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Abstract

In Part I of this paper we argued that the first-order systems HP5 and EG are
modest complete descriptive axiomatization of most of Euclidean geometry. In
this paper we discuss two further modest complete descriptive axiomatizations:
Tarksi’s for Cartesian geometry and new systems for adding π. In contrast we find
Hilbert’s full second order system immodest for geometrical purposes but appro-
priate as a foundation for mathematical analysis.

Part I [Baldwin 2017b] dealt primarily with Hilbert’s first order axioms for
geometry; Part II deals with his ‘continuity axioms’ – the Archimedean and complete-
ness axioms. Part I argued that the first-order systems HP5 and EG (defined below) are
‘modest’ complete descriptive axiomatization of most (described more precisely be-
low) of Euclidean geometry. In this paper we consider some extensions of Tarski’s
axioms for elementary geometry to deal with circles and contend: 1) that Tarski’s
first-order axiom set E2 is a modest complete descriptive axiomatization of Cartesian
geometry; 2) that the theories EGπ,C,A and E2π,C,A are modest complete descriptive
axiomatizations of extensions of these geometries designed to describe area and cir-
cumference of the circle; and 3) that, in contrast, Hilbert’s full second-order system in
the Grundlagen is an immodest axiomatization of any of these geometries but a mod-
est descriptive axiomatization the late 19th century conception of the real plane. We
elaborate and place this study in a more general context in [Baldwin 2017a].

We recall some of the key material and notation from Part I. That paper in-
volved two key elements. The first was the following quasi-historical description. Eu-
∗Research partially supported by Simons travel grant G5402.
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clid founded his theory of area for circles and polygons on Eudoxus’ theory of pro-
portion and thus (implicitly) on the axiom of Archimedes. The Greeks and Descartes
dealt only with geometric objects. The Greeks regarded multiplication as an operation
from line segments to plane figures. Descartes interpreted it as an operation from line
segments to line segments. In the late 19th century, multiplication became an operation
on points (that is ‘numbers’ in the coordinatizing field). Hilbert showed any plane sat-
isfying his axioms HP5 (below) interprets a field and recovered Euclid’s results about
polygons via a first-order theory.

Secondly, we built on Detlefsen’s notion of complete descriptive axiomatiza-
tion and defined a modest complete descriptive axiomatization of a data set Σ (essen-
tially, of facts in the sense of Hilbert) to be a collection of sentences that imply all the
sentences in Σ and ‘not too many more’. Of course, this set of facts will be open-
ended, since over time more results will be proved. But if this set of axioms introduces
essentially new concepts to the area and certainly if it contradicts the understanding of
the original era, we deem the axiomatization immodest.

1 Terminology and Notations

We begin by distinguishing several topics in plane geometry1 that represent distinct
data sets in Detlefsen’s sense. In cases where certain axioms are explicit, they are
included in the data set. Each set includes its predecessors. Then we provide specific
axiomatizations of the various areas.

Euclid I, polygonal geometry: Book I (except I.22), Book II.1-II.13, Book III (except
III.1 and III.17), Book VI.)

Euclid II, circle geometry: I.22, II.14, III.1, III.17 and Book IV.

Archimedes, arc length and π: XII.2, Book IV (area of circle proportional to square
of the diameter), approximation of π, circumference of circle proportional to
radius, Archimedes’ axiom.

Descartes, higher degree polynomials: nth roots; coordinate geometry

Hilbert, continuity: The Dedekind plane

Our division of the data sets is somewhat arbitrary and is made with the subse-
quent axiomatizations in mind. We open Section 3 with a more detailed explanation of
the distinctions among the first three categories. Further, we distinguish the Cartesian

1In the first instance we draw from Euclid: Books I-IV, VI and XII.1, 2 clearly concern plane geometry;
XI, the rest of XII and XIII deal with solid geometry; V and X deal with a general notion proportion and with
incommensurability. Thus, below we put each proposition Books I-IV, VI, XII.1,2 in a group and consider
certain geometrical aspects of Books V and X.
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data set, as it appears in Descartes, from Hilbert’s identification of Cartesian geometry
with the Dedekind line and explain the reason for that distinction in Section 3.

In Part I, we formulated our formal system in a two-sorted vocabulary τ cho-
sen to make the Euclidean axioms (either as in Euclid or Hilbert) easily translatable
into first-order logic. This vocabulary includes unary predicates for points and lines, a
binary incidence relation, a ternary collinearity relation, a quaternary relation for line
congruence and a 6-ary relation for angle congruence. The circle-circle intersection
postulate asserts if the interiors of two circles (neither contained in the other) have a
common point, the circles intersect in two points.

The following axiom sets2 are defined to organize these data sets.

1. first-order axioms

HP, HP5: We write HP for Hilbert’s incidence, betweenness3, and congruence
axioms. We write HP5 for HP plus the parallel postulate. A Pythagorean
field is any field associated4 with a model of HP5; such fields are charac-
terized by closure under

√
(1 + a2).

EG: The axioms for Euclidean geometry, denoted EG5, consist of HP5 and in
addition the circle-circle intersection postulate. A Euclidean plane is a
model of EG; the associated Euclidean field is closed under

√
a (a > 0).

E2: Tarski’s axiom system [Tarski 1959] for a plane over a real closed field
(RCF6).

EGπ and Eπ: Two new systems extending EG and E2 to discuss π.

2. Hilbert’s continuity axioms, infinitary and second-order

AA: The sentence in Lω1,ω expressing the Archimedean axiom.

Dedekind: Dedekind’s second-order axiom that there is a point in each irra-
tional cut in the line.

Notation 1.1. Closing a plane under ruler and compass constructions corresponds to
closing the coordinatizing ordered field under square roots of positive numbers to give
a Euclidean field7. As in Example 4.2.2.2 of Part I , Fs (surd field) denotes the minimal

2The names HP, HP5, and EG come from [Hartshorne 2000] and E2 from [Tarski 1959].
3These include Pasch’s axiom (B4 of [Hartshorne 2000]) as we axiomatize plane geometry. Hartshorne’s

version of Pasch is that any line intersecting one side of triangle must intersect one of the other two.
4The field F is associated with a plane Π if Π is the Cartesian plane on F 2.
5In the vocabulary here, there is a natural translation of Euclid’s axioms into first-order statements. The

construction axioms have to be viewed as ‘for all– there exist sentences. The axiom of Archimedes is of
course not first-order. We write Euclid’s axioms for those in the original [Euclid 1956] vrs (first-order)
axioms for Euclidean geometry, EG. Note that EG is equivalent to (i.e. has the same models) as the system
laid out in Avigad et al [Avigad et al. 2009], namely, planes over fields where every positive element as a
square root). The latter system builds the use of diagrams into the proof rules.

6RCF abbreviates ‘real closed field’; these are the ordered fields such that every positive element has a
square root and every odd degree polynomial has at least one root.

7We call this process ‘taking the Euclidean closure’ or adding constructible numbers.
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field whose geometry is closed under ruler and compass construction. Having named
0, 1, each element of Fs is definable over the empty set8.

We referred to [Hartshorne 2000] to assert in Part I the sentences of Euclid I
are provable in HP5 and the additional sentences of Euclid II are provable in EG. Here
we consider the data sets of Archimedes, Descartes, and Dedekind and argue for the
following claims.

1. Tarski’s axioms E2 are a modest descriptive axiomatization of the Cartesian data
set.

2. EG2
π (Eπ) are a modest descriptive axiomatization of Euclidean Geometry

(Cartesian geometry) extended by the Archimedean data set.

3. Hilbert’s axioms groups I-V give a modest descriptive axiomatization of the
second-order geometrical statements concerning the plane <2 but the system is
immodest for even the Cartesian data set.

2 From Descartes to Tarski

Descartes and Archimedes represent distinct and indeed orthogonal directions for mak-
ing the geometric continuum precise. These directions can be distinguished as fol-
lows. Archimedes goes directly to transcendental numbers while Descartes investigates
curves defined by polynomials. Of course, neither thought in these terms, although
Descartes’ resistance to squaring the circle shows his implicit awareness of the distinc-
tion. We deviate from chronological order and discuss Descartes before Archimedes;
as, in Section 3 we will extend both Euclidean and Cartesian geometry by adding π.

