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Abstract

In Part I of this paper we argued that the first-order systems HP5 and EG (de-
fined below) are modest complete descriptive axiomatization of most (described
more precisely below) of Euclidean geometry. In this paper we discuss two fur-
ther modest complete descriptive axiomatizations: Tarksi’s for Cartesian and ge-
ometry and new systems for adding π. In contrast we find Hilbert’s full second
order system immodest for geometrical purposes but appropriate as a foundation
for mathematical analysis.

Part I [Baldwin 2017] dealt primarily with Hilbert’s first order axioms for
geometry; Part II deals with his ‘continuity axioms’ – the Archimedean and complete-
ness axioms. Part I argued that the first-order systems HP5 and EG (defined below)
are ‘modest’ complete descriptive axiomatization of most (described more precisely
below) of Euclidean geometry. In this paper we consider some extensions of Tarski’s
axioms for elementary geometry to deal with circles. In this paper we argue: 1) that
Tarski’s first-order axiom set E2 is a modest complete descriptive axiomatization of
Cartesian geometry; 2) that the theories EGπ,C,A and E2π,C,A are modest complete
descriptive axiomatizations of the extensions of these geometries obtained to describe
area and circumference of the circle; and 3) that, in contrast, Hilbert’s full second-order
system in the Grundlagen is an immodest axiomatization of any of these geometries
but a modest descriptive axiomatization the late 19th century conception of the real
plane.

We recall some of the key material and notation from Part I. The paper in-
volved two key elements. The first was the following quasi-historical description. Eu-
∗Research partially supported by Simons travel grant G5402.
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clid founded his theory of area (of circles and polygons) on Eudoxus’ theory of pro-
portion and thus (implicitly) on the axiom of Archimedes. Hilbert showed any plane
satisfying his axioms HP5 (below) interprets a field and recovered Euclid’s theory for
polygons in a first-order theory. The Greeks and Descartes dealt only with geomet-
ric objects. The Greeks regarded multiplication as an operation from line segments to
plane figures. Descartes interpreted it as an operation from line segments to line seg-
ments. In the late 19th century, multiplication became an operation on points (that is
‘numbers’ in the coordinatizing field).

Secondly, we built on Detlefsen’s notion of complete descriptive axiomatiza-
tion and defined a modest complete descriptive axiomatization of a data set Σ (essen-
tially, of facts in the sense of Hilbert) to be a collection of sentences that imply all the
sentences in Σ and ‘not too many more’. Of course, this set of facts will be open-
ended, since over time more results will be proved. But if this set of axioms introduces
essentially new concepts to the area and certainly if it contradicts the understanding of
the original era, we deem the axiomatization immodest. We clarify these definitions in
terms of specific axiomatizations of various areas of geometry that we now describe.

1 Terminology and Notations

We begin by distinguishing several topics in plane geometry1 that represent distinct
data sets in Detlefsen’s sense. In cases where certain axioms are explicit, they are
included in the data set. Each set includes its predecessors.

Euclid I, polygonal geometry: Book I (except I.22), Book II.1-II.13, Book III (except
III.1 and III.17), Book VI.)

Euclid II, circle geometry: I.22, II.14, III.1, III.17 and Book IV.

Archimedes, arc length and π: XII.2, Book IV (area of circle proportional to square
of the diameter), approximation of π, circumference of circle proportional to
radius, Archimedes’ axiom.

Descartes, higher degree polynomials: nth roots; coordinate geometry

Hilbert: The Dedekind plane

Our division of the data sets is somewhat arbitrary and is made with the sub-
sequent axiomatizations in mind. We explain placing the Axiom of Archimedes in
the Archimedes data set in discussing Hilbert’s analysis of the relation between axiom

1In the first instance we draw from Euclid: Books I-IV, VI and XII.1, 2 clearly concern plane geometry;
XI, the rest of XII and XIII deal with solid geometry; V and X deal with a general notion proportion and with
incommensurability. Thus, below we put each proposition Books I-IV, VI, XII.1,2 in a group and consider
certain geometrical aspects of Books V and X.
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groups in Sections 3 and 4. Further, we distinguish the Cartesian data set, in Descartes’s
historical sense, from Hilbert’s identification of Cartesian geometry with the Dedekind
line and explain the reason for that distinction in Section 3.

In Part I, we formulated our formal system in a two-sorted vocabulary τ cho-
sen to make the Euclidean axioms (either as in Euclid or Hilbert) easily translatable
into first-order logic. This vocabulary includes unary predicates for points and lines, a
binary incidence relation, a ternary collinearity relation, a quaternary relation for line
congruence and a 6-ary relation for angle congruence. The circle-circle intersection
postulate asserts if the interiors of two circles (neither contained in the other) have a
common point, the circles intersect in two points.

The following axiom sets2 are defined to organize these data sets.

1. first-order axioms

HP, HP5: We write HP for Hilbert’s incidence, betweenness3, and congruence
axioms. We write HP5 for HP plus the parallel postulate. A Pythagorean
field is any field associated4 with a model of HP5; such fields are charac-
terized by closure under

√
(1 + a2).

EG: The axioms for Euclidean geometry, denoted EG5, consist of HP5 and in
addition the circle-circle intersection postulate. A Euclidean plane is a
model of EG; the associated Euclidean field is closed under

√
a (a > 0).

E2: Tarski’s axiom system [Tarski 1959] for a plane over a real closed field
(RCF6).

EGπ and Eπ: Two new systems extend EG and E2.

2. Hilbert’s continuity axioms, infinitary and second-order

AA: The sentence in Lω1,ω expressing the Archimedean axiom.

Dedekind: Dedekind’s second-order axiom that there is a point in each irra-
tional cut in the line.

