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The 1960’s produced technical revolutions in both set theory and model theory. Researchers such as
Martin, Solovay, and Moschovakis kept the central philosophical importance of the set theoretic work for
the foundations of mathematics in full view. In contrast the model theoretic shift is often seen as ‘ technical’
or at least ‘merely mathematical’. Although the shift is productive in multiple senses, is a rich mathematical
subject that provides a metatheory in which to investigate many problems of traditional mathematics: the
profound change in viewpoint of the nature of model theory is overlooked. We will discuss the effect of
Shelah’s dividing line methodology in shaping the last half century of model theory. This description will
provide some background, definitions, and context for [She19].

In this introduction we briefly describe the paradigm shift in first order1 model theory that is laid out in
more detail in [Bal18]. We outline some of its philosophical consequences, in particular concerning the role
of model theory in mathematics.

We expound in Section 1 the classification of theories which is the heart of the shift and the effect of this
division of all theories into a finite number of classes on the development of first order model theory, its role
in other areas of mathematics, and on its connections with set theory in the last third of the 20th century.
We emphasize that for most practitioners of late 20th century model theory and especially for applications
in traditional mathematics the effect of this shift was to lessen the links with set theory that had seemed
evident in the 1960’s. In Section 2 we explore how Shelah’s underlying methodological precept of dividing
lines led to the refinement of this classification to admit infinitely many classes, deeper connections with set
theory, and to the current emphasis on ‘neo-stability theory’ in both pure and applied model theory. These
developments undermine the impression from Section 1 that classification theory completely freed first order
model theory from considering extensions of ZFC. In Section 3, we build on Maddy’s [Mad19] discussion
of the role of foundations to explore the ways in which model theory can provide essential guidance in both
traditional mathematics and for axiomatic set theory.

What I call the paradigm shift in model theory [Bal18] took place in two phases. The first phase is
a shift from the Russell-Hilbert-Gödel conception of higher-order logic as a general framework for all of
mathematics to a Robinson-Tarski focus on first order theories to study distinct areas of mathematics. One
key to this shift is the switch from a logic that allows quantification over predicate variables of all arities and
all orders to the modern conception of fixing a vocabulary with a fixed set τ of relation symbols relevant to
the area being studied and quantifying only over individuals. The focus becomes, not the study of logic(s),
∗Research partially supported by Simons travel grant G3535.
1While by first order logic we mean that formulas are only closed under finite Boolean operations, we will also touch on infinitary

logic.
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but theories, the consequences of a set of axioms. At the same time this transfers the focus from a single
structure, e.g., the natural numbers to the collection of distinct (non-isomorphic) structures that satisfy
(model) a set of axioms (e.g. algebraically closed fields). Unless all models are finite, there are such models
of every infinite cardinality.

Henkin’s 1948 proof of the completeness theorem enables this shift by carrying out the proof in an ex-
pansion of a given vocabulary2 τ only by constants. In contrast, Gödel’s proof requires an expansion of the
vocabulary by additional relations and so moves outside the original context. This is not just a technical
change [Bal17]. Gödel studies the completeness of the ‘restricted3 predicate calculus’; all of mathematics is
analyzed in a global framework. Henkin’s proof allows one to focus on particular topics formalized in a rel-
evant vocabulary τ . The transition continued as a few specific properties of theories were investigated in the
1950’s and 1960’s. For example, Robinson [Rob56] not only introduced the notion of model completeness
but developed the study of algebraically and, eventually, differentially closed fields. Morley [Mor65] proved
a groundbreaking result: A countable theory is ℵ1-categorical (all models of cardinality ℵ1 are isomorphic)
if and only if it is κ-categorical in every uncountable κ.

The second phase of the paradigm shift arises from Shelah’s introduction in [She69] of the stability
hierarchy and his classification program. Around 1970 there were two schools of model theory; both had
adopted the topic-based notion of vocabulary, the study of theories. One can be thought of as ‘internal’;
determining the properties of theories and their models in the abstract. While this school is based on Tarski’s
semantics, the essential point is the study of all theories and developing useful properties for distinguishing
among theories. The other is more ‘external’, ‘applied’ or ‘algebraic’ model theory. Here the focus is the
study of theories of specific families of structures such as p-adic fields [AK65]. The eventual effect of
Shelah’s classification theory was a joining of those fields in the 1980’s, when the usefulness of the stability
classification for applications became evident. The classification has become an increasingly strong tool in
applications to such diverse fields as combinatorics, number theory, and differential equations.

In accepting the 2013 Steele prize, Shelah wrote:

I am grateful for this great honour. While it is great to find full understanding of that for
which we have considerable knowledge, I have been attracted to trying to find some order in
the darkness, more specifically, finding meaningful dividing lines among general families of
structures. This means that there are meaningful things to be said on both sides of the divide:
characteristically, understanding the tame ones and giving evidence of being complicated for the
chaotic ones. It is expected that this will eventually help in understanding even specific classes
and even specific structures. Some others see this as the aim of model theory, not so for me.
Still I expect and welcome such applications and interactions. It is a happy day for me that this
line of thought has received such honourable recognition. Thank you. [She13b]

Much of mathematics concerns only structures of cardinality at most the continuum (E.g., the reals are
the only separable Dedekind-complete ordered field) or of statements whose truth in a structure is completely
independent of the cardinality of the structure. (E.g., If every element a of a group G satisfies a + a = 0,
then G is commutative.) Vaught [Vau61], focused on countable models of countable theories (i.e. |τ | = ℵ0);
Morley [Mor65] showed the importance of uncountable structures in his epic treatment of categoricity in
uncountable cardinalities. We explore below Shelah’s demonstration that the properties of models of a theory
can differ essentially depending on the cardinality of a model and cardinal arithmetic. His work provides

2A vocabulary is a list of relation, function, and constant symbols. It is a slightly less abstract notion than similarity type and more
precise than the overloaded word ‘language’.

3There are still predicate symbols of all orders, but quantification is restricted to individuals.
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the first systematic exploration of Cantor’s paradise in all cardinalities motivated by algebraic-structural
(model-theoretic) rather than combinatorial or cardinal arithmetic considerations.

The use of uncountable cardinals in proving results about the model theory of countable theories ini-
tially led some to object to the set theoretic component of Shelah’s model theory as distracting from core
mathematical notions. Ironically, the actual effect of Shelah’s classification theory (Section 1) was to free
large portions of first order model theory from an apparent dependence on axiomatic set theory. Shelah
reported, ‘In ‘69, Morley and Keisler told me that model theory of first order logic is essentially done and
the future is the development of infinitary logics’ [She00]. The interaction with set theory remains central
to the development of infinitary model theory. But, when it became clear that such issues as the existence
of saturated models, two cardinal theorems, and the construction of indiscernible sequences4 could be done
in ZFC, by restricting to theories which behaved well in the stability classification, first order model theory
flourished. And, when it turned out that many important areas of modern mathematics could be formalized
in first order theories that behaved well in the stability classification; applications flourished as well.

But Shelah discovered that more subtle properties of first order theories and such fundamental properties
as categoricicity in power for infinitary logic are much more closely entwined with set theory. Often, they
require new techniques in set theory for their resolution. Such developments arising in first order logic are
the main topics of this paper.

However, the more ambitious claim is that the ‘method of dividing lines’ is a useful technique in math-
ematics. There is no assertion that it is a universal methodology but only that it is not a one-off for the
main gap (Section 1.1). The choice of classification or more precisely of dividing lines depends on the test
problem. We study the stability classification aimed at the main gap in Section 1.1. Here are several further
possibilities: saturation of ultrapowers and the Keisler order (Section 1.2), universality (Section 2.1), exact
saturation ([She19]). These are all different ways of organizing the collection of first order theories. These
frameworks provide tools to recognize connections across mathematics that are made evident by formalizing
various topics. Much of Shelah’s work in recent years attempts to apply this methodology to infinitary logic
via studying abstract elementary classes, [She09, She10, Bal09, SV18]. We won’t explore that topic in depth
here; it concerns a semantic approach to infinitary logic and there are deep connections with axiomatic set
theory.

