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And some infinites are larger than other infinites and some are smaller.

Robert Grosseteste 13th century [Fre54]

We approach the ‘practice based philosophy of logic’ by examining the practice in one specific area of logic,
model theory, over the last century. From this we try to draw lessons not for the philosophy of logic but
for the philosophy of mathematics. We argue in fact that the philosophical impact of the developments in
mathematical logic during the last half of the twentieth century were obscured by their mathematical depth
and by the intertwining with mathematics. That is, that concepts which are normally regarded by both
mathematicians and philosophers as ‘simply mathematics’ have philosophical importance. We make two claims.
First is that the mere fact that logical methods have had mathematical impact is important for any investigation
of mathematical methodology. Twentieth century logic introduced techniques that were important not just for
the problems they were originally designed to solve (arising out of Hilbert’s program) but across broad areas of
mathematics. But, from a philosophical standpoint, there is a further impact. These methods actually provide
tools for the analysis of mathematical methodology.

The longtime standard definition of logic is ”the analysis of methods of reasoning”. This does not describe the
perspective of a contemporary model theorist. A model theorist is a self-conscious mathematician. A model
theorist uses various formal languages and semantics to prove mathematical theorems. But there is an inherently
metamathematical aspect. The very notion of model theory involves seeking common patterns across distinct
areas of mathematical investigation. One of our goals below is to make precise this notion of ‘distinct area’.

We view the philosophy of mathematics as a broad inquiry into and critical analysis of the conceptual foundations
of actual mathematics work1. This investigation also include a study of the basic methodologies and proof
techniques of the subject 2. The foundationalist goal of justifying mathematics is a part of this study. But
the study we envision cannot be carried out by interpreting the theory into an über theory such as ZFC; too
much information is lost. The coding does not reflect the ethos of the particular subject area of mathematics.
The intuition behind fundamental ideas such as homomorphism or manifold disappears when looking at a
complicated definition of the notion in a language whose only symbol is ε. Tools must be developed for the
analysis and comparison of distinct areas of mathematics in a way that maintains meaning; a simple truth

∗We give special thanks to the Mittag-Leffler Institute where we were able to rethink and focus the ideas of this talk. Baldwin
was partially supported by NSF-0500841. The paper builds on a presentation at Notre Dame in Fall of 2008.

1This is a paraphrase of part of Dutilh-Novaes presentation.
2For a broad investigation the philosophy of mathematics including a study of leading contemporary mathematicians (e.g.

Grothendieck, Langlands, Shelah, Zilber) see [Zal09]
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preserving transformation into statements of set theory is inherently inadequate. The traditional foundationalist
approach sacrifices explanation on the altar of justification.

The discussion below has both a sociological and a philosophical aspect. Sociologically, in the remainder of this
introduction, we describe recent examples to illustrate the practice of the model theoretic species of logician.
Philosophically, in the two main sections of the paper we propose some tools for studying the methodology of
mathematics. We aim to sketch a program for using model theoretic concepts for a) formalizing a notion of
‘area of mathematics’ and b) analyzing basic concepts of mathematics. In Section 1) we sketch the history of
model theory in the twentieth century and in particular the development of the notion of a complete theory.
We argue for the notion of a first order complete theory as a useful unit of analysis for describing ‘an area of
mathematics’. We conclude the historical discussion with an introduction to the sophisticated model theoretic
methods developed in the last 40 years. In Section 2) we discuss how these methods can provide insight into
the way fundamental notions are specified in different areas of mathematics. We discuss in detail the analysis
of one particular mathematical notion, dimension, using model theoretic notions.

In both cases, our main point is that model theoretic tools can be brought to bear. We are simply giving
introductory sketches of illustrations of that thesis.

For brevity, most of the emphasis is on first order logic. But important extensions to infinitary logic and even
‘syntax deprived’ model theory will appear later in the paper. In the sociological mode, we now list the titles
of papers from the Mid-Atlantic Model Theory conference held in the Fall of 2008 at Rutgers. Our summary of
this conference focuses on two currents of ‘main-stream’ model theory represented at this conference. It does
not encompass a number of other areas of model theory such as models of arithmetic, finite model theory, model
theory in computer science, higher order and other extensions of first order logic, and universal algebra.

1. Model theory and non-archimedean geometry

2. The valuation inequality for complex analytic structure

3. Cherlin’s Conjecture and Generix’s Adventures in Groupland

4. ω-stable semi-Abelian varieties

5. O-minimal triangulation respecting a standard part map

6. Some modest attempts at defining the notions of groups and fields of dimension one, and establishing
their algebraic properties

7. Dependent theories: limit model existence and recounting the number of types

8. The non-elementary model theory of analytic Zariski structures

9. Difference fields, model theory and applications

10. Model Theory of the Adeles

The two currents of model theory that I want to contrast focus, broadly speaking, a) on the use of model theory
in various parts of mathematics and b) on the development of an independent subject area of ‘model theory’.
In the early 70’s these seemed wildly divergent subjects. But now, at least seven of the papers above, even
those focused on algebraic notions such as non-archimedean geometry, semi-abelian varieties, or difference fields
integrate the fundamental concepts introduced in the pure theory. For example, paper 3) concerns a conjecture
of Cherlin which uses model theoretic concepts to lift the program of the classification of finite simple groups
to the classification of simple groups of finite Morley rank. Even the statement of the problem is posed in
model theoretic terms (that we discuss below). But this terminology provides a way to organize topics that
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are already in the mathematical air. The investigation involves significant techniques from model theory, finite
group theory, and algebraic groups. Even the relatively few papers at this conference that were ‘pure’ developed
concepts central to current research in e.g. the model theory of valued fields3.

