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Abstract

In this paper we present three aspects of the autonomy of geometry.
(1) An argument for the geometric as opposed to the ‘geometric al-

gebraic’ interpretation of Euclid’s Books I and II; (2) Hilbert’s successful
project to axiomatize Euclid’s geometry in a first order geometric lan-
guage, notably eliminating the dependence on the Archimedean axiom;
(3) the independent conception of multiplication from a geometric as op-
posed to an arithmetic viewpoint.
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The Autonomy of Geometry

John T. Baldwin and Andreas Mueller
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By the autonomy of geometry we mean that geometry involves distinct con-
cepts from and does not depend on either arithmetic or algebra. We address
this autonomy from three perspectives: historical, foundational, and concep-
tual. After describing these perspectives in Section 1, we address the historical
issues in Section 2, the foundational in Section 3, the conceptual in Section 4
and then summarise the argument in Section 5.

We thank Piotr B laszczyk, Mikhail Katz, David Pierce, and the referees for
helpful comments.

1 Introduction

In Baldwin (2017a), we argued that an easily intertranslatable set of math-
ematical results could arise from different conceptions (in that paper of the
continuum) at different times. And, while recognition of this rough equivalence
is important; it is essential to understand the different conceptions. In Section 2
we object1 to Van der Waerden’s description of Book II of Euclid as he ignores a
similar change over time from geometric to algebraic conceptions and notations.

We studied the wording of the theorems and tried to reconstruct
the original ideas of the author. We found it evident that these
theorems did not arise out of geometrical problems. We were not
able to find any interesting geometrical problem that would give rise
to theorems2 like II 1-4. On the other hand, we found that the
explanation of these theorems as arising from algebra worked well.
Therefore we adopted the latter explanation. (Van der Waerden,
1976, 203-204)

∗First author’s research partially supported by Simons travel grant G5402, G3535.
1Our attention was drawn to this topic by the incisive Katz Katz (2020) critique of Unguru’s

position in the Van der Waerden-Unguru controversy. With the extremes of an historian’s
perspective well dealt with, we focus here on the extremes on the other side. We hold that
mathematicians, historians, and linguists all make essential contributions to the history of
mathematics.

2This is more circumspect than the statement in his book. ‘When one opens Book II of
the Elements, one finds a sequence of propositions that are nothing other than geometric
formulations of algebraic rules.’ (Van der Waerden, 1954, 118).
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In supporting this objection we follow the lead of Arpad Szabo (Szabo, 1978,
Appendix 4) and Piotr B laszczyk (B laszczyk, 2019, Section 3) who argue for the
geometrical motivation of Book I and II. In particular Szabo argues that just
as Book I is aimed at a proof of the Pythagorean theorem, Book II is aimed at
constructing from an arbitrary polygon a square that has the same area. This
construction is accomplished, as is Book I, without any use of proportion but
just by the rearrangement of polygons. The theory of proportion for magnitudes
appears only in Book V with geometric consequences in Book VI on similarity
of triangles and thereafter. For this discussion, we should clarify the meaning
of the word ‘algebra’. Van der Waerden writes,

When I speak of Babylonian or Greek or Arab algebra, I mean alge-
bra in the sense of Al- Khwarizmı̈, or in the sense of Cardano’s “Ars
magna”, or in the sense of our school algebra. Algebra, then, is:

the art of handling algebraic expressions like (a+ b)2 and of solving
equations like x2 + ax = b.

(Van der Waerden, 1976, 199)

The difficulty with applying such a definition to Euclid is that ‘handling al-
gebraic expressions’ is precisely what does not occur in Euclid. Points, lines,
polygons, and circles are handled.

Studying the changes in algebra through time has resulted in some more
precise terminology. Christianidis (2000), borrowing the term from Oaks, lays
out a careful distinction between premodern and modern algebra3 in abstract
terms rather than by identification with specific mathematical cultures. Among
his characterizations of premodern is (Christianidis, 2000, page 39), ‘Despite
the fact that the problems solved by algebra may have been stated in terms of
arithmetic, mensuration, commerce etc., the unknowns were always numerical
measures of quantifiable objects. Accordingly, it is not surprising that premod-
ern algebra was considered by its practitioners as part of arithmetic.’ But Euclid
deals in congruence and ‘equal area’, not numerical measurement.

Christianidis further writes (Christianidis, 2000, page 39) ‘The notion [pre-
modern] itself was created to describe primarily the medieval Arabic, Latin,
and Italian algebra. By adopting this notion (mainly from the works of Jeffrey
Oaks), my aim in the present study is to show that the notion of ‘premodern al-
gebra’ provides a suitable contextual framework for conceptualizing Diophantus’
Arithmetica as well.’ He speaks of Diophantus, not Euclid.