As was highlighted above in describing the data sets, the most important as-
pects of the Cartesian data set are: 1) the explicit definition ([Descartes 1637], 1) of
the multiplication of line segments to give a line segment, which breaks with Greek
tradition9; and 2) on the same page to announce constructions for the extraction10 of
nth roots for all n. Marco Panza formulates a key observation about the ontological
importance of these innovations

The first point concerns what I mean by ‘Euclid’s geometry’. This is the
theory expounded in the first six books of the Elements and in the Data. To
be more precise, I call it ‘Euclid’s plane geometry’, or EPG, for short. It is

8That is for each point a constructible by ruler and compass there is a formula φa(x) such that EG `
(∃!x)φ(x). in EG. That is, there is a unique solution to φ.

9His proof is still based on Eudoxus.
10This extraction cannot be done in EG, since EG is satisfied in the field which has solutions for all

quadratic equations but not those of odd degree. See section 12 of [Hartshorne 2000].
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not a formal theory in the modern sense, and, a fortiori, it is not, then, a de-
ductive closure of a set of axioms. Hence, it is not a closed system, in the
modern logical sense of this term. Still, it is no11 more a simple collection
of results, nor a mere general insight. It is rather a well-framed system,
endowed with a codified language, some basic assumptions, and relatively
precise deductive rules. And this system is also closed, in another sense
([Julien 1964] 311-312), since it has sharp-cut limits fixed by its language,
its basic assumptions, and its deductive rules. In what follows, especially
in section 1, I shall better account for some of these limits, namely for
those relative to its ontology. More specifically, I shall describe this on-
tology as being composed of objects available within this system, rather
than objects which are required or purported to exist by force of the as-
sumptions that this system is based on and of the results proved within it.
This makes EPG radically different from modern mathematical theories
(both formal and informal). One of my claims is that Descartes geometry
partially reflects this feature of EPG. ([Panza 2011], 43)

In our context we interpret Panza’s ‘composed of objects available within this sys-
tem’ model theoretically as the existence of certain starting points and the closure of
each model of the system under admitted constructions. We take Panza’s ‘open’ sys-
tem to include Descartes’ ‘linked constructions’12 which greatly extend the ruler and
compass constructions that are licensed by EG. Descartes endorses such ‘mechanical’
constructions as those used in the duplication of the cubic as geometric. According to
Molland ([Molland 1976], 38) ‘Descartes held the possibility of representing a curve
by an equation (specification by property)’ to be equivalent to its ‘being constructible
in terms of the determinate motion criterion (specification by genesis)’. But as Crippa
points out ([Crippa 2014a], 153), Descartes did not prove this equivalence and there is
some controversy as to whether the 1876 work of Kempe solves the precise problem.
Descartes rejects as non-geometric any method for quadrature of the circle.

Descartes’ proposal to organize geometry via the degree of polynomials
([Descartes 1637], 48) is reflected in the modern field of ‘real’ algebraic geometry,
i.e., the study of polynomial equalities and inequalities in the theory of real closed or-
dered fields. To ground this geometry we adapt Tarski’s ‘elementary geometry’. This
move makes a significant conceptual step away from Descartes whose constructions
were on segments and who did not regard a line as a set of points, while Tarski’s ax-
iom are given entirely formally in a one-sorted language of relations on points. Tarski
[Tarski 1959] gives a fully-formalized theory for elementary geometry and proves it is
complete. We will describe the theory using the following bi-interpretable13 and much
more understandable set of axioms.

Tarski’s elementary geometry The theory E2 is axiomatized by the follow-

11There appears to be an error here. Probably ‘more a’ should be deleted. jb
12The types of constructions allowed are analyzed in detail in Section 1.2 of [Panza 2011] and the distinc-

tions with the Cartesian view in Section 3. See also [Bos 2001].
13In our modern understanding of an axiom set the translation is routine, but anachronistic.
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ing set of axioms in our vocabulary.

1. Euclidean plane geometry14 (HP5);

2. Either of the following two sets of axioms which are equivalent over HP5 (in a
vocabulary naming two arbitrary points as 0, 1:

(a) An infinite set of axioms declaring the field is formally real and that every
polynomial of odd-degree has a root.

(b) The axiom schema of continuity described just below.

We abuse Tarski’s notation by letting E2 denote the theory in the vocabulary
with constants 0, 1.

Tarski’s system differs from Descartes in several ways. First, Tarski pre-
scribes a ternary relation on points, thus making explicit that a line is viewed as a
set of points15. Secondly, we can specify a minimal model, the plane over the real al-
gebraic numbers16 of Tarski’s theory, one that contains exactly (as we now understand)
the objects Descartes viewed as solutions of those problems that it was ‘possible to
solve’ (Chapter 6 of [Crippa 2014b]).

Tarski observed that Dedekind’s axiom has a first order analog. Require that
for any two sets A and B, if beyond some point a all elements of A are below all
elements of B, there there is a point b which is (beyond a) above all of A and below all
of B. Tarski [Givant & Tarski 1999] postulates the following formal Axiom Schema of
Continuity:

(∃a)(∀x)(∀y)[α(x) ∧ β(y)→ B(axy)]→ (∃b)(∀x)(∀y)[α(x) ∧ β(y)→ B(xby)],

where α, β are first-order formulas, the first of which does not contain any free occur-
rences of a, b, y and the second any free occurrences of a, b, x. Recalling thatB(x, z, y)
represents ‘z is between17 x and y’, the hypothesis asserts the solutions of the formulas
α and β behave as the A,B above. This schema allows the solution of odd degree
polynomials. By the completeness of real closed fields, this theory is also complete18.

In Detlefsen’s terminology Tarski has laid out a Gödel-complete axiomatiza-
tion, that is, the consequences of his axioms are a complete first-order theory of (in
our terminology) Cartesian plane geometry. This completeness guarantees that if we

14Note that circle-circle intersection is implied by the axioms in 2).
15Writing in 1832, Bolyai ([Gray 2004], appendix) wrote in his ‘explanation of signs’, ‘The straight AB

means the aggregate of all points situated in the same straight line with A and B.’ This is the earliest
indication I know of the transition to an extensional version of incidence. William Howard showed me this
passage.

16That is, a real number that satisfies a polynomial with rational coefficients. A real number that satisfies
no such polynomial is called transcendental.

17More precisely in terms of the linear order B(xyz) means x ≤ y ≤ z.
18Tarski [Tarski 1959] proves that planes over real closed fields are exactly the models of his elementary

geometry, E2.
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keep the vocabulary and continue to accept the same data set no axiomatization19 can
account for more of the data. There are certainly open problems in plane geometry
[Klee & Wagon 1991]. But however they are solved, the proof will be formalizable in
E2. Thus, in our view, the axioms are descriptively complete.

The axioms E2 assert, consistently with Descartes’ conceptions and theorems,
the solutions of certain equations. So they provide a modest complete descriptive ax-
iomatization of the Cartesian data set. In the case at hand, however, there are more spe-
cific reasons for accepting the geometry over real closed fields as ‘the best’ descriptive
axiomatization. It is the only one which is decidable and ‘constructively justifiable’.

Remark 2.1 (Undecidability and Consistency). Ziegler [Ziegler 1982] has shown that
every nontrivial finitely axiomatized subtheory20 of RCF is not decidable. Thus both
to approximate more closely the Dedekind continuum and to obtain decidability we re-
strict to the theory of planes over RCF and thus to Tarski’s E2 [Givant & Tarski 1999].
The biinterpretability between RCF and the theory of all planes over real closed fields
yields the decidability of E2 and a finitary proof of its consistency21. The crucial fact
that makes decidability possible is that the natural numbers are not first-order definable
in the real field.

