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In Part I [Bal14a], we defined the notion of a modest complete descriptive ax-
iomatization and showed that HP5 and EG are such axiomatizations of Euclid’s polyg-
onal geometry and Euclidean circle geometry1. In this paper we argue: 1) Tarski’s
axiom set E2 is a modest complete descriptive axiomatization of Cartesian geometry
(Section 2; 2) the theories EGπ,C,A and E2π,C,A are modest complete descriptive ax-
iomatizations of Euclidean circle geometry and Cartesian geometry, respectively when
extended by formulas computing the area and circumference of a circle (Section 3);
and 3) that Hilbert’s system in the Grundlagen is an immodest axiomatization of any
of these geometries. As part of the last claim (Section 4), we analyze the role of the
Archimdedean postulate in the Grundlagen, trace the intricate relationship between al-
ternative formulations of ‘Dedekind completeness’, and exhibit many other categorical
axiomatizations of related geometries.

1 Background and Definitions

In [Bal14a], we expounded the following historical description.

Remark 1.1 (Background). Euclid founds his theory of area (of circles and polygons)
on Eudoxus’ theory of proportion and thus (implicitly) on the axiom of Archimedes.

Hilbert shows any ‘Hilbert plane’ interprets a field and recovers Euclid’s the-
ory of polygons in a first order theory.

∗Research partially supported by Simons travel grant G5402.
1These axioms are described in Notation 1.3; these data sets are described as specific sets of propositions

from the Elements in [Bal14a].
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The Greeks and Descartes dealt only with geometric objects. The Greeks
regarded multiplication as an operation from line segments to plane figures. Descartes
interpreted it as an operation from line segments to line segments. Only in the late 19th
century, is multiplication regarded as an operation on points (that is ‘numbers’ in the
coordinatizing field).

We built in [Bal14a] on Detlefsen’s notion of complete descriptive axiomati-
zation and defined a modest complete descriptive axiomatization of a data set Σ to be
collection of sentences that imply all the sentences in Σ and ‘not too many more’. A
data set is a collection of propositions about a mathematical topic that are accepted at a
given point in time. Of course, there will be further results proved about this topic. But
if this set of axioms introduces essentially new concepts to the area or, even worse, con-
tradicts the understanding of the original era, we deem the axiomatization immodest.
We illustrate these definitions by specific axiomatizations of various areas of geometry
that we now describe.

We formulate our system in a two-sorted vocabulary τ chosen to make the Eu-
clidean axioms (either as in Euclid or Hilbert) easily translatable into first order logic.
This vocabulary includes unary predicates for points and lines, a binary incidence re-
lation, a ternary betweenness relation, a quaternary relation for line congruence and
a 6-ary relation for angle congruence. We need one additional first order postulate2

beyond those in [Hil71].

Postulate 1.2. Circle Intersection Postulate If from points A and B, circles with ra-
dius AC and BD are drawn such that one circle contains points both in the
interior and in the exterior of the other, then they intersect in two points, on
opposite sides of AB.

Notation 1.3. We follow Hartshorne[Har00] in the following nomenclature.

A Hilbert plane is any model of Hilbert’s incidence, betweenness3, and con-
gruence axioms4. We denote this axiom as HP and write HP5 for these axioms plus the
parallel postulate.

By the axioms for Euclidean geometry we mean HP5 and in addition the
circle-circle intersection postulate 1.2. We will abbreviate this axiom set5 as EG. By

2Moore suggests in [Moo88] that Hilbert may have added the completeness axiom to the second edition
specifically because Sommer in his review of the first edition pointed out it did not prove the line-circle
intersection principle.

3These include Pasch’s axiom (B4 of [Har00]) as we axiomatize plane geometry. Hartshorne’s version
of Pasch is that any line intersecting one side of triangle must intersect one of the other two.

4These axioms are equivalent to the common notions of Euclid and Postulates I-V augmented by one
triangle congruence postulate, usually taken as SAS since the ‘proof’ of SAS is where Euclid makes illegiti-
mate use of the superposition principle.

5In the vocabulary here, there is a natural translation of Euclid’s axioms into first order statements. The
construction axioms have to be viewed as ‘for all– there exist’ sentences. The axiom of Archimedes as
discussed below is of course not first order. We write Euclid’s axioms for those in the original [Euc56] vrs
(first order) axioms for Euclidean geometry, EG. Note that EG is equivalent to (i.e. has the same models) as
the system laid out in Avigad et al [ADM09], namely, planes over fields where every positive element as a
square root). The latter system builds the use of diagrams into the proof rules.
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definition, a Euclidean plane is a model of EG: Euclidean geometry.

We write E2 for Tarski’s geometrical axiomatization of the plane over a real
closed field (RCF) (Theorem 2.1).

2 From Descartes to Tarski

It is not our intent to give a detailed account of Descartes’ impact on geometry. We want
to bring out the changes from the Euclidean to the Cartesian data set. For our purposes,
the most important is to explicitly (on page 1 of [Des54]) define the multiplication of
line segments to give a line segment which breaks with Greek tradition6. And later
on the same page to announce constructions for the extraction of nth roots for all n.
The second of these cannot be done in EG, since it is satisfied in the field which has
solutions for all quadratic equations but not those of odd degree7.