The entire project raises questions about the nature of axiomatization; in Section 3 we discuss the effect
on the axioms of set theory. The study of arbitrary theories in model theory reflects the view of axioms not
as ‘self-evident’ or even ‘well-established’ fundamental principles but as tools for organizing mathematics.
When dealing with specific examples, the standpoint is much like that of [Sch13], Russell [Rus73], and
Detlefsen’s notion of descriptive axiomatization [Det14]. For example, in [Rob59] Abraham Robinson
formalized the framework that Ritt and Kolchin had developed for differential algebra, while keeping in
mind his earlier work on Artin-Schrier and the Hilbert Nullstellensatz, so his theory yielded a differential
Nullstellensatz. Schlimm [Sch85] explores the connections between axiomatizations of different but related
fields. But Shelah’s classification project takes this to a higher level of abstraction by providing general
schemes for comparing theories. This raises new problems in the philosophy of mathematical practice. What
are criteria for evaluating axiom systems? What are the connections among the justificatory and explanatory
functions of axioms? E.g., are there criteria for choosing among first order, second-order, or infinitary logic?
In what sense is second order logic simply a natural avatar for set theory [Vää12]? What principles underlie
the development of a taxonomy of mathematics (or at least formal theories) such as the ones described here?

4Here the improvement proves a theorem about simple without the axiom of replacement, obtaining indiscernibles by constructing
non-forking sequences in stable theories instead of the original reliance on replacement to find iω1 instances of the Erdos-Rado
theorem.
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1 Classification Theory
Classification is one of the fundamental aims of mathematics. The description in [Gow08, 52-54] provides
an overview. Usually the problem is seen as classifying the structures in a certain class: the finite simple
groups, differentiable manifolds, finite dimensional vector spaces, etc. Shelah transformed model theory by
proposing a two-step classification. The first step classifies complete first order theories. At first impression,
this is just a routine ‘divide and conquer’ strategy. Divide a problem into cases that might require different
kinds of arguments. The method of dividing lines makes this procedure more precise. Such a classification
is aided by applying this method to a specific test question. Generalizing from the ‘main gap’ described
in detail below, we think of the test question having either a ‘wild’ or ‘tame’ answer for each theory. The
collection of all theories is successively divided into pairs of classes of theories. At each step, the models
of theories in one class are wild because of a specific property; models of the other become explicitly
more tame when this property fails. For the main gap, a second step classifies the models by assigning
a system of invariants determining the models of those theories that are deemed classifiable at the first
stage. After sketching the general strategy we will discuss several possible such classifications for first order
theories. On the one hand, as we describe here and in Section 1.1, the particular case division given by the
stability hierarchy has both led to important applications across mathematics and to the solution of problems
unrelated to the specific test question. On the other hand, some new problems have led to new classifications
(Sections 1.2 and 2.1).

Gregory Cherlin suggested that this strategy is a version for mathematics of Plato’s strategy of definition,
‘cutting through the middle’ [Pla16]. We explored this analogy to Shelah’s proof strategy in [Bal18, Chapter
13.4]. I say a property of a theory is virtuous if the property has significant mathematical consequences for
any theory satisfying it. Then a dividing line is a property such that both it and its negation are virtuous.
Some writers refer to any property of theories as a dividing line; this misses the core of the methodology.
When investigating a property to determine if it an actual dividing line, one might call it a candidate (or pre)
dividing line. We expound these distinctions in specific cases in Sections 1.1 and 1.2.

The crucial model-theoretic notion of type, arose in the 1950’s. The complete type of an element a over
a set B in a structure M is the collection of first order formulas φ(x, r) such that M |= φ(a, r) (with r in
M ). Thus, if M is the field of real numbers and B = {0, 1}, each rational number realizes a principal type
(generated by one formula) over B (m ∗ x = n for some5 m,n) while the

√
2 realizes a non-principal type

(‘in the cut’). (Further examples are in [Vää19]). Through the 50’s and 60’s it became clear that the number
of complete types over each model M of a theory T was an important characteristic.

We sketch the stability hierarchy, the progenitor, though not the only example of applying the dividing
line strategy. The notion of κ-stability is one of the key elements of the classification. The countable theory
T is κ-stable if for every M |= T with |M | ≤ κ, there are only κ complete types over M . Morley proved ω-
stability is equivalent to stability in every infinite cardinal. Shelah proves the equivalence of two ostensibly
vastly different properties of a theory T : i) There is no formula φ(x,y) which linearly orders an infinite
subset of Mn where M |= T . ii) T is κ-stable for those κ such that κℵ0 = κ. Such a T is called stable.

An implicit variation in the existential quantifier in this definition disguises some of the significance. A
theory T is unstable if there is a formula with the order property. This formula may change from theory to
theory. In a dense linear order one such is x < y; in a real closed field one is (∃z)(x+z2 = y), in the theory
of (Z,+, 0,×) one is (∃z1, z2, z3, z4)(x+ (z21 + z22 + z23 + z24) = y). In the theory6 of (C,+,×, exp), one
first notices that exp(u) = 0 defines a substructure which is isomorphic to (Z,+, 0,×) and uses the formula
from arithmetic. It is this flexibility, grounded in the formal language, which underlies the wide applicability

5The mth successor of 1 is denoted m.
6Here exp denotes complex exponentiation, ez , where z is a complex number.
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of stability theory. In infinite boolean algebras an unstable formula is x 6= y & (x∧ y) = x; here the domain
of the linear order is not definable.

Unstable theories are split into two classes by i) the strict order property7: for some formula φ(x,y)
and some (equivalently any) model of T for every m, there are sequences {am : m < n} such that for
m1 < m2 < n, φ(y,am1

)→ φ(y,am2
∧(∃y)[φ(y,am2

)∧¬φ(y,am1
)] and ii) the independence property:

for some formula φ(x,y) and some (equivalently any) model M of T for every m, there are {ai : i < m}
and {bX : X ⊆ m} such that φ(ai,bX) if and only i ∈ X . Naturally, linear orders satisfy SOP and the
Rado random graph satisfies the independence property. Each of set theory and arithmetic satisfy both of
these properties. We make the syntactic definitions of these properties explicit to emphasize that despite
their consequences for the uncountable, no complicated ‘foundation’ is needed to define them; we give a
more graphic definition of the strict order property in Section 2.1.

Such important mathematical theories as algebraically and differentially closed fields are ω-stable; all
abelian groups are stable as, in a spectacular result of Sela, is each non-Abelian free group [Sel13]. The
many applications of classification theory across algebra are described in such surveys as [Mar96, Pil95,
Poi01, SP17, Sca01] as well as the book on Hrushovski’s proof in all characteristics of the Manin-Mumford
conjecture [Bou99]. Another line of results stem not directly from the stability hierarchy but from another
example of the method of characterizing a class of theories. The notion of o-minimality, which provides a
general setting for studying expansions of the real field [Dri99], underlies Karp prizes awarded in 2013 and
2018 for contributions to number theory and to analysis. All of these works exemplify the paradigm shift.

Shelah suggests in [She19, Section 1.2] three adjectives to describe a dividing line program. Here, he
assumes that there is a guiding question that the strategy aims to answer. A program is internally successful
if there is a serious structure theory on the positive side, and externally successful if it implies a negative
answer to the guiding question (e.g., for the main gap question, the theory has many models) and fruitful if
that structure theory has an impact in other areas of mathematics; robust is discussed in the next paragraph.
Shelah’s discussion there refines his earlier writings and conflicts in some ways with the account in [Bal18,
Chapter 13]. In particular, fruitful has been specialized to the effect of the positive structure theory and
versatile now describes the wider impacts of the theory, earlier called fruitful. The stability classification is
successful: models of a stable theory admit a kind of ‘local’ dimension generalizing the notion of dimension
in vector spaces or, ‘more roughly’, of geometric space. Further, it is a dividing line as the unstable theories
have the maximal number of models in every uncountable cardinality. Finally, the many ways in which the
stability hierarchy has been applied to solve problems ([She09, Introduction], [Bal18, Chapters 5, 6, 13])
other than those originally targeted illustrate its fruitfullness and versatility.