As we know, the preeminent contribution of Descartes to geometry is coor-
dinate geometry. Tarski (following Hilbert) provides a converse; his interpretation of
the plane into the coordinatizing line [Tarski 1951] unifies the study of the ‘geome-
try continuum’ with axiomatizations of ‘geometry’. We have used Tarski’s axioms for
plane geometry from [Tarski 1959]. However, they extend by a family of axioms for
higher dimensions [Givant & Tarski 1999] to ground modern real algebraic geometry.
This natural extension demonstrates the fecundity of Cartesian geometry. Descartes
used polynomials in at most two variables. But once the field is defined, the semantic
extension to spaces of arbitrary finite dimension, i.e. polynomials in any finite number
of variables, is immediate. Thus, every n-space is controlled by the field so the plane
geometry determines the geometry of any finite dimension. Although the Cartesian
data set concerns polynomials of very few variables and arbitrary degree, all of real
algebraic geometry is latent.

There are three post-Descartes innovations that we have largely neglected in
these papers: a) higher dimensional geometry, b) projective geometry c) definability
by analytic functions. The first is a largely nineteenth century innovation which signif-
icantly impacts Descartes’s analytic geometry by introducing equations in more than
three variables. The second is essentially bi-interpretable. So both of these threads are
more or less orthogonal to our development here which concerns the actual structure
of the line (and moves more or less automatically to higher dimensional or projective

19Of course, more perspicuous axiomatizations may be found. Or one may discover the entire subject is
better viewed as an example in a more general context.

20A nontrivial subtheory is one satisfied in <.
21The geometric version of this result was conjectured by Tarski in [Tarski 1959]: The theory RCF is

complete and recursively axiomatized so decidable. For the context of Ziegler result and Tarski’s quantifier
elimination in computer science see [Makowsky 2013].
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geometry). We addressed c) briefly in Part I while discussing Dieudonné’s defini-
tion of analytic geometry. In a sense, the distinction is anachronistic; Hilbert wrote
almost thirty years before Artin-Schreier isolate the notion of real closed field, thirty-
five before Tarski proves the theory is complete and ninety-five before o-minimality
[Van den Dries 1999] provides a unifying scheme capturing real algebraic and much
of what Dieudonné called ‘analytic’ geometry (ex and the restriction of any analytic
function to a compact domain) by a common rubric.

3 Archimedes: π and the circumference and area of cir-
cles

We begin with our rationale for placing various facts in the Archimedean data set22.
Three propositions encapsulate the issue: Euclid VI.1 (area of a triangle), Euclid XII.2
(area of a circle), and Archimedes proof that the circumference of a circle is propor-
tional to the diameter. Hilbert showed that VI.1 is provable already in the first order
HP5 (Part I). While Euclid implicitly relies on the Archimedean axiom, Archimedes
makes it explicit in a recognizably modern form. Euclid does not discuss the circum-
ference of a circle. To deal with that issue, Archimedes develops his notion of arc
length. By beginning to calculate approximations of π, Archimedes is moving towards
the treatment of π as a number. Consequently, we distinguish VI.1 (Euclid I) from the
Archimedean axiom and the theorems on measurement of a circle, and place the latter
in the Archimedean data set. The validation in the theories EGπ and E2π set out below
of the formulas A = πr2 and C = πd answer questions of Hilbert and Dedekind not
questions of Euclid though possibly of Archimedes. But, we think the theory EGπ is
closer to the Greek origins than Hilbert’s second-order axioms are.

The geometry over a Euclidean field (every positive number has a square root)
may have no straight line segment of length π. E.g., the model over the surd field (No-
tation 1.1) does not contain π. We want to find a theory which proves the circumference
and area formulas for circles. Our approach is to extend the theory EG so as to guar-
antee that there is a point in every model which behaves as π does. For Archimedes
and Euclid, sequences constructed in the study of magnitudes in the Elements are of
geometric objects, not numbers. But, in a modern account, as we saw already while
discussing areas of polygons in Part I, we must identify the proportionality constant and
verify that it represents a point in any model of the theory23. Thus this goal diverges
from a ‘Greek’ data set and indeed is orthogonal to the axiomatization of Cartesian
geometry by Tarski’s E2.

22This classification is not in any sense chronological, as Archimedes attributes the method of exhaustion
to Eudoxus who precedes Euclid. Post-Heath scholarship by Becker, Knorr, and Menn [Menn 2017] have
identified four theories of proportion in the generations just before Euclid. [Menn 2017] led us to the three
prototypic propositions.

23For this reason, Archimedes needs only his postulate while Hilbert would also need Dedekind’s postulate
to prove the circumference formula.

8



This shift in interpretation drives the rest of this section. We search now for
the solution of a specific problem, finding π in the underlying field. We established
in Part I that for each model of EG and any line of the model, the surd field Fs is
embeddable in the field definable on that line. On this basis we can interpret the Greek
theory of limits by way of cuts in the ordered surd field Fs.

Euclid’s third postulate, ‘describe a circle with given center and radius’, en-
tails that a circle is uniquely determined by its radius and center. In contrast, Hilbert
simply defines the notion of circle and proves the uniqueness. (See Lemma 11.1 of
[Hartshorne 2000].) In either case we have the basic correspondence between angles
and arcs: two segments of a circle are congruent if they cut the same central angle. As
the example of geometry over the real algebraic numbers shows, there is no guaran-
tee that there is a straight line segment whose ‘length’ is π. We remedy this with the
following extensions, EGπ and E2(π), of the systems EG and E2.

Axioms for π: Add to the vocabulary a new constant symbol π. Let in (cn) be the
perimeter of a regular 3 ∗ 2n-gon inscribed24 (circumscribed) in a circle of radius 1.
Let Σ(π) be the collection of sentences (i.e. a type25)

in < 2π < cn

for n < ω. Now, we can define the new theories.

1. EGπ denotes the deductive closure of the following set of axioms in the vocab-
ulary τ augmented by constant symbols 0, 1, π.

(a) the axioms EG of a Euclidean plane;

(b) Σ(π).

2. E2(π) is formed by adding Σ(π) to E2 and taking the deductive closure.

Second dicta on constants: Here we named a further single constant π. But
the effect is very different than naming 0 and 1 (Compare the Dicta on constants just
after Theorem 4.2.1 of Part I.) The new axioms specify the place of π in the ordering
of the definable points of the model. So the data set is seriously extended.

Theorem 3.1. EGπ is a consistent but not finitely axiomatizable26 incomplete theory.

Proof. A model of EGπ is given by closing Fs ∪ {π} ⊆ < to a Euclidean
field. To see the theory is not finitely axiomatizable, for any finite subset Σ0(π) of

24I thank Craig Smorynski for pointing out that is not so obvious that that the perimeter of an inscribed
n-gon is monotonic in n and reminding me that Archimedes avoided the problem by starting with a hexagon
and doubling the number of sides at each step.

25Let A ⊂ M |= T . A type over A is a set of formulas φ(x,a) where x, (a) is a finite sequence of
variables (constants from A) that is consistent with T . Taking T as EG, a type over all Fs is a type over ∅
since each element of Fs is definable without parameters in EG.

26Ziegler ([Ziegler 1982], Remark 2.1) shows that EG is undecidable. Since for any T and type p(x)
consistent with T , the decidability of T ∪ {p(c)} implies the decidability of T , EGπ is also undecidable.
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Σ(π) choose a real algebraic number p satisfying Σ0 when p is substituted for π; close
Fs ∪ {p} ⊆ < to a Euclidean field to get a model of EG ∪Σ0 which is not a model of
EGπ . 3.1

Dicta on Definitions or Postulates: We now extend the ordering on seg-
ments by adding the lengths of ‘bent lines’ and arcs of circles to the domain. Two
approaches27 to this step are:

a) our approach to introduce an explicit but inductive definition;

b) or add a new predicate to the vocabulary and new axioms specifying its behavior.
This alternative reflects in a way the trope that Hilbert’s axioms are implicit defini-
tions.

We can make choice a) in Definitions 3.2, 3.3 etc. only because we have already estab-
lished a certain amount of geometric vocabulary. Crucially, the following definition of
bent lines (and thus the perimeter of certain polygons) is not a single formal definition
but a schema of formulas φn defining an approximation for each n.

