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In [1] we modified an idea of Hrushovski [4] to construct a family of
almost strongly minimal nonDesarguesian projective planes. In this note we
determine the position of these planes in the Lenz-Barlotti classification [7].
We further make a minor variant on the construction to build an almost
strongly minimal projective plane whose automorphism group is isomorphic
to the automorphism group of any line in the plane.

By a projective plane we mean a structure for a language with a unary
predicate for lines, a unary predicate for points, and an incidence relation
that satisfies the usual axioms for a projective plane.

We work with a collection K of finite graphs and an embedding relation
≤ (often called strong embedding) among these graphs. Each of these projec-
tive planes (M,P, L, I) is constructed from a (K,≤)-homogeneous universal
graph (M∗, R) as in [1] and [4]. This paper depends heavily on the meth-
ods of those two papers and on considerable technical notation introduced
in [1]. Each plane M is derived from a graph M∗ = (M∗, R). Formally
this transformation sets P = M∗ × {0}, L = M∗ × {1} and 〈m, 0〉 is on
〈n, 1〉 if and only if R(m,n). Thus, if G∗ denotes the automorphism group of
M∗, there is a natural injection of G∗ into the automorphism (collineation)
group G of M . There is a natural polarity ρ of M (ρ(〈m, i〉) = 〈m, 1− i〉 for
i = 0, 1). Then G∗ is naturally regarded as the subgroup of G consisting of
those collineations that are automorphisms of the structure (M,P, L, I, ρ).
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It should be noticed that this self-duality plays an important role in the
construction of the homogenous-universal graph. If one attempts to avoid
this by constructing a homogeneous universal bipartite graph, it is soon ob-
served that the amalgamation property fails. (Construct B and C extending
A and an element x of A such that B thinks x is a point and C thinks x is
a line.)

The almost strong minimality of M is established in [1] by showing any
line is strongly minimal and noting that the plane is in the algebraic closure
of any single line and two points off the line. After making a minor variant
in the construction we build here a plane which is in the definable closure of
any line (without additional parameters!).

We can control certain aspects of the behavior of G∗ by varying the class
K. In order to actually determine e.g. the transitivity of G we must vary the
construction further.

0.1 Notation. Let A be a subset of N .

i) We write stbN(A) for the group of automorphisms of N that fix A
pointwise.

ii) We write sstbN(A) for the group of automorphisms of N that fix A as
a set.

Note that if ` is a line, the notation stbM(`) implicitly demands that we
think of ` as a subset of P , not an element of L.

0.2 Definition. i) For any point p and line ` a (p, `)-collineation is a
collineation that fixes ` pointwise and p linewise.

ii) A projective planeM is (p, `)-transitive if the subgroup of (p, `)-collineations
acts 1-transitively on `′ − {p, q`′}, where q`′ is the intersection of ` and
`′, for each line `′ through p (except ` if p is on `).

Note that any collineation α that fixes a line ` pointwise also fixes a
(unique) point p linewise [5, Theorem 4.9]. This point is called the center
of the collineation. α is referred to as either a (p, `)-central collineation or a
(p, `)-perspectivity. Then, stbM(`) is the collection of all (p, `)-perspectivities
as p varies.

The Lenz-Barlotti classification describes a projective plane M by the
set FM = {(p, `) : M is (p, `)-transitive}. Various conditions on the class
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FM correspond to properties of the ternary ring that coordinatizes P . While
there are 16 different categories in the classification, we deal here with only
class I1: FM = ∅.

0.3 Definition. i) A flag in the projective plane M is a pair (p, `) with
p on `.

ii) The collineation group of M is flag transitive if it acts 1-transitively on
flags.

In [1] each of a certain family of functions µ from ω to ω determines a
different projective plane. All of these planes behave in the same way for the
properties discussed in this paper so we do not keep track of the function µ.
It isn’t clear if the collineation group of any of the planes M0 constructed in
[1] is either flag transitive or acts transitively on pairs (p, `) with p not on
`. However, by modifying the construction to define M1 we can guarantee
increased transitivity by ensuring that G∗1 acts with a sufficient required
degree of transitivity on M∗

1 .
To see that G∗0 does not act flag transitively on M0 note that by slightly

extending the construction in [1] (or see [2]) of a 14 element graph A with
y(A) = 3, it is possible to construct a square-free graph B with 17 elements
and y(B) = 2. Now if C = 〈a, b〉 is contained in B with aRb and B is
strongly embedded in M∗

0 , there is no automorphism of M∗
0 taking C to a

C ′ ≤ M∗
0 since C is not a strong submodel of M∗

0 . But C and C ′ both
represent flags of M . But this leaves open the possibility that G0 could still
act flag transitively.

As in [1] we fix the dimension function y(A) = 2|A| − e(A) where e(A) is
number of edges of the graph A.

0.4 Definition. K is the collection of all finite graphs B such that

i) For every nonempty B′ ⊆ B, y(B′) > 1.

ii) There is no square (4-cycle) embedded in B.

iii) The adjacency relation is symmetric and irreflexive.