Second (Section 3), we discuss Hilbert’s reformulation of Euclid in 1899.
In contrast to the arithmetization project of Dedekind and Weierstrass which
attempted to secure the foundations of analysis in arithmetic, Hilbert (1971)
clarifies Euclid’s axiomatization of geometry as an autonomous subject. In par-
ticular, he removes Euclid’s dependence on the axiom of Archimedes and gives

3This terminology would naturally not be used by Van der Waerden. His book Moderne
Algebra, Van der Waerden (1949) began what contemporary mathematicians call the much
more abstract modern algebra.
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an entirely first order axiomatization. Of course this last sentence is anachronis-
tic; the careful distinction between first and second order logic was twenty years
in the future. But Hilbert made the distinction clear in his 1917/1918 lecture
notes (Hilbert (2013)) by formalizing his geometry in the restricted predicate
calculus. He accomplishes independence from Archimedes by interpreting a field
into each model of his first order4 axioms. Thus he can assign an element of the
field to each line segment (length) or polygon (area). Then he defines propor-
tionality by using division in the modern sense. This allows a straight-forward
proof of Euclid’s VI.1 and VI.2, which apply the notion of proportion to cal-
culate the area of a triangle and show corresponding sides of similar triangles
are proportional. Thus, he establishes the theory of similarity without Euclid’s
recourse to the axiom of Archimedes.

In Section 4 we discuss the conceptual role of geometry in students’ under-
standing of multiplication. At least in United States schools, students are taught
in the elementary school that multiplication is repeated addition. This has sev-
eral negative effects. ‘Then, how can you divide a bigger number into a smaller?’
And when the student passes from arithmetic of the natural numbers to dense
order, suddenly every magnitude is divisible by any natural number. The dif-
ficulty is that there are three distinct intuitions of multiplication: repeated
addition for the natural numbers, area and scaling/similarity in geometry.

2 The geometric motivation for Euclid II

Euclid’s Book I is generally understood to deal with geometry: congruence,
area, and eventually the Pythagorean theorem. In contrast, the propositions of
Book II have often been interpreted as based in algebra. Indeed, Van der Waer-
den (Van der Waerden, 1954, 118) opens a section of Science Awakening titled
‘Geometric Algebra’ with the statement ‘When one opens Book II of Euclid, one
finds a sequence of propositions which are nothing but geometric formulations of
algebraic rules.’ Of course, that is how the first four propositions5 might appear
to us, but algebraic notation was far in the future during Euclid’s time. These
are rules (e.g., II.1 asserts in modern language: scalar multiplication distributes
over vector addition) which assert that area is conserved by disjoint union. Alge-
braic notation is far more general than geometric argument. Indeed, the essence
of algebra is that often, in the course of an algebraic derivation, one must lose
the explicit meaning of each statement. See a simple example from high school
algebra in Baldwin et al. (2010). In contrast, the geometric argument refers to
a sequence of actual diagrams.

On reflection, there is a natural geometric motivation for the main themes
of Book II: Determine a precise method for determining which of two disjoint
rectilinear figures6(polygons) has the greater area. B laszczyk (2019) and Szabo

4Technically his 2nd order continuity axiom must be replaced by circle-circle intersection.
5Perhaps, Van der Waerden is falsely accused of viewing the entire Book II as ‘geometric

algebra’; in his book he stops his presentation of equations with Propositions II.9 and 10.
6Euclid Definition I.19: Rectilinear figures (See A in Figure 2.) are those which are con-
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(1969) agree that the goal is show any rectilinear figure has the same area
as a square. We emphasize that Euclid’s argument implies that the rectilinear
figures are totally ordered by what we call area. A key step took place already in
Proposition I.45: any rectilinear figure has the same area as a parallelogram and
indeed as a rectangle. This result is proved by an implicit induction, described
on pages 9-10 of B laszczyk (2019). So we need only to determine which of
two rectangles has the greater area. But the rectangles are determined by two
parameters, width and length7 The search for a canonical single paramater
representation leads to the following, strange to modern ears, definition and
proposition.

Definition 2.1 Any rectangular parallelogram is said to be contained by the
two straight lines containing the right angle.

This definition allows us to study the areas of arbitrary rectangles by in-
dexing each rectangle by its semi-perimeter and a cut point in that line. This
indexing restricts from parallelograms to rectangles, which clarifies the focus on
rectangles in Book II. And if we can replace an arbitrary rectangle by a square,
since side length determines area, we have solved the comparison problem. The
first lemma in studying this representation asserts:

Proposition 2.2 (Proposition 2) If a straight line is cut at random, then the
sum of the rectangles contained by the whole and each of the segments equals
the square on the whole.