Marco Panza [Pan11] formulates in terms of ontology a key observation,

The first point concerns what I mean by ‘Euclid’s geometry’. This is the
theory expounded in the first six books of the Elements and in the Data.
To be more precise, I call it ‘Euclids plane geometry’, or EPG, for short. It
is not a formal theory in the modern sense, and, a fortiori, it is not, then, a
deductive closure of a set of axioms. Hence, it is not a closed system, in the
modern logical sense of this term. Still, it is no8 more a simple collection
of results, nor a mere general insight. It is rather a well-framed system,
endowed with a codified language, some basic assumptions, and relatively
precise deductive rules. And this system is also closed, in another sense
([Jul64] 311-312), since it has sharp-cut limits fixed by its language, its
basic assumptions, and its deductive rules. In what follows, especially in
section 1, I shall better account for some of these limits, namely for those
relative to its ontology. More specifically, I shall describe this ontology as
being composed of objects available within this system, rather than objects
which are required or purported to exist by force of the assumptions that
this system is based on and of the results proved within it. This makes EPG
radically different from modern mathematical theories (both formal and
informal). One of my claims is that Descartes geometry partially reflects
this feature of EPG.

In our context we interpret ‘composed of objects available within this system’
model theoretically as the existence of certain starting points and the closure of each
model of the system under admitted constructions.

6His proof is still based on Eudoxus.
7See section 12 of [Har00].
8There appears to be a typo. Probably ‘more a” should be deleted. jb
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We take Panza’s ‘open’ system to refer to Descartes’ ‘linked constructions’9

considered by Descartes which greatly extend the ruler and compass licensed in EG.
Descartes endorses such ‘mechanical’ constructions as the duplication of the cubic as
geometric. According to Molland (page 38 of [Mol76]) ”Descartes held the possibility
of representing a curve by an equation (specification by property)” to be equivalent to
its ”being constructible in terms of the determinate motion criterion (specification by
genesis)”. But as Crippa points out (page 153 of [Cri14a]) Descartes did not prove this
equivalence; there is some controversy as to whether the 1876 work of Kempe solves
the precise problem. Descartes rejects as non-geometric any method for quadrature
of the circle. See page 48 of [Des54] for his classification of problems by degree.
Unlike Euclid, Descartes does not develop his theory axiomatically. But an advantage
of the ‘descriptive axiomatization’ rubric is that we can take as data the theorems of
Descartes’ geometry.

For our purpose we take the common identification of Cartesian geometry
with ”real” algebraic geometry: the study of polynomial equalities and inequalities in
the theory of real closed fields. To justify this geometry we adapt Tarski’s ‘elementary
geometry’. This move makes a significant conceptual step away from Descartes whose
constructions were on segments and who did not regard a line as a set of points while
Tarski’s axiom are given entirely formally in a one sorted language of relations on
points. In our modern understanding of an axiom set the translation is routine. From
Tarski [Tar59] we get:

Theorem 2.1. Tarski [Tar59] gives a theory equivalent to the following system of ax-
ioms E2. It is first order complete for the vocabulary τ .

1. Euclidean geometry

2. Either of the following two sets of axioms which are equivalent over i)

(a) An infinite set of axioms declaring that every polynomial of odd-degree has
a root.

(b) The axiom schema of continuity described just below.

The connection with Dedekind’s approach is seen by Tarski’s actual formula-
tion as in [GT99]; the first order completeness of the theory is imposed by an Axiom
Schema of Continuity - a definable version of Dedekind cuts:

(∃a)(∀x)(∀y)[α(x) ∧ β(y)→ B(axy)]→ (∃b)(∀x)(∀y)[α(x) ∧ β(y)→ B(xby)],

where B(x, y, z) is the predicate representing y is between x and z, α, β are first-order
formulas, the first of which does not contain any free occurrences of a, b, y nor the
second any free occurrences of a, b, x. This schema allows the solution of odd degree
polynomials.

9The types of constructions allowed are analyzed in detail in Section 1.2 of [Pan11] and the distinctions
with the Cartesian view in Section 3. See also [Bos01].
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Remark 2.2 (Gödel completeness). In Detlefsen’s terminology we have found a Gödel
complete axiomatization of (in our terminology Cartesian) plane geometry. This guar-
antees that if we keep the vocabulary and continue to accept the same data set no
axiomatization can account for more of the data. There are certainly open problems in
plane geometry [KW91]. But however they are solved the proof will be formalizable in
E2. Of course, more perspicuous axiomatizations may be found. Or one may discover
the entire subject is better viewed as an example in a more general context.

In the case at hand, however, there are more specific reasons for accepting the
geometry over real closed fields as ‘the best’ descriptive axiomatization. It is the only
one which is decidable and ‘constructively justifiable’ (See Theorem 3.3.).

Remark 2.3 (Undecidability and Consistency). Ziegler [Zie82] has shown that every
nontrivial finitely axiomatized subtheory of RCF10 is not decidable.

Thus both to more closely approximate the Dedekind continuum and to ob-
tain decidability we restrict to planes over RCF and thus to Tarski’s E2 [GT99]. Of
course, another crucial contribution of Descartes is coordinate geometry. Tarski pro-
vides a converse; his interpretation of the plane into the coordinatizing line [Tar51]
underlies our smudging of the study of the ‘geometry continuum’ with axiomatizations
of ‘geometry’. The biinterpretability11 between RCF and the theory of all planes over
real closed fields yields the decidability of E2. The crucial fact that makes decidability
possible is that the natural numbers are not first order definable in the real field. The
geometry can represent multiplication as repeated addition in the sense of a module
over a Z but not with the full ring structure.

3 Archimedes: π, circumference and area of circles

The geometry over a Euclidean field (every positive number has a square root) may
have no straight line segment of length π, since the model containing only the con-
structible real numbers does not contain π. We extend by adding π each geometry EG
and E2 and write T when discussing results that apply to either. We want to find a
theory which proves the circumference and area formulas for circles. Our approach is
to extend the theory EG so as to guarantee that there is a point in every model which
behaves as π does. In this section we will show that in this extended theory there is
a mapping assigning a straight line segment to the circumference of each circle. This
goal definitely diverges from a ‘Greek’ data set and is orthogonal to the axiomatization
of Cartesian geometry in Section 2. Given that the entire project is modern, we give
the arguments entirely in modern style.