Notation 1.1. Closing a plane under ruler and compass constructions corresponds to
closing the coordinatizing ordered field under square roots of positive numbers to give
a Euclidean field7. As in Example 4.2.2.2 of Part I , Fs (surd field) denotes the minimal

2The names HP, HP5, and EG come from [Hartshorne 2000] and E2 from [Tarski 1959].
3These include Pasch’s axiom (B4 of [Hartshorne 2000]) as we axiomatize plane geometry. Hartshorne’s

version of Pasch is that any line intersecting one side of triangle must intersect one of the other two.
4The field F is associated with a plane Π if Π is the Cartesian plane on F 2.
5In the vocabulary here, there is a natural translation of Euclid’s axioms into first-order statements. The

construction axioms have to be viewed as ‘for all– there exist sentences. The axiom of Archimedes is of
course not first-order. We write Euclid’s axioms for those in the original [Euclid 1956] vrs (first-order)
axioms for Euclidean geometry, EG. Note that EG is equivalent to (i.e. has the same models) as the system
laid out in Avigad et al [Avigad et al. 2009], namely, planes over fields where every positive element as a
square root). The latter system builds the use of diagrams into the proof rules.

6RCF abbreviates ‘real closed field’; these are the ordered fields such that every positive element has a
square root and every odd degree polynomial has at least one root.

7We call this process ‘taking the Euclidean closure’ or adding constructible numbers.

3



field whose geometry is closed under ruler and compass construction. Having named
0, 1, each member in Fs is definable over the emptyset8

We referred to [Hartshorne 2000] to assert in Part I the sentences of Euclid I
are provable in HP5 and the additional sentences of Euclid II are provable in EG. Here
we consider the data sets of Archimedes, Descartes, and Dedekind and argue for the
following claim.

1. Tarski’s axioms E2 are a modest descriptive axiomatization of the Cartesian data
set.

2. EG2
π (Eπ) are a modest descriptive axiomatization of Euclidean Geometry

(Cartesian geometry) extended by the Archimedean data set.

3. Hilbert’s axioms groups I-V give a modest descriptive axiomatization of the
second-order geometrical statements concerning the plane <2 but the system is
immodest for even the Cartesian data set.

2 From Descartes to Tarski

Descartes and Archimedes represent distinct and indeed orthogonal directions for mak-
ing the geometric continuum precise. These directions can be distinguished as fol-
lows. Archimedes goes directly to transcendental numbers while Descartes investigates
curves defined by polynomials. Of course, neither thought in these terms, although
Descartes’ resistance to squaring the circle shows his implicit awareness of the prob-
lem. We deviate from chronological order and discuss Descartes before Archimedes;
as, in Section 3 we will extend both Euclidean and Cartesian geometry by adding π.

As was highlighted above in describing the data sets, the most important as-
pects of the Cartesian data set are: 1) the explicit definition ([Descartes 1954], 1) of
the multiplication of line segments to give a line segment, which breaks with Greek
tradition9; and 2) on the same page to announce constructions for the extraction10 of
nth roots for all n. Marco Panza formulates a key observation about the ontological
importance of these innovations

The first point concerns what I mean by ‘Euclid’s geometry’. This is the
theory expounded in the first six books of the Elements and in the Data. To
be more precise, I call it ‘Euclid’s plane geometry’, or EPG, for short. It is

8That is for each point a constructible by ruler and compass there is a formula φa(x) such that EG `
(∃!1x)φ(x). in EG. That is, there is a unique solution to φ.

9His proof is still based on Eudoxus.
10This extraction cannot be done in EG, since EG is satisfied in the field which has solutions for all

quadratic equations but not those of odd degree. See section 12 of [Hartshorne 2000].
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not a formal theory in the modern sense, and, a fortiori, it is not, then, a de-
ductive closure of a set of axioms. Hence, it is not a closed system, in the
modern logical sense of this term. Still, it is no11 more a simple collection
of results, nor a mere general insight. It is rather a well-framed system,
endowed with a codified language, some basic assumptions, and relatively
precise deductive rules. And this system is also closed, in another sense
([Julien 1964] 311-312), since it has sharp-cut limits fixed by its language,
its basic assumptions, and its deductive rules. In what follows, especially
in section 1, I shall better account for some of these limits, namely for
those relative to its ontology. More specifically, I shall describe this on-
tology as being composed of objects available within this system, rather
than objects which are required or purported to exist by force of the as-
sumptions that this system is based on and of the results proved within it.
This makes EPG radically different from modern mathematical theories
(both formal and informal). One of my claims is that Descartes geometry
partially reflects this feature of EPG. ([Panza 2011], 43)

In our context we interpret Panza’s ‘composed of objects available within this system’
model theoretically as the existence of certain starting points and the closure of each
model of the system under admitted constructions.

We take Panza’s ‘open’ system to include Descartes’ ‘linked constructions’12

which greatly extend the ruler and compass constructions that are licensed by EG.
Descartes endorses such ‘mechanical’ constructions as those used in the duplication of
the cubic as geometric. According to Molland ([Molland 1976], 38) “Descartes held
the possibility of representing a curve by an equation (specification by property)” to
be equivalent to its “being constructible in terms of the determinate motion criterion
(specification by genesis)”. But as Crippa points out ([Crippa 2014a], 153), Descartes
did not prove this equivalence and there is some controversy as to whether the 1876
work of Kempe solves the precise problem. Descartes rejects as non-geometric any
method for quadrature of the circle.

Descartes’ proposal to organize geometry via the degree of polynomials
([Descartes 1954], 48) is reflected in the modern field of ‘real’ algebraic geometry,
i.e., the study of polynomial equalities and inequalities in the theory of real closed or-
dered fields. To justify this geometry we adapt Tarski’s ‘elementary geometry’. This
move makes a significant conceptual step away from Descartes whose constructions
were on segments and who did not regard a line as a set of points, while Tarski’s axiom
are given entirely formally in a one-sorted language of relations on points. In our mod-
ern understanding of an axiom set the translation is routine, but anachronistic; Tarski
[Tarski 1959] gives a fully-formalize theory for elementary geometry and proves it is
complete. We will describe the theory using the following equivalent and much more
understandable set of axioms.

