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In this paper we discuss two theorems whose proofs depend on extensions of the Fraı̈ssé method. We
prove here the Hanf number for the property that every model of cardinality κ is extendible1 of a (complete)
sentence of Lω1,ω is (modulo some mild set theoretic hypotheses that we expect to remove in a later paper)
the first measurable cardinal. And we outline the description of an explicit Lω1,ω-sentence φn characterizing
ℵn for each n. We provide some context for these developments as outlined in the lectures at IPM.

The phrase ‘Fraı̈ssé construction’ has taken many meanings in the over 60 years since the notion was
born [Fra54] (and earlier in an unpublished thesis). There are two major streams. We focus here on variants
in the original construction, which usually use the standard notion of substructure. We don’t deal here
directly with ‘Hrushovski constructions’ where a specialized notion of strong submodel varying with the
case plays a central role. An annotated bibliography of developments of the Hrushovski variant until 2009
appears at [Bal].

The first variant we want to consider is the vocabulary. Fraı̈ssé worked with a finite, relational vocabu-
lary. While model theory routinely translates between functions and their graphs and there is usually little
distinction between finite and countable vocabularies; in the infinite vocabulary case such extensions yield
weaker but still very useful consequences. The second is a distinction in goal: the construction of complete
sentences of Lω1,ω (equivalently studying the atomic models of a complete first order theory) rather than
arbitrary models of a first order theory. This second shift raises new questions about the cardinality of the
resulting models. The second result here pins down more precisely the existence spectra for complete sen-
tences of Lω1,ω . The first expresses the role of large cardinal axioms in more algebraic terms. Rephrased, it
says that, consistently with the existence of a measurable cardinal, there is a nicely defined class of models
that has non-extendible (maximal) models cofinally below the first measurable. The previous upper bound
for such behavior was iω1

.
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Souldatos and especially Will Boney.
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1We say K is universally extendible in κ if M ∈K with |M | = κ has a proper ≺K -extension in the class. Here, this means has

an∞, ω-elementary extension.
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1 Hanf numbers and Spectrum functions in infinitary logic
Recent years have brought a number of investigations of the spectrum (cardinals in which the phenomenon
occurs) for various phenomena and various sorts of infinitary definable classes. Some of the relevant phe-
nomena are existence, amalgamation, joint embedding, maximal models etc. The class might be might be
defined as an AEC, the models of a (complete) sentence of Lω1,ω , etc.

Hanf observed [Han60] that for any property P (K, λ), where K ranges over a set of classes of models,
there is a cardinal κ = H(P ) such that κ is the least cardinal satisfying: if P (K, λ) holds for some λ ≥ κ
then P (K, λ) holds for arbitrarily large λ. H(P ) is called the Hanf number of P . e.g. P (K, λ) might be
the property that K has a model of power λ.

Morley [Mor65] showed for an arbitrary sentence of Lω1,ω(τ) the Hanf number for existence is iω1

when τ is countable (more generally, it is i(2|τ|)+ [She78]); the situation for complete sentences is much
more complicated. Knight [Kni77] found the first complete sentence characterizing ω1 (i.e. has a model in
ω1 but no larger) by building on the construction of many non-isomorphic ℵ1-like linear orderings. Hjorth
found, by a procedure generalizing the Fraı̈ssé -construction, for each α < ω1, a set Sα (finite for finite α) of
complete Lω1,ω-sentences2 such that some φα ∈ Sα characterizes ℵα. It is conjectured [Sou13] that it may
be impossible to decide in ZFC which sentence works. Baldwin, Koerwien, and Laskowski [BKL16] show
a modification of the Laskowski-Shelah example (see [LS93, BFKL16]) gives a family of Lω1,ω-sentences
φr, which characterize ℵr for r < ω. In Section 4 we sketch the new notion of n-disjoint amalgamation that
plays a central role in [BKL16].

Further results by [BKS09, KLH14, BKS16], where the hypothesis are weakened to allow incomplete
sentences of Lω1,ω or even AEC are placed in context in [BB17]. Analogous results were proved earlier for
incomplete sentences by [BKS16] who code certain bipartite graphs in way that determine specific inequal-
ities between the cardinalities of the two parts of the graph; in this case all models have cardinality less than
iω1

.
All the exotica mentioned here and described in more detail in [BB17] occurs below iω1

. Baldwin and
Boney [BB17] have shown that the Hanf number for amalgamation is no more than the first strongly compact
cardinal. This immense gap motivated the current paper. We show that for the case of univerally extendable
such a gap does not exist. There is a complete sentences of Lω1,ω which has a maximal model in cardinals
cofinal in the first measurable (if such exists), but no larger maximal model. Is the same true of amalgama-
tion? That is, can amalgamation eventually behave very differently than it does in small cardinalities? At
the end of this paper we point to the only known example where amalgamation holds on an initial segment
then fails, then holds again; then there are no larger models.

2 Disjoint Amalgamation

2.1 Classes determined by finitely generated structures
The original Fraı̈ssé construction took place in a finite relational vocabulary and the resulting infinite struc-
ture was ℵ0-categorical for a first order theory. We explore here several ways to construct a countable atomic
model for a first order theory and thus complete sentences in Lω1,ω .

Recall (e.g. chapter 7 of [Bal09]) that the models of a complete sentence of Lω1,ω(τ) are the reducts to
τ of the atomic (every finite sequence realizes a principal type) models of a complete first order theory in a

2Inductively, Hjorth shows at each α and each member φ of Sα one of two sentences, χφ, χ′φ, works as φα+1 for ℵα+1.
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vocabulary τ ′ extending τ . We discuss classes determined by a countable set of finitely generated models.
In Sections 3 and 4, we describe the examples of such classes used to prove our main results.

Definition 2.1.1. Fix a countable vocabulary τ (possibly with function symbols). Let (K0,⊆) denote a
countable collection of finitely generated τ -structures and let (K̂,⊆) denote the abstract elementary class
containing all structures M such that every finitely generated substructure of M is in K0.

These classes have syntactic characterizations.

Lemma 2.1.2. 1. K̂ is defined by an Lω1,ω-sentence φ.

2. If K0 is closed under substructure then φ may be taken universal [Mal69].

3. (K0,⊂) satisfies the axioms for AEC (except for unions under chains.)

We will see that ⊂ can be replaced with more useful notion of strong submodel later.

Definition 2.1.3. Fix a countable vocabulary τ (possibly with function symbols). Let (K0,≤) denote a
countable collection of finitely generated τ -structures with (K̂,≤) as in Definition 2.1.1.

1. A modelM ∈ K̂ is rich or K0-homogeneous if for all finitely generatedA andB in K0 withA ≤ B,
every embedding f : A → M extends to an embedding g : B → M . We denote the class of rich
models in K̂ as R.

2. The model M ∈ K̂ is generic if M is rich and M is an increasing union of a chain of finite substruc-
tures, each of which is in K0.

3. We let R denote the subclass of K̂ consisting of rich models.

Definition 2.1.4. An AEC (K,≤) has (< λ, 2)-disjoint amalgamation if for any A,B,C ∈ K with cardi-
nality < λ and A strongly embedded in B,C, there is a D and strong embedding of B,C into D that agree
on A and such that the intersection of their ranges is their image of A.

K has 2-amalgamation if the ranges of the embedding are allowed to intersect non-trivially.
K has the joint embedding property (JEP) if any two models can be embedded in some larger D.

Fraı̈ssé ’s theorem asserted that if a class of finite models in a finite relational language is closed under
substructure and satisfies AP and JEP then there is a generic model whose theory is ℵ0-categorical and
quantifier eliminable. The following extension of Fraı̈ssé’s theorem is well-known [Hod93].

Lemma 2.1.5. Suppose τ is countable and K0 is a countable class of finite or countable τ -structures that
satisfies 2- amalgamation, in particular (≤ ℵ0, 2)-disjoint amalgamation, and JEP, then

1. A K0-generic (and so rich) τ -structure M exists.

2. if K0 is closed under substructure, the generic is ultra-homogeneous (every isomorphism between
arbitrary finitely generated substructures extends to an automorphism).