10RCF abbreviates ‘real closed field’; these are the ordered fields such that every positive element has a
square root and every odd degree polynomial has at least one root. The theory is complete and recursively
axiomatized so decidable. By nontrivial subtheory, I mean one satisfied by one of C,<, or a p-adic field
Qp. For the context of Ziegler’s result and Tarski’s quantifier elimination in computer science see [Mak13].

11Tarski proves the equivalence of geometries over real closed fields with his axiom set in [Tar59]. He
calls the theory elementary geometry, E2.
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Euclid differs from the modern approach in that the sequences constructed
in the study of magnitudes in the Elements are of geometric objects, not (even real)
numbers. (Implicitly) using Archimedes axiom, Euclid proves (XII.2) that the area of
a circle is proportional to the square of the diameter. In a modern account, as we saw
in [Bal14a], when we have interpreted segments Oa as representing the number a, we
must identify the proportionality constant and verify that it represents a point in any
model of the theory12. This shift in interpretation drives the rest of this section. We
search first for the solution of a specific problem: is π in the underlying field?

We named this section after Archimedes for two reasons. He is the first (Mea-
surement of a Circle in [Arc97]) to prove the circumference of a circle is proportional
to the diameter and begin the approximation of the proportionality constant (which
wasn’t named for another 2000 years). Secondly, his axiom is used not only in his
work but implicitly13 by Euclid in proving the area of a circle is proportional to the
square of the diameter. By beginning to calculate approximations of π, Archimedes is
moving towards the treatment of π as a number. The validation in the theory E2π,C,A
below of the formulasA = πr2 andC = πd are answering the questions of Hilbert and
Dedekind not questions of Euclid or even Archimedes. But the theory EGπ is closer
to the Greek origins than to Hilbert’s second order axioms.

Dicta 3.1. Constants 2 Recall (Section 4.4) of [Bal14a]) that closing a plane under
ruler and compass constructions corresponds to closing the coordinatizing ordered field
under square roots of positive numbers. Having named an arbitrary points as 0, 1, each
element of the maximal real quadratic extension of the rational field (the surd field Fs)
is denoted by a term t(x, 0, 1) built from the field operations and

√
.

In Definition 3.2 we name a further single constant π. But the effect is much
different than naming 0 and 1). The new axioms specify the place of π in the ordering
of the definable points of the model. So the data set is seriously extended.

Now that we have established that each model of T has the surd field Fs
embeddable in the field definable in any line of the model, we can interpret the Greek
theory of proportionality in terms of cuts. Each pair of proportional pairs of magnitudes
determines a cut (E.g. page 33-34 of [Coo63]). The non-first order postulates of Hilbert
play complementary roles. The Archimedean axiom is minimizing; each cut is realized
by at most one point so each model has cardinality at most 2ℵ0 . The Veronese postulate
(See Footnote 20.) or Dedekind’s postulate is maximizing; each cut is realized, In
Hilbert’s version, the set of realizations could have arbitrary cardinality.

Definition 3.2 (Axioms for π). 1. Add to the vocabulary a new constant symbol π.
Let in (cn) be the perimeter of a regular 3 ∗ 2n-gon inscribed14 (circumscribed)

12For this reason, Archimedes needs only his postulate while Hilbert also needs Dedekind’s postulate to
prove the circumference formula.

13We adopt this rather common interpretation. But Borzacchini [Bor06] suggests that Archimedes real
innovation is to require an additional hypothesis to compare straight segments with curved ones.

14I thank Craig Smorynski for pointing out that is not so obvious that that the perimeter of an inscribed
n-gon is monotonic in n and reminding me that Archimedes started with a hexagon and doubled the number
of sides at each step.
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in a circle of radius 1. Let Σ(π) be the collection of sentences (i.e. type15)

in < 2π < cn

for n < ω.

2. We extend both EG and E2.

(a) EGπ denotes deductive closure in the vocabulary τ augmented by constant
symbols 0, 1, π of EG and Σ(π).

(b) E2π is formed by adding Σ(π) to E2 and taking the deductive closure.

For the second proposition in the next theorem we use some modern model
theory. A first order theory T for a vocabulary including a binary relation < is o-
minimal if every 1-ary formula is equivalent in T to a Boolean combination of equali-
ties and inequalities [dD99]. Anachronistically, the o-minimality of the reals is a main
conclusion of Tarski in [Tar31].

The two theories we have constructed have quite different properties.

Theorem 3.3. 1. EGπ is a consistent but incomplete theory. It is not finitely ax-
iomatizable.

2. E2 and E2π are complete decidable o-minimal theories. It is provably consistent
in primitive recursive arithmetic (PRA).

Proof. 1) A model of EGπ is given by closing Fs ∪ {π} ⊆ < under ruler
and compass constructions. To see it is not finitely axiomatizable, for any finite subset
Σ0 of Σ choose a real algebraic number p satisfying Σ0; close Fs ∪ {p} ⊆ < under
constructibility to get a model of EG which is not a model of EGπ .

2) We have established that there are well-defined field operations on the line
through 01. By Tarski, the theory of this real closed field is complete. The field is
bi-interpretable with the plane [Tar51] so the theory of the geometry T is complete as
well. Further by Tarski, the field is o-minimal. The type over the empty set of any point
on the line is determined by its position in the linear ordering of the surd subfield Fs.
Each in, cn is an element of the field F0. This position in the linear order of 2π in the
linear order on the line through 01 is given by Σ. Thus T ∪ Σ is complete.

