, M3 C N*. By Shelah’s Presentation Theorem (1), N:=N*|7
is the desired model.

(2) ¢ (3): First, suppose that & has < A\-DJEP satisfiability. Let M, M € EC(T,T")

be of size < A. Let dp(x) be the quantifier-free diagram of Mand d;(y)be
the quantifier-free diagram of M;. Then M§ E ® A 3x A do(x); similarly,
® ATy A 61 (y) is satisfiable. By the satisfiability property, there is N* such that

N EwAIxy | Ndox) A Nory) A N\ai £y
i,J

Then N* € EC(T1,T) and contains disjoint copies of M and M7, represented
by the witnesses of x and y, respectively.

Second, suppose that (EC(T},T'), C) < has DJIEP. Let ® A 3x A d1(x) and @ A
Jy A d2(y) be as in the hypothesis of < A-DJEP satisfiability. Let M witness
the satisfiability of the first and M witness the satisfiability of the second; note
both of these are in EC(T,T). By DJEP, there is N € EC(T},T) that contains
both as substructures. This witnesses

U AKX,y /\51(X)/\/\52(Y)/\/\17i # Yj

Note that the formulas in 6; and &5 transfer up because they are atomic or negated
atomic.

The following is a simple use of the syntactic characterization of strongly
compact cardinals.

Lemma 3.1.4. Assume & is strongly compact and let U € Ly, ,,(11) and X > k. If U
has < k-DJEP-satisfiability, then ¥ has < \-DJEP-satisfiability.

Proof: < A\-DJEP satisfiability hinges on the consistency of a particular L, ,
theory. If ¥ has < x-DJEP-satisfiability, then every < « sized subtheory is consistent,
which implies the entire theory is by the syntactic version of strong compactness we
introduced at the beginning of this section.

Obviously the converse (for ¥ € Lo ,,) holds without any large cardinals.

Proof of Theorem [1.0.1)for DAP and D.JEP: We first complete the proof
for DJEP. By Lemma [3.1.3] < «-DJEP implies that ® has < «-DJEP satisfiability. By

10



Lemma|3.1.4] ® has < A-DJEP satisfiability for every A > . Thus, by Lemma[3.1.3
again, K has DJEP. The proof for DAP is exactly analogous. T

3.2 The relational presentation theorem

We modify Shelah’s Presentation Theorem by eliminating the two instances where an
arbitrary choice must be made: the choice of models in the cover and the choice of
an enumeration of each covering model. Thus the new expansion is functorial (Defi-
nition [3.0.6). However, there is a price to pay for this canonicity. In order to remove
the choices, we must add predicates of arity LS(K) and the relevant theory must allow
LS(K)-ary quantification, potentially putting it in L(axy+ .+, where & = LS(K); con-
trast this with a theory of size < 2" in IL.+ ,, for Shelah’s version. As a possible silver
lining, these arities can actually be brought down to I , K o))t mte Thus, proper-
ties of the AEC, such as the number of models in the Lowenheim-Skolem cardinal are
reflected in the presentation, while this has no effect on the Shelah version.

We fix some notation. Let K be an AEC in a vocabulary 7 and let k =
LS(K). We assume that K contains no models of size < k. The same arguments
could be done with x > LS(K), but this case reduces to applying our result to K > .

We fix a collection of compatible enumerations for models M € K. Com-
patible enumerations means that each M has an enumeration of its universe, de-
noted m™ = (mM : i < k), and, if M = M’, there is some fixed isomorphism

farar © M = M’ such that farpr (mM) = mM and if M = M’ = M, then
faprr = faar par © farme
For each isomorphism type [M]~ and [M < N]~ with M, N € K,;, we add

toTr

Ry (x) and Rpr<ny(x35y)

as k-ary and k2-ary predicates to form 7*.

A skeptical reader might protest that we have made many arbitrary choices
so soon after singing the praises of our choiceless method. The difference is that all
choices are made prior to defining the presentation theory, 7.

Once T* is defined, no other choices are made.