Proof. The Fraı̈ssé argument works. 2.1.5

A key distinction from the Fraı̈ssé situation is the distinction between K̂ and R. Fraı̈ssé passes to the
first order theory of the generic since it is ℵ0-categorical in first order logic. In our more general situation the
generic may be ℵ0-categorical only in Lω1,ω . The Scott sentence of the rich model gives the Lω1,ω sentence
we study. As noted at the beginning of this section we may regard the models as reducts of atomic models
of a first order theory. Thus K̂ may have arbitrarily large models while R does not; this holds of some
examples in [Hjo07, BFKL16, BKL16].
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Corollary 2.1.6. Suppose (K0,≤) satisfies the hypotheses of Lemma 2.1.5. Fix λ ≥ ℵ0. If K̂ has (≤
λ, 2)-amalgamation and has at most countably many isomorphism types of countable structures, then every
M ∈ K̂ of power λ can be extended to a rich model N ∈ K̂, which is also of power λ.

Proof. Given M ∈ K̂ of power λ, construct a continuous chain 〈Mi : i < λ〉 of elements of K̂, each
of size λ. At a given stage i < λ, focus on a specific finite substructure A ⊆ Mi and a particular finite
extension B ∈ K̂ of A. If there is an embedding of B into Mi over A, Mi+1 = Mi. If not, we may assume
B ∩Mi = A. Let Mi+1 be the disjoint amalgamation of Mi and B over A. As there are only λ-possible
extensions, we can, by iterating, organize this construction so that N =

⋃
{Mi : i < λ} is rich. 2.1.6

Crucially, in Section 3.2 the class K̂ under consideration will not satisfy disjoint two amalgamation even
with finite models; but free members of it will.

2.2 Atomic Models of First order theories
We discuss here classes generated by finite (not finitely generated) structures. Suppose a generic τ -model
M exists. When is M an atomic model of its first-order τ -theory? As remarked in Section 2 of [BKL16]
this second condition has nothing to do with the choice of embeddings on the class K0, but rather with the
choice of vocabulary. The following condition is needed when, for some values of n, K0 has infinitely many
isomorphism types of structures of size n

We denote the class of atomic models of a complete first order theory by At.

Definition 2.2.1. A class K0 of finite structures in a countable vocabulary is separable if, for each A ∈K0

and enumeration a of A, there is a quantifier-free first order formula φa(x) such that:

• A |= φa(a) and

• for all B ∈ K0 and all tuples b from B, B |= φA(b) if and only if b enumerates a substructure B′

of B and the map a 7→ b is an isomorphism.

In practice, we will apply the observation that if for each A ∈ K0 and enumeration a of A, there is a
quantifier-free formula φ′a(x) such that there are only finitely many B ∈K0 with cardinality |A| that under
some enumeration b satisfy φ′a(b), then K0 is separable.

Lemma 2.2.2. [BKL16] Suppose τ is countable and K0 is a class of finite τ -structures that is closed under
substructure, satisfies amalgamation, and JEP, then a K0-generic (and so rich) model M exists. Moreover,
if K0 is separable, M is an atomic model of Th(M). Further, R = At, i.e., every rich model N is an
atomic model of Th(M).

Proof: Since the class K0 of finite structures is separable it has countably many isomorphism types,
and thus a K0-generic M exists by the usual Fraı̈ssé construction. To show that M is an atomic model of
Th(M), it suffices to show that any finite tuple a from M can be extended to a larger finite tuple b whose
type is isolated by a complete formula. Coupled with the fact that M is K0-locally finite, we need only
show that for any finite substructure A ≤M , any enumeration a of A realizes an isolated type. Since every
isomorphism of finite substructures of M extends to an automorphism of M , the formula φa(x) isolates
tp(a) in M .

The final sentence follows since any two rich models are L∞,ω-equivalent. 2.2.2
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3 Hanf number for All Models Extendible
We say an abstract elementary class (the models of a complete sentence in Lω1,ω is universally extendible in
κ if every model of cardinality κ has a proper strong extenstion (L∞,ω-elementary extension). In this section
we prove the following theorem.

Theorem 3.0.3. There is a complete sentence φ of Lω1,ω that under reasonable set theoretic conditions (
specified below) has arbitrarily large models. But for arbitrarily large λ < µ, where µ is the first measurable
cardinal, and unboundedly many λ if there is no measurable, φ has a maximal (with respect to substructure,
which in this case means ≺∞,ω) model with cardinality between λ and 2λ.

We expect to remove the set theoretic hypotheses by use of a black box as in [She1x] but that work is in
progress.

If |M | is at least µ, then for any ℵ1-complete non-principal ultrafilter D on µ, Mµ/D is a proper ex-
tension of M . This holds because we can find an f ∈ Mµ which hits each element a ∈ M at most once.
Thus the equivalence class of f cannot be that of any constant map on M (since D is non-principal). On the
other hand, by the Łos theorem for Lω1,ω , since D is ℵ1-complete, the ultrapower is an Lω1,ω-elementary
extension of M . Thus, we have shown the Hanf number for non-maximality is at most µ:

Theorem 3.0.4. If µ is measurable for any φ ∈ Lµ,µ, in particular in Lω1,ω , no model of cardinality ≥ µ is
maximal.

The proof of the converse (Theorem 3.0.3) fills the remainder of this section.
If we only demand the result for an arbitrary sentence of Lω1,ω there are easy examples. An example in

terms of ω-models (which is easily reinterpreted into Lω1,ω) appears in [Mag16].

3.1 Some preliminaries on Boolean Algebras
Definition 3.1.1. 1. For X ⊆ B and B a Boolean algebra, X = XB = 〈X〉B be the subalgebra of B

generated by X .

2. A set Y is independent from X over an ideal I in a Boolean algebra B if and only if for any Boolean-
polynomial p(v0, . . . , vk) (that is not identically 0), and any a ∈ X − I , p(y0, . . . , yk) ∧ a 6∈ I .

Observe the following:

Observation 3.1.2. 1. If I is the 0 ideal, (read Y is independent from X), the condition becomes: for
any a ∈ X − {0}, B |= p(y0, . . . , yk) ∧ a > 0.

2. It is easy to check that ‘Y is independent from X over I’ implies the image of Y is free from the image
of X in B/I .

3. If X is empty, the condition ‘Y is independent over I’ implies the image of Y is an independent subset
of B/I .

4. Since Y is independent from X over an ideal I in a Boolean algebra B is expressed by quantifier free
formulas, the condition is maintained in any B′ extending B.

For the last item, observe that condition 1) is a quantifier free statement about Y,X and I . In the
construction of complete sentence I will be named by a predicate.

The contrast between the notion of independence above and the following is crucial for the construction
here.
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Definition 3.1.3. Let X,Y be sets of elements from a Boolean algebra of sets. X is independent (free) over
Y if for any infinite A that is a non-trivial finite Boolean combination of elements of X and any B which is
a non-empty finite Boolean combination of elements of Y , A ∩B and Ac ∩B are infinite.

Both kinds of independence will occur in the models in Section 3.2. In K1, there is a homomorphism
from PM2 into P(PM1 ) that does not translate from ‘independence in the boolean algebra sense’ to ’set inde-
pendence’. In K2, there is an isomorphism from PM2 into P(PM1 ) that correctly translates ‘independence’.

We can amalgamate Boolean algebras B and A over C by the pushout/free product construction Nota-
tion 3.1.4.

Notation 3.1.4. Let C ⊆ A,B be Boolean algebras. The disjoint amalgamation D = A ⊗C B is the
Boolean algebra obtained as the pushout [AB11] of A and B over C. It is characterized internally by the
following condition. For a ∈ A− C, b ∈ B − C: a ≤ b in D if and only if there is a c ∈ C with a < c < b
(and symmetrically). D is generated as a Boolean algebra by A ∪B.

The free amalgamA⊗CB, where each ofA,B have only finitely many atoms must destroy the atomicity
of some elements. (If a is atom of A and b1, . . . bn are the atoms of B, for at least one i, A ⊗C B |= 0 <
a∧ bi < a.) Thus we will have to construct a quotient algebra of the free amalgam below in order to find an
amalgam which does not introduce atoms.

Notation 3.1.5. For any Boolean algebra B, At(B) denotes the set of atoms of B.

