Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Model theory and the Middle attic Joint work with: W. Boney, S. Friedman, C. Laskowski, M. Koerwien, S. Shelah, I. Souldatos

John T. Baldwin

University of Illinois at Chicago

AMS regional meeting Bloomington, IN April 1, 2017

(ロ) (同) (三) (三) (三) (三) (○) (○)

Cantor's Middle Attic

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Uncountable cardinals whose existence can be proved in, or is at least equiconsistent with, the ZFC axioms of set theory. http://cantorsattic.info/Middle_attic

The lower reaches

What happens below \beth_{ω_1}

To what extent is that behavior controlled by finite or at least locally finite countable structures?

What model theoretic properties happen higher up? How much higher?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Atomic Model Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Atomic models

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Let T be a complete first order theory in a countable language.

Definition

A model M of T is atomic if every element of M realizes a principal type.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Examples

Not two copies of $(\mathbb{Z}, <)$

Questions

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Question

Does the Löwenheim-Skolem theorem hold for 'atomic' models? down? up?

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Questions

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Question

Does the Löwenheim-Skolem theorem hold for 'atomic' models? down? up?

Answer

Not up, but, if T has an atomic model of cardinality \beth_{ω_1} then it has arbitrarily large atomic models.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Questions

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Question

Does the Löwenheim-Skolem theorem hold for 'atomic' models? down? up?

Answer

Not up, but, if T has an atomic model of cardinality \beth_{ω_1} then it has arbitrarily large atomic models.

Question

What do we know about routine properties in first order logic existence, maximality, joint embedding, amalgamation for atomic models?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The translation

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem

[Chang/Lopez-Escobar] Let ψ be a sentence in $L_{\omega_1,\omega}$ in a countable vocabulary τ . Then there is a countable vocabulary τ' extending τ , a first order τ' -theory T, and a countable collection of τ' -types Γ such that reduct is a 1-1 map from the models of T which omit Γ onto the models of ψ .

The proof is straightforward. E.g., for any formula ψ of the form $\bigwedge_{i < \omega} \phi_i$, add to the language a new predicate symbol $R_{\psi}(\mathbf{x})$. Add to *T* the axioms

$$(\forall \mathbf{x})[R_{\psi}(\mathbf{x}) \rightarrow \phi_i(\mathbf{x})]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

for $i < \omega$ and omit the type $\boldsymbol{\rho} = \{\neg \boldsymbol{R}_{\psi}(\boldsymbol{x})\} \cup \{\phi_i : i < \omega\}.$

complete $L_{\omega_1,\omega}$ -sentences

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

 ϕ is $L_{\omega_1,\omega}$ -complete if for every $\psi \in L_{\omega_1,\omega}$, $\phi \models \psi$ or $\phi \models \neg \psi$.

A τ -structure *M* is $L_{\omega_1,\omega}$ -small if *M* realizes only countably many $L_{\omega_1,\omega}$ -types (over the empty set).

Generalized Scott's theorem

A structure satisfies a complete sentence of $L_{\omega_1,\omega}$ if and only if it is small.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reducing complete to atomic

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

The models of a complete sentence in $L_{\omega_{1},\omega}$ can be represented as:

K is the class of atomic models (realize only principal types) of a complete first order theory (in an expanded language).

Another Direction

The techniques here construct a variety of new first order theories.

How do they fit into the (neo)-stability classification?

Can one bound the cardinality of the atomic models, when the ambient theory is stable? etc.?

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Example and Background

Bounding Cardinality

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneou: Characterizability

Glimpses of the upper attic

Independent means with respect to subalgebra generation.

Fact

For every $k \in \omega$, if cl is a locally finite closure relation on a set *X* of size \aleph_k , then there is an independent subset of size k + 1.

Proof. By induction on *k*. When k = 0, take any singleton not included in $cl(\emptyset)$. Assuming the Fact for *k*, given any locally finite closure relation cl on a set *X* of size \aleph_{k+1} , fix a cl-closed subset $Y \subseteq X$ of size \aleph_k and choose any $a \in X \setminus Y$. Define a locally finite closure relation cl_a on *Y* by $cl_a(Z) = cl(Z \cup \{a\}) \cap Y$. It is easily checked that if $B \subseteq Y$ is cl_a -independent, then $B \cup \{a\}$ is cl-independent.