11There appears to be an error here. Probably ‘more a’ should be deleted. jb
12The types of constructions allowed are analyzed in detail in Section 1.2 of [Panza 2011] and the distinc-

tions with the Cartesian view in Section 3. See also [Bos 2001].
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Tarski’s elementary geometry The theory E2 is axiomatized by the follow-
ing set of axioms in our vocabulary.

1. Euclidean plane geometry13 (HP5);

2. Either of the following two sets of axioms which are equivalent over HP5:

(a) An infinite set of axioms declaring the field is formally real and that every
polynomial of odd-degree has a root.

(b) The axiom schema of continuity described just below.

Tarski’s system differs from Descartes in several ways. First, Tarski pre-
scribes a ternary relation on points, thus making explicit that a line is viewed as a
set of points14. Secondly, with Tarski’s model theory we can specify a minimal model,
the plane over the real algebraic numbers15 of the theory, one that contains exactly (as
we now understand) the objects Descartes viewed as solutions of those problems that
it was ‘possible to solve’ (Chapter 6 of [Crippa 2014b]).

Tarski observed that Dedekind’s axiom has an alternative formulation. Re-
quire that for any two sets A and B, if beyond some point a all elements of A are
below all elements of B, there there is a point b which is (beyond a) above all of A and
below all of B. Tarski [Givant & Tarski 1999] imposes a first-order version of this by
an Axiom Schema of Continuity:

(∃a)(∀x)(∀y)[α(x) ∧ β(y)→ B(axy)]→ (∃b)(∀x)(∀y)[α(x) ∧ β(y)→ B(xby)],

where α, β are first-order formulas, the first of which does not contain any free occur-
rences of a, b, y and the second any free occurrences of a, b, x. Recalling thatB(x, z, y)
represents ‘z is between16 x and y’, the hypothesis asserts the solutions of the formulas
α and β behave as the A,B above. This schema allows the solution of odd degree
polynomials. By the completeness of real closed fields, this theory is also complete17.

In Detlefsen’s terminology Tarski has laid out a Gödel complete axiomatiza-
tion, that is, the consequences of his axioms are a complete first-order theory of (in
our terminology) Cartesian plane geometry. This completeness guarantees that if we
keep the vocabulary and continue to accept the same data set no axiomatization18 can
account for more of the data. There are certainly open problems in plane geometry

13Note that circle-circle intersection is implied by the axioms in 2).
14Writing in 1832, Bolyai ([Gray 2004], appendix) wrote in his ‘explanation of signs’, ‘The straight AB

means the aggregate of all points situated in the same straight line with A and B.’ This is the earliest
indication I know of the transition to an extensional version of incidence. William Howard showed me this
passage.

15That is, a real number that satisfies a polynomial with rational coefficients. A real number that satisfies
no such polynomial is called transcendental.

16More precisely in terms of the linear order B(xyz) means x ≤ y ≤ z.
17Tarski [Tarski 1959] proves that planes over real closed fields are exactly the models of his elementary

geometry, E2.
18Of course, more perspicuous axiomatizations may be found. Or one may discover the entire subject is

better viewed as an example in a more general context.
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[Klee & Wagon 1991]. But however they are solved, the proof will be formalizable in
E2. Thus, in our view, the axioms are descriptively complete.

The axioms E2 assert, consistently with Descartes’ conceptions and theorems,
the solutions of certain equations. So they provide a modest complete descriptive ax-
iomatization of the Cartesian data set. In the case at hand, however, there are more spe-
cific reasons for accepting the geometry over real closed fields as ‘the best’ descriptive
axiomatization. It is the only one which is decidable and ‘constructively justifiable’.

Remark 2.1 (Undecidability and Consistency). Ziegler [Ziegler 1982] has shown that
every nontrivial finitely axiomatized subtheory19 of RCF is not decidable. Thus both
to approximate more closely the Dedekind continuum and to obtain decidability we re-
strict to the theory of planes over RCF and thus to Tarski’s E2 [Givant & Tarski 1999].
The biinterpretability between RCF and the theory of all planes over real closed fields
yields the decidability of E2 and a finitary proof of its consistency20. The crucial fact
that makes decidability possible is that the natural numbers are not first-order definable
in the real field.

As we know, the crucial contribution of Descartes to geometry, is coordinate
geometry. Tarski provides a converse; his interpretation of the plane into the coor-
dinatizing line [Tarski 1951] unifies the study of the ‘geometry continuum’ with ax-
iomatizations of ‘geometry’. We have used Tarski’s axioms for plane geometry from
[Tarski 1959]. However, they extend by a family of axioms for higher dimensions
[Givant & Tarski 1999] to ground modern real algebraic geometry. This natural exten-
sion demonstrates the fecundity of Cartesian geometry. Descartes used polynomials in
at most two variables. But once the field is defined, the semantic extension to spaces of
arbitrary finite dimension, i.e. polynomials in any finite number of variables, is imme-
diate. Thus, every n-space is controlled by the field so the plane geometry determines
the geometry of any finite dimension. Although the Cartesian data set concerns poly-
nomials of very few variables and arbitrary degree, all of real algebraic geometry is
latent.