Theorem 3.1.6. Let A0 ⊆ A1, A2 be Boolean algebras. There is a Boolean algebra amalgamating A1 and
A2 such that At(A3) = At(A1) ∪At(A2).

Proof. Let Ǎ3 be the pushout of A1 and A2 over C. For each a ∈ At(A2) ∪ At(A1) we define a
homomorphism gia from Ai into the two element Boolean algebra Â with domain {0, 1} by: if a, b ∈ Ai
then

gia(b) =

{
1, for a ≤Ai b
0, for a ∧Ai b = 0

}
This is defined for all b ∈ Ai because a is an atom. Extend gia arbitrarily to a homomorphism from A3

to Â. Let I be the ideal of A3 generated by:

{b ∧ a : b ∈ A1, a ∈ At(A2), g2
a(b) = 0} ∪ {b ∧ a : b ∈ A2, a ∈ At(A1), g1

a(b) = 0}.

Let A′ denote A1 ∪A2.
First note that if a ∈ At(A1) then for every b ∈ A2−A0, either g1

a(b) = 0 or g1
a(b−) = 0 so one of a∧ b

or a ∧ b− is in I and π(a) is an atom in A3. Thus, if a ∈ At(A1) ∪ At(A2), a 6∈ I . But then if d ∈ A′ as
a ≥ a for some such a, d 6∈ A. That is, A′ ∩ I = ∅.

Claim 3.1.7. Let A3 be Ǎ3/I by a quotient map π. π is 1-1 on A1 ∪A2.

Now we show that if d1, d2 are in A1 \ A0, A2 \ A0 respectively, then d14d2 is in A′. For this, if
d1 ∧ d2 = r ∈ A0, then d14d2 = (d1 ∧ r−)∨ (d2 ∧ r−) is a join of two elements of A′ that are not in I (by
2) so cannot be in I (since I is closed down). But if d1 ∧ d2 6= i ∈ A0, there exists c ∈ A0 with d1 ∧ d2 ≤ c
and c below both d1 and d2. Say d1 ∧ d2 ∈ A1 \ A0. Now we decompose as above but using two steps to
see that d14d2 6∈ I .

Thus, there is no d1, d2 ∈ A′ with d14d2 ∈ I as the symmetric difference is in A′ and A′ ∩ I = ∅. So
π is 1-1 on A′. 3.1.7
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No element d of Ǎ3−A is an atom since it is a term in elements ofA′ and is either identically 0 or above
at least two elements of At(A1) ∪ At(A2); these elements are not identified by π. Thus d is not an atom in
A3. This completes the proof of Theorem 3.1.6.

Lemma 3.1.8. Let B0 ⊆ B1 ⊆ B2 be Boolean algebras. Suppose Ii for i < 3 are sequence of ideals in the
respective Bi with I1 ∩B0 = I0 and I2 ∩B1 = I1. If, for i = 0, 1, Ji ⊂ Bi+1 is independent from Bi over
Ii in Bi+1, then J = J0 ∪ J1 is independent from B0 over the ideal I2.

Proof. Let b be a finite sequence of distinct elements from J . Suppose σ(y) is a non-zero term in the
same number of variables as the length of b. For any d ∈ B0 − I2, we must show σ(b) ∧ d 6∈ I2.

Writing σ in disjunctive normal form it suffices to show some disjunct τ (which is just a conjunction of
literals yi and y−i ) satisfies τ(b) ∧ d 6∈ I2. Decompose τ(b) as τ0(b0) ∧ τ1(b1) where bi ∈ Ji. Since J0

is independent from B0 over I1, τ0(b0) ∧ d 6∈ I1 and clearly it is some d1 ∈ B1. Similarly, since J1 is
independent from B1 over I2, τ1(b1) ∧ d1 6∈ I2. So τ(b) ∧ d1 = τ0(b0) ∧ τ1(b1) ∧ d 6∈ I2 as required.

3.2 Defining the Complete Sentence
In this subsection we construct a complete Lω1,ω-sentence that we show in the next subsections has maximal
models in λ for arbitrarily large λ less than the first measurable cardinal.

On a first approximation, each model consists of a two-sorted structure that consists of a Boolean algebra
on P1 and a representation of it as a field of sets on P0 by a predicateR(x, y) picking out those x that ‘belong’
to y. The basic idea is that an extension of a model M by adding an element a to P0 defines an ultrafilter3

on the Boolean algebra with domain P1; U is the set of b such that RMa(a, b). If |M | is less than the first
measurable µ this ultrafilter cannot be ℵ1-complete. However, we can construct M such that if it has a
proper (∞, ω) elementary extension, the ultrafilter is ℵ1-complete. For this, we add a new predicate P2 and
functions Fn(z) so that P2 indexes countable families of elements of P1. We add a function G1 from P0

into P1 so that PM1 includes an atomic subalgebra PM4 corresponding to the finite Boolean combinations of
the singletons of PM0 .

This section is devoted to the construction of a countable generic structure; the details of the construction
will be essential for the main argument in the next section. But we can describe the generic model. The
unary predicate PM1 is the domain of a Boolean algebra with an ideal PM4 consisting of the finite joins of
atoms. PM1 /PM4 is an atomless Boolean algebra with a basis {FMn (c) : c ∈ PM2 }. Further, there is a set
PM0 in 1-1 correspondence with the atoms of PM1 and a relation R such that for b ∈ PM1 , R(M, b) is a
subset of PM0 and the map b 7→ R(M, b) is an isomorphism from PM1 into the Boolean algebra of subsets of
PM0 . A concrete example of this situation is to take PM1 as an elementary submodel of the natural Boolean
algebra on P(ω), PM4 as the distributive sublattice of finite sets, PM0 and RM as coding subsets of ω.

We build this structure as a Fraı̈ssé-style limit of finitely generated structures; in each of these structures
PM0 and PM4 will be finite. The classes K−1,K0 are not closed under substructure.

Definition 3.2.1. τ is a vocabulary with unary predicates P0, P1, P2, P4, binary R, E, unary functions ′,
G1, H1, n-ary functions gn, constants 0,1 and unary functions Fn, for n < ω.

Definition 3.2.2. M ∈K−1 is the class of structures M satisfying.

1. PM0 , PM1 , PM2 partition M .

3That is, U is an ultrafilter of the Boolean algebra with universe P1; it is closed under meet and extension. When R is extensional,
the set of R(P0, b) for b ∈ U is an ultrafilter on P(P0). We use both notations.
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2. (PM1 , 0, 1,∧,∨, <,− ) is a Boolean algebra (− is complement).

3. R ⊂ PM0 × PM1 with R(M, b) = {a : RM (a, b)} and the set of {R(M, b) : b ∈ PM1 } is a Boolean
algebra. fM : PM1 7→ P(PM0 ) by fM (b) = R(M, b) is a Boolean algebra homomorphism into
P(PM0 ).

Note that f is not4 in τ ; it is simply a convenient abbreviation for the relation between the Boolean
algebra PM1 and the set algebra on P0 by the map b 7→ R(M, b).

4. PM4,n = {b ∈ PM1 : |{c ∈ PM4,1 : c ≤ b}| = n} and PM4 is the union of the PM4,n.

5. If b1 6= b2 are in PM4 then R(M, b1) 6= R(M, b2).

6. GM1 is a bijection from PM0 onto PM4,1 such that R(M,GM1 (a)) = {a}. HM
1 is defined on PM4,1 and is

the inverse of GM1 .

7. If c ∈ PM2 , the Fn(c) for n < ω are pairwise distinct.

8. If a ∈ PM0 and c ∈ PM2 then for every large enough n a 6∈ R(M,Fn(c)). Equivalently
⋂
n F

M
n (c) =

∅.

Note that condition 4 is not preserved under substructure.
We now define the class K0 of finitely generated members of K1; it will generate via direct limits a

class K1 = K̂ and from it we will derive the rich class K2 = R.
The PM1 of models in K0 are each a direct product of a finite boolean algebra Bn∗ and a countable

atomless boolean algebra F∞. PM0 is in 1-1 correspondence with the atoms of Bn∗ , P
M
2 indexes families

of sequences FMm (c) of elements if PM1 ; if m ≥ n∗, the FMm (c) are independent. The set {Fm(c) : m ≥
n∗, c ∈ PM2 } are a basis for F∞. The FMm (c) for m < n∗ are Boolean combinations of elements in Bn∗
and the FMn (c) with index greater than n∗; as the models are extended n∗ grows all the FMn (c) eventually
have atoms below them. (See Lemma 3.2.14.) Details follow.