Example: atomic models up to \aleph_r

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Laskowski-Shelah

 τ_r has infinitely many *r*-ary relations R_n and infinitely many r + 1-ary functions f_n . We consider the class K_0^r of finite τ_r -structures (including

the empty structure) that satisfy the following three conditions.

- The relations $\{R_n : n \in \omega\}$ partition the (r + 1)-tuples;
- For every (r + 1)-tuple $\boldsymbol{a} = (a_0, \dots, a_r)$, if $R_n(\boldsymbol{a})$ holds, then $f_m(\boldsymbol{a}) = a_0$ for every $m \ge n$;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

• There is no independent subset of size r + 2.

Conclusion and Question

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Let \hat{K}^r be the collection of all structures *A* such that every finite substructure of *A* is in K_0^r .

Let $cl_A(X)$ be the closure relation on a model *A* defined by closure under functions.

Conclusion

There is no model of the class $\hat{\boldsymbol{K}}^r$ of cardinality greater than \aleph_r .

(日) (日) (日) (日) (日) (日) (日)

Question

Is there a model of the class $\hat{\boldsymbol{K}}^r$ of cardinality \aleph_r ?

Axiomatize $\hat{\boldsymbol{K}}^{r}$

 ϕ_{r}

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatic and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

$\blacksquare \bigwedge_{m \neq n} (R_n(\mathbf{x}) \to \neg R_m(\mathbf{x}))$

- $\blacksquare \bigvee_n R_n(x_0 \dots x_r)$
- $(\forall \mathbf{x}) R_n(\mathbf{a}) \to \bigwedge_{m \ge n} f_m(\mathbf{x}) = x_0;$
- There is no independent subset of size r + 2. A slightly more complicated sentence in L_{ω1,ω}

Theorem

 ϕ_r has no model of cardinality greater than \aleph_r

Question

Is there a completion of ϕ_r with a model of cardinality \aleph_r ?

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

The general framework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Notation

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Let K_0 be a countable collection of *finite* structures.

We associate with K_0 the collection of models such that every finite substructure of *M* is in K_0 and call this class \hat{K} ; it is locally finite.

In most of this talk we deal only with substructure as the notion of 'strong' submodel.

But we do not, in general, require that K_0 is closed under substructure.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Universal classes of models

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Function symbols are allowed on this slide without loss of generality.

Definition

A class (K, \leq) of τ -structures and the relation \leq as ordinary substructure that is closed under

1 substructure ($S(\mathbf{K}) = \mathbf{K}$)

2 unions of increasing chains $(\lim(\mathbf{K}) = \mathbf{K})$

is called a *universal class*.

Theorem: Tarski

A class (K, \leq) of τ -structures is a universal class iff 1 S(K) = K2 $S(A) \subset K$ implies $A \in K$.

Generic structures

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

Let (\mathbf{K}_0, \leq) denote a class of finite (finitely generated) τ -structures and let $(\hat{\mathbf{K}}, \leq)$ denote the associated (closure under unions) locally finite class. (Closed under substructure if \mathbf{K} is.)

- 1 A model $M \in \hat{K}$ is finitely K_0 -homogeneous or rich if for all finite $A, B \in K_0$, every embedding $f : A \to M$ extends to an embedding $g : B \to M$. We denote the class of rich models in \hat{K} as K^R .
- 2 The model $M \in \hat{K}$ is *generic* if M is rich and M is an increasing union of a chain of finite (finitely generated) substructures, each of which are in K_0 .

All rich models are (∞, ω) -equivalent.

Generalized Fraïssé

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

The vocabulary may be infinite and include function symbols.

Lemma

If a class (K_0 , \leq) satisfies amalgamation, JEP, and has countably many elements, then there is a unique countable generic model, which is rich.

Note that we do not need 'closed under substructure'.