The proof that consistency is provable in PRA ([Bal14b]) uses different meth-
ods. The arguments of ([Sim09] IX.3.18) show the theory of real closed fields is prov-
ably consistent in WKL0; Since the compactness theorem is also provable in WKL0

this allows us to extend to the consistency of E2π . And the consistency passes to PRA
since WKL0 is conservative over PRA for π0

1-sentences. 3.3

15Let A ⊂ M |= T . A type over A is a set of formulas φ(x,a) where x, (a) is a finite sequence of
variables (constants from A) that is consistent with T . It is over the empty set if the elements of A are
definable without parameters in T (e.g. the constructible numbers). Here we take T as EG.
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Dicta 3.4 (Definitions or Postulates I). In Definition 2.5 of [Bal14b] we extend the
ordering on segments by adding the lengths of ‘bent lines’ and arcs of circles to the
domain. Two approaches16 to this step are a) our approach to introduce an explicit
but inductive definition or b) add a new predicate to the vocabulary and new axioms
specifying it behavior. The second alternative reflects in a way the trope that Hilbert’s
axioms are implicit definitions. But this choice is not available for the initial axioma-
tization. It is only because we have already established a certain amount of geometric
vocabulary that we can take choice a). Crucially the definition of bent lines (and thus
the perimeter of certain polygons) is not a single definition but a schema of formulas
φn defining the property for each n. Our definition is more restricted than Archimedes
who really foresees the notion of bounded variation.

In the following, T denotes either EG or E2. To argue that π, as implicitly
defined by the theory Tπ , serves its geometric purpose, we add a new unary function
symbol C mapping our fixed line to itself and (Definition 2.6 of [Bal14b]) satisfying a
scheme asserting that for each n, C(r) is between (in the sense of the last paragraph)
the perimeter of a regular inscribed n-gon and a regular circumscribed n-gon of a circle
with radius r. Any function C(r) satisfying these conditions is called a circumference
function; we call C(r) the circumference of a circle with radius r.

The justification of the area formula is simpler because we do not need the
step of extending the ordering on straight lines to arcs. Following Hilbert we noted in
Section 4.6 of [Bal14a] that if one polygon is included in another it has a smaller area.
So the approximation is less of an issue than for circumference and we just need the
calculation in the surd field that estimates of π computed from the standpoints of area
and circumference are in the same cut in Fs.

Lemma 3.5. Let, for n < ω, In and Cn denote the area of the regular 3 × 2n-gon
inscribed or circumscribing the unit circle. Then Tπ proves each of the sentences In <
π < Cn.

We extend the theory to include a definition of C(r) and A(r).

Definition 3.6. 1. The theory Tπ,C is the extension of the τ ∪ {0, 1, π}-theory Tπ
obtained by the explicit definition C(r) = 2πr.

2. The theory Tπ,C,A is the extension of the τ ∪ {0, 1, π, C}-theory Tπ,C , obtained
by the explicit definition A(r) = πr2.

As an extension by explicit definition, E2π,C is complete and o-minimal. Our
definition of Tπ then makes the following metatheorem immediate.

Theorem 3.7. In T 2
π,C , C(r) = 2πr is a circumference function (i.e. satisfies all the

conditions ιn and γn) and in T 2
π,C,A, A(r) = πr2 is an area function.

16More specifically, we could define < on the extended domain or we could add an <∗ to the vocabulary
and postulate that < ∗ extends < and satisfies the properties of the definition.
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The proof for circumference shows that for each r there is an s ∈ S whose
length, 2πr is less than the perimeters of all inscribed polygons and greater that those
of the inscribed polygons. We can verify that by choosing n large enough we can make
in and cn as close together as we like (more precisely, for givenm differ by< 1/m). In
phrasing this sentence I follow Heath’s description17 of Archimedes statements, ”But
he follows the cautious method to which the Greeks always adhered; he never says that
given curve or surface is the limiting form of the inscribed or circumscribed figure; all
that he asserts is that we can approach the curve or surface as nearly was we please”.

We have not established the arc length claim for each arc in Cr for even one r.
We will accomplish that task in Lemma 3.10.

In an Archimedean field there is a unique interpretation of π and thus a unique
choice for a circumference function with respect to the vocabulary without the constant
π. By adding the constant π to the vocabulary we get a formula which satisfies the
conditions in every model. But in a non-Archimedean model, any point in the monad
of 2πr would equally well fit our condition for being the circumference.

We have extended our descriptively complete axiomatization from the polyg-
onal geometry of Hilbert’s first order axioms (HP5) to Euclid’s results on circles and
beyond. Euclid doesn’t deal with arc length at all and we have assigned straight line
segments to both the circumference and area of a circle. So this would not qualify as
a modest axiomatization of Greek geometry but only of the modern understanding of
these formulas. This distinction is not a problem for the notion of descriptive axioma-
tization. The facts are sentences. The formulas for circumference and are not the same
sentences as the Euclid/Archimedes statement in terms of proportions.

We could however better argue that EGπ,A is modest axiomatization of Eu-
clid, than EGπ,C,A given the absence of arc length from Euclid (and the presence of
VI.1).

Now we extend our goals to find a modest descriptive axiomatization of the
modern conception of angle measure. This will illuminate the delicate dependence of
descriptive axiomatization on the vocabulary in which the facts are expressed.

Dedekind (page 37-38) observes that what we would now call the real closed
field with domain the field of real algebraic numbers is ‘discontinuous everywhere’ but
‘all constructions that occur in Euclid’s elements can . . . be just as accurately effected
as in a perfectly continuous space’. Strictly speaking, for constructions this is correct.
But the proportionality constant between a circle and its circumference π is absent, so,
even more, not both a straight line segment of the same length as the circumference and
the diameter are in the model We want to find a theory which proves the circumference
and area formulas for circles and countable models of the geometry over RCF, where
‘arc length behaves properly’.