Definition 3.2. Let n ≥ 2. By a bent line28 b = X1 . . . Xn we mean a sequence of
straight line segments XiXi+1, for 1 ≤ i ≤ n − 1, such that each end point of one is
the initial point of the next.

We specify the length of a bent line b = X1 . . . Xn, denoted by [b], as the
length given by the straight line segment composed of the sum of the segments of b.
Now we say an approximant to the arc X1 . . . Xn of a circle with center P , is a bent
line satisfying:

1. X1, . . . Xn, Y1, . . . Yn are points such that the Xi are on the circle and each Yi
is in the exterior of the circle.

2. Each of YiYi+1 (1 ≤ i < n), YnY1 is a straight line segment.

3. For 1 ≤ i < n, YiYi+1 is tangent to the circle at Xi; YnY1 is tangent to the
circle at X1.

Definition 3.3. Let S be the set (of congruence classes of) straight line segments. Let
Cr be the set (of equivalence classes under congruence) of arcs on circles of a given
radius r. Now we extend the linear order on S to a linear order <r on S ∪ Cr as
follows. For s ∈ S and c ∈ Cr

1. The segment s <r c if and only if there is a chord XY of a circular segment
AB ∈ c such that XY ∈ s.

27We could define < on the extended domain or, in style b), we could add an <∗ to the vocabulary and
postulate that <∗ extends < and satisfies the properties of the definition.

28This is less general than Archimedes (page 2 of [Archimedes 1897]) who allows segments of arbitrary
curves ‘that are concave in the same direction’.
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2. The segment s >r c if and only if there is an approximant b = X1 . . . Xn to c
with length [b] = s and with [X1 . . . Xn] >r c.

It is easy to see that this order is well-defined as each chord of an arc is shorter
than the arc and the arc is shorter than any approximant to it. Now, we encode a second
approximation of π, using the areas In, Cn of the approximating polygons rather than
their perimeters in, cn.

Lemma 3.4. Let In and Cn denote the area of the regular 3 × 2n-gon inscribed or
circumscribing the unit circle. Then EGπ proves29 each of the sentences In < π < Cn
for n < ω.

Proof. The intervals (In, Cn) define the cut for π in the surd field Fs reals
and the intervals (in, cn) define the cut for 2π and it is a fact about the surd field that
these are the same cut. That is, for every natural number t, there exists an Nt such
that if k, `,m, n ≥ Nt the distances between any pair of ik, c`, Im, Cn is less than 1/t.

3.4

To argue that π, as implicitly defined by the theory EGπ , serves its geometric
purpose, we add new unary function symbols C and A mapping our fixed line to itself
and satisfying a scheme asserting that the functions these symbols refer to do, in fact,
produce the required limits. The definitions are identical except for the switch from the
area to the perimeter of the approximating polygons. This strategy is analogous to that
in an introductory calculus course of describing the properties of area and proving that
the Riemann integral satisfies them.

Definition 3.5. A unary function C(r) ((A(r)) mapping S, the set of equivalence
classes (under congruence) of straight line segments, into itself that satisfies the con-
ditions below is called a circumference function (area function).

1. C(r) (A(r)) is less than the perimeter (area) of a regular 3 × 2n-gon circum-
scribing circle of radius r.

2. C(r) (A(r)) is greater than the perimeter (area) of a regular 3×2n-gon inscribed
in a circle of radius r.

We can extend EGπ to include definitions of C(r) and A(r).

1. The theory EGπ,A is the extension of the τ ∪ {0, 1, π}-theory EGπ obtained by
the explicit definition A(r) = πr2.

2. The theory EGπ,A,C is the extension of the τ ∪ {0, 1, π, A}-theory EGπ,A, ob-
tained by the explicit definition C(r) = 2πr.

29Note that we have not attempted to justify the convergence of the in, cn, In, Cn in the formal system
EGπ . We are relying on mathematical proof, not a formal deduction in first order logic; we explain this
distinction in item 4 of Section 4.3.
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In any model ofEGπ,A,C for each r there is an s ∈ S whose length30 C(r) =
2πr is less than the perimeters of all circumscribed polygons and greater than those of
the inscribed polygons. We can verify that by choosing n large enough we can make
in and cn as close together as we like (more precisely, for given m, make them differ
by < 1/m). In phrasing this sentence I follow Heath’s description31 of Archimedes’
statements, ‘But he follows the cautious method to which the Greeks always adhered;
he never says that a given curve or surface is the limiting form of the inscribed or
circumscribed figure; all that he asserts is that we can approach the curve or surface as
nearly as we please.’

Our definition of EGπ then makes the following metatheorem immediate. In
the vocabulary with these functions named, since the In(Cn) converge to one half of
the limit of the in(cn), they determine the same cut:

Theorem 3.6. In EG2
π,A,C , C(r) = 2πr is a circumference function and A(r) = πr2

is an area function.

In an Archimedean field there is a unique interpretation of π and thus a unique
choice for a circumference function with respect to the vocabulary without the constant
π. By adding the constant π to the vocabulary we get a formula which satisfies the
conditions in every model. But in a non-Archimedean model, any point in the monad32

of 2πr would equally well fit our condition for being the circumference.

There are two aspects to transferring our argument for Lemma 3.4 from cir-
cumference to area: 1) modifying the development of the area function of polygons
described in Section 4.5 of Part I, by extending the notion of figure to include sectors
of circles and 2) formalizing a notion of equal area, including a schema for approx-
imation by finite polygons. We omit the technical details to complete the argument
that the formal area function A(r) does indeed compute the area. We carried out the
harder case of circumference to emphasize the innovation of Archimedes in defining
arc length; unlike area it is not true that the perimeter of a polygon containing a second
is larger than the perimeter of the enclosed polygon. By dealing with a special case,
we suppressed Archimedes’ anticipation of the notion of bounded variation.

To sum up, we have extended our descriptively complete axiomatization from
the polygonal geometry of Hilbert’s first-order axioms (HP5) to Euclid’s results on
circles and beyond. Euclid doesn’t deal with arc length at all and we have assigned
straight line segments to both the circumference and area of a circle. It follows that
our development would not qualify as a modest axiomatization of Greek geometry
but only of the modern understanding of these formulas. However, this distinction
is not a problem for the notion of descriptive axiomatization. The facts are given as
sentences. The formulas for circumference and area are not the same sentences as
the Euclid/Archimedes statements in terms of proportions, but the Greek versions are
implied by the modern equational formulations.

30A similar argument works for area and A(r).
31Archimedes, Men of Science [Heath 2011], Chapter 4.
32The monad of a is the collection of points that are an infinitessimal distance from a.
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We now want to make a similar extension of E2. Dedekind (page 37-38 of
[Dedekind 1963]) observes that the field of real algebraic numbers is ‘discontinuous
everywhere’ but ‘all constructions that occur in Euclid’s Elements can . . . be just as
accurately effected as in a perfectly continuous space’. Strictly speaking, for construc-
tions this is correct. But the proportionality constant π between a circle and its circum-
ference is absent, so, it can’t be the case that both a straight line segment of the same
length as the circumference and the diameter are in the model33. We want to find a mid-
dle ground between the constructible entities of Euclidean geometry and Dedekind’s
postulation that all transcendentals exist. That is, we propose a theory which proves
the circumference and area formulas for circles and countable models of the geometry
over RCF, one, where ‘arc length behaves properly’.

In contrast to Dedekind and Hilbert, Descartes eschews the idea that there
can be a ratio between a straight line segment and a curve. [Crippa 2014b] writes,
“Descartes excludes the exact knowability of the ratio between straight and curvilinear
segments”; then he quotes Descartes:

... la proportion, qui est entre les droites et les courbes, n’est pas connue,
et mesme ie croy ne le pouvant pas estre par les hommes, on ne pourroit
rien conclure de là qui fust exact et assuré34.