 \leq does not have to be substructure. The new results here are about classes with \leq as substructure and closed under substructure.

If the first order theory of the generic is \aleph_0 -categorical then K_0, \subseteq) is uniformly locally finite.

The importance of Vocabulary Choice

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

A class K_0 of finite structures in a countable vocabulary is *separable* if

- **1** (K_0 , \leq) satisfies amalgamation;
- **2** For each $A \in K_0$, there is a first order formula $\phi_A(\mathbf{x})$ such that in any $M \in \hat{K}$, $M \models \phi_A(\mathbf{b})$ if and only if **b** enumerates a substructure of *M* that is isomorphic to *A*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The importance of Vocabulary Choice

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

A class K_0 of finite structures in a countable vocabulary is *separable* if

- **1** (K_0 , \leq) satisfies amalgamation;
- **2** For each $A \in K_0$, there is a first order formula $\phi_A(\mathbf{x})$ such that in any $M \in \hat{K}$, $M \models \phi_A(\mathbf{b})$ if and only if **b** enumerates a substructure of *M* that is isomorphic to *A*.

Lemma

Suppose K_0 is a class of finite τ -structures that is closed under substructure, satisfies JEP, and is separable. Then the generic *M* is an atomic model of Th(M). Moreover, $K^R = At$, i.e., every rich model *N* is an atomic model of Th(M).

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneou Characterizability

Glimpses of the upper attic

n-disjoint amalgamation and Extending Hjorth's theorem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hjorth's theorem

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem: Hjorth

There is a sequence of countable families Φ_{α} of complete sentences of $L_{\omega_1,\omega}$, such that some $\phi \in \Phi_{\alpha}$ has a model in \aleph_{α} and no bigger.

Theorem: B-Koerwien-Laskowski

There is a sequence ϕ_n of complete sentences of $L_{\omega_1,\omega}$, such that ϕ_n has a model in \aleph_n and no bigger.

Question

Can the second theorem be extended to all countable α ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Excellence

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Let \boldsymbol{K} be an ω -stable class of atomic models.

Shelah: For Shelah the independence is the sense of ω -stability. This was the origin of the notion of otop.

Definition

A set of *K*-structures $\overline{N} = \langle N_u : u \subsetneq k \rangle$ is a -system if it is a directed system of *K*-structures with cardinality λ indexed by the proper subsets of *k*.

Definition

The class **K** has (λ, k) excellence $((\lambda, k)$ -good) if every independent (λ, k) -system has a unique prime amalgam. For Shelah, excellent is (\aleph_0, n) -good for every n.

Consequences of Excellence

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

- 1 Shelah: An excellent class has 2-disjoint amalgamation in all cardinalities.
- 2 Shelah: An excellent class that is categorical up to \aleph_{ω} is categorical in all uncountable powers.
- 3 Shelah ($2^{\aleph_n} < 2^{\aleph_{n+1}}$) An atomic class that has at most 2^{\aleph_n} models in \aleph_{n+1} for all *n* is excellent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$(\aleph_0, 3)$ -ap implies $(\aleph_1, 2)$ -ap

k-configurations

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

For $k \ge 1$, a *k*-configuration is a sequence $\overline{M} = \langle M_i : i < k \rangle$ of models (not isomorphism types) from **K**. We say \overline{M} has power λ if $||\bigcup_{i < k} M_i|| = \lambda$. An extension of \overline{M} is any $N \in \mathbf{K}$ such that every M_i is a substructure of N.

Informal: (λ, k) -disjoint amalgamation

Any sequence of *k* models, at least one with λ elements, has a common extension, which properly extends each.

(ロ) (同) (三) (三) (三) (○) (○)

(λ, k) -disjoint amalgamation

Model theory and the Middle attic

> John T. Baldwin

Definition

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Fix a cardinal $\lambda = \aleph_{\alpha}$ for $\alpha \ge -1$. We define the notion of a class (\mathbf{K}, \le) having (λ, k) -disjoint amalgamation in two steps:

- 1 (K, \leq) has (λ , 0)-disjoint amalgamation if there is $N \in K$ of power λ ;
- 2 For k ≥ 1, (K, ≤) has (≤ λ, k)-disjoint amalgamation if it has (λ, 0)-disjoint amalgamation and every k-configuration M of cardinality ≤ λ has an extension N ∈ K such that every M_i is a proper substructure of N.