Definition 3.2.3. M is in the class of structures K0 if M ∈ K−1 and there is a witness 〈n∗,B, b∗〉 such
that:

1. b∗ ∈ PM1 is a finite union of atoms. Further, for some k,
⋃
j≤k P

M
4,j = {c : c ≤ b∗} and for all n > k,

PM4,n = ∅.

2. B = 〈Bn : n ≥ n∗〉 is an increasing sequence of finite Boolean subalgebras of PM1 .

3. Bn∗ = {c ∈ PM1 : c ≤ b∗} = PM4

4.
⋃
n≥n∗ Bn = PM1 .

5. PM2 is finite and not empty. Further, for each c ∈ PM2 the FMn (c) for n < ω are independent.

6. The set {Fm(c) : m ≥ n∗, c ∈ PM2 } is free over Bn∗ = PM4 and Fm(c) ∧ b∗ = 0 for m ≥ n∗.
In detail, let σ(. . . xc . . .) be a Boolean algebra term in the variables xc which is not identically 0.
Then, for n ≥ n∗ and c ∈ PM2 :

σ(. . . Fn(c) . . .) > 0

4The subsets of PM0 are not elements of M .
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and for any non-zero d ∈ Bn∗ with d ∧ b∗ = 0, (i.e. d ∈ Bn − P 4
M ),

σ(. . . Fn(c) . . .) ∧ d > 0.

(Here 0 = 0P
M
1 .)

7. For every n ≥ n∗, Bn, is generated by Bn∗ ∪ {Fm(c) : n > m ≥ n∗, c ∈ PM2 }. Thus PM1 and so M
is generated by Bn∗ ∪ PM2 .

8. If n < n∗ and c ∈ PM2 , FMn (c) ∈ Bn∗

Remark 3.2.4. Condition 3 of Definition 3.2.2 implies for any M ∈ K−1, any a ∈ PM0 , b ∈ PM1 ,
M |= R(a, b) ∨R(a, b−).

Condition 6 implies that if a ∈ PM0 and c ∈ PM2 then for every large enough n a 6∈ R(M,Fn(c)).
That is, condition 8 of Definition 3.2.2 is met in a very strong way. Equivalently

⋂
n F

M
n (c) = ∅.

Note that if 〈n∗,B, b∗〉 witnesses M ∈K0 then for any m ≥ n∗, so does 〈m,B, b∗〉.

Lemma 3.2.5. Each structure in K0 is finitely generated.

Proof. Let M ∈K0, witnessed by 〈n∗,B, b∗〉. Then M is generated by PM0 ∪Bn∗ ∪ PM2 .

Lemma 3.2.6. K0 is countable.

Proof. Let M be in K0, witnessed by 〈n∗,B, b∗〉. The isomorphism type of M is determined by the
structure on PM4 induced by the Fn(ci) and ci ∈ PM2 . If m ≥ n∗, Fm(ci) ∧ b∗ = 0 so there is no trace
on PM4 . Since the tail, is just an atomless boolean algebra in the sense of PM1 , it is ℵ0 categorical. But
there can be only countably many structures induced on the finite PM4 by the countable set Fn(ci) through
the formulas x < Fn(ci) which determine the values of R on PM4 since only the Fm(ci) for m < n∗ are
non-empty and PM2 is finite. 3.2.6

The following lemma shows the prototypical models in K0 in fact exhaust the class.

Lemma 3.2.7. For any M ∈ K0, PM1 has a natural decomposition as a product of an atomic and an
atomless Boolean algebra5.

Proof. Let M ∈ K0, witnessed by 〈n∗,B, b∗〉. Then the atomic part is the collection of elements of
PM1 that are ≤ b∗. And the independent generation by the FMn (ci) for n ≥ n∗ and ci ∈ PM2 shows the
quotient is atomless. 3.2.7

Definition 3.2.8. The class K1 = K̂ is the collection of all direct limits of models in K0.

Lemma 3.2.9. There is a minimal model M0 of K0, and so of K1, that can be embedded in any model.

Proof. Let PM0
0 be empty; PM0

2 = {c}; let the FM0
n (c) be independent generators of PM0

1 − PM4 ; PM4
is empty. 3.2.9

Thus, in the minimal model PM0
1 is the direct product of the 2-element Boolean algebra with an atomless

Boolean algebra. More generally, if M ∈ K0, PM1 is the direct product of the finite ideal PM4 with an
atomless Boolean algebra.

5The atomic component need not have a maximal element (in R).
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Lemma 3.2.10. If M0 ⊆ M1 are both in K0, witnessed by 〈ni∗,B
i, bi∗〉, then for sufficiently large n,

B0
n = B1

n ∩ P
M1
1 .

Proof. Since the B1
n exhaust PM1

1 and B0
n∗ is finite, for all sufficiently large n, and since FM1

r (c) =

FM0
r (c), B1

n contains the FM0
r (c) and thus B0

n. But if some b ∈ B0
n but not in B1

c ∩ P
M0
1 , then for some k,

b ∈ B0
k+1 −B0

k. But then B0
k+1 is not generated by B0

n∗ along with the FM0
r (c) for r < k. 3.2.10

Lemma 3.2.11. (K0,⊆) has the disjoint amalgamation property.

Proof: Suppose M0 is extended by M1 and M2. Let Bi be the Boolean algebra with domain PMi
1 .

Lemma 3.1.6 gives an amalgamation B3 of B1 and B2 over B0 with the same atoms, where B3 = B̌3/I . (B̌3

is thus usual free amalgam and I is the ideal in Lemma 3.1.6.) We define a structure M3 ∈ K0 with B3

as the Boolean algebra PM3
1 . We take PM1

0 ∪ PM2
0 as PM3

0 . Let PM3
2 = PM1

1 ∪ PN2
2 and interpret the Fn

as they are in the substructures M1 and M2. The interpretation of G1 is immediate. For a ∈ PM1
1 − PM0

1 ,
b ∈ PM2

1 − PM0
1 , let RM3(a, b) if there is a c ∈ M0 with a < c < b (in M3). Extend R to all of PM3

1 to
make it a homomorphism. This gives us an a model in K−1.

Let M0 ⊆ M1,M2 ∈ K0. By taking n∗ as the maximum of ni∗ for i < 3, we can assume this is
witnessed by tuples 〈n∗,Bi, bi〉. We must find an 〈n∗, B3

n∗ , b
3〉 witnessing M3 ∈ K0, i.e. is finitely

generated. Rechoosing n∗ by Lemma 3.2.10 we can assume for all n ≥ n∗, B1
n ∩P

M0
1 = B0

n = B2
n ∩P

M0
1 .

Set B3
n as 〈B1

n ∪B2
n〉M3 for each n; use 〈n∗,B3, b1 ∨ b2〉 as the witness. We must verify that {FM3

n (c) :
n ≥ n∗, c ∈ PM3

2 } is independent from B3
n∗ over PM3

4 . We first work in M̌3. Note that for i = 1, 2,
{FMi

n (c) : n ≥ n∗, c ∈ PMi
2 } is independent from Bin over PMi

4 in PMi
1 . By free amalgamation, we have

Y = {F M̌3
n (c) : n ≥ n∗, c ∈ P M̌3

2 } is independent from B̌3
n∗ = 〈B1

n∗ ∪ B
2
n∗〉

M̌3 over P M̌3
4 in P M̌3

1 . We
want to remove the checks.

So, we have in M̌3 for any Boolean-polynomial p(v0, . . . , vk) (that is not identically 0), and any a ∈
(B̌3

n−P
M̌3
4 ), and any y0, . . . , yk ∈ Y , p(y0, . . . , yk)∧a 6∈ P M̌3

4 . Since I is contained in the ideal generated
by P M̌3

4 in P M̌3
1 , π(σ(y0, . . . , yk) ∧ a 6∈ PM3

4 and so we finish. 3.2.11

Since K0 has joint embedding, amalgamation and only countably many models, we have:

Corollary 3.2.12. There is a countable generic model M for K0. We denote its Scott sentence by φM .