1 Historical Survey of model theory

The integral connections of model theory with modern mathematics as described in the introduction are often
(and often correctly) seen as a falling away from philosophical concerns. But as we’ll see below, many of
these interactions do stem from concerns about explanation and coherence of mathematical ideas that have a
philosophical basis. The divorce is from narrow concern with the formal justification of results. And there are
natural philosophical issues that arise from more technical results. As noted below there are vast differences
between the role of ℵ0 and any uncountable cardinal in the study of categoricity. What is so different about
countability?

After a survey of the history of model theory I expound the use of model theoretic concepts as a tool for such
an analysis of the foundations of mathematics. We review this history from a standpoint similar to this paper
but with an emphasis on the mathematical applications in [Bal0x].

We distinguish three types of analysis in first order model theory:

1. Properties of first order logic (1930-1965)

2. Properties of complete theories (1950-present)

3. Properties of classes of theories (1970-present)

1.1 Properties of first order logic (1930-1965)

The essence of model theory is a clear distinction between syntax and semantics. Sentences in a formal language
for a vocabulary τ are true or false in structures for τ . While the full formal treatment of this notion first appears
in [Tar35], the basic idea is essential for Gódel’s completeness theorem [Göd29] to even make sense. While the
completeness theorem plays a fundamental role in first order model theory, a formal proof system is not essential
to formulating many of the crucial concepts.

The prehistory of model theory include the work before 1950 Löwenheim, Skolem, Gödel, Malcev, and Tarski.
They isolated the fundamental properties of first order logic such as completeness, compactness, and the
Lowenheim-Skolem-Tarski theorem. The prehistorical aspect is illustrated by references in logic courses to
the ‘Lowenheim-Skolem-Tarski theorem’ and its proof by Malcev and Gödel.

The term model theory was popularised in the early 1950’s, especially by Tarski and Robinson. Work in that
decade provided syntactic characterization of preservation properties. E.g., The models of a first order theory are
closed under unions of chains if and only the theory is axiomatized by ‘for all, there exist’ sentences. But what we
might now call ‘syntactic’ and ‘semantic’ formulations are described as more of a contrast between ‘logical’ and
‘mathematical’. In [Tar54], Tarski writes ‘universal classes can be characterized in a purely mathematical terms’.
The compactness theorem is given both ‘logical’ proofs from the completeness theorem and ‘mathematical’ proofs

3Shelah’s concept of theories without the independence property (nip or dependent depending on the author) were expounded
in the least-applied talk. Hrushovski’s paper ‘Stable groups and approximate group theory’[Hru09], which uses the model theoretic
analysis of these theories as a tool for the study of groups, was the subject of semester-long seminars at UCLA, Berkeley, Urbana,
and Leeds in the Fall of 2009. Fields medalist Terrence Tao discusses the progress of the UCLA seminar in the blog at http:

//terrytao.wordpress.com/.
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via ultraproducts. Tarski and Vaught [TV56] define the notion of elementary extension and prove the union of
elementary chain is an elementary extension of each member of the chain; this both refines the original theory
and helps to develop the correct category for model theory.

Further general properties of first order logic developed in the 50’s included interpolation theorems and the
Robinson Consistency theorem. Much model theoretic work in the 60’s and 70’s extended these kinds of notions
to logic with infinite conjunctions or with generalized quantifiers of various sorts. But we want to focus on a
crucial idea that crystalized in the 1950’s: a complete theory.

Before proceeding to complete theories we discuss a different notion with the same name: completeness of a
logic. By a logic, we mean as in [BF85] a syntactical notion of a collection of sentences L(τ) for a vocabulary τ
and a satisfaction relation |=L between sentences φ ∈ L(τ) and τ -structures M . The logic is complete if there
is some proof system `L of L such that:

`L φ if and only if for every M |=L φ.

A theory T is a consistent set of sentences in a logic L. (We will consider first order, second order, Lω1,ω and
Lω1,ω(Q).)

Our discussion of prehistoric times is not complete without mentioning the American Postulate Theorists
[AR02a, AR02b]. Already in 1902, Huntington introduced the notion of an axiom system having exactly one
model. By 1904 [Veb04], this notion had been christened ‘categoricity’ and Veblen proves the categoricity of a
set of (second order) axioms for geometry. Following the terminology of [AR02a], which is reasonably standard,
we say.

Definition 1 1. A theory T is semantically L-complete if for each L-sentence φ and any pair of models
M,N of T ,

M |=L φ if and only if N |=L φ.

2. A theory T is deductively (or syntactically) L-complete if for each L-sentence φ either T `L φ or T `L ¬φ

If L satisfies the (extended) completeness theorem then these notions are equivalent. Again as reported in
[AR02a], Fraenkel [Fra28] had distinguished these notions without establishing that they are really distinct. In
[Ken], Kennedy discusses the significance of the first paragraph of Gödel’s thesis. She points out this distinction
becomes clear only with Gödel’s proof of the completeness theorem. Kennedy further notes that Gödel argues
that categoricity and an effective proof theory implies syntactic completeness. Thus Gödel foreshadows the
incompleteness theorem in his argument that a proof is needed for completeness (contrary to the view that
‘consistency implies existence’ is tautological). There is a categorical axiomatization of the real numbers with
arithmetic in second order logic; this yields semantic, but not syntactic completeness of the second order theory.
Vaught’s proof [Vau54] of the  Los-Vaught test (a first order theory with no finite models that is categorical in
some infinite power is complete) writes the argument in modern terms4: Categoricity plus upward and downward
Löwenheim-Skolem implies semantic completeness; syntactic completeness follows by Gödel. What now seem
obvious compactness arguments for the existence of non-standard models were clearly not in the air in 1930
[Ken, Vau86].