For $\lambda \geq \aleph_0$, we define $(< \lambda, k)$ -disjoint amalgamation by: has $(\leq \mu, k)$ -disjoint amalgamation for each $\mu < \lambda$.

Extending (λ, k) -disjoint amalgamation

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Fix locally finite (\boldsymbol{K}, \leq) with jep.

Proposition

For all cardinals $\lambda \geq \aleph_0$ and for all $k \in \omega$, if K has $(<\lambda, k+1)$ -disjoint amalgamation, then it also has $(\leq \lambda, k)$ -disjoint amalgamation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Getting models

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem

[BKL] Suppose $1 \le r < \omega$ and K_0 has the $(< \aleph_0, r+1)$ -disjoint amalgamation property. Then for every $0 \le s \le r$, (\hat{K}, \le) has the $(\le \aleph_s, r-s)$ -disjoint amalgamation property.

In particular, \hat{K} has models of power \aleph_r .

Moreover, if there are only countably many isomorphism types in K_0 , then rich models of power \aleph_r exist and the class K^R also has $(\leq \aleph_s, r - s)$ -disjoint amalgamation.

Getting Rich Models

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Lemma

Fix $\lambda \geq \aleph_0$. If *K* has (< λ , 2)-disjoint amalgamation and has at most λ isomorphism types of finite structures, then

every *M* ∈ *K* of power λ can be extended to a rich model *N* ∈ *K*, which is also of power λ.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2 and consequently there is a rich model in λ^+ .

Amalgamation Spectrum

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem

[BKL] For every $r \ge 1$, the class **At**^r satisfies:

- 1 there is a model of size \aleph_r , but no larger models;
- 2 every model of size ℵ_r is maximal, and so 2-amalgamation is trivially true in ℵ_r;
- 3 disjoint 2-amalgamation holds up to \aleph_{r-2} ;
- 4 2-ap fails in \aleph_{r-1} .

More technically, amalgamation for elementary submodels in $\hat{\boldsymbol{K}}^r$ also fails in \aleph_{r-1} .

(ロ) (同) (三) (三) (三) (○) (○)

The Amalgamation spectrum

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

The *finite amalgamation spectrum* of a complete sentence ϕ is the set X_{ϕ} of $n < \omega$ and $mod(\phi)$ satisfies amalgamation in \aleph_n .

Many examples: X_{ϕ} is \emptyset or ω .

This is the first example of a complete sentence an aec where the spectra was not: all, none, or just $\{0\}$.

Question

Can the amalgamation spectrum of a complete sentence of $L_{\omega_1,\omega}$ have a proper alternation?

(ロ) (同) (三) (三) (三) (○) (○)

How many models of sentences with bounded spectrum?

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Fact

If $(\mathbf{K}, \prec_{\mathbf{K}})$ has the amalgamation property in κ then models of cardinality κ^+ can be amalgamated over models of cardinality κ .

ł

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Corollary

If all models in cardinality κ^+ are maximal and *K* had ap in κ then there are at most 2^{κ} models in κ^+ .

Question

Is there any complete sentence in $L_{\omega_1,\omega}$ with such behavior?

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Homogeneous Characterizability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Homogeneous Characterization

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

I is a set of *absolute indiscernibles* in *M* if every permutation of *I* extends to an automorphism of *M*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homogeneous Characterization

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatic and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

I is a set of *absolute indiscernibles* in *M* if every permutation of *I* extends to an automorphism of *M*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The complete sentence ϕ with countable model *M* homogenously characterizes κ if

- **1** P^M is a set of absolute indiscernibles.
- **2** ϕ has no model of cardinality greater than κ .

3 There is a model *N* with $|P^N| = \kappa$.

Homogeneous Characterization

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Definition

I is a set of *absolute indiscernibles* in *M* if every permutation of *I* extends to an automorphism of *M*.