Shelah [She19, §1] calls a dividing line ‘robust’ if it has both an internal definition (i) in terms of first
order definability and ii) an external one in terms of properties of the class of models. Thus an internal defi-
nition is robust when it is absolute – as are the notions of the stability hierarchy. On the other hand, external
conditions such as counting the number of models may be subject to the vagaries of cardinal arithmetic.
Thus, an external condition is more robust if it is less susceptible to deformation by forcing.

Thus, κ-stability is disqualified as implying robust because it involves types and so is not external – it
refers to more than models. But, Shelah views as an external characterization of stability, the fact that a
theory T is stable in exactly those cardinals where it has a unique resplendent8 model (Compare [She00, 5.2,
5.3] and [Sheb].).

7Abbreviated SOP or StOP.
8The structure M is resplendent whenever M can be expanded to M̂ = (M, c) by naming < |T | individual constants and M̂ has

an elementary extension M ′ that is expandable to be a model of T where Th(M̂)T ′ with |T | < |T | then already M̂ can be expanded
to a model of T . Every saturated model is resplendent but not conversely.
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1.1 Morley’s conjecture and the main gap: Stability classification
The main gap theorem, described in [Vää19], arose to answer Morley’s conjecture. For every first order
theory T and every infinite cardinal κ, the spectrum function of T , I(T, κ), counts the number of non-
isomorphic models of T with cardinality κ. Morley conjectured that if κ, λ are uncountable and λ ≥ κ then
I(T, λ) ≥ I(T, κ). Shelah’s amazing solution to this problem arose from his new strategy. Rather than
proving the result by arguing directly that the function I(T, λ) is non-decreasing on uncountable cardinals9,
he rephrased it as an apparently much harder problem. Find all possible spectrum functions (as T varies)
and observe that each is non-decreasing.

Shelah proposed solving this problem by finding a series of dividing lines. The first dividing line is
stability. For every uncountable κ, any unstable theory T satisfies I(T, κ) = 2κ, the maximal possible
value. For stable theories the local dimension described just after Theorem 1.1.1 is a step toward finding
invariants. For the Morley conjecture, at each step the ‘wild’ side will imply the theory has the maximal
number of models in every uncountable cardinal and the ‘tame side’ will provide more tools for eventually
assigning (trees of) cardinal invariants to determine each model of a classifiable theory up to isomorphism.
Eventually Shelah finds a finite number (Section 2.3) of classes of theories such that all theories in the same
class have the same (modulo parameters) spectrum function [She90, HL97, HHL00]. And, these functions
are all non-decreasing. Moreover10, the main gap separates the growth rate of spectra into two classes.

I(T,ℵα)

{
= 2ℵα or
≤ iω1

(|α|+ ω)
(1)

Although there is a detailed study of the slow growing spectra functions, which yields much more detailed
structural information, the main gap appears to say the number is maximal or well below the maximal.
Section 2.3 explores the extent to which the malleability of cardinal arithmetic undermines ‘well below’.

By coding with stationary sets11, first, certain linear orders and then their Skolem hulls, Shelah estab-
lished that each unstable or even unsuperstable theory (replacing linear order by trees of height ω) has the
maximal number of models in each uncountable cardinal. Thus stable/unstable is the first dividing line for
the classification.

Theorem 1.1.1 (The Stability Hierarchy:). Every countable complete first order theory lies in exactly one
of the following classes.

1. (unstable) T is stable in no λ.

2. (strictly stable) T is stable in exactly those λ such that λω = λ

3. (strictly superstable) T is stable in exactly those λ ≥ 2ℵ0 .

4. (ω-stable) T is stable in all infinite λ.

Superstability is a dividing line as it entails a number of structural tools which are essential for describing
the next more technical tools that are explicitly for counting the number of models. While it negation implies
T has the maximal number of models.

The test question for the stability classification was Morley’s conjecture. But the stability hierarchy is
both fruitful and versatile. The tools developed to solve it had far wider consequences. As noted in Section 1,

9Hart [Har89] proves the result in this form but only by resorting to cases depending on the classification.
10The i-cardinals are defined by induction i0 = ℵ0 but iγ+1 = 2iγ while limits are taken as sups.
11A closed unbounded set (club) of an uncountable cardinal is one that is unbounded and closed in the order topology. A stationary

set is one that intersects each club. Roughly, stationary sets are those which are not small (analagous to a set of positive measure).
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a key consequence of stability is the existence of a notion of dependence generalizing that in vector spaces.
This relation is called ‘forking’; in many cases it induces a combinatorial geometry which allows one to
assign a dimension to certain (type)-definable sets. In algebraically closed fields, this dimension is the same
as the Krull/Weil dimension in algebraic geometry, illustrating the versatility of Morley rank. The notion of
orthogonality allows one to describe the relations among the dimensions of various sets. Orthogonality is
an important component in one of Shelah most important innovations from an algebraic standpoint. Rather
than characterize a structure by a dimension of a family of subsets, these dimensions are arranged on a tree,
but one with countable height, regardless of the cardinality of the model. These dimensions are the basis of
the invariants which describe the models to establish the main gap. But the geometries are central to many
results across mathematics. One example is the recent resolution using classification theory [FS18, NP16]
of transcendence problems arising in Painlevé’s study of partial differential equations at the turn of the 20th
century.

Shelah introduced the notion of a simple theory in [She80b]. One test problem was to characterize
spectra for a theory T of pairs (λ, κ) such that every model in λ extends to a κ-saturated12 model also of
cardinality κ. See [She80b, She96, She00]. Although simple theories were defined to study the saturation
spectrum, Pillay [BKPS01] summarizes some of the work on simple theories, as an ‘amazing journey from
“finite fields” to the “independence theorem” ’. Building on the Ax proof of the decidability of the theory
of finite fields, numerous authors [CvdDM92, Hru93, KP97] built up a general account which both showed
that pseudo-finite fields and ACFA13 are simple and that simple theories are characterized by the property:
the dependence relation of forking satisfies the independence theorem. This kind of interplay is central to
modern model theory.

In one sense Shelah’s classification theory broke the tight connection between model theory and set
theory that seemed natural in the 1960’s [Bal18, Chapter 8]. The classification is given by absolute prop-
erties; the definition is in ZFC and is impervious to extensions by forcing. A certain collection of tools
from combinatorial set theory (Ramsey theorem, Erdős-Rado theorem, and stationary sets) or at least cer-
tain key consequences of them are used to establish the classification and basic properties thereof. But for
most practicing model theorists, set theory faded into the background. We see below that this vanishing was
ephemeral.

1.2 From Saturation of Ultrapowers to Cardinal Invariants of the Continuum:
Keisler order

We provide here some background [She19, I.5] on the Keisler order; [Kei67] showed the following order on
theories is well-defined.

Definition 1.2.1 (Keisler order). For complete countable first order theories T1, T2, we write T1 E T2 if
for any set I A1 |= T1, A2 |= T2, and regular14 ultrafilter D on I , if AI2/D is I+-saturated then AI1/D is
I+-saturated.

That is, T2 is more complex than T1 if it is harder for ultrafilters to saturate models of T2 than models of T1.
Keisler’s order preceded Shelah’s classification theory. But, partly because of its clear syntactic content,

Shelah’s stability classification became the central model theoretic tool. After the early work, Shelah [She78]
showed that all countable stable theories fell into two classes under the Keisler order, that these two classes

12Defined in Section 2.1.
13The theory of algebraically closed fields with a generic automorphism.
14‘Regular’ is a technical condition on ultrafilters; the relevance here is that regularity guarantees that if an ultrafilter saturates one

model of a complete theory T , it satisfies all models of T . So the Keisler order is on theories.

