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Abstract

Theorem. Suppose that an ℵ0-presentable K is almost Galois ω-stable. If K has only countably
many models in ℵ1, then K is Galois ω-stable.

1 Introduction
The immediate impetus for this paper was [3] where we studied, what we called analytically presented
Abstract Elementary Classes (AEC). (These classes are called by many names: ℵ0-presentable classes,
PC(ℵ0,ℵ0), PCΓ(ℵ0,ℵ0) or in the language of Keisler[8], PCδ in Lω1,ω [1]. In this paper we will most
often use ℵ0-presented.) ‘Analytically presented’ emphasizes that one can deduce from Burgess’s theorem
on Σ1-equivalence relations that such a class is either ω-Galois stable, almost Galois ω-stable (no countable
model has a perfect set of Galois types over it), or there is a countable model with a perfect set of Galois
types over it. This topic first arose in [15]; for further background on the context see [3, 1, 14]. Our main
goal is to prove that an almost Galois ω-stable ℵ0-presentable AEC with only countably many models in ℵ1
is Galois ω-stable. This extends earlier work by Hyttinen-Kesala [7] and Kueker [10] proving the result for
sentences of Lω1,ω with no requirement on the number of uncountable models.

Each class of models in this paper is ℵ0-presented. The major tool for this investigation to expand
models of set theory by predicates encoding relevant properties of the models (for some vocabulary τ ) being
studied). It appeared in Shelah’s analysis in [12], Section VII, connecting the Hanf number for omitting
families of types with well-ordering number for classes defined by omitting types.

In [11], expanding the vocabulary to describe an analysis of the syntactic types allowed the construction
of a ‘small’ (Definition 2.2) uncountable model in an ℵ0-presentable class K from an uncountable model
that is small with respect to every countable fragment of Lω1,ω . In Lemma 2.8, we use this method to show
that if, in addition, there are only countably many models in ℵ1, then they are each small. In Section 3, we
combine these two techniques to show the main theorem as stated in the abstract.

∗Shelah thanks the Binational Science Foundation for partial support of this research. All authors thank Rutgers University. Cur-
rently f1179 on the Shelah Archive.
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2 Small Models
{context}

Assumption 2.1. K = (K,≤K) is an aec which is ℵ0-presented (also known PCℵ0 [15], a PCδ over
Lω1,ω [8], PCΓℵ0,ℵ0 [1]). Specifically, K is the class of reducts to τ of a class defined by a sentence
φ ∈ Lω1,ω(τ+), where τ+ is a countable vocabulary extending τ .

This section deals with syntactic (Lω1,ω)-types in ℵ0-presentable classes. As such the arguments are
primarily syntactic and are minor variants on arguments Shelah used in [11, 13, 15]. In particular, no
amalgamation assumptions are used in this section.

{small}
Definition 2.2. 1. A τ -structure M is L∗-small for L∗ a countable fragment of Lω1,ω(τ) if M realizes

only countably many L∗(τ)-types (i.e. only countably many L∗(τ)-n-types for each n < ω.)

2. A τ -structure M is called small or Lω1,ω-small if M realizes only countably many Lω1,ω(τ)-types.

3. When Xa ⊂M ∈K, we write tpL∗(a/X,M) to denote the collection of L∗ formulas with parame-
ters from X that are true of a in M . (We may omit M , when the particular M is not important.)

The following old fact plays a key role below; see page 47-48 of [1]).
{Scottsent}

Fact 2.3. Each small model satisfies a Scott-sentence, a complete sentence of Lω1,ω .

We quickly review the proof of this fact, as the details will be important later. For any model M over a
countable vocabulary τ , we can define for each finite tuple a (of size n) from M the n-ary formulas φa,α(x)
(α < ω1) as follows.

• φa,0(x) is the conjunction of all atomic formulas satisfied by a,

• φa,α+1(x) is the conjunction of the following three formulas:

– φa,α(x)

–
∧
c∈M ∃xφac,α(x,w)

– ∀w
∨
c∈M φac,α(x,w)

• for limit β < ω1, φa,β(x) =
∧
α<β φa,α.