The goal of the theory T™ is to recognize every strong submodel of size x
and every strong submodel relation between them via our predicates. This is done
by expressing in the axioms below concerning sequences x of length at most x the
following properties connecting the canonical enumerations with structures in K.

Ryar)(x) holds iff z; — m? is an isomorphism

11



Ripr<n(x,y) holds iff x; — m and y; — mY are isomorphisms and z; = y; iff
mM — N'

7 m]

Note that, by the coherence of the isomorphisms, the choice of representative
from [M]~ doesn’t matter. Also, we might have M = M’; N = N’; M < N and
M’ < N’; but not (M,N) = (M',N'). In this case Rjp;<n) and Ripp <y are
different predicates.

We now write the axioms for 7. A priori they are in the logic Liaxy+ o+ (%)
but the theorem states a slightly finer result. To aid in understanding, we include a
description prior to the formal statement of each property.
Definition 3.2.1. The theory T* in L ; ¢ ) )+ o+ (7*) is the collection of the fol-
lowing schema:

1. 1f Rypg)(x) holds, then z; — m2’ should be an isomorphism.
If qb(zl,.. zn) is an atomic or negated atomic T-formula that holds of
mM M , then include

Vx (R[M] (X) — (]5(1'1‘17 ce. ax’in))

2. If Rppr< ) (x,y) holds, then z; +— mM and y; — m¥ should be isomorphisms
and the correct overlap should occur.
If M < N and i ~ j; is the function such that m = mév then include

vx,y (R[M<N] (x,y) = (R[M]( ) A Riny(y /\ T = yg))

1<K

3. Every x-tuple is covered by a model.
Include the following where 1g(x) = 1g(y) =

Vx3dy \/ Ry /\ \/ Ti = Yj;

[M]~€K, /2 i<k j<K

4. If Ryyj(x) holds and M < N, then Rj;~n)(x°, x) should hold for the appro-
priate subtuple x° of x.
IfM < N and 7 : k — k is the unique map so mM = m®,
be the subtuple of x such that 7 = x;) and include

Vx (Rin)(x) = Rppr<n (X7, x))

(i) then denote X™ to

5. Coherence: If M C N are both strong substructures of the whole model, then
M < N.
IfM < N and mM = m , then include

vx,y (R[JW]( ) A Rin(y /\ Ty = Y5, — Rpr<n (%, }’)>

1<K

12



Remark 3.2.2. We have intentionally omitted the converse to Definition 3.2.1}(1),
namely

Vx /\ ¢(-73i1a R ,min) — R[M] (X)
¢(Zi1 e Zip )etqu(M/Q)
because it is not true. The “toy example” of a nonfinitary AEC—the L(Q)-theory of
an equivalence relation where each equivalence class is countable—gives a counter-
example.

For any M* F T*, denote M™ [T by M.

Theorem 3.2.3 (Relational Presentation Theorem). 1. If M* ET* then M* | T €
K. Further, for all My € K, we have M* F Ry (m) implies that m enu-
merates a strong substructure of M.

Every M € K has a unique expansion M* that models T™.
If M < N, then M* C N*.
If M* C N* both model T*, then M < N.

S N

If M < N and M* E T such that M* | 7 = M, then there is N* £ T such that
M*C N*and N* | 7= N.

Moreover, this is a functorial expansion in the sense of Vasey [Vasdl Definition
3.1] and (Mod T™*, C) is an AEC except that it allows k-ary relations.

Note that although the vocabulary 7* is k-ary, the structure of objects and
embeddings from (Mod T, C) still satisfies all of the category theoretic conditions on
AECs, as developed by Lieberman and Rosicky [LR]. This is because (Mod T*, C) is
equivalent to an AEC, namely K, via the forgetful functor.

Proof: (I): We will build a <-directed system {M, C M :a € <“M} that
are members of K,,. We don’t (and can’t) require in advance that M, < M, but this
will follow from our argument.