Here, ‘cut at random’ and ‘contained by’ give us a pair of rectangles with
the same height but arbitrary length summing to that height and describes
their areas. In modern terms it yields the formulas ab, (b − a)b for the areas.
Thus, Proposition II.2 certainly implies that if a square is split into two non-
overlapping rectangles the sum of the areas of the rectangles is the area of the
square. But while Van der Waerden (Van der Waerden, 1954, 118) reads8 this as
a(b+ c) = ab+ ac (where a = b+ c); we regard it as emphasizing for rectangles,
that when one joins two geometric figures along a common side the area of the
resulting figure is the sum of the two. This is the basic premise for developing
a theory of areas by decomposition of polygons. Crucially, this development
has no dependence on a theory of proportions but is able to handle irrational
lengths.

Szabo9 (Szabo, 1978, Appendix 3, Example 3) lays out some of the impor-
tant geometric techniques involved in the proof. In particular the ‘carpenter’s

tained by straight lines.
7In fact, one of these can be specified (Euclid, 1956, 346-347).
8Joyce says that if x = y + z then x2 = xy + xz, (Guide to Book II in online version of

Euclid (1956)).
9We do not go into the extensive philological analysis of Szabo nor his speculations on

the origins of the Greek theories of proportion (Szabo, 1978, Chapter 1). When speaking of
Greek thought we mean in the era discussed here. That is, in the early 3rd century B.C.E.
Van der Waerden describes the Golden Age as the fifth century BC in the first paragraph of
his Chapter V, but then discuses Book II of Euclid in detail.
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square’ or gnomon appears whenever a smaller square is subtracted from a
larger. Namely, it is the remainder of the square and can be decomposed into
another smaller square and two congruent rectangles10. In figure 1, CBFGHL
is a gnomon.

Much of Book II considers the relation of the areas of various rectangles,
squares, and gnomons, depending where one cuts a line. While gnomons11

have a clear role in decomposing parallelograms, the algebraic representation
for the area of gnomon, is not a tool in polynomial algebra. That is, while such
equations as (a+ b)(a− b) = a2− b2 or the formula for product of binomials are
tools in algebra which have nice geometric explanation, the area of a gnomon
has an algebraic expression, 2ab + a2, which does not recur in algebra (e.g., as
a method of factorization).

Propositions II.5 provides the first step by replacing the area of a rectangle
by that of a gnomon. We take the cut point D in AB to be between the midpoint
C and B.

Theorem 2.3 (Proposition II.5) Let C be the midpoint of AB and D a point
between C and B. The area of the rectangle with length AD and height DB plus
the area of the square on CD equals the area of the square on CB.

Figure 1: II.5

That is, we show the rectangle shaded // in Figure 1 to have the same
area as the gnomon shaded \\. Figure 1 is constructed in the proof by making
DB ∼= BM , CD ∼= MF and those lines which appear parallel to be parallel.

10In fact, Euclid uses gnomon in even more generality; a gnomon is an L-shaped figure
made by removing a parallelogram from a larger similar parallelogram.

11Incidentially, (Berggren, 1984, 298) reports that, in contrast to degree measurement, this
concept was transferred from the Babylonians at an early date.
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Leaving aside the details of the construction, the result is clear: The rectangle
ADHK is composed of ACLK and CDHL. Moreover, ACLK ∼= BFGD. Now
the square on CB (CBFE) is composed of BFGD plus CDHL plus LHGE
(which has the same area as the square on CD).

Note the decomposition of ADHK uses Proposition II.2 implicitly. As
pointed out in Heath (Euclid (1956)), if we take a as the length of AD and
b as the length of DB, Proposition II.5 yields the algebraic equation.

(
a+ b

2
)2 = ab+ (

a− b
2

)2 (1)

But since the Greeks did not assign numbers as lengths in their geometry (but
only discussed the ‘equality’ of magnitudes of the same dimension), it is hard
to see algebra as the Greek understanding, although it is convenient for modern
readers skilled in algebra.

(Szabo, 1978, Appendix 4) draws an interesting comparison of the proofs
of Proposition II.5 and of the existence of a mean proportional in Proposition
VI.13. He argues at (Szabo, 1978, 46-48) (citing Heiberg (1904) and Heath
(1949) that i) VI.13 depends on proportion (Thales/ VI.2), which for Euclid
depends on Archimedes, and ii) the proof in book II came later than the proof
of VI.13 and was designed to avoid proportion.

Euclid’s proof of II.14 essentially repeats the proof of II.5 before continuing
to the conclusion. One could summarize that II.5 constructs a gnomon from a
rectangle (gnomon CBFGHL from rectangle ADHK in Figure 1) and the new
part of II.14 constructs a square from gnomon (square JXY Z from gnomon
UV PJSR in Figure 2).

Figure 2: Proposition II.14

Together, they reduce the comparison of areas of polygons to that of squares.
This summary aims to clarify the mathematical connection rather than histor-
ically analyze Euclid’s argument. In more detail,
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Theorem 2.4 (Proposition II.14) To construct a square equal to a given
rectilinear figure.

Proof. As discussed near the beginning of this section, by Proposition I.45 we
may assume the rectilinear figure A is a rectangle IJNO.