Note that for any structure M , Th(M) = {φ : M |= φ} is a semantically complete theory for every logic L is
under consideration. This method of obtaining complete theories is fundamental.

4There is no indication of a connection with the Gödels argument cited above.
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1.2 Properties of complete theories (1950-present)

The mathematical significance of the fundamental notion of a first order complete theory was stressed by
Abraham Robinson [Rob56]. He provides a number of mathematically interesting examples of complete first
order theories and shows common model theoretic characteristics involving the form of the axiomatization or
quantifier elimination for a number of them.

Axiomatic theories arise from two distinct motivations. One is to understand a single significant structure such
as (N,+, ·) or (R,+, ·). The other is to find the common characteristics of a number of structures; theories of
the second sort include groups, rings, fields etc. There are a number of second order theories of the first sort
that are categorical.

Both of these motivations aim at studying fundamental properties which determine all properties of a structure
or a group of structures. But the axiomatizations have quite different impact. The (usually) second order
axioms characterizing a single important structure delineate exactly what makes that structure unique. These
axioms illuminate a key feature of the structure: the reals are the unique complete ordered field with a countable
dense subset. But this light is shed on the particular structure.

Bourbaki represents a triumph of axiomatization for the second reason. Large parts of mathematics were
organized into coherent topics by providing informative axiomatizations.

Let us consider the relation with categoricity. To avoid trivialities, we deal only with infinite models. T is
categorical if it has exactly one model (up to isomorphism). T is categorical in power κ if it has exactly one
model in cardinality κ.

Note that under these definitions, every categorical first order theory is semantically complete. Further every
theory in a logic which admits the upward and downward Löwenheim-Skolem theorem for theories that is
categorical in some infinite cardinality is semantically complete. First order logic is the only one of our examples
that satisfies this condition. Semantic (and indeed syntactic completeness) can be deduced from ℵ1-categoricity
for sentences of Lω1,ω [She83a, She83b, Bal09]. At present the ℵ1 plays an essential role in the proof.

Most people have an intuition for only a few infinite structures: arithmetic on the natural numbers, the rationals,
and perhaps on the reals. Most mathematicians extend this to the complex numbers and then to a deeper
understanding of various structures depending on their own specialization: (SL2(<), P 1, initial segments of the
ordinals 5). But all these structures have cardinality at most the continuum. There are few strong intuitions of
structures with cardinality greater than the continuum. However, there is a crucial exception to this remark.
It is rather easy to visualize a model that consist of copies of single countable or finite object. Consider a
vocabulary with a unary function f . Assert that f(x) never equals x but f2(x) = x. Then any model is a
collection of 2-cycles. On the one hand we have the notion that there are models of arbitrarily large cardinality
but I really have no really different vision distinguishing among the models of different large cardinality. This
situation generalizes when the number of disjoint copies of the same structure is replaced by the dimension
of a vector space or field. Thus we might consider the class of structures Aκ, a direct sum of κ copies of Z2.
The isomorphism type of the model depends solely on the number κ of copies (and not at all on the internal
structure of the cardinal κ).

Many such visualizable structures arise in a standard way; they are the class of models of a first order theory
that is categorical in all uncountable cardinalities. Categoricity is not a necessary condition for such a clear
visualization: consider an equivalence relation with two infinite classes, fix a totally categorical theory and make
each class a model of the given theory. Each model is determined by two cardinals– the cardinality (or more
precisely the dimension) of each equivalence class. More sophisticated investigation and slightly relaxing the
notion of ‘visualize’ shows that categoricity does provide a sufficient condition for such a visualization. And
then interpreting ‘visualise’ as: admitting a structure theorem (in the sense of Subsection 2.1), we can obtain

5Recall Paul Cohen’s intelligence test: for what ordinals can you visualize the descending chains witnessing well-foundedness?
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exact conditions for being able to ‘see’ all models of a first order theory.

There is little general information to be discovered about a structure, just by the observation that it is the
unique model of a second order sentence6. However, the situation for categoricity in power of a first order
sentence is quite different. First order theories that are categorical in an uncountable power share a number
of attributes that flow from that fact. Further their study stimulated a powerful unifying technique for the
study of first order theories. Again, we contrast the two perspectives of investigating a particular structure and
investigating a class of structures.

Starting with a single prototypical structure, such as the complex field, categoricity in power is the best approx-
imation that first order logic can make to categoricity. But, it turns out to have far more profound implications
for studying the original structure. If the axioms are universal existential then the theory is model complete
(and under slightly more technical conditions admits elimination of quantifiers). Thus the complexity of de-
finable sets is determined by global properties of the models. This general structural condition replaces what
can be very technical proofs of quantifier elimination by induction on quantifiers that depend on the specific
theory. We explore in Subsection 2.1 the fact that every model of an ℵ1-categorical theory is ‘determined’ by a
definable strongly minimal set which admits a dimension theory similar to that of vector spaces.