The apparent uncountability of the conjunctions in the previous definition is obviated by identifying
formulas φac,α and φa′c,α when they are equivlent in M . Working by induction on α, one gets that if M is
L∗-small for each countable fragment L∗ of Lω1,ω(τ), then the set of formulas φa,α is countable for each α,
letting a range over all finite tuples fromM . Finally, ifM is small there exists an α such that φa,α = φa,α+1

for all finite tuples a, and then φ〈〉,α is the Scott sentence for M . Fixing the least such α, we say that M has
a Scott sentence of rank α.

We use the following fundamental result (see [8] or Theorem 5.2.5 of [1]). The notion of fragment is
explained in both books. Roughly speaking, the fragment generated by a countable subset X of Lω1,ω(τ) is
the closure of X under first order operations.

We preserve Keisler terminology in recalling the next theorem to emphasize that it deals only with the
number of models and does not involve the choice of ‘elementary embedding’ on the class.

{keissmall}
Theorem 2.4 (Keisler). If a PCδ over Lω1,ω class K has an uncountable model but less than 2ω1 models
of power ℵ1 then for any countable fragment L∗ of Lω1,ω , every member M of K is L∗-small. That is, each
M ∈K realizes only countably many L∗-types over ∅.
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{fixfrag}
Remark 2.5. Suppose a structure M is small. Then there is a countable fragment L∗ of Lω1,ω such that M
is L∗-atomic. That is, for any a ∈ M , there is χa(x) ∈ L∗ such that for any λ(x) ∈ Lω1,ω if M |= λ(a),
then

M |= (∀x)[χa(x)→ λ(x)].

To see this, note that for any particular a there is a formula χa(x) such that M |= χa → tpLω1,ω
(a/∅,M).

Then, let L∗ be the least fragment containing the χa for an a realizing each of the countably many types
realized in M .

By just changing a few words in the proof of Theorem 6.3.1 of [1], ( originally in [11]) one can obtain
the following result. We include the current proof for completeness; the result was implicit in [15].

{getsmall}
Theorem 2.6. If K is an ℵ0-presentable AEC and some model of cardinality ℵ1 is L∗-small for every
countable τ -fragment L∗ of Lω1,ω , then K has a Lω1,ω(τ)-small model M ′ of cardinality ℵ1.

Proof. Add to τ+ a binary relation <, interpreted as a linear order of M with order type ω1. Using that
M realizes only countably many types in any τ -fragment, define a continuous increasing chain of countable
fragments Lα for α < ℵ1 such that each type in Lα(τ) that is realized in M is a formula in Lα+1. Extend
the similarity type further to τ ′ by adding new 2n + 1-ary predicates En(x,y, z) and n + 1-ary functions
fn. Let M satisfy En(α,a,b) if and only if a and b realize the same Lα-type and let fn map Mn+1 into
the initial ω elements of the order, so that En(α,a,b) if and only if fn(α,a) = fn(α,b). Note:

1. En(β,y, z) refines En(α,y, z) if β > α;

2. En(0,a,b) implies a and b satisfy the same quantifier free τ -formulas;

3. If β > α and En(β,a,b), then for every c1 there exists c2 such that En+1(α, c1a, c2b) and

4. fn witnesses that for any a ∈ M each equivalence relation En(a,y, z) has only countably many
classes.

All these assertions can be expressed by an Lω1,ω(τ ′) sentence χ. Let L∗ be the smallest τ ′-fragment
containing χ ∧ φ. Now by the Lopez-Escobar bound on Lω1,ω definable well-orderings, Theorem 5.3.8 of
[1], there is a structure N of cardinality ℵ1 satisfying χ∧φ such that there is an infinite decreasing sequence
d0 > d1 > . . . in N . For each n, define E+

n (x,y) if for some i, En(di,x,y). Now using 1), 2) and
3) prove by induction on the quantifier rank of µ that N |= E+

n (a,b) implies N |= µ(a) if and only if
N |= µ(b) for every Lω1,ω(τ)-formula µ. (Suppose the result holds for all n and all θ with quantifier rank
at most γ. Suppose µ(a) is (∃x)µ′(a, x) with n = lg(a), µ′ has quantifier rank γ, and E+

n (a,b). So for
some i, En(di,a,b) and for some a, N |= µ′(a, a). By the conditions on the En, there is a b such that
En+1(di+1,a, a,b, b). By induction we have N |= µ′(b, b) and so N |= µ(b).) For each n, En(d0,x,y)
refines E+

n (x,y) and by 4) En(d0,x,y) has only countably many classes; so N is small. 2.6

Definition 2.7. We say a countable structure is extendible if it has an Lω1,ω-elementary extension to an
uncountable model.