In Figure 2 we modify Figure 1 to apply Proposition II.5. The old ADHK
becomes IJNO; but the square on QP is above IX while the square on CB
was below AB. So LHGE of Figure 1 corresponds to QJSR in Figure 2. And,
the gnomon CBFGHL corresponds to the gnomon UV PJSR. We show the
latter gnomon has the same area as the square JZY X. By Proposition II.5,
the rectangle IJNO plus the square on QJ (QJSR) has the same area as the
square on QP (QPV U). But QP ∼= QZ, so we can consider the square on QZ
(QZTB)). By the Pythagorean theorem (I.47) the square on QZ is the sum
of the squares on QJ and on JZ. So, taking away the square on QJ from the
square on QP yields a square with the same area as the gnomon UV PJSR and
so as IJNO. Namely, the square on JZ (JZY X). �

Euclid’s geometrical motivation is evidenced by a further generalization of
II.14, which still doesn’t need proportion:

Theorem 2.5 (Euclid: III.35) If in a circle two straight lines cut one an-
other, then the rectangle contained by the segments of the one equals (has same
area) the rectangle contained by the segments of the other.

This further consequence of II.5 creates a new result about chords of circles.
And when the chords are perpendicular and one is a diameter, III.35 yields a
new proof of II.14. We can see the proof from the same Figure 2, if we take
the rectangle contained by the segments to again be IJNO with one chord the
diameter IP and the other chord ZJ extended to meet the circle.

Propositions II.12 and 13 can be interpreted as the law of cosines. Although
Euclid precedes the definition of sine and cosine by generations, these are surely
more geometric than algebraic results.

Thus, Book II culminates in Proposition II.14. It relies on only a few of
the earlier results. It crowns a series of results which transform rectangles
(usually given by cutting with prescribed conditions) into squares or gnomons
with intricate relations of the area of the result to the hypotheses. By showing
every polygon determines a square of the same area, it provides a method for
comparing the areas of arbitrary polygons with a single parameter, the side of
the resulting square.

3 Hilbert’s Geometry

We claimed12 in Baldwin (2017a,b), that in the discussion of area Hilbert and
Euclid are treating in some rough sense the same topic but in very different ways.

12These matters are explained in much more detail in Hartshorne (2000); Baldwin (2018),
in Baldwin and Mueller (2012), which are notes specifically for secondary teachers, and of
course in Hilbert (1962).
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A crucial distinction is in the use of the word number. In Greek mathematics,
numbers are what we now think of as 2, 3, 4 . . .. Even the unit is distinct; a
number is ‘a multitude of units’. Magnitudes are a different species. Thus
Euclid addresses the theory of proportionality in both Books V (magnitudes)
and VII (numbers). A fundamental difference is that magnitudes can be divided
into an arbitrary finite number of equal pieces. Clearly this does not hold for
members of the system of natural numbers. Over several thousand years western
mathematics arrived at a notion of real numbers which contain the natural
numbers as a subsystem. But the full development occurs only in the late 19th
century. Hilbert chooses to express his measurement of lengths and area by an
arithmetic on segments13. But, unlike Euclid, who says the area of a triangle is
proportional to the base and the height, he uses the formula 1

2bh for the area of
a triangle to be evaluated in the segment arithmetic (by counting the number
(perhaps fractional or indeed irrational) of unit squares that cover the triangle).

A key point of Hilbert’s foundations involved a distinction that was fully
formulated only 20 years after his geometry. The distinction is between first
and second order logic. First order sentences only quantify over individuals.
Thus, Hilbert would rephrase Euclid’s first proposition, I.1, as: for any two
points A,B there is a third point C, not on AB, so that AB, BC and CA are
congruent (ABC is an equilateral triangle.).

Hilbert proves ‘almost all’ of the actual theorems of Euclidean geometry from
a set of first order axioms. The first order axioms are reformulations of Euclid
plus two additional axioms that are described below. After explaining the non-
first order axioms, we will turn to the first order axioms and explicate ‘almost
all’.

The first non-first order axiom, Hilbert’s axiom of continuity (Dedekind
completeness), is equivalent to the second order statement: for every pair of
arbitrary non-empty subsets X,Y of the rationals Q such that every element
of X is strictly less than every element of Y and X ∪ Y = Q, there is a point
a in the reals such that a > x for every x ∈ X and a 6 y for every y ∈ Y .
This axiom is used in the Grundlagen only to prove that Hilbert’s geometry is
isomorphic to the geometry over the reals studied in high school geometry.

The second non-first order axiom is the axiom of Archimedes14: if the smaller
one of two given segments is marked off a sufficient number of times, it will
always produce a segment larger than the larger one of the original two segments.
This may seem quite similar to our translation Euclid’s first proposition, I.1.
The difference is the ‘sufficient number of times’. The full statement results by
saying ‘marked off 2 times’ or ‘marked off 3 times’, etc. It might also seem that
this is a quantification over segments (which are subsets). But, by mark off 2

13Descartes is a transitional figure; he considers multiplication as an operation on segments
but defines it from Euclid’s (Archimedean) proof of the existence of a 4th proportional. Hilbert
had considered using the points of the geometry as the elements of the field but elected
segments in the Grundlagen.