Definition 3.2.13. We say a model M in K1 is rich if for any N1, N2 ∈ K0 with N1 ⊆ N2 and N1 ⊆ M ,
there is an embedding of N2 into M over N1. We denote the class of rich models in K1 by K2 = R.

Here are some of the properties that distinguish the theory of K2 from that of K1.

Lemma 3.2.14. If M is the generic model then

1. if b1 6= b2 ∈ PM1 − PM4 then R(b1,M) 6= R(b2,M), i.e. the map f from Definition 3.2.2.1.c is
injective.

2. The sets R(M,FMn (c) with FMn (c) 6∈ PM4 and c ∈ P2(M) are independent in the algebra of sets on
PM0 .

3. If b ∈ PM1 − PM4 , RM (b,M) is infinite and b is not an atom. So PM1 /PM4 is an atomless boolean
algebra, hence free.

10



Proof. Fix a finitely generated model M0 containing b1, b2; there is a finitely generated extension M1

in K0 by adding a ∈ PM1
1 − PM0

1 with RM1(a, b1) ∧ ¬RM1(a., b2). The other statements hold by similar
arguments. 3.2.14

By the usual argument for rich models (given amalgamation with free over finite intersection), it is easy
to construct a back-and-forth-showing:

Lemma 3.2.15. The class K2 is the collection of models of the Scott sentence of the rich model constructed
in Lemma 3.2.12.

Proof. If N ∈K2 or N |= φM , N is back and forth equivalent to M , 3.2.15

Lemma 3.2.16. There is an expansion τ∗ of τ and a complete first order theory quantifier eliminable T
such that R is the collection of τ -reducts of the atomic models of T .

Proof. Add a predicate for each quantifier free type of a finite sequence of variables realized in the
generic model M . Let T be the theory of the resulting structures.

This completes our description of the class K2 of rich models and its Scott sentence. We now introduce
a notion of free-extension which will be crucial for the main construction.

Definition 3.2.17. We say M2 is free over M1 and write M1 ⊆fr M2 if

(a) There is an I with I ⊂ (PM2
1 − PM2

1 ) ∪ PM2
4 such that i) I ∪ PM1

1 ∪ PM2
4 generates PM2

1 and
ii) I is independent from PM1

1 over PM2
4 in PM2

1 .

(b) There is a function H from PM2
2 \ PM1

2 to N such that the Fn(c) for n ≥ H(c) are distinct and

{FMn (c) : c ∈ PM2
2 \ PM1

2 and n ≥ H(c)} ⊂ I.

1. M is free if it is free over the empty model i.e., PM1 has a free basis over PM4 .

2. M is weakly free over N if M contains a free extension M ′ of N .

Remark 3.2.18. Note that a free model in K1, like those in K0, has a free ideal picked out by PM4 , and
PM1 /PM4 is an atomless boolean algebra.

We need only speak of the generation of PM1 and PM2 since for in M ∈ K1 elements of PM0 are
generated from P1 by G1. Here are some basic facts about free extensions.

Lemma 3.2.19. 1. If M1 ⊆fr M2 by I1 and M2 ⊆fr M3 by I2 then M1 ⊆fr M3 by I1 ∪ I2. Thus,
⊆fr is a partial order.

2. More generally ifMα with α < δ is continuous⊆fr increasing thenM =
⋃
Mα satisfiesMα ⊆fr M

witnessed by
⋃
α<β<δ Iβ .

Proof. For 1) the requirements on the Ii follow directly Lemma 3.1.8 (taking the ideals as PM2
4 and

PM3
4 ) and the given generating conditions. And clearly the Fn(c) are contained in I1 ∪ I2 and continue to

be independent. Part 2 follows by induction. 3.2.19

Note that each model in K0 is free over the emptyset.
In order to construct a sequence as appears in Lemma 3.2.19, we need to construct free extensions.

Lemma 3.2.20. Suppose M1 ∈ K̂ = K1 is free and N1 ⊂M1. Let N1 ⊂ N2 with both in K0.
Then there are an M2 and an f such that:

11



1. M2 ∈K1, M1 ⊆fr M2 and so M2 is free. Similarly N2 ⊆fr M2.

2. f maps N2 into M2 over N1. Moreover, the image of N2 is free in M2.

Proof. We construct an amalgam M2 of M1 and N2 over N1. Fix n1 such that for n ≥ n1, {FM1
n (c) :

n(c) ≥ n1, c ∈ PM1
2 } ∩ {FN2

n (c) : n(c) ≥ n1, c ∈ PN2
2 } and FN2

n (c) for c ∈ PM1
2 and c ∈ PN2

2 ,
respectively are in disjoint boolean algebras, PM1

1 − PN1
1 and PN2

1 − PN1
1 and PM1

1 , PN2
1 are generated by

I1, I2 free from N1 over PN1
4 . respectively. Let PM2

1 be amalgam of PM1
1 and PN2

1 over PN1
2 with no new

atoms as constructed in Theorem 3.1.6. So PM2
4 = PM1

4 ∪ PN2
4 . The argument for Lemma 3.2.11 shows

the image of I1 ∪ I2 is independent from PN1
1 over PM2

4 and I1 ∪ I2 generates PM2
1 . It follows that M1 and

N2 are freely embedded in M2. 3.2.20

Now we extend the range of the amalgamation from from K0 to free models in K1. The argument is
essentially the same

Corollary 3.2.21. Let M1 be free in K1.

1. There exists an M2 which is a free extension of M1.

2. We can choose M2 ∈K2.

Proof. For 1) embed the minimal model M0 (Lemma 3.2.9) into M1; let N1 be an extension of M0 by
adding one more d to PM0

2 to form PN1
2 and setting R(N1, Fn(d)) = ∅. Amalgamate M1 and N1 over M0

by Lemma 3.2.20. Note the result M2 is a free extension of M1.
For part 2) iterate Lemma 3.2.20 as in Corollary 2.1.6 to obtain a rich model; note that freeness is

preserved in each stage. 3.2.21

The crucial distinction from Corollary 2.1.6 is that here we extend only ‘free models’ in K1 to R.
3.2.21

Proceeding inductively we get:

Corollary 3.2.22. For every µ there is a free M ∈K1, (K2) of cardinality µ.

In the next section, we show under appropriate set theoretic hypotheses on λ, that we can build a chain
of free extensions such that the union is not free and in fact is maximal. For this, we will need one further
refinement.

We now easily get a free extension of a free model in K1 by a model in K1. We needed the amalgama-
tion to prove the generic exists and for 2) of each corollary– getting structures in K2. Note that step 1 does
not extend P0, (but M1 is assumed free).

Corollary 3.2.23. Let M1 be free in K1. Suppose A ⊂ PM1 .

1. There exists an M2 which is a free extension of M1 and a b0 ∈ PM2
1 such that b is free from PM1

1 over
PM2

4 and R(M2, b0) = A.

2. We can choose M2 ∈K2.

Proof. If some b ∈ PM1
1 satisfiesR(M1, b) = A, there is nothing to do. If not, extend PM1

1 by taking the
direct product with a new copy of the free algebra on countably many generators. Add one new c to PM1

2 to
get PM2

2 . Let bn = Fn(c) list the generators of the extension. Let R(M2, b0) = A and R(M2, bi) = ∅ for
i > 0. Extend R to a Boolean homomorphism (which is trivial off 〈PM1

1 ∪ b0〉 by the obvious interpretation
on finite boolean combinations. Since M2 is free, we can extend it to a model in K2 as in Corollary 3.2.21.

3.2.23

12



3.3 Constructing maximal models in an extension of ZFC
We show that in each cardinal below a measurable cardinal, assuming a mild set theoretic hypothesis de-
scribed below, R has maximal models. We begin by defining a pair of set theoretic notions and some specific
notions of maximal model.