{vfimpcomp}
Lemma 2.8. If K has a model in Kℵ1 that is not Lω1,ω(τ)-small then

1. there are at least ℵ1 complete sentences of Lω1,ω(τ) which are satisfied by uncountable models in K;
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2. K has uncountably many small models in ℵ1 that satisfy distinct complete sentences of Lω1,ω(τ);

3. K has uncountably many extendible models in ℵ0.

Proof. Suppose that M is a model in K with cardinality ℵ1 which is not Lω1,ω(τ)-small. Let M+ be an
expansion of M to a τ+-structure satisfying ψ. We construct a sequence of τ+-structures {N+

α : α < ω1}
each with cardinality ℵ1 and an increasing continuous family of countable fragments {L′α : α < ω1} of
Lω1,ω(τ) such that:

1. L′0(τ) is first order logic on τ .

2. All the N+
α |= φ.

3. All N+
α �τ are Lω1,ω(τ)-small.

4. χα is the Lω1,ω(τ)-Scott sentence of Nα.

5. L′α+1(τ) is the smallest fragment of Lω1,ω(τ) containing L′α(τ) ∪ {¬χα}.

6. For limit δ, L′δ(τ) =
⋃
α<δ L

′
α(τ).

7. For each α, Nα ≡L′α(τ) M .

Using the Lω1,ω(τ)-sentence θα,
∧
{µ : M |= µ and µ ∈ L′α(τ)}, the construction is straightforward. We

construct Nα by applying Theorem 5.3.8 of [1] to φ ∧ θα (as in the proof of Theorem 2.6). Meeting the
remaining conditions of the construction is easy.

Now the Nα are pairwise non-isomorphic since each satisfies a distinct complete sentence of Lω1,ω(τ).
And each has a countable elementary submodel with respect to L′α ∪ φ. So there are ≥ ℵ1 non-isomorphic
extendible models in ℵ0 as well. 2.8

This result leads to a corollary regarding the content of the Vaught conjecture.
{corvc}

Corollary 2.9. If φ is a counterexample to the Vaught conjecture then φ has ℵ1 extendible countable models.

Proof. If not, Lemma 2.8 implies every uncountable model of φ is small. But Harnik and Makkai [5]
proved that a counterexample to Vaught’s conjecture has a model in ℵ1 that is not small. 2.9

{iran1}
Remark 2.10. Clearly, if K has only countably many models in ℵ1 then K has at most ℵ0 non-isomorphic
extendible countable models. The converse of Lemma 2.8 asserts if that K has uncountably many extendible
countable models then it has a non-small model in ℵ1. The extendibility is essential. Example 2.1.1 of [2] is
a sentence of Lω1,ω giving rise to an AEC with a particular notion of ≺K , which has a.p. and j.e.p. and is
ℵ1-categorical. There are 2ℵ0 countable models but only one of them is extendible.

We pause to connect this analysis with a related but subtly distinct procedure.
{Manal}

Definition 2.11. 1. Morley’s Analysis

(a) Let LK
0 be the set of first order τ -sentences.

(b) Let LK
α+1 be the smallest fragment generated by LK

α and the sentences of the form (∃x)
∧
p(x)

where p is an LK
α -type realized in a model in K.

(c) For limit δ, LK
δ =

⋃
α<δ L

K
α .

4



2. K is scattered if and only if for each α < ω1, LK
α is countable.

Recall Morley’s theorem, which is key to his approach to Vaught’s conjecture.
{getscat}

Theorem 2.12 (Morley). If K is the class of models of a sentence in Lω1,ω that has less than 2ℵ0 models of
power ℵ0 then K is scattered.

Remark 2.13. We cannot conclude that K is scattered from just counting models in ℵ1, even from the
hypothesis that K is ℵ1-categorical. Again, Example 2.1.1 of [2] (Example 2.10) is ℵ1-categorical and has
joint embedding for ≺K . But there are 2ℵ0 first order types that give models that are not even first order
mutually embeddible and the class K is not scattered.

Remark 2.14. The arguments of Morley and Shelah have different goals. Scattered is a condition on all
models of an (in the interesting case for the Vaught conjecture) an incomplete sentence in Lω1,ω . The Shelah
argument contracts K to a smaller class where every model is small and thus finds a K ′ ⊂K that is small;
the hard part is to make sure K ′ has an uncountable model. In the most used case, K and a fortiori K ′ is
ℵ1-categorical.