There are three post-Descartes innovations that we have largely neglected in
these papers: a) higher dimensional geometry, b) projective geometry c) definability
by analytic functions. The first is a largely nineteenth century innovation which sig-
nificantly impact Descartes’s analytic geometry by introducing equations in more than
three variables. The second is essentially bi-interpretable. So both of these threads are
more or less orthogonal to our development here which concerns the actual structure
of the line (and moves more or less automatically to higher dimensional or projective
geometry). We addressed c) briefly in Part I while discussing Dieudonné’s definition
of analytic geometry. In a sense, the question is anachronistic; Hilbert writes almost
thirty years before Artin-Schreier isolate the notion of real closed field, thirty-five be-
fore Tarski proves the theory is complete and ninety-five before o-minimality provides

19A nontrivial subtheory is one satisfied by one of <, or a p-adic field Qp.
20The geometric version of this result was conjectured by Tarski in [Tarski 1959]: The theory RCF is

complete and recursively axiomatized so decidable. For the context of Ziegler result and Tarski’s quantifier
elimination in computer science see [Makowsky 2013].

7



a unifying scheme capturing real algebraic and some of Dieudonné’s analytic geometry
(ex and the restriction of any analytic function to a compact domain).

3 Archimedes: π and the circumference and area of cir-
cles

We begin with our rationale for placing various facts in the Archimedean data set21.
Three propositions encapsulate the issue: Euclid VI.1 (area of a triangle), Euclid XII.2
(area of a circle), and Archimedes proof that the circumference of a circle is propor-
tional to the diameter. Hilbert showed that VI.1 is provable already in HP5 (Part I).
While Euclid implicitly relies on the Archimedean axiom, Archimedes makes it ex-
plicit in a recognizably modern form. Euclid does not discuss the circumference of
a circle. To deal with that issue, Archimedes develops his notion of arc length. By
beginning to calculate approximations of π, Archimedes is moving towards the treat-
ment of π as a number. Consequently, we distinguish VI.1 from the Archimedean
axiom and the theorems on measurement of a circle, and place the latter instead in the
Archimedean data set. The validation in the theories EGπ and E2π set out below of the
formulas A = πr2 and C = πd answer questions of Hilbert and Dedekind not ques-
tions of Euclid though possibly Archimedes. But, we think the theory EGπ is closer
to the Greek origins than to Hilbert’s second-order axioms.

The geometry over a Euclidean field (every positive number has a square root)
may have no straight line segment of length π, since the model over the surd field (No-
tation 1.1) does not contain π. We want to find a theory which proves the circumference
and area formulas for circles. Our approach is to extend the theory EG so as to guaran-
tee that there is a point in every model which behaves as π does. While for Archimedes
and Euclid, sequences constructed in the study of magnitudes in the Elements are of ge-
ometric objects, not numbers, in a modern account, as we saw already while discussing
areas of polygons in Part I, we must identify the proportionality constant and verify
that it represents a point in any model of the theory22. Thus this goal diverges from a
‘Greek’ data set and indeed is orthogonal to the axiomatization of Cartesian geometry
by Tarski’s E2.

This shift in interpretation drives the rest of this section. We search first for the
solution of a specific problem, finding π in the underlying field. We established in Part
I that for each model of EG and any line of the model, the surd field Fs is embeddable
in the field definable on that line. On this basis we can interpret the Greek theory of
limits by way of cuts in the ordered surd field Fs.

21It is not in any sense chronological, as Archimedes attributes the method of exhaustion to Eudoxus who
precedes Euclid. Post-Heath scholarship by Becker, Knorr, and Menn [Menn 2017] have identified four
theories of proportion in the generations just before Euclid. [Menn 2017] led us to the three propositions.

22For this reason, Archimedes needs only his postulate while Hilbert would also need Dedekind’s postulate
to prove the circumference formula.
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Euclid’s third postulate, ‘describe a circle with given center and radius’, en-
tails that a circle is uniquely determined by its radius and center. In contrast, Hilbert
simply defines the notion of circle and proves the uniqueness. (See Lemma 11.1 of
[Hartshorne 2000].) In either case we have: two segments of a circle are congruent
if they cut the same central angle. As the example of geometry over the real alge-
braic numbers shows, there is no guarantee that there is a straight line segment whose
‘length’ is π. We remedy this with the following extensions, EGπ and E2(π), of the
systems EG and E2.

Axioms for π: Add to the vocabulary a new constant symbol π. Let in (cn) be the
perimeter of a regular 3 ∗ 2n-gon inscribed23 (circumscribed) in a circle of radius 1.
Let Σ(π) be the collection of sentences (i.e. a type24)

in < 2π < cn

for n < ω. Now, we can define the new theories.

1. EGπ denotes the deductive closure of the following set of axioms in the vocab-
ulary τ augmented by constant symbols 0, 1, π.

(a) the axioms EG of a Euclidean plane;

(b) Σ(π).

2. E2(π) is formed by adding Σ(π) to E2 and taking the deductive closure.

Second dicta on constants: Here we named a further single constant π. But
the effect is very different than naming 0 and 1 (Compare the Dicta on constants just
after Theorem 4.2.1 of Part I.) The new axioms specify the place of π in the ordering
of the definable points of the model. So the data set is seriously extended.

Theorem 3.1. EGπ is a consistent but not finitely axiomatizable25 incomplete theory.

Proof. A model of EGπ is given by closing Fs ∪ {π} ⊆ < to a Euclidean
field. To see the theory is not finitely axiomatizable, for any finite subset Σ0(π) of
Σ(π) choose a real algebraic number p satisfying Σ0 when p is substituted for π; close
Fs ∪ {p} ⊆ < to a Euclidean field to get a model of EG ∪Σ0 which is not a model of
EGπ . 3.1

23I thank Craig Smorynski for pointing out that is not so obvious that that the perimeter of an inscribed
n-gon is monotonic in n and reminding me that Archimedes avoided the problem by starting with a hexagon
and doubling the number of sides at each step.