Definition 3.3.1 (�S). Given a cardinal κ and a stationary set S ⊆ κ, �S is the statement that there is a
sequence 〈Aα : α ∈ S〉 such that

1. each Aα ⊆ α

2. for every A ⊆ κ, {α ∈ S : A ∩ α = Aα} is stationary in κ

Definition 3.3.2 (S reflects). Let κ be a regular uncountable cardinal and let S be a stationary subset of κ.
If α < κ has uncountable cofinality, S reflects at α if S ∩α is stationary in α . S reflects if it reflects at some
α < κ.

Definition 3.3.3. 1. A model M ∈ K2 = R is P0-maximal (for K1) if M ⊆ N and N ∈ K2 = K1

implies PM0 = PN0 .

2. A model M ∈K2 = R is maximal (for R) if M ⊆ N and N ∈K2 = R implies M = N .

Let Sλℵ0 denote the stationary set {δ < λ : cf(δ) = ℵ0, δ is divisible by |δ|}.

Theorem 3.3.4. Fix K0,K1 = K̂, and K2 = R as in Definitions 3.2.3, 3.2.8 and 3.2.13. There is a
P0-maximal (for K1) model M ∈ R of card λ if there is no measurable cardinal ρ with ρ ≤ λ, λ = λ<λ,
and there is an S ⊆ Sλℵ0 , that is stationary non-reflecting, and �S holds.

Under V = L, the hypotheses are clearly consistent and imply there are arbitrarily large maximal models
of R in L. When a measurable cardinal exists, the consistency of the conditions can be established by
forcing; see the article by Cummings in the Handbook of Set Theory [Cum08] or by considering the inner
model of a measurable L[D] where is D is a normal ultrafilter on µ.

The argument for Theorem 3.3.4 will have three parts. First, we describe the requirements a construction
of a model; then we carry out the construction. Finally, we show the model is constructed is P0-maximal if
its cardinality is below the first measurable.

Construction 3.3.5 (Requirements). Let 〈Uα : α < λ〉 list [λ]<λ so that each subset is enumerated λ times
and Uα ⊆ α. Without loss, each α ∈ S is a limit ordinal and is divided by |α|. Let A

∗
= 〈A∗δ : δ ∈ S〉 be a

�S-sequence.

We will choose Mα for α < λ by induction to satisfy the following conditions. (Since the universe of
M is a subset of λ, its elements are ordinals so we may talk about their order although the order relation is
not in τ .)

1. Mα ∈K1 has universe an ordinal between α and λ and M0 is empty. Each Mα ∈K1

2. 〈Mβ : β < α〉 is ⊆- continuous.

3. If β ∈ α− S then Mα is free over Mβ and Mα ∈K2 = R.
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4. If α = β + 2 and Uβ ⊆ P
Mβ

0 then there is a bβ ∈ PMα
1 such that R(Mα, bβ) ∩Mβ+1 = Uβ and in

the Boolean algebra PMα
1 , {bβ} is free from P

Mβ+1

1 over PMα
4 .

5. If δ ∈ S and α = δ + 1 then a) implies b), where:

(a) there is an increasing sequence γ = 〈γδ,n, bδ,n : n < ω〉, where the γδ,n are increasing with n
and not in S satisfying:

i. γδ,n < γδ,n+1 < δ with supn γδ,n = δ;

ii. bδ,n ∈ P
Mγδ,n+1

1 ∩A∗δ and so bδ,n ∈ PMδ
1 ;

iii. {bδ,n : n < ω} is independent over PMγn
1 ∪ PMδ

4 ;

iv. if a ∈ PMδ
0 then for all but finitely many n, ¬R(a, bδ,n).

(b) For some γ = 〈γδ,n, bδn : n < ω〉, there is a cδ ∈ P
Mδ+1

2 such that for each n, FMδ+1
n (cδ) = bδ,n.

Note that each Mi for i < λ is free; but, as we will see, Mλ may not be. We now carry out the inductive
construction.

Note that if we know that δ ∈ S, we can guarantee the Mδ is free by choosing a sequences of successor
ordinals γn with limit δ. By induction each Mγn is free so by Lemma 3.2.19.3 so is Mδ .

Construction 3.3.6. Details

Case 1: α = 0. Let M0 be the prime model from Lemma 3.2.9. The generic can be taken as M1.
Case 2: α = β + 1 and β 6∈ S. If β is a limit we only have to choose, by Lemma 3.2.21, Mα to be a free
extension of Mβ in R. If β is a successor, there is an additional difficulty if Uβ ∈ P

Mβ

0 ; we must choose bβ
to satisfy condition 4) and with Mα+2 ∈K2. For this, apply Corollary 3.2.23.2.
Case 3: α = δ, a limit ordinal that is not in S. Set Mδ =

⋃
γ<δMγ . We must prove that if β ∈ δ \ S then

Mδ is free overMβ . Since S does not reflect there exists an increasing continuous sequence 〈αi : i < cf(δ)〉
of ordinals less than δ, which are not in S and with α0 = β. By the induction hypothesis, for each i < j <
cf(δ), Mαj is free over Mαi . And clearly then Mδ is free over Mβ as required.
Case 4a: α = δ + 1, δ ∈ S, and clause 5a fails. This is just as in case 2.
Case 4b: α = δ + 1, δ ∈ S, but clause 5a holds.

So, suppose 〈Mβ , bβ〉 for β < δ have been defined. If there exists γ as in condition 5a) we must
construct Mδ+1 and cδ to satisfy condition 5b). Such a choice is immediate from the following Claim 3.3.7.
To see hypothesis A) of Claim 3.3.7 holds, recall that δ is divisible by |δ| so we can choose the γn so that
γn+1 ≥ γn + ω and so PMn+1

2 − PMn
2 is infinite. Hypotheses 2) and 3) of Claim 3.3.7 are conditions iii)

and iv) of 5a) from Construction 3.3.5.

Claim 3.3.7. Suppose that for n < ω,Mn ⊂fr Mn+1 are in K̂. If Condition A) holds then so does condition
B).

A 1. PMn+1

2 − PMn
2 is infinite

or at least there are no finite Y ⊂ P
Mn+1

1 and X ⊂ P
Mn+1

2 so that PMn+1

1 is generated as a
Boolean algebra by PMn

1 ∪ Y ∪ {FMn+1
m (c) : c ∈ X,m ∈ ω}

2. there is a bn ∈ PMn+1

1 so that {bn} is free over PMn
1 .

3. if a ∈ PMi
1 , then for all but finitely many n ≥ i, a 6∈ R(Mn+1, bn).
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B) then there is a pair (M, c)

1. M =
⋃
Mn ∪ {c}, c ∈ PM2 , c is not in any Mn,

2. Mn ⊂fr M for each n,

3. FMn (c) = bn.

Proof. For simplicity write Nn for the Mγn in Construction 3.3.5.5a). The difficulty is that while we
know each Nn+1 is free over Nn, witnessed by some In, we don’t know bδn ∈ In. Clearly, it suffices to find
I ′n which also witnesses Nn ⊂fr Nn+1 and bn ∈ I ′n as the description of M in b) determines the rest. To
find I ′n, we first find (X, Jn) such that:

1. X ⊆ PNn1 is finite.

2. Jn ⊂ In is countable.

3. If c ∈ PNn+1

2 − PNn2 then for sufficiently large m, FNn+1
m (c) 6∈ Jn.

4. bn ∈ BA(X ∪
⋃
Jn), the Boolean algebra generated by X ∪

⋃
Jn.

Now we construct such an (X, Jn).
First step: Note that bn is in a subalgebra generated by a finite subset X of PNn1 and a finite subset J ′n

of In. Now, by hypothesis A.1) of Claim 3.3.7, we find countably infinite J ′′n contained in In− J ′n such that
for each c ∈ PNn+1

2 − PNn2 all but finitely many of the FNn+1(c) are not in J ′′n . Set Jn = J ′n ∪ J ′′n .
Second step: Let 〈bnk : k < ω〉 list Jn without repetitions. Now choose di = dni for i < ω by induction,

with d0 = bn, so that

1. d` ∈ BA(X ∪ Jn)

2. 〈dj : j ≤ `〉 is independent from X over PMn
1

3. If ` = k + 1, bnk ∈ BA(X ∪ 〈dj : j ≤ `〉).

This suffices, as if we succeed, I ′n can be taken as (In − Jn) ∪ 〈d` : ` < ω〉 and we choose a new c
and define M as required by setting FMn (c) = bn for each c. But how do we choose the di? Let d0 = bn.
Clearly this choice satisfies the first three conditions and the fourth is vacuous for 0.