14In geometry the completeness axiom implies Archimedes. But completeness can be stated
in terms of order alone while Archimedes in geometry requires a notion of congruence and is
usually formulated in the presence of a group.
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times, we mean, given A0, A1, there exist A2, A3 so that A0A1
∼= A1A2 and

A0A1
∼= A2A3, where ∼= denotes congruence. This is not first order because it

involves an infinite conjunction. Euclid embeds this axiom in his Definition V.4.
aIt might be paraphrased as, in geometry no two points are infinitely far apart.

There is also a very basic issue with respect to Proposition I.4 of Euclid: if
two corresponding sides and the included angle are equal then the triangles are
congruent. Euclid proves this by the method of superposition, which is unclear
at best. This can be remedied in a number of ways. Hilbert chose to take the
proposition SAS (Euclid I.4) as an axiom15.

We work below in an axiom system we call HP5 (Hartshorne (2000)). Here
HP denotes Hilbert’s incidence, betweenness and congruence axioms (Hilbert
Plane) and HP5 also includes the 5th (parallel) postulate. We write Euclidean
geometry (EG) if we also add the circle-circle intersection property (implicit in
the construction of an equilateral triangle in Euclid I.1).

The ‘almost all’ is summarized as follows16. We restrict our attention to
plane geometry and so omit Books V, VII and X (proportionality and number
theory and Books XII (except XII.2) and XIII (solid geometry). Thus, below
we select from Books I-IV, VI, XII.1, 2 and consider certain geometrical aspects
of V and X. Now the results provable are

Euclid I, polygonal geometry Book I (except I.1 I.22), Book II.1-II.13,
Book III (except III.1 and III.17), Book VI

Euclid II, circle geometry I.1, I.22, II.14, III.1, III.17 and Book IV.

Archimedes, arc length and π XII.2, Book IV, (area of a circle proportional
to the square of the diameter), approximation of π, circumference of circle
proportional to radius17 Euclid, Archimedes’ axiom.

The conclusion is:

Theorem 3.1 1. The sentences of Euclid I are provable in HP5.

2. The sentences of Euclid II are provable in EG.

3. The sentences of Archimedes, arc length and π: Euclid XII.2, area of circle
are provable in Hilbert I-IV plus Archimedes and also in the first order
theories EGπ.

The actual proofs of 1) and 2) appear in Section 12 and Sections 20-23 in
Hartshorne (2000). And 3) is proved in (Baldwin, 2018, 10.1,10.2), where EGπ
is defined as a first order theory with a name for π.

The key to Hilbert’s elimination of the axiom of Achimedes is to define a
field from first order geometric principles. Euclid had the basic idea (https://
mathcs.clarku.edu/~djoyce/java/elements/bookVI/propVI12.html): Given

15Baldwin and Mueller (2012) takes SSS because it makes copying angles particularly easy.
16(Baldwin, 2018, 218-220) or a variant in Baldwin (2017a).
17Of course,this result is not in Euclid but see Baldwin (2017b).
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Figure 3: Definition of multiplication

line segments a, b, c; construct the 4th proportional, a segment d so that a : b =
c : d. Euclid proceeded by thinking entirely geometrically; his proportions are
between magnitudes, while we now think of a, b, c as being the lengths of the
segments. And Euclid does this construction only after he has developed an ab-
stract Archimedean theory of proportional magnitudes and the theory of area.
Descartes takes the same course but calls the 4th proportional of 1 : b = c : d
the product of b and c.

In contrast, Hilbert begins the study of proportion by defining the notion
of multiplication of segments geometrically. He works from HP plus what we
now call the theorem of Desargues. Following Hartshorne we adopt the more
restrictive parallel postulate rather than Desargues and call the result of adding
it to HP, HP5. By a segment class we mean a set (equivalence class) of all
congruent segments. Neither proof assumes the Archimedean axiom.

Definition 3.2 [Multiplication] Fix a unit segment class 1. Consider two seg-
ment classes a and b. To define their product, define a right triangle18 with
legs of length 1 and a. Denote the angle between the hypotenuse and the side of
length a by α.

Now construct another right triangle with base of length b with the angle
between the hypotneuse and the side of length b congruent to α. The segment
class of the vertical leg of the triangle is ab.

The crucial theorem is that this multiplication is associative, commutative
(this uses the parallel postulate; without that axiom Hilbert gets only a division
ring), has inverses, and distributes over segment addition. Thus there is a
definable field.

18Since we assumed the parallel postulate (which implies Desargues) the right triangle is
just for simplicity; we really just need to make the two triangles similar.
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We now compare the study of area in Hilbert, Euclid, and Hartshorne. We
follow Hartshorne’s definition of figure which includes polygons but is more
generous (E.g. the union of two separated polygons is a figure.).