24Let A ⊂ M |= T . A type over A is a set of formulas φ(x,a) where x, (a) is a finite sequence of
variables (constants from A) that is consistent with T . Taking T as EG, a type over all Fs is a type over ∅
since each element is definable without parameters in EG.

25Ziegler ([Ziegler 1982], Remark 2.1) shows that EG is undecidable. Almost surely his proof can be
modified to show the undecidability of EGπ , but I haven’t done so.
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Dicta on Definitions or Postulates: We now extend the ordering on seg-
ments by adding the lengths of ‘bent lines’ and arcs of circles to the domain. Two
approaches26 to this step are:

a) our approach to introduce an explicit but inductive definition;

b) or add a new predicate to the vocabulary and new axioms specifying its behavior.
This alternative reflects in a way the trope that Hilbert’s axioms are implicit defini-
tions.

We can make choice a) in Definitions 3.2, 3.3 etc. is available only because we have
already established a certain amount of geometric vocabulary. Crucially the definition
of bent lines (and thus the perimeter of certain polygons) is not a single definition but
a schema of formulas φn defining the property for each n.

Definition 3.2. Let n ≥ 2. By a bent line27 b = X1 . . . Xn we mean a sequence of
straight line segments XiXi+1 such that each end point of one is the initial point of the
next.

1. Each bent line b = X1 . . . Xn has a length [b] given by the straight line segment
composed of the sum of the segments of b.

2. An approximant to the arc X1 . . . Xn of a circle with center P , is a bent line
satisfying:

(a) X1, . . . Xn, Y1, . . . Yn are points such that all PXi are congruent and each
Yi is in the exterior of the circle.

(b) Each of X1Y1, YiYi+1, YnXn is a straight line segment.

(c) X1Y1 is tangent to the circle at X1; Yn−1Xn is tangent to the circle at Xn.

(d) For 1 ≤ i < n, YiYi+1 is tangent to the circle at Xi.

Definition 3.3. Let S be the set (of equivalence classes of) straight line segments. Let
Cr be the set (of equivalence classes under congruence) of arcs on circles of a given
radius r. Now we extend the linear order on S to a linear order <r on S ∪ Cr as
follows. For s ∈ S and c ∈ Cr

1. The segment s <r c if and only if there is a chord XY of a circular segment
AB ∈ c such that XY ∈ s.

2. The segment s >r c if and only if there is an approximant b = X1 . . . Xn to c
with length [b] = s and with [X1 . . . Xn] >r c.

26We could define < on the extended domain or, in style b), we could add an <∗ to the vocabulary and
postulate that <∗ extends < and satisfies the properties of the definition.

27This is less general than Archimedes (page 2 of [Archimedes 1897]) who allows segments of arbitrary
curves ‘that are concave in the same direction’.
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It is easy to see that this order is well-defined since each chord of an arc is
shorter than the arc and the arc is shorter than any approximant to it.

Lemma 3.4 (Encoding a second approximation of π). Let In and Cn denote the area
of the regular 3× 2n-gon inscribed or circumscribing the unit circle.

In < π < Cn

for n < ω. Then EGπ proves28 each of these sentences is satisfied by π.

Proof. The (In, Cn) define the cut for π in the surd field Fs reals and the
(in, cn) define the cut for 2π and it is a fact (i.e. for every natural number t, there exists
anNt such that if k, `,m, n ≥ N the distances between any pair of ik, c`, Im, In is less
than 1/t.) about the surd field that these are the same cut. 3.4

To argue that π, as implicitly defined by the theory EGπ , serves its geometric
purpose, we add new unary function symbols C and A mapping our fixed line to itself
and satisfying a scheme asserting that these functions do in fact produce the required
limits. The definitions are identical except for the switch from the area to the perimeter
of the approximating polygons. This strategy is analogous to that in an introductory
calculus course of describing the properties of area and proving that the integral satis-
fies them.

Definition 3.5. A unary function C(r) ((A(r)) mapping S, the set of equivalence
classes (under congruence) of straight line segments, into itself that satisfies the con-
ditions below is called a circumference function (area function).

1. C(r) (A(r)) is less than the perimeter (area) of a regular 3 × 2n-gon circum-
scribing circle of radius r.

2. C(r) (A(r)) is greater than the perimeter (area) of a regular 3×2n-gon inscribed
in a circle of radius r.

We extend EGπ to include definitions of C(r) and A(r).

Definition 3.6. 1. The theory EGπ,A is the extension of the τ ∪ {0, 1, π}-theory
EGπ obtained by the explicit definition A(r) = πr2.

2. The theory EGπ,A,C is the extension of the τ ∪ {0, 1, π, A}-theory EGπ,A, ob-
tained by the explicit definition C(r) = 2πr.

In any model ofEGπ,A,C for each r there is an s ∈ S whose length29 C(r) =
2πr is less than the perimeters of all circumscribed polygons and greater than those of

28Note that we have not attempted to justify the convergence of the in, cn, In, Cn in the formal system
EGπ . We are relying on mathematical proof, not logical deduction; see item 5 in Section 4.3 for elaboration.

29A similar argument works for area and A(r).
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the inscribed polygons. We can verify that by choosing n large enough we can make in
and cn as close together as we like (more precisely, for given m differ by < 1/m). In
phrasing this sentence I follow Heath’s description30 of Archimedes statements, “But
he follows the cautious method to which the Greeks always adhered; he never says that
a given curve or surface is the limiting form of the inscribed or circumscribed figure;
all that he asserts is that we can approach the curve or surface as nearly as we please.”

Our definition of EGπ then makes the following metatheorem immediate. In
the vocabulary with these functions named we have, since the In(Cn) converge to one
half of the limit of the in(Cn) and we describe the same cut:

Theorem 3.7. In EG2
π,A,C , C(r) = 2πr is a circumference function and A(r) = πr2

is an area function.