Mueller (page 236 of [Mue06]) makes an important point distinguishing the

17Archimedes, Men of Science [Hea11], introduction Kindle location 393.
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use of cuts in Euclid/Eudoxus from that in Dedekind.

One might say that in applications of the method of exhaustion the limit
is given and the problem is to determine a certain kind of sequence con-
verging to it, . . . Since, in the Elements the limit always has a simple de-
scription, the construction of the sequence can be done within the bounds
of elementary geometry; and the question of constructing a sequence for
any given arbitrary limit never arises.

This distinction can be expressed in another way. We speak of the method of
Eudoxus: a technique to solve certain problems, which are specified in each applica-
tion. In contrast, Dedekind’s postulate provides a solution for 2ℵ0 problems.

Descartes eschews the idea that there can be a ratio between a straight line
segment and a curve. As [Cri14b] writes, ”Descartes18 excludes the exact knowability
of the ratio between straight and curvilinear segments”:

... la proportion, qui est entre les droites et les courbes, nest pas connue, et
mesme ie croy ne le pouvant pas estre par les hommes, on ne pourroit rien
conclure de l qui fust exact et assur.

We have so far, in the spirit of the quote from Mueller, tried to find the pro-
portionality constant only for a specific proportion. In the remainder of the section,
we consider several ways of systematizing the solution of families of such problems.
First, using the completeness of E2, we can find a model where every angle determines
an arc that corresponds to the length of a straight line segment. Then we consider
several model theoretic schemes to organize such problems. Before carrying out the
construction we provide some context.

Birkhoff [Bir32] introduced the following axiom in his system19.

POSTULATE III. The half-lines `,m, through any point O can be put
into (1, 1) correspondence with the real numbers a(mod2π), so that, if
A 6= O and B 6= O are points of ` and m respectively, the difference
am − a`(mod2π) is ∠AOB.

This is a parallel to his ‘ruler postulate’ which assigns each segment a real
number length. Thus, Birkhoff takes the real numbers as an unexamined background
object. At one swoop he has introduced multiplication, and assumed the Archimedean

18Descartes, Oeuvres, vol. 6, p. 412. Crippa also quotes Averros as emphatically denying the possibility
of such a ratio and notes Vieta held similar views.

19This is the axiom system used in virtually all U.S. high schools since the 1960’s.
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and completeness axioms. So even ‘neutral’ geometries studied on this basis are actu-
ally are greatly restricted. He argues that his axioms define a categorial system isomor-
phic to <2. So it is equivalent to Hilbert’s.

In fact, the separate protractor postulate is not needed. Euclid’s 3rd postulate,
”describe a circle with given center and radius”, implies that a circle is uniquely deter-
mined by its radius and center. In contrast Hilbert simply defines the notion of circle
and (see Lemma 11.1 of [Har00]) proves the uniqueness. In either case we have: two
segments of a circle are congruent if they cut the same central angle. We will now
find a more modest version of Birkhoff’s postulate: a first order theory with countable
models which assign a measure to each angle between 0 and 2π. Recall that we have a
field structure on the line through 01 and the number π on that line. We will make one
further explicit definition.

Definition 3.8. A measurement of angles function is a map µ from congruence classes
of angles into [0, 2π) such that if ∠ABC and ∠CBD are disjoint angles sharing the
side BC, µ(∠ABD) = µ(∠ABC) + µ(∠CBD)

If we omitted the additivity property this would be trivial: Given an angle
∠ABC less than a straight angle, let C ′ be the intersection of a perpendicular to AC
through B with AC and let µ(∠ABC) = BC′

AB . (It is easy to extend to the rest of the
angles.) To obtain the additivity, we proved in [Bal14b]:

Theorem 3.9. For every countable model M of E2π , there is a countable model M ′

containing M such that a measure of angles function µ is defined on the (congruence
class of) each angle determined by points P,X, Y ∈M ′.

Corollary 3.10. If M is a countable recursively saturated model of E2π a measure of
angles function µ is defined on the (congruence class of) each angle determined by
points P,X, Y ∈M .

We have constructed a countable model M such that each arc of a circle in M
has length measured by a straight line segment inM . There is no Archimedean require-
ment; adding the Archimdean axiom here would determine a unique number rather
than a monad. Note that in any model satisfying the hypotheses of Corollary 3.10, we
can carry out elementary right angle trigonometry (angles less than 180o). Unit cir-
cle trigonometry, where periodicity extends the sin function to all of the line violates
o-minimality. (The zeros of the sin function are an infinite discrete set.)

Remark 3.11 (Gödel completeness again). It might be objected that such minor
changes as adding to E the name of the constant π, or adding the definable functions
C and A undermines the claim in Remark 2.2 that E2 was descriptively complete for
Cartesian geometry. But the data set has changed. We add these new constants and
functions because the modern view of ‘number’ requires them.

Descriptive completeness is not always preserved by naming constants even
to a Gödel -complete theory. Compare Dicta 3.1.
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This section was devoted to first order axiomatizations of geometries that in-
clude transcendentals. In Section 4.5, we will address some ways to regain categoricity.

4 And back to Hilbert

We discuss first the role of the Archimedean postulate in the Grundlagen. Then we
list objections to second order axioms for ‘geometry’ and suggest in Section 4.4 that
Hilbert is conceiving of geometry in a somewhat broader sense. In a final section, we
speculate on broader uses of ‘definable mathematics’.