For singletons a € M, taking x to be (a : ¢ < &) in (3.2.1)3), implies that
there is M, € K, and m* € "M with a € m® such that M F Ry, (m®). By (1),

’
8

. M . . .
this means that m{ — m; ° is an isomorphism. Set M, := m

Suppose a is a finite sequence in M and M, is defined for every a’ C a.
Using the union of the universes as the x in (3.2.1]3), there is some N € K, and
m? € * M such that

5We mean that we set My, to be T-structure with universe the range of m® and functions and relations
inherited from M}, via the map above.
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e |My| C m®foreacha’ C a.

e MFE R[N](ma).

By l- Hi this means that M F Ry ~(m?, m?), after some permutation of the
parameters. By (@) and (1), this means that M, < N set M, := m?

Now that we have finished the construction, we are done. AECs are closed
under directed unions, so Uacps M, € K. But this model has the same universe as M
and is a substructure of M; thus M = Uacp M, € K.

For the further claim, suppose M* & R[5,j(m). We can redo the same proof
as above with the following change: whenever a € M is a finite sequence such thata C
m, then set m® = m directly, rather than appealing to (3.2.1][3) abstractly. Note that
m witnesses the existential in that axiom, so the rest of the construction can proceed
without change. At the end, we have

m = Ma < U Ma/ =
a’e<w M

@): First, it’s clear that M € K has an expansion; for each My < M of size
K, make R[MO](<mZJ-W° : i < k)) hold and, for each My < Ny < M of size x, make

R[MMNO]((mfwo ci < k), (MM 1 i < £)) hold. Now we want to show this expansion
is the unique one.

Suppose M+ = T* is an expansion of M. We want to show this is in fact the expansion
described in the above paragraph. Let My < M. By (3.2.1]3) and (I) of this theorem,
there is Ny < M and n € "M such that

[ ] ]\4+ = R[NO](II)
o [My|Cn

By coherence, My < n. Since n; — mzN °is an isomorphism there is M§ =
My such that Mg < No. Note that 7* = VxR (x) ¢ Riagy) (x). By B2-T),

MTE R[M(T<NO](<’ITLMO 1< H>,1’1)

3

By l ’ Mt E R[Mg](<mf.”° : 4 < K)), which gives us the conclusion by the
further part of (IJ) of this theorem.

Similarly, if My < Ny < M, it follows that
M™TE Ripy<ngy ((m ci < k), (m}° 1i < k)

K2

Thus, this arbitrary expansion is actually the intended one.
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(3): Apply the uniqueness of the expansion and the transitivity of <.

[@): As in the proof of (1), we can build <-directed systems {M,:a € <~ M}
and {Np :b € <“ N} of submodels of M and N, so that M, = N, whena € <“M.
From the union axioms of AECs, we see that M < N.

(B): This follows from (@), (@) of this theorem and the uniqueness of the
expansion.

Recall that the map M* € ModT* to M* | 7 € K is a an abstract
Morleyization if it is a bijection such that every isomorphism f : M = N in K lifts to
f:M*= N*and M < N implies M* C N*. We have shown that this is true of our
expansion. 1

Remark 3.2.4. The use of infinitary quantification might remind the reader of the
work on the interaction between AECs and L, ..+ by Shelah [She09, Chapter IV] and
Kueker [Kue08] (see also Boney and Vasey [BV] for more in this area). The main
difference is that, in working with L, .+, those authors make use of the semantic
properties of equivalence (back and forth systems and games). In contrast, particularly
in the following transfer result we look at the syntax of Lgr)+ o+

The functoriality of this presentation theorem allows us to give a syntactic
proof of the amalgamation, etc. transfer results without assuming disjointness (al-
though the results about disjointness follow similarly). We focus on amalgamation
and give the details only in this case, but indicate how things are changed for other
properties.

Proposition applied to this context yields the following result.

Proposition 3.2.5. (K, <) has \-amalgamation [joint embedding, etc.]  iff
(Mod T™*, C) has A-amalgamation [joint embedding, etc.].