7



were the minimal class and its successor, and found three additional classes. The subject then languished for
decades until Malliaris [Mal09] showed that, as for stability, the Keisler order reduces to syntactic properties
of single formulas. This work unleashed a renaissance. The Keisler order really establishes a correspondence
between syntactic properties of theories and the fine structure of ultrafilters. Malliaris and Shelah [MS13,
MS16] established the first dividing line for the Keisler order within simple theories. In the other direction,
they improved Shelah’s [She96] result that every SOP3 theory is maximal in the Keisler order with the
striking result that SOP2, (the 2-strong order property15 is a sufficient condition for a theory to be maximal in
the Keisler order. Still more striking they showed [MS15], contrary to expectation, that there is a decreasing
chain of distinct classes in the Keisler order. Thus, while the original stability hierarchy had only finitely
many classes the finer investigation of such areas as the spectra of universal models discussed in Section 2.1
and the Keisler order led to refining the stability classification and eventually to infinitely many classes.
Indeed, [MS19] shows there are the maximal number (2ℵ0 ) of classes for the Keisler order.

This line of work had a remarkable corollary. In early twentieth century, topologists and set theorists
discovered a large family of cardinal invariants of sets of subsets of the natural numbers. Here are two
examples. We write A,B, ... for sets of integers and F for families of such sets. We say A is almost-
contained in B if A − B is finite. A family F is a tower if ‘almost-contained in’ linearly orders F and we
say F has the strong finite intersection property if the intersection of any finite collection of sets from F is
infinite. F has an infinite pseudo-intersection if there is an infinite set A that is almost-contained in every
F ∈ F.

The invariant t is the cardinality of the smallest tower with no infinite pseudo-intersection, and p is the
cardinality of the smallest F with the strong finite intersection property but no infinite pseudo-intersection. A
number of such characteristics or invariants were defined. Van Douwen [vD84] introduced the now standard
convention of naming these cardinals by lower case fraktur letters, following c for the cardinality of the
continuum. In particular b, p, t had been isolated by Rothberger [Rot39, Rot48].

Under the continuum hypothesis, all these invariants are equal to ℵ1. If the continuum hypothesis is
false these numbers may be different. So before Gödel proved the consistency of the continuum hypothesis,
attempts to establish inequalites among cardinal invariants were attacks on the continuum hypothesis. After-
wards, the alternatives were equality and consistent inequality. For example, Van Douwen [vD84] gives six
equivalents to b; specific equivalences among other invariants had been established by various authors from
Rothberger to Van Douwen. Once the independence of the continuum hypothesis was established, forcing
established the consistency of inequality of most pairs in the last 50 years. So it was surprising when [MS13]
proved in ZFC that p = t.

The connections between model theory and invariants of the continuum were explored at least as early
as [She04], where Shelah proved the consistency of a > d. He distinguishes the property a, which ‘speak
of sets’, from d, which deals with cofinality16. He writes in [She04, page 188], ‘This manifests itself by
using ultrapowers for some x-complete ultrafilter (in model-theoretic outlook), and by using “convergent
sequences” (see [She87]], or the existence of Av, the average, in [She78]) in §7 and 3, respectively. The
meaning of “model-theoretic outlook” is that by experience set theorists starting to hear an explanation of
the forcing tend to think of an elementary embedding j : V → M , and then the limit practically does not
make sense (though of course we can translate).’ The work with Malliaris emphasizes that the underlying
issue is to control the cofinality of various cuts and the fine structure of ultrafilters is a powerful tool for this

15For n ≥ 3, φ(x,y) with x,y of the same length has SOPn if there is no n-cycle, but there are arbitrarily long finite chains.
SOP2 has a more technical definition. See Section 2.1.

16The cofinality of a cardinal λ is the least cardinal κ such that there is an increasing function f from κ into λ such that the supremum
of the range of f is κ, i.e., λ = cf(λ); otherwise λ is singular. In the context of this section this notion is extended to the cofinality of
a partial order.
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purpose. But it takes the interaction between model theory and set theory to a different level. Rather than
just applying cofinality in two related areas, they define [MS13] the notion of a CSP, Cofinality spectrum
property, and prove that a specific such property, C(s, ts) = ∅, implies both a) (model theory) every SOP2

theory is maximal in the Keisler order and b) (set theory) p = t. They deduce their two goals by showing
that for any CSP, s, C(s, ts) = ∅.

How does the dividing line strategy fare as a method for investigating the Keisler order? It is robust
in the sense of Section 1; the ultrapower definition is external and Malliaris [Mal09] gives the internal
characterization mentioned above. In [She19, 9E], Shelah points out a recent proof that SOP2 is a robust
dividing line; it defines the class of E (and E∗)-maximal theories in the Keisler order. Thus among the SOPn
candidate dividing lines, SOP2 is now identified as a dividing line. Successful is not so clear. The minimal
and near minimal class are identified with low classes in the stability classification and so share their success.
The case for internal success is boosted by recent advances obtaining a useful notion of independence for
NSOP1 theories[CR16, KR19] and positive structural consequences from NSOP2 [MS17]. Instances of
versatility include both the p = t problem and applications to study of the Szemerédi’s Regularity Lemma
in combinatorics [MS14, MP16].

In his joint review of several Malliaris-Shelah papers [Kei17], Keisler wrote, ‘The methods developed in
these papers are likely to stimulate more research in model theory and set theory. An enticing possibility is
that the general results on cofinality spectrum will have broader applications.’

2 Model Theoretic problems motivate Set Theoretic results
We noted in Secion 1 an important effect of the stability classification was to reduce for many model theorists
the needed familiarity with ZFC. They just employ ZFC as an implicit background foundation and employ
the stability classification to organize their work. But this attitude really brackets foundations rather than
discarding them. Shelah wrote,

‘My feeling is that ZFC exhausts our intuition except for things like consistency statements, so
a proof means a proof in ZFC. This is of course a strong justification for B1.’[the position17 that
ZFC should be the basis for set theory]

Position B.2 [the forcing position] in its strong form in essence tells us that all universes are
equally valid, and hence in fact we should be interested in extreme universes. In particular L
has no special status, and proving a theorem in ZFC or assuming GCH is not a big deal. This is
the strong defense, but I suspect that it has few adherents in this sense.

But in the moderate sense, this position is quite complementary to the ZFC position - one
approach gives the negative results for the other, so being really interested in one forces you to
have some interest in the other. In fact, I have been forced to really deal with forcing ([She77],
[BD78]) was too “soft” in forcing for my taste) because I wanted to prove that I was right to
use ♦ on “every stationary subset of ℵ1” rather than CH in solving the Whitehead problem18

for abelian groups of cardinality ℵ1.

Shelah [She02].

A close entanglement of model theory and set theory appears in works concerning the set theoretic
definability of logics [KMV16, Vää85]. But we are thinking here of a less close entanglement. Shelah’s

17Shelah is considering positions he labels B1-B5.
18See Section 2.2.
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investigation into model theoretic questions led him to issues that were not resolvable in ZFC. In this section,
we recount several examples. We assess the motivation into one of three (possibly overlapping) categories:
i) addressing a new problem, ii) clarifying hypotheses, iii) increasing robustness.

I now summarise in very general terms the impact of the set theoretic revolution unleashed by Cohen’s
method of forcing. It allows one to prove the independence of propositions from the axioms of ZFC by
constructing models of those basic axioms where a proposition is, say, false and others where it is true. The
first use of the forcing method complemented Gödel’s earlier construction of an inner model (V = L) that
showed the consistency of the continuum hypothesis (2ℵ0 = ℵ1) by constructing an outer model(s) with
2ℵ0 6= ℵ1. Much of the vast development using this tool focuses on cardinal arithmetic and topology. We
describe here some of Shelah’s efforts that arise from more model theoretic issues. Large cardinal axioms
are another genre of extensions of ZFC that try to extend the ability of ZFC to found mathematics.

2.1 Universality order
This section provides an introduction to Shelah’s work [She19, Part II] on obtaining a classification for a
different ordering on first order theory; now, complexity is measured by allowing fewer universal models. A
major issue is to find robust dividing lines for this problem.