Work of e.g. Robinson, Tarski, Vaught,  Loś, Ehrenfeucht, Mostowski, Keisler, Morley, Shelah led to the
understanding that complete first order theories admitting elimination of quantifiers provided the most fruitful
field of study. Elimination of quantifiers can arise in two radically different ways. By fiat: Morley noticed that
there is an extension by explicit definition of any complete first order theory which has elimination of quantifiers.
Most studies in pure model theory adopt the convention that this has taken place. But this extension requires
a large price; the vocabulary is no longer tied to the basic concepts of the area of mathematics. Thus algebraic
model theorists work very hard to find the minimal extension by definitions that must be made to obtain
quantifier elimination (or the weaker model completeness). But there is a clear understanding in either case
that it is desirable to have a limited number (of alternations) of quantifiers available so that definable sets can
be analyzed.

Starting from a class of structures, there is little gained simply from knowing a class is axiomatized by first
order sentences. In general, the various completions of the theory simply provide too many alternatives. But
for complete theories, the models are sufficiently similar so information can be transferred from one to another.
One example is transfer from an analytic proof of the classification of finite dimensional algebras over the
reals to classification of finite dimensional algebras over an arbitrary real closed field. The Lefschetz principle
in algebraic geometry provides an interesting application by considering different completions of the theory
of algebraically closed fields. Each completion is determined by specifying a characteristic and the informal
Lefschetz principle of algebraic geometry can be formalized as any sentence true in an algebraically closed field
of characteristic 0 is true in algebraically closed fields of characteristic p for almost all p.

Beeson [Bee] notes that the theory of ‘constructible geometry’ (i.e. the geometry of ruler and compass) is
undecidable. This result is an application of Ziegler’s proof [Zie82] that any finitely axiomatizable theory in the
vocabulary (+, ·, 0, 1) of which the real field is a model is undecidable. Thus the complete theory is tractable
while none of its finitely axiomatized subtheories are.

Model theory is often characterized as the study of definability. But the deeper results, even in applications,
are about uniform definability over all the models of a complete theory. This is evidence for our first thesis.

Thesis I: Studying the models of different (complete first order) theories provides a framework
for understanding the foundations of specific areas of mathematics.

The study of complete theories has become the basic framework for model theoretic investigations. We discuss
6Jouko Vaananen has pointed out: If V = L, then a structure is a model of a second order categorical sentence if and only if it

has a second order complete characterization by a single sentence. When V 6= L, it is possible that some structure has a second
order complete characterization by a single sentence but no second order sentence characterizes the structure up to isomorphism.
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in Section 2 the classification of theories according to structural properties. Over the twentieth century there has
been an important shift in the choice of which logic to use for formalization and in choice of which mathematical
topic to investigate. Early work focused on ‘foundational theories’ and the line between the various logics had
not yet been clarified. The introduction to Gödel’s thesis [Ken] implicitly assumed that any system (at least
of the real numbers) will include an axiomatization of arithmetic. But work of Gödel and Tarski shortly after
that thesis established that arithmetic is undecidable while the theory of the real field is decidable. Most
current model theoretic research into specific theories focuses on theories are both mathematically important
and tractable. Model theory has given tools for discovering which theories are tractable. The gain is that
many theories of general mathematical interest are tractable. But the cost is that tractable theories are not
foundational in the traditional sense; both ZFC and PA suffer from the Gödel phenomena and are not susceptible
to the general model theoretic techniques discussed here. By the Gödel phenomena, we mean the existence of
a pairing function and sufficient strength to encode syntax. A theory displaying the Gödel phenomena will be
undecidable for intrinsic reasons. (It is perfectly possible to code undecidability into the axioms of extremely
well-behaved theories.) There is in fact another area of model theory which specifically studies models of
arithmetic. There is some overlap of techniques but there is a different viewpoint [KS06]. Because of the
foundational significance the interplay between PA and true arithmetic is an important theme.

As one example of the use of complete theories to provide a foundation for a specific area of mathematics, we
consider algebraic geometry. A long standing model theoretic aphorism asserts: Algebraic geometry is the study
of definable subsets of algebraically closed fields. There is much truth in this. Algebraic geometry studies the
solution in fields of systems of equations. And the requisite unity of studying solution sets in different fields is
provided by using the complex numbers as a universal domain and interpreting the same equation in different
subfields. Even more, the notion of a generic point on a variety which is a bit ‘squishy’ in e.g., [Lan64], becomes
clear under the Morley analysis: a generic point of a variety is a realization in an extension field of a type of
maximum Morley rank in the variety. The Weil-Hrushovski theorem, every constructible group is definably
isomorphic to an algebraic group (Theorem 4.13 of [Poi87]), is a further example of definability providing a
different conceptual foundation for a fundamental mathematical idea.

But the aphorism fails in two ways. The most obvious is that algebraists are concerned with systems of equations.
This seems to be a great deal more restrictive than arbitrary first order definability. After all neither logical
connectives nor quantifiers are involved. But the quantifiers are illusory. A fundamental result goes by two
names with rather different connotations: Chevalley-Tarski Theorem:

1. Chevalley: The projection of a constructible set is constructible.

2. Tarski: The theory of algebraicaly closed fields admits elimination of quantifiers.

The connection between the two versions is the observation that projection of defined by φ(x1, . . . xn) in n-
space to n− 1-space is the solution set of ∃(xn)φ(x1, . . . xn). This theorem shows that any first order definable
subset in an algebraically closed field is definable by a Boolean combination of equations. But the algebraic
geometer really distinguishes the case where there are no negations (a conjunction of equations - a trick makes
disjunctions disappear.) However in the early 90’s Hrushovski and Zilber [HZ93] introduced the notion of a
Zariski geometry, which via the use of a topology provides an abstract basis for being able to distinguish sets
definable by positive formulas.