4.1 The role of the Axiom of Archimedes in the Grundlagen

The discussions of the Axiom of Archimedes in the Grundlagen fall into several cat-
egories. i) Those, in Sections 9 -12 (from [Hil71]) are metamathematical - concern-
ing the consistency and independence of the axioms. ii) In Section 17, the axiom of
Archimedes is used to justify the coordinatization of n-space by n-tuples of real num-
bers. iii) In Sections 19 and 21, it is shown that the Archimedean axiom is necessary
to show equicomplementable (equal content) is the same as equidecomposable (in 2 or
more dimensions). These are all metatheoretical results.

Coordinatization is certainly a central geometrical notion. But it does not
require the axiom of Archimedes to coordinatize n-space by the field defined on the
line in the plane. Hilbert uses the axiom to assign (a binary representation of a real) to
each point on the line. That is, to establish a correspondence between object defined in
the geometry and an extrinsic notion of real number. Thus, it is not a proof in Hilbert’s
system. The use of the Archimedean axiom to prove equidecomposable is the same as
equicomplementable is certainly a proof in the system. But an unnecessary one. As we
argued in Section 4.4 of [Bal14a], Hilbert could just have easily defined ‘same area’ as
‘equicomplementable’ (as it is in a natural reading of Euclid).

Thus, we find no theorems in the Grundlagen proved from its axiom system
that essentially depend on the Axiom of Archimedes. Rather Hilbert’s use of the axiom
of Archimedes is to create counterexamples to show independence and, in conjunction
with the Dedekind axiom, identify the field defined in the geometry with the indepen-
dent existence of the real numbers as conceived by Dedekind.

4.2 Hilbert and Dedekind on Continuity

Hilbert’s formulation of the completeness axiom reads [Hil71]:

Axiom of Completeness (Vollständigkeit): To a system of points, straight
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lines, and planes, it is impossible to add other elements in such a manner
that the system thus generalized shall form a new geometry obeying all of
the five groups of axioms. In other words, the elements of geometry form
a system which is not susceptible of extension, if we regard the five groups
of axioms as valid.

We have used in this article the following adaptation of Dedekind’s postulate
for geometry (DG):

DG: The linear ordering imposed on any line by the betweenness relation
is Dedekind complete.

While this formulation is convenient for our purposes, it misses an essential
aspect of Hilbert’s version. DG implies the Archimedean axiom and Hilbert was aiming
for an independent set of axioms. Hilbert’s axiom does not imply Archimedes. A vari-
ant VER (see [Can99]) on Dedekind’s postulate that does not imply the Archimedean
axiom was proposed by Veronese in [Ver89]20. If we substituted VER for DG, our
axioms would also satisfy the independence criterion.

Hilbert’s completeness axiom in [Hil71] asserting any model of the rest of the
theory is maximal, is inherently model-theoretic. The later line-completeness [Hil62]
is a technical variant21. Giovannini’s account [Gio13] includes a number of points
already made here; but I note three further ones. First, Hilbert’s completeness axiom
is not about deductive completeness (despite having such consequences), but about
maximality of every model (page 145). Secondly (last line of 153) Hilbert expressly
rejects Cantor’s intersection of closed intervals axiom because in relies on a sequence
of intervals and ‘sequence is not a geometrical notion’. A third intriguing note is an
argument due to Baldus in 1928 that the parallel axiom is an essential ingredient in the
categoricity of Hilbert’s axioms 22.

Here are two reasons for choosing Dedekind’s (or Veronese’s) version. The
most basic is that one cannot formulate Hilbert’s version as sentence Φ in second order

20 The axiom VER asserts that for a partition of a linearly ordered field into two intervals L,U (with no
maximum in the lower L or minimum in the upper U ) and third set in between at most one point, there is
a point between L and U just if for every e > 0, there are a ∈ A, b ∈ B such that b − a < e. Veronese
derives Dedekind’s postulate from his plus Archimedes in [Ver89] and the independence in [Ver91]. In
[LC93] Levi-Civita shows there is a non-Archimean ordered field that is Cauchy complete. I thank Philip
Ehrlich for the references and recommend section 12 of the comprehensive [Ehr06]. See also the insightful
reviews [Pam14b] and [Pam14a] where it is observed that Vahlen [Vah07] also proved this axiom does not
imply Archimedes.

21Since any point in the definable closure of any line and any one point not one the line, one can’t extend
any line without extending the model. Since adding either the Dedekind postulate and or Hilbert complete-
ness gives a categorical theory satisfied by a geometry whose line is order isomorphic to < the two axioms
are equivalent (over HP5 + Arch).

22Hartshorne (sections 40-43 of [Har00] gives a modern account of Hilbert’s argument that replacing the
parallel postulate by the axiom of limiting parallels gives a geometry that is determined by the underlying
(definable) field. With V.2 this gives categoricity.
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logic23 with the intended interpretation

(<2,G) |= Φ. (∗)

The axiom requires quantification over subsets of an extension of the model which
putatively satisfies it. Here is a second order statement24 of the axiom, where ψ denotes
the conjunction of Hilbert’s first four axiom groups and the axiom of Archimedes.

(∀X)(∀Y )∀R)[[X ⊆ Y ∧ (X,R�X) |= ψ ∧ (Y,R) |= ψ]→ X = Y ]

This anomaly has been investigated by Väänänen who makes the distinction
between the last two displayed formulas (on page 94 of [Vää12a]) and expounds in
[Vää12b] a new notion, ‘Sort Logic’, which provides a logic with a sentence Φ which
by allowing a sort for an extension of the given model axiomatizes geometry in the
sense of (*). The second reason is that Dedekind’s formulation, since it is about the
geometry, not about its axiomatization, directly gives the kind of information about the
existence of transcendental numbers that we discuss in the paper.