Fix a function µ as in [1] and recall from there such notions as minimally
0-simply algebraic.
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0.5 Definition. For n = 2 or 3, let K∗n be the class of finite structures
M ∈ K satisfying the following additional conditions.

i) If A ⊆M and |A| > n then y(A) > n.

ii) For each pair 〈A,B〉 with B minimally 0-simply algebraic over A there
are at most µ(A,B) disjoint copies Bi of B over A in M .

Now slightly varying the proof in [1] yields the following

0.6 Lemma. For n = 2 or 3, the class K∗n has the amalgamation property.

Proof. We do in detail the case of K∗3. Recall from [1] that the proof that
there is an amalgam of the strong extensions B1 and B2 over B0 proceeds
by induction on |B̂1| + |B̂2|. (B̂i denotes Bi − B0.) The proof reduces to
checking two cases. In the first B1 = B0b and there is one relation between
b and B0. In the second B1 is 0-simply algebraic over B0. In the first case
B1 ⊗B0 B2 is the amalgam. In the second case, either B1 can be embedded
in B2 over B0 or B1 ⊗B0 B2 is the amalgam. Thus, to extend the result to
our situation we simply have to show that B1 ⊗B0 B2 does not contain a D
with |D| > 3 and y(D) ≤ 3 if neither B1 nor B2 does. For this, note that
3 ≤ y(D) = y(D̂2/D1)+y(D1) and y(D̂2/D1) ≥ y(D̂2/B0) ≥ 0 so y(D1) ≤ 3.
Since B1 ∈ K3 this implies |D1| ≤ 3. Similarly, |D2| ≤ 3. Thus, |D| ≤ 6. It
can easily be checked by inspection that there are no square free graphs D of
cardinality 4, 5 or 6 with y(D) ≤ 3. (See [2] for more general results as well
as this fact.) The possibility that |D| ≤ 3 is easily eliminated to complete
the proof.

The case of K∗2 is even easier as the reduction is to graphs of size 3 or 4.

0.7 Theorem. i) The almost strongly minimal plane associated with K∗2
is flag transitive.

ii) The almost strongly minimal plane M3 associated with K∗3 is flag tran-
sitive. There are at most two orbits of pairs (p, `) where p does not lie
on `. For each `, sstbM3(`) is infinite.

Proof. We write out only the more complicated second argument. The choice
of K3 shows that any embedding of a pair into the homogeneous-universal
model M∗

3 is actually a strong embedding. If p lies on `, then p = 〈a, 0〉 and
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` = 〈b, 1〉 for some a, b in M∗
3 with aRb. All such pairs lie in the same orbit

under G∗; this establishes flag transitivity. Now suppose p = 〈a, 0〉 ` = 〈b, 1〉
for a, b in M∗

3 but p does not lie on `. There are two cases. In the first, a 6= b
and point line pairs of this kind are automorphic since G∗ acts transitively
on pairs a, b with ¬aRb. In the second, a = b and point line pairs of this
kind are automorphic since G∗ acts 1-transitively on M∗

3 .
Now fix any `. There is a point p not on ` such that 〈p, `〉 is of the second

type. For any other p′, p′′ 〈p′, `〉 and 〈p′′, `〉 are of the first type so there is a
collineation fixing the line ` (setwise) and mapping p′ to p′′. Thus sstbM3(`)
is infinite.

0.8 Corollary. M3 satisfies one of the following two conditions.

i) G acts transitively on pairs (p, `) with p not on `.

ii) ρ is definable in (M3, P, L, I).

Proof. We know from Theorem 0.7 ii) that there are at most two orbits
of non-incident point-line pairs. One of them contains all pairs of the form
(〈a, 0〉, 〈a, 1〉), which is the graph of ρ. All pairs not in this orbit realize the
same type. If there are really two distinct orbits, since M3 is homogeneous,
there must be a formula which holds exactly of the graph of ρ as required.

The following result is just a special case of Zilber’s general definition of
a linking group as reported in Theorem 2.20 of [6].

0.9 Lemma. Let M be an ℵ1-categorical projective plane.

i) For any line `, stbM(`) is a definable group and its action on M is
definable.

ii) For any line ` and point p the group of (p, `)-collineations is definable.

Proof. Here is a sketch of the proof of i). This situation is somewhat simpler
than the general case. Fix two points p1, p2 that are not on `. As ` is an
infinite definable subset of M and Th(M) admits no two cardinal models, M
is prime over ` so the orbit X of 〈p1, p2〉 under G = stbM(`) is definable by
some formula γ. If α ∈ G, α is determined by 〈αp1, αp2〉 and this determines
a 1− 1 correspondence beween G and X. Thus we regard X as the universe
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of our definable copy of G. For any x ∈ M , that is not on p1p2, call the
intersection of xp1 and xp2 with ` the 〈p1, p2〉 coordinate of x. Suppose
〈q1, q2〉,and 〈q′1, q′2〉, and 〈q′′1 , q′′2〉 are in X. The product of 〈q1, q2〉 and 〈q′1, q′2〉
is 〈q′′1 , q′′2〉 just if the 〈q′′1 , q′′2〉 coordinates of α′◦α(x) are the 〈p1, p2〉 coordinates
of x. We have shown how to define the value of the composition on any point
x not on p1p2. To extend this to points on p1p2 note that the entire argument
can be repeated replacing p1 by any p′1 not on p1p2 to determine the action
on x. Moreover, this construction does not depend on the choice of p′1. Since
α′ ◦α(x) is definably computed from x, 〈q1, q2〉 and 〈q′1, q′2〉 the multiplication
is definable. In particular we have defined the action of each member of
stbM(`).

ii) If p is not on ` the (p, `)-collineations are just the subgroup of stbM(`)
that fix p. If p is on `, it is the subgroup of those elements of stbM(`) that
fix (setwise) each line `′ through p.