Now suppose ` = k + 1 and d0, . . . dk have been chosen. Suppose 〈e`,j : j < j`〉 lists the atoms
of BA(X ∪ 〈dj : j ≤ k〉). Let i(k) be minimal such that bni(k) 6∈ BA(X ∪ {d0, . . . dk}), equivalently

bni(k) 6∈ BA(PNn1 ) ∪ PNn+1

4 ∪ {d0, . . . dk}.
Let u0

` = {j < j` : e`,j ∧ bnk ∈ {0, e`,j} and u1
` = {j < j` : j 6∈ u0

`}. Then choose, m(`) such that
d0, . . . dk ∈ BA(X ∪ {bn0 . . . bnm(`)−1} and m(`) > k. Now the required d` is∨

{bnm(`) ∧ e`,j : j ∈ u0
`} ∨

∨
{bni(k) ∧ e`,j : j ∈ u1

`}.

3.3.7

This completes the construction. We use the following observation in proving Claim 3.3.12.

Fact 3.3.8. There is a closed unbounded set C1 such that if δ ∈ C1, for every sequence γ ∈ Mω
δ satisfying

condition 5a), there is a cδ ∈ P
Mδ+1

2 such that for each n, FMδ+1
n (cδ) = bδ,n.
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Claim 3.3.9. The structure M =
⋃
i<λMi ∈ R.

Proof. Since we required the extension to be in K2 = R in requirement 3 of Construction 3.3.5, for
cofinally many i, Mi ∈ R. By Lemma 3.2.14, all are∞, ω equivalent. Hence M ∈ R. 3.3.9

Construction 3.3.10. Verification that the construction suffices

Now we now show that M is P0-maximal for K1 = K̂. Suppose for contradiction there exists N in K1

extending M such that PN0 ) PM0 . Choose a∗ ∈ PN0 − PM0 . Let

A = {b ∈ PM1 : RN (a∗, b)}.

Then, by Remark 3.2.4, for every a ∈ PN0 , in particular a∗ and every b ∈ PN1 (and so every b ∈ PM1 ) either
RN (a, b) or RN (a∗, b−). Thus, A is an ultrafilter on PM1 . If A is non-principal, it is generated by some
atom b0 ∈ PM1 . Then b0 must be in P4,1 and so ¬RN (a∗, b0), contrary to hypothesis. We do not know
whether this ultrafilter is ℵ1-complete; we will show it induces an ℵ1-complete ultrafilter on P(PMα∗

0 ) for
some α∗ < λ.

We now deduce a contradiction from the properties of A. Recall that the A∗δ are a diamond sequence
fixed in requirement 3.3.5. Note

SA = {δ ∈ S : Mδ has universe δ & A∗δ = A ∩ δ}

is a stationary subset of λ.
Recall that in the construction, we chose bα for α < λ which satisfied requirement 4 of Construc-

tion 3.3.5.

Notation 3.3.11. Note C = {δ < λ : δ limit & α < λ→ bα < δ} is a club of λ.

There are two cases. We will show the first is impossible and the second implies λ is measurable contrary
to hypothesis.

Case i): For every α < λ there is a bα ∈ PM1 ∩ A such that R(M, bα) is disjoint from α and {bα} is
independent over PMα

1 ∪ PM4 .
Choose δ∗ ∈ SA ∩ C ∩ C1. Since δ∗ has cofinality ω we can choose a sequence γδn such that each is

successor (so not in S), and as we are in case i) with bγδ∗n < γδ
∗

n+1. But this is forbidden by the following
Claim 3.3.12. This contradiction completes the proof of case i).

Claim 3.3.12. There can be no sequence 〈γδ∗n : n < ω〉 with limit δ∗ so that γδn 6∈ S and bγδ∗n < γδ
∗

n+1.

Proof. If such a sequence exists, as δ∗ ∈ C1, Fact 3.3.8 implies there is a c∗δ ∈Mδ∗+1 such that for each
n, FMδ∗+1

n (c∗δ) = bγδ∗n . Since N ∈ K̂, by clause 8 of Definition 3.2.2, N |= ¬(∃x)
∧
nR(x, Fn(c∗δ)). This

contradicts that we chose bγδ∗n ∈ A, so by the definition of A, for each n < ω, RN (a, bγδ∗n ) holds. 3.3.12

case ii) For some α∗, there is no such bα∗ . That is, if b ∈ PM1 is independent from PMα
1 and R(M, b) is

disjoint from α∗ then ¬R(a∗, b).
Let 〈vγ : γ < λ〉 list P(PMα∗

0 ) with each element appearing λ times in the list. We now choose induc-
tively by requirement 4 of Goal 3.3.5 a subsequence of the bγ ∈ PM1 and Mγ . For local intelligibility (and
at the risk of global confusion) we use indices bγ rather than bαγ that would keep track of the subsequence
fact, as it does not matter.
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Choose inductively bγ ∈ PM1 such thatR(M, bγ)∩PMα∗
0 = vγ and moreoverR(M, bγ)∩PMγ+1

0 = vγ
and 〈bβ :β ≤ α〉 is independent over PMα∗

1 ∪PM4 in the Boolean algebra PM1 . Moreover {bβ} is independent
over PMβ

1 ∪ PM4 .
We claim that if γ1 < γ2 ∧ vγ1 = vγ2 then RN (a∗, bγ1)↔ RN (a∗, bγ2) holds. Let b′ = bγ14bγ2 . Then

R(M, b′) ∩ PMα∗
0 = ∅ so by the case choice, ¬R(a∗, b′). But ¬R(a∗, b′) implies

RN (a∗, bγ1)↔ RN (a∗, bγ2),

as required.
Continuing the proof of case ii) we define an ultrafilter D on P(PMα∗

0 ) by v ∈ D if for some (and hence
any) bγ with R(M, bγ) ∩ PMα∗

0 = v, RN (a∗, bγ).

We guarantee that this is an ultrafilter as each u ⊂ P
Mα∗
0 is R(M, bγ) ∩ P

Mα∗
0 by step

4 of the construction.

But there is no ℵ1-complete ultrafilter on P(PMα∗
0 ) since λ is not measurable. So there are 〈vn ⊆

PMα∗
0 : n < ω〉, each in D, that are decreasing and intersect in ∅.

Claim 3.3.13. For any b ∈ PM1 , if v = R(M, b) ∩ PMα∗
0 and v ∈ D then N |= R(a∗, b).

We can choose a β large enough so that α0 < β <, b ∈ PMβ

1 and there is a β1 > β such that vβ1 = v.
Now b4b1 ∈ PM1 andR(M, b′)∩PMα∗

0 = ∅. So by the choice of α∗,N |= ¬R(a∗, b′). So,N |= ¬R(a∗, b)

if and only N |= ¬R(a∗, bβ1
). But, we have v ∈ D and R(M, bβ1

) ∩ PMα∗
0 = v, so N |= R(a∗, bβ1

) and
thus N |= R(a∗, b) as required. 3.3.13

Now we can find δ∗ > α∗ such that δ∗ ∈ SA ∩ C, the universe of Mδ∗ is δ∗, A ∩ δ∗ = Aδv , and
choose an increasing sequence 〈γδ∗n : n < ω〉 with limit δ∗ and γδ

∗

n 6∈ S. Further we can choose bγδ∗n so
that R(M, bγδ∗n ) ∩Mα∗) = vn and the sequence {bγδ∗n } is independent over P δ

∗

1 ∪ PM4 . But the existence
of such a sequence violates Claim 3.3.12 so we finish case ii) and thus Lemma 3.3.4. 3.3.4

Corollary 3.3.14. Under the hypotheses of Theorem 3.3.4, there is a maximal model of R of cardinality at
most 2λ.