Hilbert35 asserts that there are many geometries satisfying his axioms I-IV
and V1 but only one, ‘namely the Cartesian geometry’ that also satisfies V2. Thus the
conception of ‘Cartesian geometry’ changed radically from Descartes to Hilbert; even
the symbol π was not introduced until 1706 (by Jones). One wonders whether it had
changed by the time Hilbert wrote. That is, had readers at the turn of the 20th century
already internalized a notion of Cartesian geometry which entailed Dedekind complete-
ness and so was at best formulated in the 19th century (Bolzano-Cantor-Weierstrass-
Dedekind)?

We now define a theory E2π analogous to EGπ that does not depend on the
Dedekind axiom but can be obtained in a first-order way. Given Descartes’ proscription
of π, the new system will be immodest with respect to the Cartesian data set. But we
will argue at the end of this section that both of our axioms for π are closer to Greek
conceptions than the Dedekind Axiom. At this point we need some modern model
theory to guarantee the completeness of the theory we are defining.

A first-order theory T for a vocabulary including a binary relation < is o-
minimal if every model of T is linearly ordered by< and every 1-ary formula is equiva-
lent in T to a Boolean combination of equalities and inequalities [Van den Dries 1999].

33Thus, Birkhoff’s protractor postulate (below) is violated.
34Descartes, Oeuvres, Vol. 6, p. 412. This is Crippa’s translation of Descartes’ archaic French. Crippa

also quotes Averroes as emphatically denying the possibility of such a ratio and notes that Vieta held similar
views.

35See pages 429-430 of [Hallett & Majer 2004].
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Anachronistically, the o-minimality of the reals is a main conclusion of Tarski in
[Tarski 1931]. We can now show.

Theorem 3.7. Form E2π by adjoining Σ(π) to E2. E2π is first-order complete for the
vocabulary τ augmented by constant symbols 0, 1, π.

Proof. We have established that there is definable ordered field whose domain
is the line through the points 0, 1. By Tarski, the theory of this real closed field is
complete. The field is bi-interpretable with the plane [Tarski 1951] so the theory of
the geometry T is complete as well. Further by Tarski’s result, the field is o-minimal.
Therefore, the type over the empty set of any point on the line is determined by its
position in the linear ordering of the subfield Fs (Notation 1.1). Each in, cn is an
element of the field Fs. This position in the linear order of 2π in the linear order on the
line through 01 is given by Σ. Thus T ∪ Σ(π) is a complete theory. 3.1

Building on Definition 3.2 we extend the theory E2π .

Definition 3.8. We define two new theories expanding E2π .
1. The theory E2π,A is the extension of the τ ∪ {0, 1, π}-theory E2π obtained by the

explicit definition A(r) = πr2

2. The theory E2π,A,C is the extension of the τ ∪ {0, 1, π}-theory E2π,A obtained by
adding the explicit definition C(r) = 2πr.

Theorem 3.9. The theory E2π,A,C is a complete, decidable extension of EGπ,A that is
coordinatized by an o-minimal field. Moreover, in E2π,A,C , C(r) = 2πr is a circumfer-
ence function and A(r) = πr2 is an area function.

Proof. We are adding definable functions to E2π so o-minimality and com-
pleteness are preserved. The theory is recursively axiomatized and complete so de-
cidable. The formulas continue to compute area and circumference correctly (as in
Theorem 3.6) since they extend EGπ,A,C . 3.9

The assertion that π is transcendental is a theorem of the first order theory E2π .
Lindemann proved that π does not satisfy a polynomial of degree n for any n. Thus
for any polynomial p(x) over the rationals p(π) 6= 0 is a consequence of the complete
type36 generated by Σ(π) and so is a theorem of E2π . We explore this type of argument
in point 4 of Section 4.3.

We now extend the known fact that the theory of real closed fields is ‘fini-
tistically justified’ (in the list of such results on page 378 of [Simpson 2009]) to
E2π,A,C . For convenience, we lay out the proof with reference to results37 recorded

36Recall that Σ(x) is a consistent collection of formulas in one free variable, which by Tarski’s quantifier
elimination are Boolean combinations of polynomials.

37We use RCOF here for what we have called RCF before. Model theoretically adding the definable
ordering of a formally real field is a convenience. Here we want to be consistent with the terminology
in [Simpson 2009]. Note that Friedman[Friedman 1999] strengthens the results for PRA to exponential
function arithmetic (EFA). Friedman reports Tarski had observed the constructive consistency proof much
earlier. The theories discussed here, in increasing proof strength are EFA, PRA, RCA0 and WKL0.
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in [Simpson 2009].

The theory E2 is bi-interpretable with the theory of real closed fields. And
thus it (as well as E2π,A,C) is finitistically consistent, in fact, provably consistent in
primitive recursive arithmetic (PRA).

By Theorem II.4.2 of [Simpson 2009],RCA0 proves the system (Q,+,×, <)
is an ordered field and by II.9.7 of [Simpson 2009], it has a unique real closure. Thus
the existence of a real closed ordered field and so Con(RCOF ) is provable in RCA0.
(Note that the construction will imbed the surd field Fs.)

Lemma IV.3.3 of [Friedman et al. 1983] asserts the provability of the com-
pleteness theorem (and hence compactness) for countable first-order theories from
WKL0. Since every finite subset of Σ(π) is easily seen to be satisfiable in any RCOF,
it follows that the existence of a model of E2π is provable in WKL0. Since WKL0 is
π0
2-conservative over PRA, we conclude PRA proves the consistency E2π . As E2π,C,A

is an extension by explicit definitions, its consistency is also provable in PRA, as re-
quired.

It might be objected that such minor changes as adding to E the name of the
constant π, or adding the definable functions C and A undermines the earlier claim
that E2 is descriptively complete for Cartesian geometry. But π is added because the
modern view of ‘number’ requires it and increases the data set to include propositions
about π which are inaccessible to E2.

We have so far tried to find the proportionality constant only in specific situ-
ations. In the remainder of the section, we consider several ways of systematizing the
solution of families of such problems. First, still in a specific case, we look for models
where every angle determines an arc that corresponds to the length of a straight line
segment. We consider several model-theoretic schemes to organize such problems.

Birkhoff [Birkhoff, George 1932] posited the following protractor postulate
in his system38.

POSTULATE III. The half-lines `,m, through any point O can be put
into (1, 1) correspondence with the real numbers a(mod2π), so that, if
A 6= O andB 6= O are points of ` andm respectively, the difference am−
a`(mod2π) is ∠AOB. Furthermore, if the point B varies continuously in
a line r not containing the vertex 0, the number am varies continuously
also39.

This axiom is analogous to Birkhoff’s ‘ruler postulate’ which assigns each
segment a real number length. Thus, he takes the real numbers as an unexamined
background object; at one swoop he has introduced addition and multiplication, and

38This is the axiom system used in virtually all U.S. high schools since the 1960’s.
39I slightly modified the last sentence from Birkhoff, in lieu of reproducing the diagram.
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assumed the Archimedean and completeness axioms. So even ‘neutral’ geometries
studied on this basis are actually greatly restricted40. He argues that his axioms define
a categorial system isomorphic to <2. So his system (including an axiomatization of
the real field that he hasn’t specified) is bi-interpretable with Hilbert’s.

However, the protractor postulate conflates three distinct ideas: i) the rectifi-
ability of arcs, the assertion that each arc of a circle has the same length as a straight
line segment; ii) the claim there is an algorithm for finding the segment); and iii) the
measurement of angles, that is assigning a measure to an angle as the arc length of the
arc it determines.

The next task is to find a more modest version of Birkhoff’s postulate, namely,
a first-order theory with countable models which assign to each angle a measure be-
tween 0 and 2π. Recall that we have a field structure on the line through the points 0, 1
and the number π on that line, so we can make a further explicit definition.

A measurement of angles function is a map µ from congruence classes of
angles into [0, 2π) such that if ∠ABC and ∠CBD are disjoint angles sharing the side
BC, µ(∠ABD) = µ(∠ABC) + µ(∠CBD).