Already with Pythagoras, we realize that the basic systems of numbers need to be extended to account for
all phenomena. These extensions become more clear with finding all solutions of higher degree equations.
In the late 19th century as precise notions of structures and classes of structures arose so did the idea of
a universal structure for a particular class. In the 20th century the notion of a universal domain for such
classes arose in such diverse fields as linear orders [Hau14], topology [Ury27], algebraic geometry [Wei62]
(originally 1946), and logic [Fra54, Jón56, Jón60]. In these papers M is universal means every structure N
(in a given class) with |N | ≤ |M | can be isomorphically embedded in M .

Hausdorff ([Hau14] and the paper [Hau05, H 1908]) proved that assuming 2ℵn = ℵn+1, there is a
universal linear order of cardinality ℵn for each finite n. Twenty years later Tarski dubbed the extension of
this principle from ℵn to arbitrary ℵα the generalized continuum hypothesis (GCH).

Fraı̈ssé [Fra54] studied a class K of finite relational structures closed under substructure and provided
conditions that guaranteed an ℵ0-universal and homogeneous (any isomorphism between two finite substruc-
tures extends to an automorphism) model for the class axiomatized by the universal sentences satisfied by
all structures in K.

In [Jón56] Jónsson introduced what is often called a Jónsson class. He generalized Fraı̈ssé’s notion to
consider a collection of structures of arbitrary cardinality, closed under isomorphism with the joint embed-
ding and amalgamation property, closed under unions of chains, and with downward Löwenheim Skolem
to some fixed cardinal. Examples included the class of linear orders and Boolean algebras. Generalizing
Hausdorff, he proved that under GCH a Jónsson class has a universal model in every ℵα. In [Jón60], he
noticed that the construction of a κ-universal model also yielded a κ-homogeneous-universal model M .
Namely, if N0, N1 are isomorphic substructures of M of smaller cardinality, that isomorphism extends to an
automorphism. He proves such a homogeneous-universal model exists in λ if λ is regular and 2<λ = λ.

Morley and Vaught [MV62] changed the context by requiring the class to be the models of a complete
theory and the embedding to be elementary (preserve the truth values of each first order formula). They
discovered that this requirement is equivalent to saying every type over a subset of cardinality less than κ is
realized in M ; such a model is called saturated19. But this discovery also demonstrates an obstruction to the
existence of saturated structures. If a theory is unstable it cannot have a saturated model in λ if λℵ0 > λ.
Universality is more subtle. For example, the theory of dense linear order is unstable in every cardinality but

19More precisely, A is λ-saturated if A realizes all complete types over X ⊆ A when |X| < λ and saturated if it is |A|-saturated.
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the rational numbers are a universal countable model. We write D(T ) to denote the collection of n-types
over the empty set for n < ω for a theory T . Morley and Vaught prove that if λ ≥ |D(T )| and λ<λ = λ, i.e.
µ < λ implies λµ ≤ λ, there is a saturated model in |T |.

With the use of saturated models we can give a more global picture of the strict order property promised
in Section 1. A theory T has the strict order property if there is a formula φ(x,y) such that on every ℵ0-
saturated model of T , φ(x,y) defines a partial order of Mn which contains an infinite chain. This version
of the definition suggests the sequence of properties n-strong order property introduced in [She96]: For
n ≥ 3, φ(x,y) with x,y of the same length has SOPn if there is no n-cycle, but there are arbitrarily long
finite chains. Now the world of theories has been complicated to allow infinitely many classes. All of these
properties are implied by the strict order property; SOPn implies SOPn−1; T has SOP3 implies T is not
simple. In Shelah’s taxonomy [She19, Figure 1, §9E], SOPn for larger n properties are pre-dividing lines
at best; they arise in the discussion but have no known strong consequences in either direction. Conant’s
map http://www.forkinganddividing.com/ showing the geography of the stability hierarchy is
a widely use resource among model theorists.

The stability classification20 entirely determines the possible spectra for uncountable saturated models: i)
(ω-stable) all cardinals, ii) (superstable) all cardinals λ with λ ≥ 2ℵ0 , iii) (strictly stable) all λ with λℵ0 = λ
and iv) (unstable) no uncountable λ satisfying λ > λ<λ. There is some, but clearly demarcated, variance
among uncountable cardinals.

The situation is quite different if we replace saturated by universal. Since a saturated model is universal,
the first two classes are unchanged. But the same arguments as in [MV62] show that if λ = 2<λ (i.e.κ < λ
implies 2κ < λ) there is a special21 and thus a universal model in λ. Thus for any first order theory, the
existence of a universal model is open only when λ < 2<λ.

Shelah now aims to classify first order theories22 with respect to a new test problem: universality. The
intuition is that if there are ‘fewer’ cardinals in which T2 has universal models, then a theory T2 is more
complicated than T1. Thus, he defines an ordering on theories that is analogous to the Keisler order.

Definition 2.1.1. Let T be a complete first order theory.

M |= T is universal23 in λ if N |= T and |N | = λ implies N is elementarily embeddable in M . M is
universal if it is universal for all models with cardinality ≤ |M |.
The universality spectrum of K, univ(T ) is the class of uncountable cardinals λ such that there is a universal
model for K with cardinality λ.

We define T1 ≤0
univ T2 if univ(T1) ⊇ univ(T2).

Since saturated models are universal, stability theory clearly delineates the initial classes for≤0
univ , those

which have universal models in the ‘most’ cardinals. If a countable theory T is ω-stable (superstable) it has
saturated — and hence universal—models in all uncountable cardinals (all λ ≥ 2ℵ0 ).

Unfortunately, the ordering ≤0
univ may be very uninteresting. Under the generalized continuum hypoth-

esis (GCH), the [MV62] argument described for λ = λ<λ shows every theory has a universal model in every
uncountable cardinal. Given the independence of GCH , the degree of robustness must be investigated.

20For convenience we restrict the analysis here to countable vocabularies.
21A special model is one that is a union of β+-saturated model Aβ for infinite cardinals β < |A|. The construction of special

models allows one to delete the hypothesis of regularity from the result of [Jón60] quoted above at the cost of weakening saturated
(homogeneous-universal) to universal in the conclusion.

22The notion of universality here specifies elementarily embeddible, as we are studying first order theories. The general setting in
[She19, Part II] is for classes K and the notion of embedding depends on the class. We explore this distinction in Section 2.4.

23Earlier work, e.g. [MV62] require |N | ≤ λ; this is the same as requiring |N | = λ for saturation but different for universality. The
homogeneity implied by saturation guarantees embedding over smaller models.
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Kojman and Shelah in [KS92a] give an example of a theory T that has a universal model in ℵ1 if and
only if ℵ1 = 2ℵ0 . They24 further show in ZFC, using the method of guessing clubs, which is discussed in
Section 2.4, that there is no universal linear order in a regular cardinal λ with ℵ1 < λ < 2ℵ0 . To address this
sensitivity to extensions of set theory, we build the set-theoretic options into a revised definition of the order
on theories. Given the examples of theories with the existence of a universal model below the continuum
being equivalent to the CH, Definition 2.1.2 restricts to cardinals above the continuum.

Definition 2.1.2. Define T1 ≤univ T2 if and only if λ ∈ univ (T2) implies λ ∈ univ (T1) in every forcing
extension where λ ≥ 2ℵ0 .

We describe below some precise results or conjectures for the minimal and maximal classes with respect
to ≤-univ. The phrase ‘almost maximal (minimal)’ describes classes that are expected to be near the top
(bottom) of the order but which may fragment after further investigation. Here are the relevant classes.

Remark 2.1.3. 1. The ≤-univ maximal class is conjectured to be those T such that for every forcing
extension V1, T has a universal model in λ if and only if 25 λV1 = 2<λ

V1 .

2. T is almost ≤-univ maximal if for every forcing extension V1, there is a µ with µ++ = λ = λℵ0 < 2µ

then T has no universal model in λ. This class includes linear orders and any first order theory
satisfying the strict order property or even SOP4. (Sections 3 and 5 of [KS92a]). But it also includes
the class of groups which is NSOP4 [She16].