The complete sentence ϕ with countable model *M* homogenously characterizes κ if

1 P^M is a set of absolute indiscernibles.

2 ϕ has no model of cardinality greater than κ .

3 There is a model *N* with $|P^N| = \kappa$.

Theorem (Gao)

If countable structure has a set of absolute indiscernibles, there is an $L_{\omega_1,\omega}$ equivalent model in \aleph_1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Mergers

Model theory and the Middle attic

Homogeneous Characterizability

Mergers

1 Let θ be a complete sentence of $L_{\omega_1,\omega}$ and suppose M is the countable model of θ and V(M) is a set of absolute indiscernibles in M such M - V(M) projects onto V(M). We will say θ is a *receptive* sentence.

2 For any sentence ψ of $L_{\omega_1,\omega}$, the *merger* of ψ and θ is the sentence $\chi = \chi_{\theta,\psi}$ obtained by conjoining with θ , $\psi \upharpoonright \mathbf{N}.$

3 For any model M_1 of θ and N_1 of ψ we write $(M_1, N_1) \models \chi$ if there is a model with such a reduct.

DAP: Getting receptive models

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Suppose K_0 is a class of finite τ structures with disjoint amalgamation and θ_0 is the Scott sentence of the generic.

Construction: B-Friedman-Koerwien-Laskowski

Add to τ unary predicates *U*, *V* and binary *P*. Require that the predicates *U* and *V* partition the universe and restrict the relations of τ to hold only within the predicate *V*.

We set K_1 as the set of finite τ_1 -structures (V_0, U_0, P_0) where $V_0 \upharpoonright \tau \in K$ and P_0 is the graph of a partial function from V_0 into U_0 . Disjoint ap in K_0 gives disjoint ap in K_1 .

A back and forth shows $U(\mathcal{M})$ is absolutely indiscernible.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Applying merger

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamation and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem: (Hjorth, B-Friedman-Koerwien-Laskowski)

There is a receptive sentence that characterizes (has only maximal models) \aleph_1 .

Corollary: (B-Friedman-Koerwien-Laskowski)

If there is a counterexample to Vaught's conjecture there is one that has only maximal models in \aleph_1 .

(ロ) (同) (三) (三) (三) (三) (○) (○)

crux: Disjoint amalgamation

Homogeneous Characterization of successors

Model theory and the Middle attic

> John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem: Hjorth, B-Souldatos

If a cardinal κ is homogeneously characterizable by a complete sentence, then κ^+ is characterizable.

Construct by disjoint amalgamation an \aleph_0 -categorical structure in which:

- 1 Q_0, Q_1, Q_2 partition the universe.
- 2 E is an equivalence relation on Q_1 .
- 3 P_0 gives a family of maps P_a indexed by $a \in Q_1$ so that P_a maps Q_0 onto $[a]_E$, the *E*-equivalence class of *a*.
- 4 P_1 is a projection of Q_1 onto Q_2 such that each $P_1^{-1}(a)$ is an *E*-equivalence class.
- 5 P_2 gives an indexed family P_a for $a \in Q_2$ so that P_a maps the elements in $P_1^{-1}(a)$ onto the elements $\{b \in Q_2 : b \le a\}.$
- 6 < is a dense linear order of Q_2 .

Maximal models

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Theorem: B-Souldatos

There are complete sentences of $L_{\omega_1,\omega}$, with

- 1 maximal models in κ and κ^+ .
- 2 Assume for simplicity that 2^{ℵ0} > ℵ_ω. For each n ∈ ω, there is a complete L_{ω1,ω}-sentence φ'_n with maximal models in cardinalities 2^{ℵ0}, 2^{ℵ1},..., 2^{ℵn}.
- 3 Assume κ is a homogeneously characterizable cardinal and for simplicity let $2^{\aleph_0} \ge \kappa$. Then there is a complete $L_{\omega_1,\omega}$ -sentence ϕ_{κ} with maximal models in cardinalities 2^{λ} , for all $\lambda \le \kappa$.