If we omitted the additivity property this would be trivial: Given an angle
∠ABC less than a straight angle, let C ′ be the intersection of a perpendicular to BC
through A with BC and let µ(∠ABC) = 2π · sin(∠ABC) = 2π·BC′

AB . (It is easy to
extend to the other angles.)

Here we use approach b) of the Dicta on definitions rather than the explicit
definition approach a) used for C(r) and A(r). We define a new theory with a function
symbol µ which is ‘implicitly defined’ by the following axioms.

Definition 3.10. The theory E2π,A,C,µ is obtained by adding to E2π,A,C , the assertion
that µ is a continuous41 additive map from congruence classes of angles to (0, 2π].

Now we address the consistency and completeness of E2π,A,C,µ. Showing con-
sistency is easy; we can define (in the mathematical sense, not as a formally definable
function in E2π,A,C) such a function µ∗ on the real plane. Hence, the axioms are con-
sistent. And by taking the theory of this structure we get a complete first-order theory.
But, we don’t necessarily have a nice axiomatization42.

Crippa describes Leibniz’s distinguishing two types of quadrature,

40That is, they must be metric geometries.
41With a little effort we can express continuity of µ in E2π,A,C,µ and it could fail in a non-Archimedean

model so we have to require it to have chance at a complete theory.
42 In fact, by coding a point on the unit circle by its x-coordinate and setting µ((x1, y1), (x2, y2)) =

cos−1(x1 − x2) one gets such a function which definable in the theory of the real field expanded by the
cosine function restricted to (0, 2π]. This theory is known to be o-minimal [Van den Dries 1999]. But there
is no known axiomatization and David Marker tells me it is unlikely to be decidable without assuming the
Schanuel conjecture.
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. . . universal quadrature of the circle, namely the problem of finding a gen-
eral formula, or a rule in order to determine an arbitrary sector of the circle
or an arbitrary arc; and on the other [hand] he defines the problem of the
particular quadrature, . . . , namely the problem of finding the length of
a given arc or the area of a sector, or the whole circle . . . (page 424 of
[Crippa 2014a])

While Definition 3.10 solves the rectifiability problem, merely assuming the existence
of a µ does not solve ii) as we have no idea how to compute µ. However the addition
of the restricted arc-cosine, as in footnote 42 does so by calculating arc length as in
calculus. But a nice axiom system remains a dream.

Blanchette [Blanchette 2014] distinguishes two approaches to logic, deduc-
tivist and model-centric and argues that Hilbert represents the deductivist school and
Dedekind the model-centric. Essentially, the second amounts to suggesting that the-
ories are designed to try to describe an intuition of a particular structure. We briefly
consider the opposite direction; are there ‘canonical’ models of the various theories we
have been considering?

By modern tradition, the continuum is the real numbers and geometry is the
plane over it. Is there a smaller model which reflects the geometric intuitions discussed
here? For Euclid II, there is a natural candidate, the Euclidean plane over the surd
field Fs. Remarkably, this does not conflict with Euclid XII.2 (the area of a circle is
proportional to the square of the diameter). The model is Archimedean and π is not in
the model. But Euclid only requires a proportionality which defines a type Σ(x), not a
realization π of Σ(x). Plane geometry over the real algebraic numbers plays the same
role for E20,1. Both are categorical in Lω1,ω . In the second case, the axiomatization is
particularly nice; add the Archimedean axiom and say every field element is algebraic.

We have developed a method of assigning measures to angles. Now we ar-
gue that the methods of this section better reflect the Greek view than Dedekind’s
approach. Mueller ([Mueller 2006], 236) makes an important point distinguishing the
Euclid/Eudoxus use from Dedekind’s use of cuts.

One might say that in applications of the method of exhaustion the limit
is given and the problem is to determine a certain kind of sequence con-
verging to it, . . . Since, in the Elements the limit always has a simple de-
scription, the construction of the sequence can be done within the bounds
of elementary geometry; and the question of constructing a sequence for
any given arbitrary limit never arises.

In broad outline, this describes the methodology here.

But what if we want to demand the realization of various transcendentals?
Mueller’s description suggests the principle that we should only realize cuts in the field
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order that are recursive over a finite subset. We might call these Eudoxian transcen-
dentals. So a candidate would be a recursively saturated model43 of E2. Remarkably,
almost magically44, this model would also satisfy E2π,A,C,µ. A recursively saturated
model is necessarily non-Archimedean. There are however many different countable
recursively saturated models depending on which transcendentals are realized

Arguably there is a more canonical candidate for a natural model which admits
the ‘Eudoxian transcendentals’; take the smallest elementary submodel of < closed45

under A,C, µ that contains the real algebraic numbers and all realizations of recursive
cuts in Fs. The Scott sentence46 of this sentence is a categorical sentence in Lω1,ω . The
models in this paragraph are all countable; we cannot do this with the Hilbert model of
the plane over the real numbers; it has no countable Lω1,ω-elementary submodel.

We turn to the question of modesty. Mueller’s distinction can be expressed
in another way. Eudoxus provides a technique to solve certain problems, which are
specified in each application. In contrast, Dedekind’s postulate solves 2ℵ0 problems
at one swoop. Each of the theories E2π , Eπ,A,C , Eπ,A,C,µ and the later search for their
canonical models reflect this distinction. Each solves at most a countable number of
recursively stated problems.

In summary, we regard the replacement of ‘congruence class of segment’, by
‘length represented by an element of the field’ as a modest reinterpretation of Greek
geometry. But this treatment of length becomes immodest relative even to Descartes
when this length is a transcendental. And most immodest of all is to demand lengths
for arbitrary transcendentals.

4 And back to Hilbert

The non-first-order postulates of Hilbert play complementary roles. The Archimedean
Axiom is minimizing; each cut is realized by at most one point so each model has
cardinality at most 2ℵ0 . The Veronese postulate (See Footnote 49.) or Hilbert’s
Vollständigkeitaxiom is maximizing; in the absence of the Archimedean axiom each
cut is realized, the set of realizations could have arbitrary cardinality.

43A model is recursively saturated if every recursive type over a finite set is realized. [Barwise 1975]
44The magic is called resplendency. Every recursively saturated model is resplendent [Barwise 1975]

where M is resplendent if any formula ∃Aφ(A, c) that is satisfied in an elementary extension of M is
satisfied by some A′ on M . Examples are the formulas defining C,A, µ.

45Interpret A,C, µ on < in the standard way.
46For any countable structure M there is a ‘Scott’ sentence φM such that all countable models of φM are

isomorphic to M ; see chapter 1 of [Keisler 1971].
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4.1 The role of the Axiom of Archimedes in the Grundlagen

A primary aim expressed in Hilbert’s introduction is ‘to bring out as clearly as pos-
sible the significance of the groups of axioms.’ Much of his book is devoted to
this metamathematical investigation. In particular this includes Sections 9-12 (from
[Hilbert 1971]) concerning the consistency and independence of the axioms. Further
examples47, in Sections 31-34, shows that without the congruence axioms, the Axiom
of Archimedes is necessary to prove what Hilbert labels as Pascal’s (Pappus) theorem.
In the conclusion to [Hilbert 1962], Hilbert notes Dehn’s work on the necessary role
of the Archimedean Axiom in establishing over neutral geometry the relation between
the number of parallel lines and the sum of the angles of a triangle. These are all
metatheoretical results. In contrast, the use of the Archimedean Axiom in Sections 19
and 21 to prove equidecomposable is the same as equicomplementable (equal content)
(in 2 dimensions) is certainly a proof in the system. But an unnecessary one. As we
argued in Section 4.4 of Part I, Hilbert could just have easily defined ‘same area’ as
‘equicomplementable’ (as is a natural reading of Euclid).

These results demonstrate the breadth of Hilbert’s program. However, with
respect to the problem studied here, I contend that they do not affect the conclusion
that Hilbert’s full axiom set is an immodest axiomatization48 of Euclid I or Euclid II or
of the Cartesian data set since those data sets contain and are implied by the appropriate
first-order axioms.