The second drawback is that, more precisely, this approach describes ‘Weil’ style algebraic geometry of the
1950’s and does not directly interpret the more modern ‘Grothendieck’ style. There is disagreement about the
significance of this alleged weakness in the usual model theoretic approach [Mac03, Hru02].

There are a number of important theorems that invoke model theoretic ideas to attain more traditional math-
ematical results.
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1. Artin-Schreier theorem (A. Robinson)

2. Decidability and quantifier eliminability of the real field (Tarski)

3. Decidability and quantifier eliminability of the complex field (Tarski/Robinson)

4. Decidability and model completeness of valued fields (Ax-Kochen-Ershov)

5. Quantifier elimination for p-adic fields (Macintyre)

6. O-minimality of the real exponential field (Wilkie)

Many of these results seem to be ‘logical’ as they concern such notions as decidability and quantifier elimination.
In fact, as noted in the case of the Chevalley-Tarski theorem, the notion of ‘quantifier elimination’ answered
fundamental mathematical questions. Even more, each of the last three results leads to the solution of long-
standing mathematical problems.

We have argued that the notion of a complete theory provides an appropriate unit of analysis for distinguishing
an area of mathematics. In the examples so far the main model theoretic idea is definability and the main tools
are compactness and elimination of quantifiers. In the next section we will discuss more sophisticated model
theoretic tools and their mathematical role. These techniques also illustrate the more important philosophical
contribution of model theory: providing tools for understanding the connections across areas.

1.3 Properties of classes of theories (1970-present)

The development of Shelah’s stability theory could be (and indeed was) misperceived as mere technical mathe-
matics concerned with abstruse cardinalities. As we’ll see it provides both a mathematically powerful classifi-
cation of areas of mathematics and tools for methodological investigations.

Thesis II: Studying classes of theories provides an even more informative framework for the
understanding of the methodology of specific areas of mathematics.

The second current of model theory revolves around properties of classes of theories. The key to this analysis
is Shelah’s concept of the Stability Hierarchy.

Theorem 2 (Shelah) Every complete first order theory T falls into one of the following 4 classes.

1. ω-stable

2. superstable but not ω-stable

3. stable but not superstable

4. unstable

Moving down this list in general reflects decreasing structure of the models of T . Note that the hierarchy provides
an organization of various areas of mathematics that illuminates connections that are not apparent from the usual
mathematical standpoints. We list a number of different algebraic examples at various levels in the hierarchy.
Some ω-stable theories are: algebraically closed fields (of any fixed characteristic) and algebraic groups over
algebraically closed fields , differentially closed fields (of characteristic 0), compact complex manifolds. Some
strictly superstable theories are: (Z,+), (Zω

2 ,Hi)i<ω (where Hi is a subgroup of finite index). Some strictly
stable theories are: (Z,+)ω and separably closed fields of characteristic p. Unstable theories include Arithmetic,
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Real closed fields, complex exponentiation, and the theory of the random graph. Recent model theoretic work
in two directions provide systematic tools to distinguish and analyze theories with intractible Gödel phenomena
from those more susceptible to model theoretic analysis. The two directions are dependent theories (theories
without the independence property)[HPP08, She] and infinitary logic [Zil04].

The basic idea of type, already central in many of the investigations discussed in Subsection 1.2 is essential to
understand the notion of stability.

Definition 3 Let M be a structure and write Fn(M) for the Boolean algebra of all formulas with n free variables
and constants for elements of M . Fn(T ) is the Boolean algebra of formulas with no parameters.

1. (syntactic:) A complete n-type over M is an ultrafilter in the Boolean algebra Fn(M).

2. (semantic:) Let N �M and a ∈ N .

tp(a/M) = {φ(x,m) : φ(x,m) ∈ F (M) and N |= φ(a,m)}.

3. S(M) denotes the set of types over M .

Just as above we defined a complete theory both syntactically and semantically, we now have similar dual
definition for a type7.

Perhaps the most basic feature is that this classification provides a totally new way of organizing mathematical
discourse. The underlying invariant is the cardinality of the Stone space of the Boolean algebra of formulas over
a model of T . That is, if we say T 8 is stable in λ if for every M with |M | = λ, |S(M)| = λ, ω-stable implies
stable in all λ, superstable means stable above the continuum; stable means stable in some λ and unstable
means stable in no λ. But this purely model theoretic and apparently combinatorial notion imposes important
structural conditions on the models of the theory that we discuss in Section 2.

Shelah’s techniques (that we sketch below) for analysis of models of stable theories and his more complex notions
such as: orthogonality, canonical bases, regular types, etc. have many applications. In particular, Hrushovski
combined these methods and those of ‘geometric stability theory’ with a deep understanding of Diophantine
geometry to provide fundamental advances related to the Mordell-Lang conjecture [Bou99, Hru96]. Notably,
although the application is to an ω-stable theory of algebraically closed fields; the analysis (for the characteristic
p-case) involves strictly stable theories of separably closed fields. We have noted first that both basic model
theoretic ideas of definability and compactness and later the more sophisticated model theoretic methods have
been used to solve problems of core mathematics. Just this fact is important from the standpoint of any analysis
of mathematical methodology. But these model theoretic tools themselves provide tools for analysis. On their
face they illustrate distinctions and similarities across different areas. In the next section of the paper we show
that these tools allow us to analyze some mathematical notions as they span areas of mathematics.