3 Almost Galois Stability
{ags}

In this section we assume K is an ℵ0-presented AEC that has amalgamation and JEP for countable models.
Amalgamation and jep do not appear directly in the proofs but are used in background arguments establishing
that the notion of Galois type (e.g. Definition 8.7 of [1]) is well-behaved.

Because there are two notions of weak-stability in the literature of AEC ([7, 14], we call the following
notion almost Galois ω-stability.

Definition 3.1. K is almost Galois ω-stable if for every countable model M , EM does not have a perfect
set of equivalence classes.

Note that this condition implies for every countable model M , EM has at most ℵ1 equivalence classes.
(For this, recall that we are working with an ℵ0-presentable class. Thus in the terminology of [3], K is
analytically presented. This implies that Galois types are defined by an analytic equivalence relation and we
can apply Burgess’s theorem that such an equivalence relation has ℵ0,ℵ1 or a perfect set of classes.) In the
presence of CH, the converse fails, so we choose the more generally applicable definition. Amalgamation
easily allows one to show.

Lemma 3.2. If K is almost Galois ω-stable and satisfies amalgamation and jep, then there is a Galois-
saturated model M in ℵ1.

{notsofast}
Example 3.3. Let K be the set of structures in the language with a single equivalence relation that have
infinitely many elements in each class and exactly ℵ0 classes. Let ≺K be first order elementary submodel.
This is an ℵ0-presentable class. Note that there are ℵ0 models in ℵ1 (given by the number of classes that
have cardinality ℵ0 and ℵ1 respectively). Fix a countable submodel M0 of M , the ℵ1-saturated model of
K. Note that either with constants naming M0, or with a predicate for M0, there are 2ℵ0 non-isomorphic
countable models in K. First for each f : ω → ω, let Mf have f(n) elements in E(Mf , an)− E(M0, an).
Let cf (n) = |{a/E : a ∈ M0 ∧ |E(Mf , a) − E(M0, a)| = f(n)}|. Then Mf and M ′f are isomorphic
isomorphisms fixing M0 setwise iff cf = cf ′ .
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Suppose cg(n) is identically 1. There are 2ℵ0 models which are pairwise isomorphic by isomorphisms
which fix M0 setwise but are not pairwise isomorphic by isomorphisms which fix M0 pointwise.y

But in this example, there is no pair of models N,N ′ with M0 ⊂ N ⊂ N ′,that are isomorphic by
isomorphisms which fix M0 setwise but not isomorphic by isomorphisms which fix M0 pointwise.

This example illustrates the importance of studying truth in a particular model when we do not have a
monster model that is homogenous over sets. Each of the Mf satisfy different sentences in Lω1,ω(τ ′) but if
they are embedded in the saturated model M , this is not reflected in the types that elements of Mf realize in
the sense of M .

{nice2dec}
Definition 3.4. Suppose a model M with cardinality ℵ1 is filtered by an uncountable chain of countable
models 〈Mα : α < ω1〉, which are pairwise isomorphic such that Mα ≺K M and Mα ≺Lω1,ω

(τ) M . Fix
automorphisms Fα of M mapping M0 onto Mα and let Fα,β = Fβ ◦ F−1α mapping Mα onto Mβ . We say
that 〈Mα, Fα〉 is a nice decomposition of M .

{mthm}
Theorem 3.5. Suppose that K is almost Galois ω-stable. If K has only countably many models in ℵ1, then
K is Galois ω-stable.

Proof. Supposing that the conclusion of the theorem fails, let M be the Galois-saturated model of
cardinality ℵ1. By Lemma 2.8, M is τ -small; that is, there is countable fragment of L∗ of Lω1,ω which
contains a Scott sentence φ for M .

By hypothesis, M realizes uncountably many Galois types over some countable substructure M0 ∈ K
satisfying φ.

We fix notation for the remainder of the paper. Let c = 〈ci : i < ω〉 enumerate M0 and call τ ′ the
extension of τ by adding these constant symbols. Now there are three cases:

1. There are uncountably many L∗(τ ′)-types realized in M for some countable fragment L∗(τ ′) of
Lω1,ω(τ ′).

2. For every countable L∗(τ ′) of Lω1,ω(τ ′) only ℵ0 L∗(τ ′)-types are realized in M .

(a) M is Lω1,ω(τ ′)-small and so for some countable fragment L∗(τ ′), M has a Scott sentence in
L∗(τ ′).