0.10 Lemma. If there is no infinite group definable in the projective plane
M and lines in M are infinite then FM = ∅. Thus all the planes constructed
in [1] are of Lenz-Barlotti class I1.

Proof. By 0.9 ii), for any p and ` the group of (p, `) collineations is
definable. If M is (p, `) transitive, it is infinite. But this is impossible so
FM = ∅ as required.

Note that applying this line of reasoning in the other direction and using
Theorem 0.7 ii) we conclude that for each line `, sstbM3(`) is not definable.

A ternary ring is definable in any projective plane. In any ternary ring
addition and multiplication are defined by a + b = T (a, 1, b) and a · b =
T (a, b, 0). The ring is linear if T (x, a, b) = x · a + b. The basic properties of
the Lenz-Barlotti classification as expounded in e.g. [3] show that for each
plane of Lenz-Barlotti class I1 the associated planar ternary ring is not even
linear. So not only is neither the additive nor the multiplicative structure of
the ternary ring defined in our projective plane associative but it is actually
impossible to split the ternary operation into two binary operations.

We can extend this ’rigidity’ even further.

0.11 Proposition. If the automorphism group of the plane M acts both
flag transitively and transitively on pairs (p, `) with p not on ` and stbM(`)
is nontrivial then stbM(`) is infinite.
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Proof. Choose β ∈ stbM(`) which is not the identity. Let pβ be the center
of β. If pβ is on ` then by flag transitivity for each point pi on ` there is an
automorphism αi mapping pβ to p − i. If pβ is not on ` let {pi : i < ω} be
an infinite set of points that are not on `. Choose for each i, by the second
transitivity hypothesis an automorphism αi ∈ sstbM(`) with αipβ = pi. In
either case βαi is a perspectivity with axis ` and center αipβ = pi so stbM(`)
is infinite.

0.12 Theorem. The almost strongly minimal plane M3 associated with K∗3
is in the definable closure of any line. That is, M3 admits no perspectivities.

Proof. By Corollary 0.8 either ρ is definable or G acts transtively on nonin-
cident point-line pairs. In the first case let a0, a1, a2 lie on `. Then at least
two of the three pairwise intersections of the ρ(ai) are not on `. Thus two
points off ` and a fortiori all points in P are in dcl(`). In the second case, it
suffices to show that stbM(`) is the identity for any `. By Lemma 0.9 stbM(`)
is definable and by Proposition 0.11 and Theorem 0.7, if stbM(`) is nontrivial
then it is infinite. Thus, for any `, stbM(`) is trivial.

Three questions arise.

i) What is a geometric explanation of the phenomenon of Theorem 0.12?

ii) Is ρ always definable?

iii) Does Aut(M3) contains any involutions?

We can essentially rephrase ii) by asking whether M admits any auto-
morphisms that are not induced in the obvious way by automorphisms of
M∗.

We show now that Aut(M3) has no definable involutions. By a subplane
of M we mean a subset M0 of points and lines that, with respect to the same
incidence relation, form a projective plane. M0 is a Baer subplane if each
point (line) in M lies on (contains) a line (point) from M0.

0.13 Corollary. Any involution of M3 fixes a subplane pointwise.

Proof. By Theorems 4.3 and 4.4 of [5], the fixed set of any involution of
a projective plane is a Baer subplane unless the involution is a perspectivity
but we know there are no perspectivities.
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0.14 Lemma. If α is an involution of M3 and ` is any line fixed by α,
stbM(α) ∩ ` is infinite and coinfinite.

Proof. Let F = stbM3(α), FP the points fixed by α, FL the lines fixed
by α, and X = FP ∩ `. Clearly the intersection of FP with any line in FL is
infinite. Choose `1 ∈ FL with `1 ∩ ` = b ∈ FP . Let a ∈ `1 − FP . Fix l2 ∈ FL
but not equal to ` or `1. Now, for any of the infinitely many points y on
`2 ∩ FP , the line determined by a and y intersects ` in a point not in FP . So
`− FP is infinite.

0.15 Corollary. M3 has no definable involutions.

Proof. If α were a definable automorphism of M , its stabilizer F would be
defined and for any ` in F , F ∩ ` would be definable. But then Lemma 0.14
contradicts the strong minimality of each line in M .

This leaves open the question of whether this structure admits any invo-
lutions that are not definable.
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