The simplest notion of type is when the domain is the empty set. And the 1950’s already provided a character-
ization of countable categoricity in terms of the type space over the empty set.

Theorem 4 [Eng59, RN59, Sve59] A first order theory is ℵ0-categorical if and only if Fn(T ) is finite for each
n.

The property of ℵ0 categoricity is virtually orthogonal to the stability hierarchy. There are examples that
are ω-stable (vector spaces over a finite field) and examples that are unstable: dense linear order without

7In fact it is the same; we could think of p as the complete theory of the structure M ∪ {a}
8We restrict to countable theories for simplicity.
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endpoints and the random graph. As noted above the unstable theories have wild uncountable models. Thus
ℵ0 categoricity does not have strong implications for a theory to be well-behaved. In contrast, categoricity
in uncountable cardinalities has deep structural consequences that reflect a fundamental mathematical notion:
dimension. That is the subject of our next section. It is crucial to analyze not just types over the empty set
but types over arbitrary models.

2 Concept Analysis: Dimension

Our general claim is that the techniques and concepts developed in stability theory can be useful for a philo-
sophical investigation of the methodology of mathematics. We illustrate this claim by studying the notion of
dimension. Other notions that could be given a similar analysis include: chain conditions, notions of finiteness,
‘genericity’, group actions (E.g., what are sufficient conditions for the development of Galois Theory [MTB0x]?).

In this section we develop two themes. The notion of dimension is a basic mathematical idea and model theory
provides a unifying approach among various avatars of this notion. Moreover, the stability hierarchy provides
a way to compare different areas of mathematics in terms of the strength of their dimension notion.

The article on Dimension in [Gow08] suggests five notions of dimension that occur in such fields as real or
complex geometry, differential geometry, topology and algebra. We discuss two formulations of the notion here.
For purposes of this essay we call one of them size and the other rank; each would normally just be called
dimension. No such rigid distinction between the notion exists in mathematics and we will see why. They
reflect an ‘algebraic’ and a ‘geometric’ perspective on the notion.

I. Size The reals have uncountable dimension as a Q-vector space.

II. Rank A surface is a two-dimensional set.

Size is a measure of a particular mathematical structure. Rank is a measure of a definable set and in interesting
cases will make sense (and be invariant) over different models of the same theory. As we noted, the ‘dimension’
of a vector space is a natural example of size. We explore that notion in more generality in the next subsection.
Consider the solution set of the equation x2 + y2 = 1 in an algebraically closed field. In the natural model of
the complex numbers, it is a circle and so geometrically has dimension 1. The formula has Morley rank 1 and
we can assign this dimension to the solution set in each algebraically closed field.

2.1 Size

The notion of a combinatorial geometry arises in a number of areas of mathematics. In particular, Van Der
Waerden [VdW49] gave a unified treatment of vector space and transcendence degree. The notions of vector
space dimension and transcendence degree permeate much of mathematics. Combinatorial geometries play
a fundamental role in modern modern theory. In particular, they allow us to describe the notion of dimen-
sion which appears in any theory categorical in power. We introduce a couple of technical notions to give a
background for the analysis.

A pregeometry is a specific sort of closure system (Axioms A1-A3) which also satisfies the exchange axiom A4.
It generalizes the notion of the closure of a subset of a vector space and allows the assigning of a dimension
to a set – the cardinality of a maximal independent subset, where X is independent if each x ∈ X satisfies
x 6∈ cl(X − {x}).
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Definition 5 A pregeometry is a set G together with a relation

cl : P(G) → P(G)

satisfying the following axioms.

A1. cl(X) =
⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X)

A3. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).

A4. cl(cl(X)) = cl(X)

If points are closed the structure is called a geometry.

The connection with model theory appears first in the notion of a strongly minimal set [BL71, Mar66]. Model
theorists generalize the notion of algebraic closure in field theory (the finitely many solutions of a polynomial
equation are ‘algebraic’) to (if a first order formula with one free variable has only finitely many solutions, each
of them is ‘algebraic’).

Definition 6 Let a ∈M and B ⊂M .

1. a is in the algebraic closure of B (a ∈ acl(B)) if φ(a,b) and φ(x,b) has only finitely many solutions.

2. A complete theory T is strongly minimal if and only if it has infinite models and

(a) algebraic closure induces a pre-geometry on models of T ;

(b) any bijection between acl-bases for models of T extends to an isomorphism of the models

The complex field is strongly minimal. Strongly minimal sets are the building blocks of structures whose first
order theories are categorical in uncountable power. That is, all models of the same uncountable cardinality
are isomorphic. But this notion can (and for some purposes) must be extended beyond the first order context.
In particular Zilber introduced the following notion in studying the theory of complex exponentiation. This
study must go beyond first order model theory. The kernel of the exponential function is the ring of integers.
So the so-called Gödel phenomena, described after Thesis I, make first order model theoretic analysis chaotic
here. Zilber’s solution [Zil05, Zil04] is to use infinitary logic to insist that the kernel of exponentiation is exactly
Zη for some transcendental η.