In an Archimedean field there is a unique interpretation of π and thus a unique
choice for a circumference function with respect to the vocabulary without the constant
π. By adding the constant π to the vocabulary we get a formula which satisfies the
conditions in every model. But in a non-Archimedean model, any point in the monad
of 2πr would equally well fit our condition for being the circumference.

We omit the technical details of 1) modifying the development of the area
function of polygons described in Section 4.5 of Part I, by extending the notion of
figure to include sectors of circles and 2) formalizing a notion of equal area, including a
schema for approximation by finite polygons. These details complete the argument that
the formal area function A(r) does indeed compute the area. We did the harder case
of circumference to emphasize the innovation of Archimedes in defining arc length.
Unlike area it is not true that the perimeter of a polygon containing a second is larger
that the perimeter of the enclosed field. By dealing with a special case, we suppressed
Archimedes anticipation of the notion of bounded variation.

We have extended our descriptively complete axiomatization from the polyg-
onal geometry of Hilbert’s first-order axioms (HP5) to Euclid’s results on circles and
beyond. Euclid doesn’t deal with arc length at all and we have assigned straight line
segments to both the circumference and area of a circle. So this would not qualify as
a modest axiomatization of Greek geometry but only of the modern understanding of
these formulas. This distinction is not a problem for the notion of descriptive axiom-
atization. The facts are sentences. The formulas for circumference and area not the
same sentences as the Euclid/Archimedes statement in terms of proportions, but they
are implied by the modern equational formulations.

We now want to make a similar extension of E2. Dedekind (page 37-38 of
[Dedekind 1963]) observes that the field of real algebraic numbers is ‘discontinuous
everywhere’ but ‘all constructions that occur in Euclid’s elements can . . . be just as
accurately effected as in a perfectly continuous space’. Strictly speaking, for construc-
tions this is correct. But the proportionality constant between a circle and its circum-
ference π is absent, so, even more, not both a straight line segment of the same length

30Archimedes, Men of Science [Heath 2011], Chapter 4.
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as the circumference and the diameter are in the model31. We want to find a theory
which proves the circumference and area formulas for circles and countable models of
the geometry over RCF, where ‘arc length behaves properly’.

In contrast to Dedekind and Hilbert, Descartes eschews the idea that there
can be a ratio between a straight line segment and a curve. As [Crippa 2014b] writes,
“Descartes excludes the exact knowability of the ratio between straight and curvilinear
segments”:

... la proportion, qui est entre les droites et les courbes, n’est pas connue,
et mesme ie croy ne le pouvant pas estre par les hommes, on ne pourroit
rien conclure de là qui fust exact et assuré32.

Hilbert33 asserts that there are many geometries satisfying his axioms I-IV
and V1 but only one, ‘namely the Cartesian geometry’ that also satisfies V2. Thus
the conception of ‘Cartesian geometry34’ changed radically from Descartes to Hilbert;
even the symbol π was not introduced until 1706 (by Jones). Nevertheless, we now
define a theory E2π analogous to EGπ which does not depend on the Dedekind axiom
but can be obtained in a first-order way.

Given Descartes’ proscription of π, the new system will be immodest with
respect to the Cartesian data set. But we will argue at the end of this section that
both of our additions of π are closer to Greek conceptions than the Dedekind axiom.
At this point we need some modern model theory to guarantee the completeness of
the theory we are defining. A first-order theory T for a vocabulary including a bi-
nary relation < is o-minimal if every model of T is linearly ordered by < and every
1-ary formula is equivalent in T to a Boolean combination of equalities and inequal-
ities [Van den Dries 1999]. Anachronistically, the o-minimality of the reals is a main
conclusion of Tarski in [Tarski 1931].

Theorem 3.8. Form E2π by adjoining Σ(π) to E2. E2π is first-order complete for the
vocabulary τ augmented by constant symbols 0, 1, π.

Proof. We have established that there is definable ordered field with domain
the line through 01. By Tarski, the theory of this real closed field is complete. The
field is bi-interpretable with the plane [Tarski 1951] so the theory of the geometry T is
complete as well. Further by Tarski, the field is o-minimal. Therefore, the type over the
empty set of any point on the line is determined by its position in the linear ordering of
the subfield Fs (Notation 1.1). Each in, cn is an element of the field Fs. This position

31Thus, Birkhoff’s protractor postulate is violated.
32Descartes, Oeuvres, vol. 6, p. 412. Crippa also quotes Averros as emphatically denying the possibility

of such a ratio and notes Vieta held similar views.
33See pages 429-430 of [Hallett & Majer 2004].
34One wonders whether it had changed when Hilbert wrote. That is, had readers at the turn of the 20th

century already internalized a notion of Cartesian geometry which entailed Dedekind completeness and so
was at best formulated in the 19th century (Bolzano-Cantor-Weierstrass-Dedekind).
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in the linear order of 2π in the linear order on the line through 01 is given by Σ. Thus
T ∪ Σ(π) is a complete theory. 3.1

Building on Definition 3.2 we extend the theory E2π .

Definition 3.9. We define two new theories expanding E2π .
1. The theory E2π,A is the extension of the τ ∪ {0, 1, π}-theory E2π obtained by the

explicit definition A(r) = πr2

2. The theory E2π,A,C is the extension of the τ ∪ {0, 1, π}-theory E2π,A obtained by
adding the explicit definition C(r) = 2πr.

Theorem 3.10. The theory E2π,A,C is a complete, decidable extension of EGπ,A E2π
that is coordinatized by an o-minimal field. Moreover, in E2π,A,C , C(r) = 2πr is a
circumference function (i.e. satisfies all the ιn and γn) and A(r) = πr2 is an area
function.