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Glimpses of the upper attic

The big gap

Model theory and the Middle attic

John T. Baldwin

Atomic Model Theory

Example

The general framework

n-disjoint amalgamatior and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Upper Attic

Welcome to the upper attic, the transfinite realm of large cardinals, the higher infinite, carrying us upward from the merely inaccessible and indescribable to the subtle and endlessly extendible concepts beyond, towards the calamity of inconsistency.

http://cantorsattic.info/Upper_attic

Theorem. B-Boney

The Hanf number for Amalgamation is at most the first strongly compact cardinal

(ロ) (同) (三) (三) (三) (三) (○) (○)

The best known lower bound is \aleph_{ω} .

Maximal Models and Measurable cardinals

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneou Characterizability

Glimpses of the upper attic

Theorem: B-Shelah – in progress

There is a complete sentence ϕ of $L_{\omega_1,\omega}$ such that if

- **1** there is no measurable cardinal ρ with $\rho \leq \lambda$, $\lambda = \lambda^{<\lambda}$,
- 2 and there is an S ⊆ S^λ_{ℵ₀}, that is stationary non-reflecting, and ◊_S holds.

Then there is a maximal model *M* of ϕ with cardinality at most 2^{λ}

(ロ) (同) (三) (三) (三) (三) (○) (○)

A black box is expected to remove the set theoretic hypotheses.

Bibliography I

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The genera framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

J.T. Baldwin and William Boney. Hanf numbers and presentation theorems in AEC. In Jose Iovino, editor, *Beyond First Order Model Theory*, pages 81–106. Chapman Hall, 2017.

J.T. Baldwin, Sy Friedman, M. Koerwien, and C. Laskowski. Three red herrings around Vaught's conjecture. *Transactions of the AMS*, 368:22, 2016.

J.T. Baldwin, M. Koerwien, and C. Laskowski. Amalgamation, characterizing cardinals, and locally finite aec.

Journal of Symbolic Logic, 81:1142–1162, 2016.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bibliography II

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

J.T. Baldwin, M. Koerwien, and I. Souldatos. The joint embedding property and maximal models. *Archive for Mathematical Logic*, 55:545–565, 2016.

- J.T. Baldwin and S. Shelah. Hanf numbers for maximality.
- J.T. Baldwin and I. Souldatos. Complete $L_{\omega_1,\omega}$ sentences with maximal models in multiple cardinalities.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Why complete sentence?

Model theory and the Middle attic

John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

Consider a class *K* of 4-sorted structures:

- 1 P_0 is a copy of $(\omega, <)$.
- **2** P_1 is a set.
- 3 P_2 is a boolean algebra of subsets of P_1 (given by extensional binary *E*.
- 4 P_3 is a set of countable sequences from P_2 . via a function f(c, n) = b maps $c \in P_3, n \in P_0, b \in P_1$.)

One further axiom: If a sequence $c \in P_3$ has the finite intersection property then the intersection is non-empty.

Let $\psi \in L_{\omega_1,\omega}$ axiomatize **K**.

Why maximal?

Model theory and the Middle attic

> John T. Baldwin

Atomic Mode Theory

Example

The general framework

n-disjoint amalgamatio and refining Hjorth's theorem

Homogeneous Characterizability

Glimpses of the upper attic

M is a maximal model of $\mathbf{K} = \operatorname{mod}(\psi)$ if

- 1 $\lambda < \text{first measurable}$
- **2** $|P_0^M| = \lambda.$
- 3 $P_1^M = \mathcal{P}(P_0^M)$ 4 $P_2^M = {}^{\omega}(P_1^M)$

M can only be extended by adding an element a_* to P_0^M . But then

$$\{b\in P^M_1: E(a*,b)\}$$

(日) (日) (日) (日) (日) (日) (日)

is a non-principal \aleph_1 -complete ultrafilter on λ .

But ψ is not complete. 2^{\aleph_0} types over empty set. c_X realizes p_X iff $|a \in P_0^M : a \in f(c, n)| \in X$.