The classes SOPn are refinements, introduced in [She96], of the stability hierarchy which have con-
sequences for both the Keisler order and the universality order.26.

3. The class of superstable (ω-stable if we include cardinals below the continuum) theories is the≤-univ
minimal class.

4. The almost≤-univ minimal class is conjectured to be those theories, if any, such that for every forcing
extension V1, {λ : λ = λω} is the class of λ in which T has a universal model.

Further refinements of this general picture are discussed in [She19, Part II] and here in Section 2.4.
Model theory continues to address algebraic problems in this area. In [Fuc70, Problem 5.1] Fuchs asked
about the existence of universal groups for the classes of torsion and torsion-free groups under the relation of
pure embedding27. By considering the class of models of certain theories of Abelian groups, partially ordered
by the relation of pure subgroup, as an Abstract Elementary Class [MA, KMA] make further advances on
this problem.

2.2 PC-classes and the Whitehead Problem: Proper Forcing
In this subsection we discuss two problems, one algebraic and one model theoretic, which led Shelah to a
fundamental set theoretic idea: the proper forcing axiom [She19, 12A]. In both cases, clarifying the neces-
sary hypothesis for a result is central. In the model theoretic case, this clarifies the robustness of the stability
classification.

24See the nice account in [D0̌5].
25Here we write the superscript V1 to emphasize that the cardinal equality in computed in the forcing extension; we omit the

superscript V1 below.
26See http://www.forkinganddividing.com/ for an overview of the geography.
27S is a pure subgroup of an abelian group G if whenever an element of S has an nth root in G, it necessarily has an nth root in S.
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In [She74] Shelah proved that the topologist J.H.C. Whitehead’s famous conjecture28 about Abelian
groups was independent from ZFC. This conjecture asserts that a ‘Whitehead group’ is necessarily a free
group. That conjecture is true for a countable groupG. But Shelah used established set theoretic 29 to falsify
it when |G| = ℵ1; the conjecture is true if V = L and false under Martin’s axiom30 and ¬CH .

The consistency of each of these axioms was known. But the possibility remained (and was actively pur-
sued by some group theorists) that the Whitehead conjecture was decidable from the continuum hypothesis.
In [She77] he introduced a new principal of set theory, that was consistent with the continuum hypothesis,
implied Martin’s axiom, and implied the failure of the Whitehead conjecture. This axiom eventually devel-
oped into the proper forcing axiom (PFA), which, in particular, implies 2ℵ0 = ℵ2. See [Mek82]. Perhaps
the most important lesson for mathematics at large was that a statement purely about isomorphism types of
Abelian groups was solved by resort to a specific set theoretic construction of an object, a Whitehead group,
which is not free [EM02].

The model theoretic example concerns classes of models that go slightly beyond first order. While there
is a vast model theory for first order logic, there has been no such development for second order logic.
There is a fragment of second-order logic, pseudo-elementary classes, that is susceptible to model theoretic
treatment. These are classes axiomatized by formulas of the form

(∃X)φ(X,S)

where X is a new relation variable and S lists the formal symbols in the vocabulary τ . For, example the
class of non-well-orders is axiomatized in this way by adding a function that is required to list a decreasing
sequence. More generally, we can think of theories in the vocabularies τ , τ1 = τ ∪ {X}, and ask, for
theories T in τ and T1 in τ1, what do we know about the class of reducts of models of T1 to T . Such a class
is designated PC(T1, T ) (pseudo-elementary class) and I(λ, T1, T ) denotes the number of non-isomorphic
models in PC(T1, T ) that have cardinality λ.

One of Shelah’s major innovations in set theory arose from the attempt to understand the effect of moving
a result about PC-classes from a countable to an uncountable vocabulary. In [She78] it is shown that:

(*) If |T1| = ℵ0, 2ℵ0 < 2λ, and T is complete but not ω-stable then

I(λ, T1, T ) = min(2λ, 22
ℵ0

).

While most of first order model theory focuses on theories T in a countable vocabulary (written |T | = ℵ0),
there are natural examples of situations where an uncountable vocabulary is needed. The usual formalism
[Pre88] for studying vector spaces and, more generally, modules is to consider a vocabulary with a unary
function symbol λ for each λ in the field of scalars, denoting the scalar multiplication of a vector by λ. Thus,
in order to formalize such basic mathematical structures as a real vector space, an uncountable vocabulary
is needed. But Shelah’s motivation is more basic. What happens when we move from a countable to an
uncountable language? And this curiosity led to an enormously important new technique in set theory.

It follows (by naming constants) from the work in [She78, Chapter VII] that (∗) can be improved to
requiring only |T1| ≤ λ, provided that 2ℵ0 < 2λ. In [She80a], he shows that this result is not provable
in ZFC. Thus, this external characterization of ω-instability requires (in particular) the weak continuum
hypothesis (2ℵ0 < 2ℵ0 ). So it is less robust than the external characterization of instability in Section 2.3.

28An Abelian group is Whitehead if every short exact sequence 0 → Z → B → A satisfies B = Z ⊕ A. While details are not
relevant here, [Ekl76] has an introductory account.

29Furthermore, by focusing on the combinatorial essence of the conjecture he was able to show the independence of a conjecture
concerning the chromatic number of graphs with cardinality ℵ1.

30Martin’s axiom is both a consequence of the CH and consistent with its negation. It arose in the study of the Suslin conjecture.
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The significance of [She80a] is not only in the result but in the method. In it, Shelah introduced the notion of
oracle forcing and what, in retrospect, is a progenitor of proper forcing. The immense significance of these
techniques is explained in [Vää19]. The paper is also an early contribution to the study of universal models
as it contains a proof of the consistency of ZFC + 2ℵ0 = ℵ2 and ‘there is a universal linear order in ℵ1’.

2.3 Beautiful Cardinals
In this section, we consider Shelah’s introduction of a large cardinal axiom in order to clarify a model theo-
retic result concerning the uncountable spectrum, the number of models with each uncountable cardinality.
The actual form of the main gap theorem attaches to each of a small finite number of (parameterized) fami-
lies of classes of theories a formula for I(T, κ). While the classification is absolute (i.e. does not depend on
extensions of ZFC), the evaluation of the formula is not; it depends on cardinal arithmetic. But, the variabil-
ity of cardinal arithmetic in various extensions of ZFC was the original point of forcing. Thus, it is consistent
that there is a theory which is very classifiable, there is a clear way to assign cardinal invariants (so, intu-
itively there are ‘few’ models), and nevertheless in some models of set theory it has 2κ models of cardinality
κ for arbitrarily large31 κ. In [She00, 5.2], Shelah refers to this situation as a semi-ZFC result on the structure
side of the main gap. This is one, though far from the only, of the motivations for the study of IE(T, λ),
the maximal cardinality of a set of mutually non-embeddible models (IE, isomorphically embeddible), of
cardinality λ.

The relation ‘A is (elementarily) embedded in B’ (but not necessarily vice versa) satisfies transitivity
A � B and B � C implies A � C. Such relations are called a quasiorder and they are well-studied in
combinatorics. Fraı̈ssé conjectured: if {(Ai,≤) : i < ω} is a countable collection of countable ordered
sets, then for some i < j (Ai,≤) isomorphically embeds into (Aj ,≤). That is, embedding is a well quasi-
ordering32 on countable linear orders. Nash-Williams [NW65] introduced the more technical but ultimately
more malleable notion of better-quasi-order and proved that the embeddability order on countable trees is
‘better’ and thus ‘well’ quasi-ordered. Laver [Lav71] adapted this strategy and proved the Fraı̈ssé conjecture
by showing countable linear orders are better-quasi-ordered. To investigate the elementary embedding on
structures of uncountable cardinalities, Shelah [She82] had to generalize the methods of Nash-William and
Laver. He analyses the class Kλ of colored trees λ<ω with the usual partial order of initial sequence and
requires that nodes with same color are on the same level. Considering level preserving embeddings between
such trees. Shelah [She82] proves:

Theorem 2.3.1. For any cardinal λ ≥ λbeaut, any family of pairwise non-embeddible colored trees in Kλ

has cardinality less than the first beautiful cardinal λbeaut.