Now we show the transfer of amalgamation between different cardinalities
using the technology of this section.

Notation 3.2.6. Fix an AEC K and the language T* from Theorem[3.2.3]

1. Given T*-structures Mg C M, M3, we define the amalgamation diagram
AD(My, M3 /M) to be

{d(emgs Cm,)) : ¢ is quantifier-free from T and for £ = 0 or 1,
M} E ¢(emy; Cm, ), withmgy € M§ and my € M}}

in the vocabulary 7™ U {cp, : m € M; U M3} where each constant is distinct
except for the common submodel My and ¢y, denotes the finite sequence of con-
Stants Cpyy s - -5 Cm,, -

15



The disjoint amalgamation diagram DAD (M, M5 /M) is

AD(M7, M3 /M5)U{cm, # cmy : My € M; — M}

2. Given Tt*-structures Mg, M{, we define the joint embedding diagram
JD(Mg, M) to be

{d(em)) : ¢ is quantifier-free from T and for £ = 0 or 1, M F ¢(cm) withm € M}

in the vocabulary 7* U {c,, : m € M{ U M3} where each constant is distinct.
The disjoint amalgamation diagram DJD (M, My) is

AD(M, M3 M) U (e, # ey my € M — M}

The use of this notation is obvious.

Claim 3.2.7. Any amalgam of M, and My over My is a reduct of a model of

T* U AD(M;, Mj /M;)

Proof: An amalgam of My < M, M, is canonically expandable to an
amalgam of M C M, M3, which is precisely a model of T* U AD (M7, M3 /M).
Conversely, a model of that theory will reduct to a member of K with embeddings of
M, and M, that fix M. 1

There are similar claims for other properties. Thus, we have connected amal-
gamation in K to amalgamation in (Mod 7™, C) to a syntactic condition, similar to
Lemma [3.1.3] Now we can use the compactness of logics in various large cardinals to
transfer amalgamation between cardinals. To do this, recall the notion of an amalga-
mation base.

Definition 3.2.8. For a class of cardinals F, we say M € Kr is a F-amalgamation
base (F-a.b.) if any pair of models from K r extending M can be amalgamated over
M. We use the same rewriting conventions as in Definition [[.1.1)(1), e. g., writing
< A-a.b. for [LS(K), \|-amalgamation base.

We need to specify two more large cardinal properties.

Definition 3.2.9. 1. A cardinal k is weakly compact if it is strongly inaccessible
and every set of k sentence in L, . that is < k-satisfiable is satisfiable is satisfi-

abldd

2. A cardinal k is measurable if there exists a k-additive, non-trivial, {0, 1}-valued
measure on the power set of k.

6 At one time strong inaccessiblity was not required, but this is the current definition
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3. Kkis (8, \)-strongly compact for 6 < k < Xifthere is a 6-complete, fine ultrafilter
on Pi(A).

K is A-strongly compact if it is (K, \)-strongly compact.

This gives us the following results syntactically.

Proposition 3.2.10. Suppose LS(K) < k.

o Let k be weakly compact and M € K. If M can be written as an increasing
union U; <, M; with each M; € K., being a < k-a.b., then M is a k-a.b.

o Let k be measurable and M € K. If M can be written as an increasing union
Ui<wM; with each M; being a A;-a.b., then M is a (sup; . A;)-a.b.

o Let k be A-strongly compact and M € K. If M can be written as a directed
union Ugep My with each M, being a < k-a.b., then M is a < X-a.b.

Proof: The proof of the different parts are essentially the same: take a valid
amalgamation problem over M and formulate it syntactically via Claim in
L, . (7*). Then use the appropriate syntactic compactness for the large cardinal to
conclude the satisfiability of the appropriate theory.