Definition 3.3 (Hartshorne, 2000, 196) A figure is a subset of the plane that
can be represented as a finite union of non-overlapping triangles. A point D is
in the interior of a figure P if there is a triangle ABC entirely contained in P
such that D is in the interior of ABC. We say two figures are non-overlapping
if no point is in the interior of both.

As in B laszczyk (2019) and Euclid (1956), we take two figures to have equal
area by the following definition19.

Definition 3.4 (Area of polygons) 1. Two figures are scissors-congruent
if you can cut one up (on straight lines) into a finite number of triangles
which can be rearranged to make the second.

2. Two figures P,Q have equal area if there are figures P ′
1 . . . P

′
n, Q′

1 . . . Q
′
n

such that none of the figures overlap, each pair P ′
i and Q′

i are scissors
congruent and P ∪ P ′

1 . . .∪ P ′
n is scissors congruent with Q∪Q′

1 . . .∪Q′
n.

Note that the natural definition of equal area from Euclid’s practice, deletes
the word ‘scissors’ from Definition 3.4.2.

Theorem 3.5 (Euclid: I.35) Parallelograms which are on the same base and
in the same parallels equal one another.

The argument, using the following diagram, is explained in modern language in
(B laszczyk, 2019, Section 3).Proposition 22.3 of Hartshorne (2000) asserts that
his formalization of the equivalence relation incorporates Euclid’s use of CN2
and CN3 (addition/subtraction of equals from equals are equal) in Books I and
II, specifically in I.35.

Figure 4: I.35 Finite Parallelogram

Hilbert shows that while Euclid’s proof of I.35 is perfectly correct, the figures
cannot be proved to be scissors congruent without using Archimedes’ axiom (i.e.

19Hilbert and Hartshorne call the first of these notions equal area and the second equal
content.

12



Figure 5: 1.35 Infinite Parallelogram

without denying points at infinite distance). To see this, suppose that E and F
are translated to E′ and F ′ infinitely far to the right of D (Figure 3). Then line
BE will have to be covered by infinitely many segments, each shorter than the
diagonal BD, the longest possible segment in ABCD, since these segments are
on the finitely many triangles covering ABCD. But that is impossible.

In fact, the two notions of area are the same under the Archimedean ax-
iom. Welsh (2016) points out that Wallace (1807) proved the Wallace–Bolyai–
Gerwien theorem that polygons with the same area are scissors-congruent. All
these authors assume Archimedes’ axiom. It might appear, that her exposi-
tion depends on Archimedes because (Welsh, 2016, Lemma 2.4) appeals to the
theorem of Thales (Figure 4): the lengths of the sides of a triangle created by
cutting a triangle by a line parallel to the base are proportional to the sides
of the original triangle. But while Euclid uses his theory of area and a theory
of proportion depending on the axiom of Archimedes to establish VI.2, Hilbert
proves VI.2 using his notions of proportion and area without this appeal. The
problem lies rather in the paragraph and diagram after (Welsh, 2016, Lemma
2.5) where two stacks of finitely many rectangles are created and the sums of
the bases of the rectangle of each stack are assumed commensurable.

Figure 6: Euclid VI.2: SV : SR = SW : ST
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Hilbert constructs a specific ordered field with an element greater than in-
finitely many copies of a unit segment (as in Figure 5.) But the algebra is
unnecessary. Working in the language of geometry with a unit segment AB we
have for each n a point Fn such that AFn contains non-overlapping copies of n
copies of AB. So write formal sentences AF > AB+AB, AF > AB+AB+AB,
etc. Since we have axiomatized geometry in first order logic, by the compactness
theorem, there is a model of geometry and an F which makes all these sentences
true at once. The advantage of this argument is that it replaces a very particular
argument for violating Archimedes that depends on the geometry being suffi-
ciently strong to define a field and on technical algebra with a general argument
depending only on a Euclidean description of the Archimedean axiom and basic
logic.

We now discuss an additional complexity that arises in Hilbert’s treatment.
He has defined multiplication before introducing the notion of area. Thus, he
can define the area of a rectangle by the formula A = bh

2 and then compute
the area of a polygon by triangulating it and taking the sum of the areas of the
triangles. But there is a fine point in defining the formula. Does its value depend
on which altitude is chosen? Euclid doesn’t have this problem because he says
(Proposition VI.1) only proportional while Hilbert specifies the proportionality
constant. (Hartshorne, 1977, 197-205) argues that a few propositions at the end
of Book I and, in particular, the uniform choice of the proportionality constant
depend on de Zolt’s axiom. We hope to analyze this argument in a future paper.
For now, we only describe the invariance of the area formula.

Axiom 3.6 (Z: De Zolt) If Q is a figure contained in another figure P , and
if P −Q has non-empty interior then P and Q do not have equal area.