To describe the model-theoretic application fully, we need a more detailed description of the proof of
the main gap theorem. Recall that if a theory is unstable then it has the maximal number of models in every
uncountable cardinality. In fact, this holds if T is not superstable. But for full control of the spectrum three
further properties are needed. We say a theory is classifiable if it is superstable and ndop — doesn’t have
the Dimensional Order Property— and notop — doesn’t have the Omitting Types Order Property. Now the
crucial ingredient of the main gap theorem is that any model of a classifiable theory is decomposed into a
family of countable models indexed by a tree in Kλ. There is a finer treatment of the shallow classifiable
case in [She90] and even finer in [HHL00], where five separate classes with some finer partitions of two of
them and the respective spectrum functions are described. By studying IE, the number of cases are almost

31See details in [She19, page 3]. The ambiguity is resolved in the other direction in [Bal18, 192] by making every spectrum < 2ℵα

on sufficiently large cardinals.
32Well-quasi ordering also implies there are no uncountable descending chains but that is not important here.
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reduced to classifiable or not. classifiable case is further split according to the third property: whether the
decomposition tree is shallow (well-founded33) where the number IE(λ, T ) is bounded by the depth of the
tree, or deep (non-well-founded) where we apply Theorem 2.3.1.

Theorem 2.3.2. Every countable first order theory satisfies one of

1. If T is not classifiable, IE(λ, T ) = 2λ for all λ ≥ ℵω .

2. If T is classifiable, then

(a) If T is shallow then IE(λ, T ) ≤ idepth(T) < iω1
for all λ.

(b) If T is deep then

i. If λ < λbeaut then IE(λ, T ) = 2λ.
ii. If λ ≥ λbeaut then for every ρ < λbeaut, there is family of pairwise non-mutually embeddi-

ble models of cardinality ρ. But there is no such family of cardinality λbeaut.

Here iα is the analog to ℵα where, inductively, the cardinal successor of ℵα is replaced by the cardinality
of the power set ofiα. But what is λbeaut? Shelah’s notion of a beautiful cardinal was characterized (earlier)
by [Sil70] as the least ω-Erdős cardinal. That is the least κ such that34 κ→(ω)ω2 . This is a rather small large
cardinal (strongly inaccessible but not weakly compact35). Beautiful cardinals have been applied to the
study of Abelian groups [ES99]. Shelah makes the following remark about his use of large cardinals in this
connection.

But if we want to go any further, we have to consider some mildly large cardinal, but don’t
be afraid if you don’t believe in them. The theorems do not say ‘If some large cardinal exists
then...’. But, rather ‘the well-ordering cardinal of some naturally defined Q is a specific large
cardinal’; so our results are meaningful even if no such cardinal exists.

[She82, page 179]

That is, if there are no ‘beautiful cardinals’, for every λ, either IE(λ, T ) is very small if T is classifi-
able and shallow or it is maximal. And if there is a beautiful cardinal then the relatively small least such
cardinal bounds the cardinality of maximal pairwise non-embeddable families if the theory is deep. Thus,
by choosing a finer measure, IE – non-mutually embeddible, the vulnerability of the original main gap for
non-isomorphism (I) to variations in cardinal arithmetic has been substantially reduced (The vulnerability
can be eliminated by fixing a small initial segment of the universe, Viω1

.). In contrast to the lower bound in
the main gap, iω1(|α| + ω), the number of non-mutually embeddible models in ℵα of classifiable theories
is uniformly bounded by iω1

rather than a cardinal depending on α.

2.4 Club Guessing
The method of club guessing allows more detailed analysis of the problems described in the earlier sub-
sections of Section 2. We first explore more refined results on the universality spectrum. Then we briefly

33Some authors reserve the term classifiable for this case.
34This is a simpler statement than the equivalent principle used in Shelah’s proof [She82, Definition 2.3]. In the Erdős notation for

Ramsey style theorems κ→(ω)ω2 means: If f is a coloring of the ω-element subsets of a set of cardinality κ, with 2 colors, then there
is a homogeneous set of cardinality ω (a set, all whose countable-element subsets get the same f -value).

35For an overview of the large cardinal hierarchy see http://cantorsattic.info/Upper_attic. See [Sil70], who proved
that a beautiful cardinal ‘lives in L’.
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recount the use of club guessing in Sections 2.2 and 2.3. The club guessing method is expounded in [She00,
Ch.III], [She93], [She13a], and [Jec06, Theorem 23.3]. Unlike, e.g. Jensen’s diamond, cases of this principle
are provable in ZFC.

Definition 2.4.1. We say λ has club guessing for κ < λ when some C witnesses it, which means:

(a) S is a stationary subset of {δ < λ : cf(δ) = κ}.

(b) C = 〈Cδ : δ ∈ S〉, where Cδ is a club of δ of order type cf(δ).

(c) if E is a club of λ, then for stationarily many δ ∈ S we have Cδ ⊆ E.

Theorem 2.4.2. If λ > κ are regular cardinals and κ+ < λ then λ has club guessing for κ.

We describe two hypotheses on λ that, using club-guessing, imply there are no universal models in λ.
We will sketch the proof of the first. Then we describe the classes in the second and indicate the variation in
the proof.

Theorem 2.4.3. 1. If there exists µ and regular λ such that 2ℵ0 ≤ µ+ < λ < 2λ then for any theory of
linear order, with the strict order property, or even SOP4 has no universal model in λ (Sections 3 and
5 of [KS92a]). The argument also applies to class of groups although they have NSOP4 [She16].

2. If there exists µ, 2ℵ0 ≤ µ+ < λ < µℵ0 , then Ktr [KS92b], reduced torsion free groups Krtf and Krs(p)

do not have universal models (under either pure or arbitrary embeddings).

Proof Sketch. Suppose for some µ, µ+ < λ = cf(λ) < 2µ. Apply Theorem 2.4.2 for κ = µ. In case
1), we are able to assign to each model M of size λ a set of invariants IM consisting of ≤ λ subsets of µ in
such a way that modulo an ideal in P(λ), using club guessing, the set IM determines M up to isomorphism.
Further if M can be embedded in N , IM ⊆ IN . Now fix an N that pretends to be universal. Choose a
model M ′ whose set of invariants contains a subset not contained in any invariant of N . This is possible
since 2µ > λ. Then M ′ cannot be embedded in N and the pretence fails. Thus, there is no universal model
in λ.

We turn to the applications. Shelah’s analysis of superstability revolves around the Shelah tree, a tree
of formulas of width λ and height ω + 1 such that each path is consistent and the successors of each node
are pairwise inconsistent. The existence of such a tree implies T is non-superstable. So the investigation of
strictly stable theories begins with the study of the class Ktr: trees T with (ω + 1)-levels ordered by initial
segment, i.e. T ⊆ ω≥α for some α, with the relations ηE0

nν := η | n = ν | n. For Ktr, by varying the
sketched proof for Theorem 2.4.3 we get µ+ < λ = cf(λ) < µℵ0 implies there is no universal for Ktr

λ (by
[KS92b]). We need only λ < µℵ0 , since the invariants can be taken as sets of countable sequences from µ.

The class Ktr is closely related to certain classes of abelian groups. An abelian group is torsion free
if every element has infinite order. It is reduced if there is no divisible subgroup. The analysis of cases
for the existence of universal models in λ of Abelian groups depends on several parameters: a) the specific
class of groups: torsion free vs. torsion and in the reduced torsion case, whether the group is required to be
separable; b) whether the embedding is required to be pure c) various restrictions on the cardinal λ. We now
elaborate on the fourth row in the chart in [She19, §10B], where the other cardinal possibilities are listed.

We denote by Krtf the class of reduced torsion free abelian groups. Every torsion free abelian group
is a direct sum of a divisible group and a member of Krtf . Since every divisible abelian group is a direct
sum of copies of Q, in every cardinality there is a universal group, universal p-group (for every prime p),
universal torsion group and universal torsion-free group. This follows from the fact that every abelian group
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(p-group, torsion group, torsion-free group) is embeddable in a divisible abelian group (p-group, torsion
group, torsion-free group) of the same cardinality [Fuc70, 23 and 24] and [KS95, Theorem 3.1]. Thus, the
universality question is only interesting when we restrict to reduced groups.