Proof. We are adding definable functions to E2π so o-minimality and com-
pleteness are preserved. The theory is recursively axiomatized and complete so de-
cidable. The formulas continue to compute area and circumference correctly (as in
Theorem 3.7) since they extend EGπ,A,C . 3.10

This theory is sufficient to prove π is transcendental. Lindemann proved that
π does not satisfy a polynomial of degree n for any n. Thus for any polynomial over
the rationals p(π) 6= 0 is a consequence of the complete type generated by Σ(π) and
so a theorem of E20,1,π . We explore this type of argument in point 5 of Section 4.3.

We now extend the known fact that the theory of real closed fields is ‘fini-
tistically justified’ (in the list of such results on page 378 of [Simpson 2009]) to
E2π,A,C . For convenience, we lay out the proof with reference to results35 recorded
in [Simpson 2009].

Fact 3.11. The theory E2 is bi-interpretable with the theory of real closed fields. And
thus it (as well as E2π,A,C) is finitistically consistent, in fact, provably consistent in
primitive recursive arithmetic (PRA).

Proof. By Theorem II.4.2 of [Simpson 2009], RCA0 proves the system
(Q,+,×, <) is an ordered field and by II.9.7 of [Simpson 2009], it has a unique real
closure. Thus the existence of a real closed ordered field and so Con(RCOF ) is prov-
able in RCA0. (Note that the construction will imbed the surd field Fs.)

Lemma IV.3.3 [Friedman et al. 1983] asserts the provability of the complete-
ness theorem (and hence compactness) for countable first-order theories from WKL0.

35We use RCOF here for what we have called RCF before. Model theoretically adding the definable
ordering of a formally real field is a convenience. Here we want to be consistent with the terminology
in [Simpson 2009]. Note that Friedman[Friedman 1999] strengthens the results for PRA to exponential
function arithmetic (EFA). Friedman reports Tarski had observed the constructive consistency proof much
earlier. The theories discussed here, in increasing proof strength are EFA, PRA, RCA0 and WKL0.
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Since every finite subset of Σ(π) is easily seen to be satisfiable in any RCOF, it fol-
lows that the existence of a model of E2π is provable in WKL0. Since WKL0 is
π0
2-conservative over PRA, we conclude PRA proves the consistency E2π . As E2π,C,A

is an extension by explicit definitions its consistency is also provable in PRA. 3.11

It might be objected that such minor changes as adding to E the name of the
constant π, or adding the definable functions C and A undermines the earlier claim
that E2 is descriptively complete for Cartesian geometry. But π is added because the
modern view of ‘number’ requires it and increases the data set to include propositions
about π which are inaccessible to E2.

We have so far tried to find the proportionality constant only for a specific
situation. In the remainder of the section, we consider several ways of systematizing
the solution of families of such problems. First, still in a specific case we look for
models where every angle determines an arc that corresponds to the length of a straight
line segment. We consider several model theoretic schemes to organize such problems.

Birkhoff [Birkhoff, George 1932] posited the following protractor postulate
in his system36.

POSTULATE III. The half-lines `,m, through any point O can be put
into (1, 1) correspondence with the real numbers a(mod2π), so that, if
A 6= O andB 6= O are points of ` andm respectively, the difference am−
a`(mod2π) is ∠AOB. Furthermore, if the point B varies continuously in
a line r not containing the vertex 0, the number am varies continuously
also37.

This is a parallel to his ‘ruler postulate’ which assigns each segment a real
number length. Thus, Birkhoff takes the real numbers as an unexamined background
object. At one swoop he has introduced addition and multiplication, and assumed
the Archimedean and completeness axioms. So even ‘neutral’ geometries studied on
this basis are actually greatly restricted. He argues that his axioms define a categorial
system isomorphic to <2. So it is equivalent to Hilbert’s.

This particular postulate conflates three distinct ideas: i) the rectifiability of
arcs – each arc of a circle has the same length as a straight line segment, ii) rectification
of arcs, an algorithm for attaining i) and iii) the measurement of angles.

The next task is to find a more modest version of Birkhoff’s postulate: a first-
order theory with countable models which assign to each angle a measure between 0
and 2π. Recall that we have a field structure on the line through 01 and the number π
on that line.

Definition 3.12. A measurement of angles function is a map µ from congruence classes

36This is the axiom system used in virtually all U.S. high schools since the 1960’s.
37I slight modified the last sentence, in lieu of reproducing the diagram.
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of angles into [0, 2π) such that if ∠ABC and ∠CBD are disjoint angles sharing the
side BC, µ(∠ABD) = µ(∠ABC) + µ(∠CBD)

If we omitted the additivity property this would be trivial: Given an angle
∠ABC less than a straight angle, let C ′ be the intersection of a perpendicular to AC
through B with AC and let µ(∠ABC) = BC′

AB . (It is easy to extend to the rest of the
angles.)

Here we use approach b) of the Dicta on definitions rather than the explicit
definition approach a) used for C(r) and A(r). We define a new theory with a function
symbol µ which is ‘implicitly defined’ by the axioms.

Definition 3.13. The theory E2π,A,C,µ is obtained by adding to E2π,A,C,µ, the assertion
µ is a continuous38 additive map from congruence classes of angles to (0, 2π].

Now we have to address the consistency and completeness of E20,1,π,A,C,µ.
Consistency is easy, we can easily define (in the mathematical sense, not as a formally
definable function in E20,1,π,A,C) such a function µ∗ on the real plane. So the axioms
are consistent. And by taking the theory of this structure we would get a complete
first-order theory. But, a priori, we don’t have an axiomatization39.