Thus, we find no geometrical theorems in the Grundlagen that essentially de-
pend on the Axiom of Archimedes. Rather Hilbert’s use of the axiom of Archimedes is
i) to investigate the interaction of the various principles and ii) in conjunction with the
Vollständigkeitsaxiom, identify the field defined in the geometry with the independently
existing real numbers as conceived by Dedekind. Hilbert wrote that together V.1 and
V.2 allow one ‘to establish a one-one correspondence between the points of a segment
and the system of real numbers’. Archimedes Axiom makes the correspondence in-
jective and the Vollständigkeitsaxiom makes it surjective. We have noted here that the
grounding of real algebraic geometry (the study of systems of polynomial equations
in a real closed field) is fully accomplished by Tarski’s axiomatization. And we have
provided a first-order extension to deal with the basic properties of the circle. Since
Dedekind, Weierstrass, and others pursued the ‘arithmetization of analysis’ precisely
to ground the theory of limits, identifying the geometrical line as the Dedekind line
reaches beyond the needs of geometry.

47I thank the referee for pointing to the next two examples and emphasizing Hilbert’s more general goals
of understanding the connections among organizing principles. The reference to Dehn was dropped in later
editions of the Grundlagen.

48It might seem I could claim immodesty for Archimedes as well, in view of my first order axioms for π.
But that would be a cheat. I restricted that data set to Archimedes on the circle, while Archimedes proposed
a general notion of arc length and studied many other transcendental curves.
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4.2 Hilbert and Dedekind on Continuity

In this section we compare various formulations of the completeness axiom. Hilbert
wrote:

Axiom of Completeness (Vollständigkeitsaxiom): To a system of points,
straight lines, and planes, it is impossible to add other elements in such a
manner that the system thus generalized shall form a new geometry obey-
ing all of the five groups of axioms. In other words, the elements of geom-
etry form a system which is not susceptible of extension, if we regard the
five groups of axioms as valid. [Hilbert 1971]

In this article we have used the following adaptation of Dedekind’s postulate for geom-
etry (DG):

DG: Any cut in the linear ordering imposed on any line by the betweenness
relation is realized.

While this formulation is convenient for our purposes, it misses an essential
aspect of Hilbert’s system; in a context with a group, DG implies the Archimedean
Axiom, while Hilbert was aiming for an independent set of axioms. Hilbert’s axiom
does not imply Archimedes’. A variant VER49 on Dedekind’s postulate that does not
imply the Archimedean Axiom was proposed by Veronese in [Veronese 1889]. If VER
replaces DG, those axioms would also satisfy the independence criterion.

Hilbert’s completeness axiom in [Hilbert 1971] that asserts any model
of the rest of the theory is maximal, is inherently model-theoretic. The later
line-completeness [Hilbert 1962] is a technical variant50. Giovannini’s account
[Giovannini 2013], which relies on [Hallett & Majer 2004] includes a number of points
already made here and three more. First, Hilbert’s completeness axiom is not about
deductive completeness (despite having such consequences), but about maximality of
every model (page 145). Secondly (last line of 153) Hilbert expressly rejects Cantor’s
intersection of closed intervals axiom because it relies on a sequence of intervals and
‘sequence is not a geometrical notion’. A third intriguing note is an argument due to

49 The axiom VER (see [Cantú 1999]) asserts that for a partition of a linearly ordered field into two inter-
vals L,U (with no maximum in the lower L or minimum in the upper U ) and a third set in between with at
most one point, there is a point between L and U just if for every e > 0, there are a ∈ L, b ∈ U such that
b− a < e. Veronese derives Dedekind’s postulate from his axiom and Archimedes in [Veronese 1889] and
the independence in [Veronese 1891]. In [Levi-Civita 2 93] Levi-Civita shows there is a non-Archimean or-
dered field that is Cauchy complete. I thank Philip Ehrlich for the references and recommend section 12 of the
comprehensive [Ehrlich 2006]. See also the insightful reviews [Pambuccian 2014a] and [Pambuccian 2014b]
where it is observed that Vahlen [Vahlen 1907] also proved this axiom does not imply Archimedes.

50Since any point is in the definable closure of any line and any one point not one the line, one can’t
extend any line without extending the model. Since adding either the Dedekind postulate and or Hilbert
completeness gives a categorical theory satisfied by a geometry whose line is order isomorphic to < the two
axioms are equivalent (over HP5 + Archimedes Axiom).
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Baldus in 1928 that the parallel axiom is an essential ingredient in the categoricity of
Hilbert’s axioms51.

Here are two reasons for choosing Dedekind’s (or Veronese’s) version. The
most basic is that one cannot formulate Hilbert’s version as a sentence ΦH in second-
order logic52 with the intended interpretation (<2,G) |= ΦH . The axiom requires
quantification over subsets of an extension of the model which putatively satisfies it.
Here is a second-order statement53 Θ, where ψ denotes the conjunction of Hilbert’s
first four axiom groups and the axiom of Archimedes.

(∀X)(∀Y )∀R)[[X ⊆ Y ∧ (X,R�X) |= ψ ∧ (Y,R) |= ψ]→ X = Y ]

whose validity expresses Hilbert’s V.2 but whose truth in any particular structure is
not determined. Väänänen investigates this anomaly by distinguishing (on page 94
of [Väänänen 2012]) between (<2,G) |= Φ, for some Φ and the validity of Θ. He
expounds in [Väänänen 2014] a new notion, ‘Sort Logic’, which provides a logic with
a sentence Φ′H which, by allowing a sort for an extension, formalizes Hilbert’s V.2
with a more normal notion of truth in a structure. The second reason is that Dedekind’s
formulation, since it is about the geometry, not about its axiomatization, directly gives
the kind of information about the existence of transcendental numbers that we observe
in this paper.

In [Väänänen 2012], Väänänen discusses the categoricity of natural structures
such as real geometry when axiomatized in second-order logic. He has discovered the
striking phenomena of ‘internal categoricity’, which arguably refutes the view that sec-
ond order categoricity ‘depends on the set theory’. Suppose the second-order categoric-
ity of a structure A is formalized by the existence of sentence ΨA such that A |= ΨA

and any two models of ΨA are isomorphic. If this second clause in provable in a stan-
dard deductive system for second-order logic, then it is valid in the Henkin semantics,
not just the full semantics.

Philip Ehrlich has made several important discoveries concerning the connec-
tions between the two ‘continuity axioms’ in Hilbert and develops the role of maximal-
ity. First, he observes (page 172) of [Ehrlich 1995] that Hilbert had already pointed out
that his completeness axiom would be inconsistent if the maximality were only with re-
spect to the first-order axioms. Secondly, he [Ehrlich 1995, Ehrlich 1997] systematizes
and investigates the philosophical significance of Hahn’s notion of Archimedean com-
pleteness. Here the structure (ordered group or field) is not required to be Archimedean;

51Hartshorne (sections 40-43 of [Hartshorne 2000] gives a modern account of Hilbert’s argument that
replacing the parallel postulate by the axiom of limiting parallels gives a geometry that is determined by the
underlying (definable) field. With V.2 this gives a categoricical axiomatization for hyperbolic geometry.

52Of course, this analysis is anachronistic; the clear distinction between first and second-order logic did
not exist in 1900. By G, we mean the natural interpretation in <2 of the predicates of geometry introduced
in Section 1.

53I am leaving out many details, R is a sequence of relations giving the vocabulary of geometry and the
sentence ‘says’ they are relations on Y ; the coding of the satisfaction predicate is suppressed.
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the maximality condition requires that there is extension which fails to extend an
Archimedean equivalence class54. This notion provides a tool (not yet explored) for
investigating the non-Archimedean models studied in Section 3.

In a sense, our development is the opposite of Ehrlich’s in The absolute arith-
metic continuum and the unification of all numbers great and small [Ehrlich 2012].
Rather than trying to unify all numbers great and small in a class model we are inter-
ested in the minimal collection of numbers that allow the development of a geometry
that proved a modest axiomatization of the data sets considered.

4.3 Against the Dedekind Posulate for Geometry

Our fundamental claim is that (slight variants on) Hilbert’s first-order axioms provide
a modest descriptively complete axiomatization of most of Greek geometry.