In [Vää12a], Väänänen discusses the categoricity of natural structures such as
real geometry when axiomatized in second order logic (e.g. DG). He has discovered
the striking phenomena of ‘internal categoricity’. Suppose the second order categoric-
ity of a structure A is formalized by the existence of sentence ΨA such that A |= ΨA

and any two models of Ψ are isomorphic. If this second clause in provable in a standard
deductive system for second order logic, then it is valid in the Henkin semantics, not
just the full semantics. This observation25 makes a variant of the argument of point 5
in Section 4.3 apply to those sentences in second order logic that are internally categor-
ical. The earlier argument was to make 2nd (and higher) order arguments to provide
semantic proofs that certain first order propositions are derivable in first order logic.
Now, one can deduce certain second order propositions can be derived from the formal
system of second order logic by employing 3rd (and higher) order arguments to provide
semantic proofs.

Philip Ehrlich has made several important discoveries concerning the connec-
tions between the two ‘continuity axioms’ in Hilbert and develops the role of maxi-
mality. First, he observes (page 172) of [Ehr95] that Hilbert had already pointed out
that his completeness axiom would be inconsistent if the maximality were only with
respect to the first order axioms. Secondly, he [Ehr95, Ehr97] systematizes and inves-
tigates the philosophical significance of Hahn’s notion of Archimedean completeness.
Here the structure (ordered group or field) is not required to be Archimedean; the max-
imality condition requires that there is extension which fails to extend an Archimedean

23This analysis is anachronistic; the clear distinction between first and second order logic did not exist in
1900. By G, we mean the natural interpretation in <2 of the predicates of geometry in the vocabulary τ .

24I am leaving out many details, R is a sequence of relations giving the vocabulary of geometry and the
sentence ‘says’ they are relations on Y ; the coding of the satisfaction predicate is suppressed.

25Discussion with Väänänen.
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equivalence class26. This notion provides a tool (not yet explored) for investigating the
non-Archimedean models studied in Section 3. The use in that section of various weak-
enings of saturation to study these models has natural links with Ehrlich’s rephrasing
the maximality condition in terms of homogeneous universal structure [Ehr92].

4.3 Against the Dedekind Postulate for Geometry

Our fundamental claim is that (slight variants on ) Hilbert’s first order axioms provide
a modest descriptively complete axiomatization of most of Greek geometry.

As we pointed out in Section 3 of [Bal14c] various authors have proved under
V = L, any countable or Borel structure can be given a categorical axiomatization.
We argued there that this fact undermines the notion of categoricty as an independent
desiderata for an axiom system. There, we gave a special role to attempting to ax-
iomatize canonical systems. Here we go further, and suggest that even for a canonical
structure there are advantages to a first order axiomatization that trump the loss of
categoricity.

We argue then that the Dedekind postulate is inappropriate (in particular im-
modest) as an attempt to axiomatize the Euclidean or Cartesian or Archimedean data
sets for several reasons:

1. The requirement that there be a straight-line segment measuring any circular arc
is clearly contrary to the intent of Descartes and Euclid.

2. Dedekind’s postlate is not part of the data set but rather an external limitative
principle.

The notion that there was ‘one’ geometry (i.e. categoricity) was implicit in Eu-
clid. But it is not a geometrical statement. Indeed, Hilbert described his com-
pleteness axiom (page 23 of [Hil62]), ‘not of a purely geometrical nature’. This
is most clearly seen in Hilbert’s initial metamathematical formulation: that the
model of Axiom groups I-IV and Archimedes axiom must be maximal.

3. It is not needed to establish the properly geometrical propositions in the data set.
We spelt out in [Bal14a] the description of two data sets of Euclidean geometry
and appropriate sets of first order axioms that provide modest descriptively com-
plete axiomatization for each them. In this paper we argued that Tarski’s axioms
are a modest descriptive axiomatization of Descartes’ geometry and showed a
slight extension of Tarski’s first order axiomatization accounts not only for the
Cartesian data set but the basic properties of π.

4. Proofs from Dedekind’s postulate obscure the true geometric reason for certain
theorems. Hartshorne writes27:

26In an ordered group, a and b are Archimedes-equivalent if there are natural numbers m,n such that
m|a| > |b| and n|b| > |a|.

27page 177 of [Har00]
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‘... there are two reasons to avoid using Dedekind’s axiom. First, it
belongs to the modern development of the real number systems and
notions of continuity, which is not in the spirit of Euclid’s geometry.
Second, it is too strong. By essentially introducing the real num-
bers into our geometry, it masks many of the more subtle distinctions
and obscures questions such as constructibility that we will discuss
in Chapter 6. So we include the axiom only to acknowledge that it is
there, but with no intention of using it.

5. The use of second order logic undermines a key proof method – informal (se-
mantic) proof. A crucial advantage of a first order axiomatization28 is that it
licenses the kind of argument29 described in Hilbert and Ackerman30:

Derivation of Consequences from Given Premises; Relation to Uni-
versally Valid Formulas
So far we have used the predicate calculus only for deducing valid
formulas. The premises of our deductions, viz Axioms a) through f),
were themselves of a purely logical nature. Now we shall illustrate by
a few examples the general methods of formal derivation in the pred-
icate calculus . . . . It is now a question of deriving the consequences
from any premises whatsoever, no longer of a purely logical nature.
The method explained in this section of formal derivation from
premises which are not universally valid logical formulas has its main
application in the setting up of the primitive sentences or axioms for
any particular field of knowledge and the derivation of the remain-
ing theorems from them as consequences . We will examine, at the
end of this section, the question of whether every statement which
would intuitively be regarded as a consequence of the axioms can be
obtained from them by means of the formal method of derivation.