Definition 7 A class (K, cl) is quasiminimal excellent if cl is a combinatorial geometry which satisfies on
each M ∈ K:

1. Any pair of maximal independent subsets can be mapped from one to the other by an automorphism of the
model,

2. a technical homogeneity condition: ℵ0-homogeneity over ∅ and over models.

3. the closure of a countable set is countable

4. A more complicated condition on the amalgamation of finite independent configurations of countable mod-
els, called excellence.

11



Excellence is immediate in the first order context; it is both essential and difficult to obtain in the infinitary
context.

Theorem 8 (Zilber) A quasiminimal excellent class is categorical in every uncountable power.

Zilber[Zil04] conjectures that the complex exponential field is quasiminimal excellent. More specifically this
conjecture provides a set of axioms for the complex exponential field. But this is not sterile axiom chopping. It
is not known if the ‘axioms’ are in fact true of the complex exponential field. Rather, they are a collection of
properties that powerfully describe a definite mathematical object. And perhaps they describe one of the most
important structures of twentieth century mathematics: the complex field with exponentiation.

Quasiminimal sets are the building blocks of structures whose Lω1,ω-theories are categorical in uncountable
power. However, Shelah’s proof [She83a, She83b, Bal09] of this profound result uses the very weak generalized
continuum hypothesis: 2ℵn < 2ℵn+1 if n < ω.

We have discussed the role of dimension in theories that are categorical in power. These theories are unidi-
mensional; one cardinality determines the model. Shelah’s stability hierarchy provides a more general machine
to study theories where different sets may have different dimensions. The key is to define a family of ‘almost
combinatorial geometries’: a ∈ clA(B). We say family because for each A, clA(B) (closure of B over A) is
almost a ‘geometry’.

Definition 9 A dependence notion is a relation a ∈ clA(B) such that for each A, clA(∗) satisfies the first three
conditions of a combinatorial geometry (and coherence conditions among the clA’s that we don’t spell out here
[Bal88, She78, Adl08]).

But the, previously thought crucial, requirement A4, that cl be idempotent, is not required. In the study
of vector spaces, the exchange axiom is usually seen as the guarantee of the uniqueness of dimension of a
structure. This is an accident of studying notions where closure is easy to obtain and exchange is difficult.
Shelah’s innovation here is to recognize that there are deeper and more general reasons to obtain exchange
(model theorists call it symmetry) than idempotence.

The next page is a target for shortening for this paper.

Even with this weaker notion, dimension can be assigned to uncountable structures. One assigns dimension
(size) to types in uncountable models by replacing cl(cl(X)) = cl(X) with: for every B, there is a finite B0

such that a is independent from B over B0. This provides an approximate dimension. Two bases for the same
formula may differ by a finite number. But if the cardinality of the base is uncountable this is inconsequential.
Let us summarize the situation in a theorem.

Theorem 10 1. In every stable theory, there is a dependence notion.

2. In any superstable theory this dependence relation assigns a size to type-definable subsets of uncountable
models.

To regain a precise notion of dimension and in particular to study the dimension of countable structures a
further notion is needed. One must consider relations on and among regular types. Regularity is a weakening of
the axiom A4 (idempotence) which allows again the assignment of a dimension as the cardinality of a maximal
independent set.
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Definition 11 p ∈ S(A) is regular if on realizations of p, if a ∈ clA(BC) and each c ∈ C satisfies c ∈ clA(B)
then a ∈ clA(B).

On the realizations of a regular type closure gives a combinatorial geometry. Now one can give an exact
dimension to models (by means of the relations between various regular types) of superstable theories satisfying
certain additional conditions. This leads to a fundamental theorem: the Main Gap [She91].

Theorem 12 (Shelah’s Main Gap) For every first order theory T , either

1. Every model of T is decomposed into a tree of countable models with uniform bound on the depth of the
tree, or

2. The theory T has the maximal number of models in all uncountable cardinalities.

The impact of this theorem is to divide first order theories into two classes. The models (of any cardinality) of
a classifiable theory can be decomposed in a uniform way from countable models. The models of unclassifiable
theories are creative; new patterns continually emerge.

A fundamental idea, that appears only technical, is to decompose into trees of models. This decomposition was
a tool for counting the number of models in each cardinality of a theory. But systematic representation of a
model as prime over a tree of (independent) submodels is a fundamentally new mathematical notion.

2.2 Rank

The geometrical notion of rank has many exemplars across mathematics. Two of the notions expounded in
[Gow08] are closely connected to that expounded here. One intuition from [Gow08] is ‘the number of coordinates
you need to specify a point’. This corresponds to the notion of size discussed in the previous subsection. Another
provides a notion of topological dimension that is reminiscent of the model theoretic ranks that are defined by
partitioning into definable sets which are disjoint (or at least have small intersection). In [Gow08] topological
notions play the role definability plays in stable theories. This interaction among definability and topology is
seen in three examples of rank functions. We have discussed the role of independence notions determined by
definability in stable theories and have briefly mentioned the role of Zariski geometries which combine topological
and definability notions. Here is another example of such a combination.