(b) M is not Lω1,ω(τ ′)-small.

Case 1: In this case there exists a perfect set of syntactic types in this fragment of the expanded language
and thus a perfect set of Galois types over M0. This contradicts the almost Galois ω-stability of K.

Case 2a). We show K is Galois ω-stable.
{2a}

Lemma 3.6. If M is small for Lω1,ω(τ ′) and Galois saturated then M realizes only countably many Galois
types over any countable model.

Proof. By Remark 2.5, there is a countable fragment L∗ of Lω1,ω(τ ′) which contains a Scott sentence
for M . Suppose some a,b ∈ Mn realize the same L∗(τ ′)-type over M0 in (M, c) (i.e. wrt to truth in
M ). Then this type is given by a formula in L∗ (by smallness). There exists a countable M ′ ∈ K such that
M0ab ⊂ M ′ ≺L∗ M so there exists an automorphism gδ of M ′, fixing M0 pointwise and with gδ(a) = b.
Then, gtp(a/M0;M ′) = gtp(b/M0;M ′). But every automorphism of M ′ extends to an automorphism
of M (since M is Galois-saturated) so gtp(a/M0;M) = gtp(b/M0;M). So for any a the L∗-type of a
over M0 defines the Galois type and therefore only countably many Galois types over M0 are realized in M .

3.6

Case 2b). We show this case is impossible.
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{2b}
Lemma 3.7. Suppose K is ℵ0-presentable, almost Galois ω-stable, has only countably many models in
ℵ1 and let M be the Galois-saturated model of K in ℵ1. If M is small for every countable fragment of
Lω1,ω(τ ′) then M is Lω1,ω(τ ′)-small.

Proof. Fix a continuous, ⊆-increasing sequence M = 〈Mα : α < ω〉 of substructures of M in K
satisfying φ with M0 enumerated by c. Then M is nicely decomposed by some set F = {Fα :α < ω1} such
that each Fα is an automorphism of M sending M0 to Mα.

Let H(θ), for a large enough θ be such that each of M (with the expanded language interpreted as in
Lemma 2.6), M and F are elements of H(θ). Let A be the expansion of H(θ) to a vocabulary τ+ ∪ {ε}.
The vocabulary τ+ includes, τ ′, the additional symbols of Lemma 2.6 to describe types, and a new binary
predicate R. The interpretation of R in the expansion of M is R = {〈c, γ〉 :c ∈Mγ}.

Let 〈Xα :α < ω1〉 be a properly ⊆-increasing continuous chain of countable elementary submodels of
A. In particular ωA1 ∈ X0 and for every α < ω1 there is a countable ordinal β ∈ Xα+1 −Xα.

For each α < ω1, let Pα be the transitive collapse of Xα, and let ρα : Xα → Pα be the corresponding
collapsing mapping. Then ρα(ω1) = ωPα1 is the ordinal Xα ∩ ω1.

Either by an iteration of ultrapowers of models of set theory as in Lemma 1.5 of [3] or by iterating the
construction in Theorem 2.1 of [6], we construct a family of countable models of set theory. The model
theoretic argument is below.

There is a mathematical issue here. Hutchinson’s theorem is for ZFC, not ZFCo. Can one
just take a model of ZFC containing H(θ)?

For each α < ω1, there is an elementary extension of Pα to a model P ′α (with corresponding elementary
embedding χα : Pα → P ′α) such that

1. the critical point of χα is ωPα1 , so ωPα1 is an initial segment of ωP
′
α

1 ;

2. ωP
′
α

1 is ill-founded,
{goodclub}

3. in V , there is a continuous increasing ω1-sequence 〈tαγ : γ < ω1〉 consisting of elements of ωP
′
α

1

Item (3) above implies in particular that each ωP
′
α

1 is uncountable.
To construct the P ′α, we rely on the following (paraphrase) of Theorem 2.1 of [6]. Hutchinson built

on work of Keisler and Morley [9]; Enayat provides a useful source on this work in [4]. We develop an
alternative technique using in iterated ultrafilters is [3].