First, suppose « is weakly compact and M = U;..M; € K, where M, €
K_.isa < k-ab. Let M < M?', M? is an amalgamation problem from K,. Find
resolutions (M} € K, :4i < x) with M; < M/ for £ = 1,2. Then

T*UAD(M"™, M* /M*) = | J (T* U AD(M}*, M?* /M)
<K
and is of size x. Each member of the union is satisfiable (by Claim because M;

is a < k-ab.) and of size < K, so T* U AD(M**, M?*/M*) is satisfiable. Since
M', M? € K, were arbitrary, M is a k-a.b.

Second, suppose that x is measurable and M = U,;.,M; where M, is a \;-
a.b. Set A = sup,., A; and let M < M*, M? is an amalgamation problem from K.
Find resolutions (M € K : i < k) with M; < M/ for ¢ = 1,2 and || M/|| = \;. Then

T*UAD(M"™, M* /M*) = | (T* U AD(M}*, M7* /M)

1<K

Each member of the union is satisfiable because M; is a A;-a.b. By the syntactic
characterization of measurable cardinals (see [[CK73, Exercise 4.2.6]), the union is
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satisfiable. Thus, M is A-a.b.

Third, suppose that « is A-strongly compact and M = Uzep, M, with each
M, being a < k-a.b. Let M < M, M? be an amalgamation problem from K. Find
directed systems (M € K, | xP,)\) with M,, < M for ¢ = 1,2. Then

T*UAD(M™, M*/M*) = | ) (T*UAD(M*, M;*/M}))
xEPL A

Every subset of the left side of size < « is contained in a member of the right side
because P\ is < k-directed, and each member of the union is consistent because
each M, is an amalgamation base. Because k is A-strongly compact, this means that
the entire theory is consistent. Thus, M is a A-a.b. T

From this, we get the following corollaries computing upper bounds on the
Hanf number for the < \-AP.

Corollary 3.2.11. Suppose LS(K) < k.

o [f K is weakly compact and K has < k-AP, then K has < k-AP.
o If k is measurable, cf \ = k, and K has < \-AP, then K has < AAP.

o [f K is A-strongly compact and K has < k-AP, then K has < \-AP.

Moreover, when & is strongly compact, we can imitate the proof of [MS90,
Corollary 1.6] to show that being an amalgamation base follows from being a < k-
existentially closed model of 7*. This notion turns out to be the same as the notion of
< k-universally closed from [Bonl|, and so this is an alternate proof of [Bon, Lemma
7.2].

4 The Big Gap

This section concerns examples of ‘exotic’ behavior in small cardinalities as opposed to
behavior that happens unboundedly often or even eventually. We discuss known work
on the spectra of existence, amalgamation of various sorts, tameness, and categoricity.

Intuitively, Hanf’s principle is that if a certain property can hold for only set-
many objects then it is eventually false. He refines this twice. First, if K a ser of
collections of structures K and ¢p(X,y) is a formula of set theory such ¢(K, )
means some member of K with cardinality \ satisfies P then there is a cardinal xp
such that for any K € K, if ¢(K, ) holds for some " > kp, then ¢(K, \) holds
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for arbitrarily large A. Secondly, he observed that if the property P is closed down for
sufficiently large members of each K, then ‘arbitrarily large’ can be replaced by ‘on a
tail’ (i.e. eventually).

Existence: Morley (plus the Shelah presentation theorem) gives a decisive
concrete example of this principle to AEC’s. Any AEC in a countable vocabulary
with countable Léwenheim-Skolem number with models up to J,,, has arbitrarily large
models. And Morley [Mor65]] gave easy examples showing this bound was tight for
arbitrary sentences of L, .,. But it was almost 40 years later that Hjorth [Hjo02,
HjoO7]] showed this bound is also tight for complete-sentences of L, .,. And a fine
point in his result is interesting.

We say a ¢ characterizes k, if there is a model of ¢ with cardinality x but no
larger. Further, ¢ homogeneously [Bau74] characterizes k if ¢ is a complete sentence of
Ly, ., that characterizes x, contains a unary predicate U such that if M is the countable
model of ¢, every permutation of U (M) extends to an automorphism of M (i.e. U (M)
is a set of absolute indiscernibles.) and there is a model N of ¢ with |U(N)| = k.