In particular, Krtf is an interesting class. Each such group interprets a member of Ktr, by defining the
equivalence relation En(x, y) if and only if x− y is divisible by n!. However, this class of groups does not
behave well with respect to the ordinary notion of substructure. In an extension an element may be become
more divisible. But, an embedding is pure if this doesn’t happen so as in the case of Ktr , Krtf has no
universal model for pure embeddings (Lemma 2.4.3.2) if for some µ, µ+ < λ = cf(λ) < λℵ0 [KS95, 3.8].
For arbitrary embeddings the same result is obtained in [She01, 1.6]. The new step is a refinement in the
Abelian group construction; but, one that depends on an explicit construction of a structure on λ.

If we turn to torsion groups, note that each one decomposes in a unique way into direct sums of p-groups
for different primes p; so we can fix p. Finally, we may restrict to p-groups that are separable (no elements
of infinite height). Thus we study Krs(p) called reduced separable p-groups. The simplest example is the
group of pn roots of unity for each n. While, in general, there are no elements of infinite height, there is a
topological closure so that the tree controls, without exhausting, the model. Again the pure case is in [KS95,
3.3] and arbitrary embeddings in [She01, 2.7]. But this last case requires that λ > iω .

In [She88, Shea], Shelah engages the topics raised in Section 2.2 and 2.3. As discussed in Section 2.3,
using beautiful cardinals, he counted the number of non-mutually embeddible models to separate classi-
fiable from non-classifiable classes by a calculation which was not susceptible to the vagaries of cardinal
arithmetic. Here the same theme is pursued but within ZFC. As in Section 2.2, [She88] deals with pseudo-
elementary classes, but now with respect to IE; the goal is the following result.

Theorem 2.4.4. ([She88, Conclusion 3.1]) If T is a complete first order theory, which is not superstable,
not only does |PC(T1, T, λ)| = 2λ but for λ > |T1|, IE(T1, T, λ) = 2λ.

In [She78, Chapter VIII] this result is proved with the additional hypothesis that λ is regular36. Using club
guessing, Shelah extends the result to singular cardinals. This makes the external definitions of the stability
classification via spectrum functions more robust.

The moral here is that specific combinatorial analysis of the tree λω and the development of important
club guessing techniques arose from extending a result from many non-isomorphic model in λ for regular
λ to many non-mutually embeddible models of a PC-class in λ for singular and thus arbitrary λ. The
first facet represents a fundamental model theoretic contribution; the second introduces the new line of club
guessing in set theory [CFM04, D0̌5, S.I92].

3 The role of set theoretic axioms
In [Mad19], Maddy writes

So my suggestion is that we replace the claim that set theory is a (or the) foundation for math-
ematics with a handful of more precise observations: set theory provides Risk Assessment for
mathematical theories, a Generous Arena where the branches of mathematics can be pursued
in a unified setting with a Shared Standard of Proof, and a Meta-mathematical Corral so that
formal techniques can be applied to all of mathematics at once.

36The cofinality of a cardinal λ is the least cardinal κ such that there is an increasing function f from κ into λ such that the supremum
of the range of f is κ; otherwise λ is singular.
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I think one can distinguish Generous Arena from Meta-mathematical Corral as follows. Generous Arena
refers to the role of ZFC as establishing a framework for traditional mathematics. This is the sense of
set theory employed by Bourbaki. The meta-mathematical corral is the collection of extensions of ZFC
that provide different and perhaps contradictory arenas (Witness V=L, Martin’s axiom, and the Whitehead
problem.).

Maddy includes another criteria, essential guidance, described as follows [Mad19, page 300], ‘such
a foundation is to reveal the fundamental features – the essence, in practice – of the mathematics being
founded, without irrelevant distractions; and it’s to guide the progress of mathematics along the lines of
those fundamental features and away from false alleyways.’

I will argue in [Bal20] that inserting model theory as an intermediate step between the (in principle)
reduction of arguments in, say, algebraic geometry to set theory has several virtues. First we preserve the role
of set theory for risk assessment, shared standard of proof, and the Meta-mathematical Corral. And model
theory makes this more convenient for most of mathematical practice than the implied but not carried out
full coding of traditional mathematics into set theoretic foundations. For algebra (category theory excepted),
only formulating the notion of structure is ‘set theoretic’. The description of operations for combining
structures is part of traditional practice. But model theory also provides essential guidance for traditional
mathematical research in two ways. By providing formal frameworks aligned to each subject area it helps to
clarify arguments within the area and by exposing, through notions such as stability, combinatorial principles
that hold in several areas it helps to build connections among areas. Until very recently, this support seemed
to be primarily for algebraic topics, notably real algebraic geometry and Diophantine geometry. But recent
work in differentially closed fields on the partial differential equations of Painlevé [NP16] show that the
stability hierarchy and geometric stability can have significant applications in analysis. Further we noted
above the role of o-minimality on the frontiers of number theory [Pil11, PW06] and in asymptotic analysis
[AvdDvdH17]. And in the last few years there have been deeper connections with combinatorics and even
learning theory [CF19, CS18, LT19].

Essential guidance is a purported advantage of univalent foundations according to supporters. But Maddy
argues, I think correctly, that this claim holds only for certain restricted, but highly influential, areas of math-
ematics that depend heavily on category theoretic methods. My first point is that model theory, via classifi-
cation theory, provides such essential guidance in a wider range of mathematics because the formalization
for a particular area takes its concerns into account and easily accommodates the constructions of the area.
But the examples discussed in this paper support a widening of that claim; the examples here illustrate that
model theory (and algebra) have a role in guiding set theoretic research. And this leads to an effect of model
theory on the meta-mathematical corral.

We have described above various instances of model theoretic problems engendering new animals in
the metamathematical corral. But they may also serve a normative function in evaluating the alternatives.
Shelah raised such a possibility by making a distinction between axioms (apparently those with ‘internal37’
justification) for set theory and the vast majority of extensions, ‘semi-axioms’ which are justified primarily
by their consequences.

What are our criterions for semi-axioms? First of all, having many consequences, rich, deep
beautiful theory is important. Second, it is preferable that it is reasonable and ‘has positive
measure’. Third, it is preferred to be sure it leads to no contradiction (so lower consistency
strength is better).

Shelah [She03]
37Here we mean Gödel’s distinction between internal justifications that ‘follow from the notion of set’ and external or pragmatic

justifications.
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While the first and third criteria are inexact, the general intent is clear. But, ‘reasonable and has positive
measure’ need some explanation. In [She03], ‘has positive measure’ is an impressionistic phrase; roughly the
more conflicting sentences a semi-axiom φ permits, the greater the measure of φ. The lack of independence
over V = L (given its canonical model) is the justification for saying V = L has measure zero. Reasonability
is a judgement based on the plausibility of the consequences of the semi-axiom.

The work of Shelah discussed here emphasizes a subtlety in the nature of dividing lines. Shelah’s Steele
prize acceptance, quoted in the introduction, asserted, ‘this means meaningful things are to be said on both
sides of the dividing line’. In the introduction I interpreted ‘to be said’ as ‘consequence’. But the examples
here, particularly Section 2.1 weaken this condition to ‘consistent consequence’. Shelah makes a similar
comment in [She00, 5.2] (‘poor man ZFC answer’). And this weakening allows model theory to both
motivate and arbitrate amongst semi-axioms.

The entire discussion here depends on a fundamental contribution of modern logic; it enables a new
(20th century) tool in mathematics: Formalize a particular area of mathematics as a (usually) first order
theory. Study the models of a complete first order theory by the model theoretic methods discussed above.
Or, for the incomplete theory ZFC, study its models and the extensions of the theory using, in particular,
the method of forcing. Shelah has brilliantly integrated these two projects.
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