We exploited this technique in Sections 3 to calculate the circumference and
area of a circle.

Venturi31 formulates a distinction, which nicely summarizes our argument:
‘So we can distinguish two different kinds of axioms: the ones that are necessary for
the development of a theory and the sufficient one used to match intuition and formal-
ization.’ In our terminology only the necessary axioms make up a ‘modest descriptive
axiomatization’. For the geometry Euclid I (basic polygonal geometry), Hilbert’s first
order axioms meet this goal. With E2π , a modest complete descriptive axiomatization
is provided even including the basic properties of π. The Archimedes and Dedekind

28See Section 4.2 for more detail on this argument.
29We noted that Hilbert proved that a Desarguesian plane in 3 space by this sort of argument in Section

2.4 of [Bal13].
30Chapter 3, §11 Translation taken from [Bla14].
31page 96 of [Ven11]
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postulates have a different goal; they secure the 19th century conception of <2 to be
the unique model and thus ground elementary analysis.

4.4 Why does axiom group V exist?

Hilbert wrote that his axioms V.1 and V.2 allow one ‘to establish a one-one corre-
spondence between the points of a segment and the system of real numbers’. Here he
is exhibiting a model centric rather than a descriptive (in Detlefsen’s syntactic sense)
approach to axiomatization. I think these should be recognized as two distinct motiva-
tions: to make Euclid rigorous and to ground analytic geometry and calculus. These
are complementary but distinct projects. We have noted here that the grounding of real
algebraic geometry is fully accomplished by Tarski’s axiomatization. And we have
provided a first order extension to deal with the basic properties of the circle.

Hilbert has in fact a more modern notion of geometry which includes both
‘metric’ and ‘algebraic’ geometry. Both metric and algebraic geometers regard them-
selves as geometers while recognizing the differences in goals and methods among the
subjects. Hilbert seems really to be aiming at the foundations of both. But his devo-
tion of the text to axiomatic treatment of Euclidean geometry suggests a more narrow
reading of his goals.

Perhaps the confusion arises from two of the many meanings of ‘complete’
in modern mathematics. Particularly because his logical formulation, one is led to
think his completeness axiom is about semantic completeness. But careful analysis of
his writings (See [Gio, Ven11].) shows in trying to ground analytic geometry he was
really focused on order completeness.

4.5 Regaining categoricity?

We noted in Section 2 of [Bal14a] that categoricity was a goal of the American postu-
late theorists. Categoricity per se can be conflated with a belief that Dedekind indeed
had described ‘the continuum’ and the goal was to specify exactly that object. We
briefly describe a number of geometries which have a unique model that is countable.

The quote from Mueller [Mue06] in Section 3, inspires a search for a prin-
ciple to distinguish the application of the method of Eudoxus by the Greeks to solve
particular problems from the Deus ex machina of Dedekind: fill all cuts. Putatively, to
state a problem is to state it recursively, so an answer would be to fill the recursive cuts.

The logic Lω1,ω allows us to describe several possibilities. The sentence that
adds toRCF the axiom of Archimedes plus the assertion that exactly the recursive cuts
over the surd field are realized has exactly one model. This could be varied by fixing
a smaller subfield of the real algebraic numbers as a base or by realizing a different
countable set of cuts. Since the Archimedean principle implies each cut has at most
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one realization each of these sentences has a unique model. In general, they will not
satisfy the angle measure principle. But restricting the construction for Theorem 3.9
to Archimedean fields the property could be guaranteed. More expansively, the Scott
sentence32 of the recursively saturated model would give a richer theory with a unique
countable model (but also uncountable models).

These examples illustrate that finding an axiom set with a unique model be-
comes interesting when the model itself is mathematically important. In contrast as we
discussed at length in [Bal14c], first order categoricity in an uncountable power has
powerful structural consequences for any model.

4.6 But what about analysis?

We have expounded a procedure [Har00] to define the field operations in an arbitrary
Euclidean plane. We argued that the first order axioms of EG suffice for the geomet-
rical data sets Euclid I and II, not only in their original formulation but by finding pro-
portionality constants for the area formulas of polygon geometry. By adding axioms to
require the field is real closed we obtain a complete first order theory that encompasses
many of Descartes innovations. The plane over the real algebraic numbers satisfies this
theory; thus, there is no guarantee that there is a line segment of length π. Using the
o-minimality of real closed fields, we can guarantee there is such a segment by adding
a constant for π and requiring it to realize the proper cut in the rationals. However,
guaranteeing the uniqueness of such a realization requires the Lω1,ω Archimedean ax-
iom.

Hilbert and the other axiomatizers of 100 years ago wanted more; they wanted
to secure the foundations of calculus. In full generality, this surely depends on second
order properties. But there are a number of directions of work on ‘definable analysis’.

One of the directions of research in o-minimality has been to prove the expan-
sion of the real numbers by a particular functions (e.g. the Γ-function on the positive
reals [SvdD00]); our example with arc length might be extended to consider other more
interesting transcendental curves.

Peterzil and Starchenko study the foundations of calculus in [PS00]. They
approach the complex analysis through o-minimality of the real part in [PS10]. The
impact of o-minimality on number theory was recognized by the Karp prize of 2014.
And a non-logician, suggests using methods of Descartes to teach Calculus [Ran14].
For an interesting perspective on the historical background of the banishment of in-
finitesimals in analysis see [BK12].

In a sense, our development is the opposite of Ehrlich’s in [Ehr12]. Rather
than trying to unify all numbers great and small, we are interested in the minimal

32In general the Scott sentence of a countable model [Kei71] is a sentence of Lω1,ω that specifies the
model up to isomorphism among countable models.
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collection of numbers that allow the development of a geometry according with our
fundamental intuitions.
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