{Hutch}
Fact 3.8. Let B be a countable model of ZFC and c a regular cardinal in B. Then there is a countable
elementary extension C of B such that each a such that B |= a ∈ c is fixed but c is enlarged and there is a
least new element of C.

Define Pαi for i < ω1. Pα0 = Pα; Pαγ+1 is obtained by applying 3.8 to Pαγ with c as ωP
γ

1 . Take unions

at limits. P ′α =
⋃
γ<ω1

Pαγ . The tαγ are the ω
Pαγ
1 .

Recall that M is the union of the continuous ⊆-increasing chain 〈Mα : α < ω1〉. It follows then for
each α < ω1, that MωPα1

= ρα(M) ⊂ Pα, and that MωPα1
has cardinality ℵ1 in Pα. For each α < ω1, let

Nα = χα(MωPα1
). Then Nα has cardinality ℵ1 in P ′α.
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In the argument for Lemma 2.6 replace the appeal to Theorem 5.3.8 of [1] with the observation that Nα
is not well-founded by construction. The rest of the argument for Lemma 2.6 shows that, in V , each Nα is
small for Lω1,ω(τ ′). Nevertheless, P ′α thinks Nα is not Lω1,ω(τ ′)-small.

Since M is a sequence indexed by ω1 in V (or in Xα), χα(ρα(M)) is a sequence indexed by ωP
′
α

1 in
P ′α. So, in P ′α, for each element t of its ω1, there is a t-th element of the sequence, which we denote Mα

t .
Furthermore, in P ′α, χα(ρα(F )) is a set{Fαt : t ∈ ωP

′
α

1 } consisting of automorphisms of Nα, such that each
Fαt ∈ P ′α is an automorphism of Nα sending M0 to Mα

t . Each Fαt is then an automorphism of Nα in V
also.

Since we are assuming that there are only countably many models in K of cardinality ℵ1, there exists a
stationary set S ⊆ ω1 such that Nα0 and Nα1 are isomorphic (in V ) for all α0, α1 in S. Fix for a moment
a pair of elements α0, α1 of S and an isomorphism π : Nα0

→ Nα1
. Applying item (3) above and the

continuity (in the sense of P ′αj , for j = 0, 1) of the sequences 〈Mα0
t : t ∈ ω

P ′α0
1 〉 and 〈Mα1

t : t ∈ ω
P ′α1
1 〉,

there must be t0 ∈ ω
P ′α0
1 and t1 ∈ ω

P ′α1
1 such that π maps Mα0

t0 onto Mα1
t1 . To see this, start with γ0 = 0

and, for each n ∈ ω, let γn+1 be large enough so that Mα1

t
α1
γn+1

contains π[Mα0

t
α0
γn

] and Mα0

t
α0
γn+1

contains

π−1[Mα1

t
α1
γn

]. Then let s0 = tα0
supn∈ω γn

and let s1 = tα1
supn∈ω γn

. Note that by the continuity in item (3), the

sj are in the respective P ′αj , for j = 0, 1. So by the continuity in P ′αj of Mαj
t , Mαj

sj =
⋃
n<ωM

αj

t
αj
γn

. Then

(Fα1
s1 )−1 ◦ π ◦ Fα0

s0 is an isomorphism of Nα0
and Nα1

fixing M0 setwise.
Finally, we show that for each α0 such an isomorphism is impossible for arbitrarily large α1 with α0 <

α1.
For each α, the model P ′α thinks that Nα1 is small for every countable fragment of Lω1,ω(τ ′) but not

Lω1,ω(τ ′)-small. Thus, from the point of view of P ′α, there is no ordinal t such that φa,t(x) ≡ φa,t+1(x) for
all finite tuples a of Nα. For each well-founded ordinal γ of P ′α (i.e γ < ωP

′
α = ω1 ∩Xα by item 1), and

each finite tuple a of Nα, P ′α sees the same formula φa,γ(x) that the true universe V does, which means that
the Scott sentence for Nα has rank at least ω1 ∩Xα (and slightly more than this, in fact).

Now choose α0, α1 ∈ S such that α1 is greater than the Scott rank (in V) of Nα0
. Since permuting the

constants ci in terms of their enumeration of M0 has no effect on the rank of the Scott sentence for Nα1
,

there cannot be then an isomorphism of Nα0 and Nα1 fixing M0 setwise.
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