One goal of Hilbert’s continuity axioms was to obtain categoricity. But cate-
goricity is not part of the data set but rather an external limitative principle. The notion
that there was ‘one’ geometry (i.e. categoricity) was implicit in Euclid. But it is not
a geometrical statement. Indeed, Hilbert described his metamathematical formulation
of the completeness axiom (page 23 of [Hilbert 1962]) as, ‘not of a purely geometrical
nature’. We argued in Section 3 of [Baldwin 2014] against the notion of categoricity
as an independent desiderata for an axiom system. We noted there that various authors
have proved under V = L, any countable or Borel structure can be given a categorical
axiomatization and that there are no strong structural consequences of the mere fact of
second order categoricity. However, there we emphasized the significance of axiom-
atizations, such as Hilbert’s, that reveal underlying principles concerning such iconic
structures as geometry and the natural numbers. Here we go further, and suggest that
even for an iconic structure there may be advantages to a first-order axiomatization that
trump the loss of categoricity.

We argue now that the Dedekind postulate is inappropriate (in particular im-
modest) in any attempt to axiomatize the Euclidean or Cartesian or Archimedean data
sets for several reasons:

1. The requirement that there be a straight-line segment measuring any circular arc
clearly contradicts the intentions of Euclid and Descartes.

2. As we have pointed out repeatedly, the Dedekind postulate is not needed to es-
tablish the properly geometrical propositions in the data set.

3. Proofs from Dedekind’s postulate obscure the true geometric reason for certain
theorems. Hartshorne writes:

54In an ordered group, a and b are Archimedes-equivalent if there are natural numbers m,n such that
m|a| > |b| and n|b| > |a|.
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... there are two reasons to avoid using Dedekind’s axiom. First, it
belongs to the modern development of the real number systems and
notions of continuity, which is not in the spirit of Euclid’s geometry.
Second, it is too strong. By essentially introducing the real num-
bers into our geometry, it masks many of the more subtle distinctions
and obscures questions such as constructibility that we will discuss
in Chapter 6. So we include the axiom only to acknowledge that it is
there, but with no intention of using it. ([Hartshorne 2000], 177)

4. The use of second-order axioms undermines a key proof method – informal (se-
mantic) proof – the ability to use higher order methods to demonstrate that there
is a first order proof. A crucial advantage of a first-order axiomatization is that it
licenses the kind of argument55 described in Hilbert and Ackerman56:

Derivation of Consequences from Given Premises; Relation to Uni-
versally Valid Formulas
So far we have used the predicate calculus only for deducing valid
formulas. The premises of our deductions, viz Axioms a) through f),
were themselves of a purely logical nature. Now we shall illustrate by
a few examples the general methods of formal derivation in the pred-
icate calculus . . . It is now a question of deriving the consequences
from any premises whatsoever, no longer of a purely logical nature.
The method explained in this section of formal derivation from
premises which are not universally valid logical formulas has its main
application in the setting up of the primitive sentences or axioms for
any particular field of knowledge and the derivation of the remain-
ing theorems from them as consequences . . . We will examine, at the
end of this section, the question of whether every statement which
would intuitively be regarded as a consequence of the axioms can be
obtained from them by means of the formal method of derivation.

We exploited this technique57 in Section 3 to provide axioms for the calculation of the
circumference and area of a circle.

Venturi58 formulates a distinction, which nicely summarizes the overall argu-
ment: ‘So we can distinguish two different kinds of axioms: the ones that are necessary
for the development of a theory and the sufficient one used to match intuition and for-
malization.’ In our terminology, only the necessary axioms make up a ‘modest descrip-
tive axiomatization’. For the geometry Euclid I (basic polygonal geometry), Hilbert’s

55We noted that Hilbert proved that a Desarguesian plane embeds in 3 space by this sort of argument in
Section 2.4 of [Baldwin 2013].

56Chapter 3, §11 Translation taken from [Blanchette 2014].
57Väänänen (in conversation made a variant of this apply to those sentences in second-order logic that are

internally categorical. He shows certain second-order propositions can be derived from the formal system of
second-order logic by employing 3rd (and higher) order arguments to provide semantic proofs.

58page 96 of [Venturi 2011]
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first-order axioms meet this goal. With E2π,A,C , a less immodest complete descriptive
axiomatization is provided that entails the basic properties of π. The Archimedes and
Dedekind postulates have a different goal; they secure the 19th century conception of
<2 to be the unique model and thus ground elementary analysis.

We expounded a procedure [Hartshorne 2000] to define the field operations
in an arbitrary model of HP5. We argued that the first-order axioms of EG suffice for
the geometrical data sets Euclid I and II, not only in their original formulation but by
finding proportionality constants for the area formulas of polygon geometry. By adding
axioms to require that the field is real closed we obtain a complete first-order theory
that encompasses many of Descartes innovations. The plane over the real algebraic
numbers satisfies this theory; thus, there is no guarantee that there is a line segment
of length π. Using the o-minimality of real closed fields, we can guarantee there is
such a segment by adding a constant for π and requiring it to realize the proper cut in
the rationals. However, guaranteeing the uniqueness of such a realization requires the
Lω1,ω Archimedean axiom.

Hilbert and the other axiomatizers of 100 years ago wanted more; they
wanted to secure the foundations of mathematical analysis. In full generality, this
surely depends on second-order properties. But there are a number of directions
of work on ‘definable analysis59’. The study of o-minimal theories makes major
strides. One direction of research in o-minimality has been to prove the expansion
of the real numbers by a particular functions (e.g. the Γ-function on the positive re-
als [Speissinger & van den Dries 2000]). Peterzil and Starchenko study the founda-
tions of calculus in [Peterzil & Starchenko 2000]. They approach complex analysis
through o-minimality of the real part in [Peterzil & Starchenko 2010]. The impact of
o-minimality on number theory was recognized by a Karp prize (Peterzil, Pila, Wilkie,
Starchenko) in 2014. And a non-logician [Range 2014], suggests using methods of
Descartes to teach Calculus. A key feature of the interaction of o-minimal theories
with real algebraic geometry has been the absence60 of Dedekind’s postulate for most
arguments [Bochnak et al. 1998].

References

Archimedes (1897). On the sphere and cylinder I. In The works of Archimedes,
pages 1–56. Dover Press. Translation and comments by T.L. Heath (including 1912
supplement).

Avigad, J., Dean, E., and Mumma, J. (2009). A formal system for Euclid’s elements.
Review of Symbolic Logic, 2:700–768.

59See Section 6.3 of [Baldwin 2017a].
60For an interesting perspective on the historical background of the banishment of infinitesimals in analysis

see [Borovik & Katz 2012].

24



Baldwin, J. (2013). Formalization, primitive concepts, and purity. Review of Symbolic
Logic, 6:87–128.

Baldwin, J. (2014). Completeness and categoricity (in power): Formalization without
foundationalism. Bulletin of Symbolic Logic, 20:39–79.

Baldwin, J. (2017a). Model Theory and the Philosophy of mathematical practice:
Formalization without Foundationalism. Cambridge University Press. to appear.

Baldwin, J. T. (2017b). Axiomatizing changing conceptions of the geometric contin-
uum I: Euclid and Hilbert.

Barwise, J., editor (1975). Admissible sets and structures. Perspectives in Mathemat-
ical Logic. Springer-Verlag.

Birkhoff, George (1932). A set of postulates for plane geometry. Annals of Mathe-
matics, 33:329–343.

Blanchette, P. (2014). The Birth of Semantic Entailment. lecture notes from ASL
European meeting, Vienna.

Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real Algebraic Geometry. A Series
of Modern Surveys in Mathematics. Springer-Verlag.

Borovik, A. and Katz, M. (2012). Who gave you the Cauchy-Weierstass tale? The
dual history of rigorous calculus. Foundations of Science, pages 2456–76.

Bos, H. (2001). Redefining Geometric Exactness. Sources and Studies in the History
of Mathematics and the Physical Sciences. Springer-Verlag.
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