Proof. Fix a P0-maximal model N0 of cardinality λ from Theorem 3.3.4. Build for as long as possible
a continuous ⊆-increasing chain of Nα ∈ R such that each Nα 6= Nα+1. Recall that by Lemma 3.2.14
the relation R is extensional. So, each |PNα1 | ≤ 2|P

N0
0 | = 2λ. So this construction must stop and the final,

maximal in R, model has cardinality at most 2λ. 3.3.14

Remark 3.3.15. We can not directly show Mλ is free as there is no assumption that λ does not reflect. In
fact, by the contrapositive of Corollary 3.2.21 the final model in the chain built in Theorem 3.3.14, which
might be M , is not free.

4 Hanf Number for Existence
As mentioned in the introduction, we improved in [BKL16] Hjorth’s result [Hjo02] by exhibiting for each
n < ω a complete sentence ψn such that ψn characterizes ℵn. This improvement is achieved by combining
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the combinatorial idea of Laskowski-Shelah in [LS93] with a new notion of n-dimensional amalgamation.
We explain the main definition and theorem here (as in the Tehran lectures) and refer to [BKL16] for the
proofs. The combinatorial fact is:

Fact 4.0.16. For every k ∈ ω, if cl is a locally finite closure relation on a set X of size ℵk, then there is an
independent subset of size k + 1.

Fix a vocabulary τr with infinitely many r-ary relations Rn and infinitely many r + 1-ary functions fn.
We consider the class Kr

0 of finite τr-structures (including the empty structure) that satisfy the following
three conditions; closure just means subalgebra closure with respect to the functions.

• The relations {Rn : n ∈ ω} partition the (r + 1)-tuples;

• For every (r + 1)-tuple a = (a0, . . . , ar), if Rn(a) holds, then fm(a) = a0 for every m ≥ n;

• There is no independent subset of size r + 2.

It is easy to see from Fact 4.0.16 that every model in ℵr is maximal. The main effort is to show there is
a complete sentence φr satisfying those conditions which has model in ℵr. For this we introduce a notion
patterned on excellence6 but weaker. We pass from a class Kr

0 of, now, locally finite structures to the
associated class K̂ as in Definition 2.1.1.

Definition 4.0.17. For k ≥ 1, a k-configuration is a sequence M = 〈Mi : i < k〉 of models (not isomor-
phism types) from K. We say M has power λ if ‖

⋃
i<kMi‖ = λ. An extension of M is any N ∈ K such

that every Mi is a substructure of N .

Informally a (λ, k)-disjoint amalgamation holds when for any sequence of k models, at least one with λ
elements, there is common extension, which properly extends each model in the sequence. Crucially, there
is no notion of a universal model yet. Here is the precise formulation.

Definition 4.0.18. Fix a cardinal λ = ℵα for α ≥ −1. We define the notion of a class (K,≤) having
(λ, k)-disjoint amalgamation in two steps:

1. (K,≤) has (λ, 0)-disjoint amalgamation if there is N ∈K of power λ;

2. For k ≥ 1, (K,≤) has (≤ λ, k)-disjoint amalgamation if it has (λ, 0)-disjoint amalgamation and
every k-configuration M of cardinality ≤ λ has an extension N ∈ K such that every Mi is a proper
substructure of N .

For λ ≥ ℵ0, we define (< λ, k)-disjoint amalgamation by: has (≤ µ, k)-disjoint amalgamation for each
µ < λ.

Whether or not a given k-configuration M has an extension depends on more than the sequence of
isomorphism types of the constituent Mi’s, as the pattern of intersections is relevant as well. For example,
when (as here) strong substructure is just substructure), a 2-configuration 〈M0,M1〉 with neither contained
in the other has an extension if and only if the triple of structures 〈M0 ∩M1,M0,M1〉 has an extension
amalgamating them disjointly. Thus we abuse notation a bit and write (< λ, 2) amalgamation for both the
notion defined here and the one in Definition 2.1.4. But there is no existing analog of our disjoint (< λ, k)-
amalgamation for k > 2.

6Shelah’s theory of excellence concerns unique free disjoint amalgamations of infinite structures in ω-stable classes of models of
complete sentences in Lω1,ω .
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Now we modify a theme familiar from the theory of excellence. If the cardinality increases by one the
the number of models that can be amalgamated drops by one. In Shelah’s context [She09] (chapter 21 of
[Bal09]) there is a reliance on Fodor’s lemma to obtain compatible filtrations of the models in κ+ to prove the
version of Proposition 4.0.19. A very different approach was needed to go from the finite to the countable.
Instead of the kth level concerning finding an embedding into an upper corner for a given 2k−1 vertices of a
k-cube, we consider actual containment for k-models and do not worry about their intersections.

Lemma 4.0.19 (Proposition 2.20 of [BKL16]). Fix locally finite (K,≤) with JEP. For all cardinals λ ≥
ℵ0 and for all k ∈ ω, if K has (< λ, k + 1)-disjoint amalgamation, then it also has (≤ λ, k)-disjoint
amalgamation.

Together, these propositions yield 1)-3) of the next result. Recall from Definition 2.1.4, that by 2-
amalgamation, we mean the usual notion that allows identifications. We say 2-amalgamation is trivially true
in a cardinal κ in all models in κ are maximal.

Theorem 4.0.20 (Theorem 3.2.4 of [BKL16]). For every r ≥ 1, the class Atr satisfies:

1. there is a model of size ℵr, but no larger models;

2. every model of size ℵr is maximal, and so 2-amalgamation is trivially true in ℵr;

3. disjoint 2-amalgamation holds up to ℵr−2;

4. 2-ap fails in ℵr−1.

5. Each of the classes K̂r and Atr have 2ℵs models in ℵs for 1 ≤ s ≤ r. In addition, K̂r has 2ℵ0

models in ℵ0.

Parts 4) and 5) require a further refinement of the notion of disjoint amalgamation.

Definition 4.0.21. Let (K̂,≤) be a class of structures defined . Given a cardinal λ and k ∈ ω, we say that
K has frugal (≤ λ, k)-disjoint amalgamation if it has (≤ λ, k)-disjoint amalgamation and, when k ≥ 2,
every k-configuration 〈Mi : i < k〉 of cardinality ≤ λ has an extension N ∈K with universe

⋃
i<kMi.

Thus the domain of a frugal amalgamation is just the union of the models amalgamated. It is easy to see
that this property holds for the example in [BKL16]. It is essential for the intricate constructions to verify
the last two parts of Theorem 4.0.20 and for the work in [BKS16, BS15].

The finite amalgamation spectrum of an abstract elementary class K with LS(K) = ℵ0 is the set XK
of n < ω and K satisfies amalgamation7 in ℵn. There are many examples8 where the finite amalgamation
spectrum of a complete sentence of Lω1,ω is either ∅ or ω.

Theorem 4.0.20 gave the first example of such a sentence with a non-trivial spectrum: for each 1 ≤ r < ω
amalagmation holds up to ℵr−2, but fails in ℵr−1. It holds (trivially) in ℵr (since all models are maximal);
there is no model in ℵr+1.

This result leaves open whether the property, AP in λ, can be true or false in various patterns as λ
increases? Is there even an AEC (and more interestingly a complete sentence of Lω1,ω) and cardinals κ < λ
such that amalgamation holds non-trivially in both κ and λ but fails at some cardinal between them?

7We say amalgamation holds in κ in the trivial special case when all models in κ are maximal. We say amalgamation fails in κ if
there are no models to amalgamate.

8Kueker, as reported in [Mal68], gave the first example of a complete sentence failing amalgamation in ℵ0.
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Relying on the construction in [BKL16], Baldwin and Souldatos [BS15] show there exist complete
sentences of Lω1,ω that variously have maximal models a) in two successive cardinals, b) in κ and κω

and c) in countably many cardinals. In each case all maximal models of the sentence have cardinality less
than iω1

. That proof includes an intricate construction of a complete sentence that has a model in each
successor cardinal κ+ with a definable subset of power κ. The [BS15] result is distinguished from the one
here in several ways. It constructs maximal models in designated cardinals rather than an initial segment.
The crucial amalgamation properties are quite different. In [BKL16] we establish (< λ, 2) amalgamation in
all cardinals. In [BS15] The most delicate argument in [BS15] shows that one can amalgamate a model of
K̂ of any cardinality with an arbitrary finite model and thus achieve richness.
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