Definition 3.7 (measure of areas) (Hartshorne, 2000, p.205) A measure of
area function is a map α from the set of all figures into an ordered field such
that

1. For any triangle T , α(T ) > 0.

2. Congruent triangles have the same area.

3. If two figures do not overlap then α(P ∪Q) = α(P ) + α(Q).

Among the easy conclusions from the existence of a measure of area function
are the following.

Theorem 3.8 1. (Hartshorne, 2000, Proposition 23.1) If a plane satisfies
HP and has a measure of area function then it satisfies de Zolt’s axiom.

2. (Hartshorne, 2000, Theorem 23.2) If a plane satisfies HP5 then it has a
unique measure of area function defined by α(T ) = 1

2bh (based on a unit
area of a square with side 1).

The next lemma, using de Zolt’s axiom, is crucial for showing the Hilbert’s
measure of area function computes the area of rectangles ‘correctly’. The par-
enthetical letters in Figure 7 show where the original WXY Z is copied to.
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Figure 7: Lemma 3.9: Using de Zolt’s axiom

Lemma 3.9 If two rectangles ABGE and WXY Z have equal area there is a
rectangle ACID, congruent to WXY Z and satisfying the following diagram.
Further the diagonals AF and FH are collinear.

Proof. Suppose AB is less than WX and AE is more than Y Z. Then make
a copy of WXY Z as ACID. This will give the left hand diagram in Figure 7.
Let F be the intersection of BG and DI. Construct H as the intersection of
EG extended and IC extended. Now we prove F lies on AH and so the right
hand diagram is actually correct.

Suppose F does not lie on AH. Subtract ABFD from ABGE and ACID;
DFGE and BCIF have the same area. The diagonals AF and FH divide
each of the rectangles ABFD and FIHG into a pair of congruent triangles.
So AFD ∪ DFGE ∪ FHG has the same area as ABF ∪ BCIF ∪ FIH, both
being half of rectangle ACHE (Note that the union of the six figures is all of
ACHE.). Here, AEHF is properly contained in AHE and ACHF properly
contains ACH. This contradicts (Z), which holds by Theorem 3.8; hence F lies
on AH. �

Claim 3.10 If ABGE and ACID are as in the right diagram (i.e., have the
same area), then in segment multiplication (AB)(BG) = (AC)(CI).

We omit the fairly straightforward proof of Claim 3.10 (Baldwin and Mueller,
2012, 6.19) and apply the result to show the area formula is correct.

Theorem 3.11 Any of the three choices of base for a triangle give the same
value for the product of the base and the height.

Proof. Consider the triangle ABC in Figure 8. The rectangles in the small
figures 1, 3, and 5 are easily seen to be scissors congruent, while the triangle
ABC is half of each them. Claim 3.10 shows each product of height and base
for the triangle is the same. That is, (AB)(CD) = (AC)(BJ) = (BC)(AM).
But these are the three choices of base/altitude pair for the triangle ABC. �

In writing the congruence postulates Hilbert assumed that triangles are not
oriented. In Hilbert (1971), Hilbert deals also with oriented triangles. And he
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Figure 8: Area does not depend on choice of base and height

shows in Appendix II, that assuming SAS only for similarly oriented triangles
is strictly weaker. Indeed, the axiom of Archimedes is required to obtain the
usual SAS if the axiom is stated only for oriented triangles.

As discussed earlier in Section 2, Euclid develops in Books I and II a the-
ory of area that does not depend on proportion. Thus, there is no reliance
on the Archimedes Axiom. Hilbert demonstrated that slight changes, such as
‘equal area’ to ‘scissors congruence’ can produce a theory where the Axiom of
Archimedes is essential but which yields no better results. In Book V, Euclid
developed a theory of proportion that relied on the Archimedes Axiom to deal
with incommensurable magnitudes. And thus, so does his development of simi-
larity in Book VI. By defining field multiplication, and thus defining proportion
geometrically, Hilbert eliminated this dependence.

4 Multiplication is not repeated addition

Elementary school students are ordinarily introduced to multiplication of nat-
ural numbers by examples such as 2 + 2 + 2 = 6 and 3 × 2 = 6. That notion
of multiplication is correct for its context: multiplication of natural numbers.
But, that notion of multiplication does not admit an inverse. While, multipli-
cation of real numbers does. Repeated addition motivates multiplication of a
real number by a natural number; but it does not motivate multiplication of a
natural number by an arbitrary real. As, multiplication of two arbitrary line
segments naturally has a multiplicative inverse. To find the inverse of a, ask
what is the length b of the base of a rectangle with height a and area 1? Or
compute by Definition 3.2 as illustrated in Figure 9

16



Figure 9: Computing the multiplicative inverse

Example 4.1 (Area) The area of a rectangle with rational sides should be
introduced in elementary school by dividing the rectangle into congruent smaller
squares (so that both sides of the square are multiple of the side of the small
square) and counting them.