In [HjoO2], Hjorth found, by an inductive procedure, for each « < wy, a
countable (finite for finite o) set S, of complete L, ,-sentences such that some
do € S, characterizes N This procedure was nondeterministic in the sense that
he showed one of (countably many if « is infinite) sentences worked at each N; it
is conjectured [Soul3|] that it may be impossible to decide in ZFC which sentence
works. In [BKL15], we show a modification of the Laskowski-Shelah example (see
[LS93| IBEKL16]) gives a family of L, .-sentences ¢,., such that ¢, homogeneously
characterizes N, for r < w. Thus for the first time [BKL15] establishes in ZFC, the
existence of specific sentences ¢, characterizing N,..

Amalgamation: In this paper, we have established a similar upper bound for
a number of amalgamation-like properties. Moreover, although it is not known before-
hand that the classes are eventually downward closed, that fact falls out of the proof. In
all these cases, the known lower bounds (i. e., examples where AP holds initially and
eventually fails) are far smaller. We state the results for countable Lowenheim-Skolem
numbers, although the [BKS09, [KLH14]| results generalize to larger cardinalities.

The best lower bounds for the disjoint amalgamation property is J,,, as shown
in [KLH14] and [BKS09]. In [BKS09], Baldwin, Kolesnikov, and Shelah gave exam-
ples of L, .,-definable classes that had disjoint embedding up to X, for every count-
able « (but did not have arbitrarily large models). Kolesnikov and Lambie-Hanson
[KLH14] show that for the collection of all coloring classes (again L., -definable
when « is countable) in a vocabulary of a fixed size , the Hanf number for amalgama-
tion (equivalently in this example disjoint amalgamation) is precisely 3,.+ (and many
of the classes have arbitrarily large models). In [BKL15[, Baldwin, Koerwein, and
Laskowski construct, for each r < w, a complete L, .,-sentence ¢" that has disjoint
2-amalgamation up to and including N,._»; disjoint amalgamation and even amalgama-

"Malitz [Mal68]] (under GCH) and Baumgartner [Bau74] had earlier characterized the 3, for countable
a.
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tion fail in N,._; but hold (trivially) in N,.; there is no model in N, .

The joint embedding property and the existence of maximal models are
closely connectecﬂ The main theorem of [BKST6] asserts: If (\; : ¢ < a < Np)
is a strictly increasing sequence of characterizable cardinals whose models satisfy
JEP(< \g), there is an L, ,,-sentence 1) such that

1. The models of 4 satisfy JEP(< X¢), while JEP fails for all larger cardinals and
AP fails in all infinite cardinals.

2. There exist N non-isomorphic maximal models of ¢ in )\;r, for all 7 < «, but
no maximal models in any other cardinality; and

3. 1 has arbitrarily large models.

Thus, a lower bound on the Hanf number for either maximal models of the
joint embedding property is again J,,. Again, the result is considerably more compli-
cated for complete sentences. But [BS15b]] show that there is a sentence ¢ in a vocabu-
lary with a predicate X such thatif M |= ¢, |M| < | X (M)|* and for every  there is a
model with |M| = k* and | X (M)| = «. Further they note that if there is a sentence ¢
that homogenously characterizes «, then there is a sentence ¢’ with a new predicate B
such that ¢’ also characterizes x, B defines a set of absolute indiscernibles in the count-
able model, and there are models M) for A < & such that (|M|, |B(M,)|) = (&, A).
Combining these two with earlier results of Souldatos [Soul3|] one obtains several
different ways to show the lower bound on the Hanf number for a complete L, -
sentence having maximal models is 3, . In contrast to [BKST6], all of these examples
have no models beyond 3, .

No maximal models: Baldwin and Shelah [BS15al] have announced that the
exact Hanf number for the non-existence of maximal models is the first measurable
cardinal. Souldatos observed that this implies the lower bound on the Hanf number for
K has joint embedding of models at least x is the first measurable.