Definition 13 An ordered structure is o-minimal if every definable set is a Boolean Combination of intervals.

o-minimal structures are a natural solution to Grothendieck’s request to isolate ‘tame’ topologies. The prototypic
o-minimal structure is the real field. Key to the applicability of the idea is the fact that o-minimality is a property
of a complete theory; o-minimality is preserved by elementary equivalence. There has been vast work in the
last twenty years on o-minimality. Most strikingly, Wilkie[Wil96] showed that the theory of the real exponential
field is o-minimal. The fundamental notions are summarised in [dD99]. The field is now well integrated with
classical real algebraic geometry. And it provides a method to study problems of analysis. For example,
Macintyre, Marker, and Van den Dries solved a half-century old problem of Hardy [vdDMM97].

Here are three model theoretic uses of rank.

1. Zariski dimension in algebraic geometry is a special case; it is Morley rank for algebraically closed fields.

2. Notion 1) is generalized to the Hrushovski-Zilber [HZ93] notion of Zariski Geometries.
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3. In the class of o-minimal theories there is a rank on definable sets.

A ‘Tame Theory’ is one which admits a rank on definable sets. By ‘admits’ we mean that dimension can be
assigned on n-tuples of any length meeting certain regularity properties connecting the different dimensions.
Roughly, a definable set φ has rank n if there is a definable bijection between Mn and φ(M).

The connection between ‘size’ and ‘rank’ is given by the following fact.

Fact 14 Suppose T has a good notion of independence. Define R(φ(x)) = n iff the maximal size of a solution
a if φ is n. This notion of rank has the good properties of a tame theory.

Many notions of the rank of a definable set are developed in stable theories [She78]. But they connect to notions
of independence by arguments like those for Fact 14. Examples of areas of mathematics where this identification
applies include real and complex algebraic geometry and indeed any o-minimal theory.

There are crucial limitations on when a sense II notion of dimension (rank) (and thus by Fact 14 notions in
sense I) can exist. Arithmetic is the paradigmatic example where no notion of dimension makes sense.

Theorem 15 1. If a model admits a pairing function, it has no rank (dimension in sense II).

2. If T admits a pairing function then T is not superstable.

The first of these observations is folklore. Much more well-behaved (from a model-theoretic standpoint) theories
can have pairing functions. Lachlan (reported in [BM82]) showed the second result in Theorem 15, which shows
that pairing does force a theory to the non-structure side. In particular, any theory with a pairing function
has many models in all uncountable cardinalities. Thus the stability hierarchy becomes a tool for determining
which theories admit good notions of dimension. Note that the coding of these tame theories into foundational
theories such as ZFC or arithmetic completely destroys these salient tame properties of mathematical notion
under study.

But there are also important structures, most notably the real field, which do not have pairing functions, which
do admit rank functions, but are not stable. These led to the study of o-minimality discussed above.

3 Conclusion

We have discussed three issues concerning the relationship of contemporary model theory, mathematics, and
philosophy. The first observation is that model theory is a vigorous part of mathematics that uses tools
that were invented for ‘logical analysis’ to solve problems arising in more traditional mathematics. In this
respect model theory differs only in degree from logic in general. Ideas stemming from computability and
relative computability permeate computer science and model theoretic ideas arise in many aspects of computer
science. Such notions as the Curry-Howard isomorphism and the analysis of weak theories of arithmetic to
study computational complexity show the influence of proof theory across mathematical disciplines. Set theory
has a similar interaction with mathematics both by the discovery that certain mathematical problems depend
on set theoretic principles9 and by the integration of set theoretic methods with those from dynamical systems
in studying the Borel classification of problems [KM04].

The identifying characteristic of logic in these mathematical examples is not an ‘analysis of reasoning’ but an
explicit attention to means of definability. The intricate history of the relationship between ‘core mathematics’
and ‘logic’ is certainly a fit topic for study in the practice-based philosophy of logic.

9This is most common in set theoretic topology; but the Whitehead problem is a notable model theoretic example.
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Secondly we made the argument that the notion of a complete theory provides a unit of analysis for examining
different areas of mathematics. We both examined the abstract reasons that it is a suitable unit of analysis and
examined one case, algebraic geometry, in a bit more detail.

And thirdly, recall Thesis II: studying classes of theories provides an even more informative framework for the
understanding of the methodology of specific areas of mathematics. We have illustrated this thesis by connecting
the notion of dimension in the study of general model theory and seen how these notions connect with those in
algebraic geometry, complex exponentiation and tame topology.

But model theory also provides entirely new areas of mathematics for study. It provides two new general
notions of how mathematical properties might change as the cardinality of the structures involved change.
Eventual behavior: what happens on all sufficiently large cardinals. Initial behavior: what can we say about
the ‘lower infinite’, cardinals below say, iω1 . Much of core mathematics is much coarser: it studies either
properties of particular structures of size at most the continuum or makes assertions that are totally cardinal
independent. E.g., if every element of a group has order two then the group is abelian. Model theory allows a
more sophisticated analysis in two directions; determination of properties that hold only eventually rather than
everywhere and study of classes that are well-behaved on small cardinals to determine whether this behavior
propagates to the entire universe. Certain properties allow us to chart the infinite. Some properties (e.g.
categoricity for certain classes of models) are now known to be eventual; but major questions remain about
from what level they propagate. But other properties (amalgamation, tameness) may not propagate; there is a
real difference between large and small models for such properties. Still other properties, e.g. saturation, occur
cofinally but not eventually for interesting classes of models. Thus, model theory begins to explore the paradise
of the infinite, conceived by Grosseteste and delivered by Cantor. But with Shelah’s classification theory the
study of infinity moves into adolescence– it moves beyond combinatorial analysis into structural and algebraic
investigations.
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