This comment is motivated by the experience of each author with students
who, when presented in pre-calculus or calculus with min-max problems, would
react, ‘I know A is either `w or 2`+ 2w but which is it?’.

Example 4.2 (Similarity in the real world (slightly contrived)) A trian-
gular clothes hanger and its reflection in a mirror.

Figure 10: Similarity Demonstrated

Example 4.3 (Similarity Problem) The second intuition is similarity. How
can you measure the height of a street light? In the picture the man is d meters
tall; his shadow is c meters long and the shadow of light pole is a meters long.
The height b of the tower is ad

c meters. See figure 11. Such problems are
fundamentally geometrical. Crucially, computing areas motivates the concept
of multiplication.
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Figure 11: Shadow problem

In this short section, we have emphasized that geometry provides two distinct
conceptual understandings of multiplication that do not arise in arithmetic. It is
important that these conceptions be inculcated into elementary school students.

5 The autonomy of geometry

Without careful linguistic documentation but with a consideration of the general
line of Greek thought we argue the autonomy of geometry in Greek mathematics
and an even stronger autonomy discovered by Hilbert.

Van der Waerden asserted that Greeks learned algebra from the Babyloni-
ans20 and Egyptians and translated that algebra into geometric form. And,
that the Greeks introduced the idea of proof. But he asks what causes ‘the
push to geometrization’ and answers ‘the discovery of irrational numbers’. The
separate developments of proportion for magnitude in Book V and proportion
for numbers in Book VII illustrate the great Greek distinction between number

20We address neither whether Babylonian mathematics can properly be called algebra nor
the extent of its influence on Greek thought.
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and magnitude. The Greek mathematicians didn’t have a common vocabulary
for both while the Babylonians did. Van der Waerden makes this clear.

That they [Greeks] did not consider
√

2 as a number was not a result
of ignorance, but of a strict adherence to the definition of number.
Arithmos meant quantity, therefore whole number. Their logical
rigor did not even allow them to admit fractions; they replaced them
by ratios of integers.

For the Babylonians, every segment and every area simply repre-
sented a number. They had no scruples in adding the area of a
rectangle to its base. When they could not determine a square root
exactly, they calmly accepted an approximation. But the Greeks
were concerned with exact knowledge, with ‘the diagonal itself’ as
Plato expresses it, not with an acceptable approximation.

(Van der Waerden, 1954, page 125)

This is precisely why we reject the notion of a Euclidean ‘geometric algebra’.
Algebra requires a uniform range of interpretation for the variables. The (early
3rd century B.C.E.) Greek mathematicians’ refusal to allow areas and lengths
to be directly comparable as numerical quantities disallows the adjective ‘al-
gebraic’. While many of the results in Book II can be expressed as quadratic
equations (and cubic equations in Book XI), there is a reason that there are no
fourth degree equations; for them, there is no fourth dimension. This is not an
objection to dimensional analysis; it is a remark that the geometry determines
the degrees of the algebraic equations we can force on the data. In contrast to
‘the Greeks’ in the Van der Waerden quote, this objection does not apply to
Viéte. To cite a convenient source, ‘Viéte saw the symbols in equations could
represent either numbers, or geometric quantities, and that this was a powerful
tool for analyzing and solving geometric problems.’ (Stedall, 2008, 738). And
by the time of Viéte 4th degree equations were actively studied.

On the other hand, Euclid develops a systematic theory of area in Books I
and II, in Book V a theory of proportions, and derives from them in Book VI
a theory of similarity. Here, there is a link with number theory, the axiom of
Archimedes. But, Hilbert demonstrates that this link is unnecessary. By taking
the construction of the fourth proportional as a basic definition of multiplication
of segments he grounds the arithmetic of the rational, the real, and, indeed, any
Euclidean field in geometry.

Tarski and Gödel make the autonomy even clearer. Gödel (1931) proves
arithmetic is undecidable and has no finitary foundation (Zach (2019)). Tarski
(1931, 1959) proves that geometry21 has a constructive foundation and is decid-
able.

21Specifically, both EG and E2, the first order theory E2 whose models are the geometries
over real closed fields, are finitarily consistent (i.e provably in Primitive recursive arithmetic
Tait (1981)) and the second is decidable. See (Baldwin, 2018, Chapter 10) for summary. Note
however that by Ziegler (1982) every finitely axiomatized extension of HP5 is undecidable; see
Makowsky (2018) for an exposition.
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Thus, we have argued the autonomy of geometry in three modes. Historical:
Books I and II of Euclid are motivated by the problem of developing a theory
of areas that provides a mean to compare the areas of arbitrary polygons. But
it does not rely on a theory of proportion, nor is it a ‘translation of Babylo-
nian algebra’. Foundational: Euclid’s geometry is constructively consistent and
does not rely on arithmetic for its justification. Conceptual: geometry provides
distinct intuitions for the notion of multiplication.
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