Tameness: Note that the definition of a Hanf number for tameness is more
complicated as tameness is fundamentally a property of two variables: K is (< x, {4)-
tame if for any N € K ,, if the Galois types p and q over IV are distinct, there is an
M < Nwith |[M| < xandp [ M #q | M.

Thus, we define the Hanf number for < k-tameness to be the minimal A such
that the following holds:

if K is an AEC with LS(K) < k thatis (< &, u)-tame for some p > \, then it is
(< K, p)-tame for arbitrarily largep.

8Note that, under joint embedding, the existence of a maximal model is equivalent to the non-existence
of arbitrarily large models
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The results of [Bonl] show that Hanf number for < x-tameness is x when & is strongly
compacﬂ However, this is done by showing a much stronger “global tameness” result
that ignores the hypothesis: every AEC K with LS(K) < k is (< k, p)-tame for
all 4 > k. Boney and Unger [BU], building on earlier work of Shelah [Shel], have
shown that this global tameness result is actually an equivalence (in the almost strongly
compact form). Also, due to monotonicity results for tameness, the Boney results show
that the Hanf number for < A-tameness is at most the first almost strongly compact
above A (if such a thing exists). The results [BU, Theorem 4.9] put a large restriction
on the structure of the tameness spectrum for any ZFC Hanf number. In particular, the
following

Fact4.0.12. Leto = 0¥ < k < \. Every AEC K with LS(K) = o is (< K, a()‘q))-

tame iff k is (o, \)-strongly compact.

This means that a ZFC (i. e., not a large cardinal) Hanf number for < &-
tameness would consistently have to avoid cardinals of the form PACR) (under GCH,
all cardinals are of this form except for singular cardinals and successors of singulars
of cofinality less than k).

One could also consider a variation of a Hanf number for < « that requires
(< K, p)-tameness on a tail of p, rather than for arbitrarily large p. The argument
above shows that that is exactly the first strongly compact above &.

Categoricity: Another significant instance of Hanf’s observation is Shelah’s
proof in [She99a] that if K is taken as all AEC’s K with LS g bounded by a cardinal
K, then there is such an eventual Hanf number for categoricity in a successor. Boney
[Bon] places an upper bound on this Hanf number as the first strongly compact above
. This depended on the results on tameness discussed in the previous paragraphs.

Building on work of Shelah [She(9, [Shel0l], Vasey [Vasb] proves that if a
universal class (see [[She87])) is categorical in a A at least the Hanf number for existence,
then it has amalgamation in all 4+ > x. The he shows that for universal class in a
countable vocabulary, that satisifies amalgamation, the Hanf number for categoricity
is at most J5 (2ot Note that the lower bound for the Hanf number for categoricity is
N, ([HS90, BKO9]).

Question 4.0.13. 1. Can one calculate in ZF C an upper bound on these Hanf num-
bers for ‘amalgamation’? Ca the gaps in the upper and lower bounds of the
Hanf numbers reported here be closed in ZFC? Will smaller large cardinal ax-
ioms suffice for some of the upper bounds? Does categoricity help?

2. (Vasey) Are there any techniques for downward transfer of amalgamatiorm?

9This can be weakened to almost strongly compact; see Brooke-Taylor and Rosicky [BTRI3] or Boney
and Unger [BU].

10Grossberg initiated this general line of research.

Note that there is an easy example in [BKS09] of a sentence in Ly, w that is categorical and has
amalgamation in every uncountable cardinal but it fails both in Rg.
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3. Does every AEC have a functional expansion to a PCT class. Is there a natural
class of AEC’s with this property — e.g. solvable groups?

4. CarE] one define in ZFC a sequence of sentences ¢, for o < w1, such that ¢,
characterizes N, ?

5. (Shelah) If X, < 2%o Ly, «,-sentence has models up to X, must it have a
model in 280 ? (He proves this statement is consistent in [She99b|]).

6. (Souldatos) Is any cardinal except N characterized by a complete sentence of
Ly, « but not homogeneously?
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