Crippa describes Leibniz’s distinguishing two types of quadrature,

‘universal quadrature of the circle, namely the problem of finding a general
formula, or a rule in order to determine an arbitrary sector of the circle or
an arbitrary arc; and on the other he defines the problem of the particular
quadrature, . . . , namely the problem of finding the length of a given arc or
the area of a sector, or the whole circle . . . (page 424 of [Crippa 2014a])

Thus, while we have solved i) the rectifiability problem, merely assuming the existence
of a µ does not solve ii) as we have no idea how to compute µ. However the addition of
the restricted cosine, as in footnote 39 does so by calculating arc length as in calculus.
But a nice axiom system remains a dream.

Blanchette [Blanchette 2014] distinguishes two approaches to logic: deduc-
tivist and model-centric. Hilbert represents the deductivist school and Dedekind the
model-centric. Essentially, the second comes to theories trying to describe an intu-
ition of a particular structure. We briefly consider the opposite procedure; are there
‘canonical’ models of the various theories we have been considering.

38With a little effort we can express continuity of µ in E2π,A,C,µ and it could fail in a non-Archimedean
model so we have to require it to have chance at a complete theory.

39 In fact, by coding a point on the unit circle by its x-coordinate and setting µ((x1, y1), (x2, y2)) =
cos−1(x1 − x2) one gets such a function which definable in the theory of the real field expanded by the
sin function restricted to (0, 2π]. This theory is known [Van den Dries 1999] to be o-minimal. But there is
no known axiomatization and Marker tells me it is unlikely to be decidable without assuming the Schanuel
conjecture.
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By modern tradition, the continuum is the real numbers and geometry is the
plane over it. Is there a smaller model which reflects the geometric intuitions discussed
here? For Euclid II, there is a natural candidate, the Euclidean plane over the surd
field Fs. Remarkably, this does not conflict with Euclid XII.2 (the area of a circle is
proportional to the square of the diameter). The model is Archimedean and π is not
in the model. But Euclid only requires a proportionality which defines a type, not a
realization of the type. Plane geometry over the real algebraic numbers plays the same
role for E20,1. Both are categorical in Lω1,ω . In the second case, the axiomatization is
particularly nice. Add the Archimedean axiom40.

Now we argue that the methods of this section better reflect the Greek view
that does Dedekind. Mueller ([Mueller 2006], 236) makes an important point distin-
guishing the Euclid/Eudoxus use from Dedekind’s use of cuts.

One might say that in applications of the method of exhaustion the limit
is given and the problem is to determine a certain kind of sequence con-
verging to it, . . . Since, in the Elements the limit always has a simple de-
scription, the construction of the sequence can be done within the bounds
of elementary geometry; and the question of constructing a sequence for
any given arbitrary limit never arises.

But what if we want to demand the realization of various transcendentals?
Mueller’s description suggests the principle that we should only realize cuts in the
field order that are recursive over a finite subset. So a candidate would be a recursively
saturated model41 of E2. Remarkably, almost magically42 this model would also satisfy
E2π,A,C,µ. A recursively saturated model is necessarily non-Archimedean. There are
however many different countable recursively saturated models depending on which
transcentals are realized

Here is a more canonical candidate for a natural model which admits the ‘Eu-
doxian transcendentals’; take the smallest elementary submodel of < closed43 under
A,C, µ containing the real algebraic numbers and all realizations of recursive cuts in
Fs. The Scott sentence44 of this sentence is a categorical sentence in Lω1,ω .

The models in the last paragraph were all countable; we cannot do this with
the Hilbert model; it has no countable Lω1,ω-elementary submodel.

We turn to the question of modesty. Mueller’s distinction can be expressed
in another way. Eudoxus provides a technique to solve certain problems, which are

40It is easy to see that any transcendental adds an infinitesimal to the field.
41A model is recursively saturated if every recursive type over a finite set is realized. [Barwise 1975]
42The magic is called resplendency. Every recursively saturated model is resplendent [Barwise 1975]. M

is resplendent if any formula ∃Aφ(A, c) that is satisfied in an elementary extension of M is satisfied by
some A′ on M . Examples are the formulas defining C,A, µ.

43Interpret A,C, µ on < in the standard way.
44For any countable structure M there is a ‘Scott’ sentence φM such that all countable models of φM are

isomorphic to M ; see chapter 1 of [Keisler 1971].
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specified in each application. In contrast, Dedekind’s postulate provides solves 2ℵ0

problems at one swoop. Each of the theories E0,1,π , Eπ,A,C , Eπ,A,C,µ and the later
search for their canonical models reflect this concern. Each solves at most a countable
number of recursively stated problems. In summary, we regard the replacement of
‘congruence class of segment’, by ‘length represented by an element of the field’ as
a modest reinterpretation of Greek geometry. But it becomes immodest relative to
even Descartes when this length is a transcendental. And most immodest is to demand
arbitrary transcendentals.

4 And back to Hilbert

The non-first-order postulates of Hilbert play complementary roles. The Archimedean
axiom is minimizing; each cut is realized by at most one point so each model has
cardinality at most 2ℵ0 . The Veronese postulate (See Footnote 47.) or Hilbert’s
Vollständigkeitaxiom is maximizing; in the absence of the Archimedean axiom each
cut is realized, the set of realizations could have arbitrary cardinality.

4.1 The role of the Axiom of Archimedes in the Grundlagen

Recall the following from Hilbert’s introduction, ‘bring out as clearly as possible the
significance of the groups of axioms.’ Much of his book is devoted to this metamath-
ematical investigation. In particular this includes Sections 9-12 (from [Hilbert 1971])
concerning the consistency and independence of the axioms. Further examples45, in
Sections 31-34 shows that without the congruence axioms, the axiom of Archimedes
is necessary to prove what Hilbert labels as Pascal’s (Pappus) theorem. Moreover, in
the Conclusion he explores the connection between the angle sum theorem (sum of the
angles of a triangle is 180o) and the fifth postulate and reports on Dehn’s result that
Archimedes axiom behaves very differently in relating the sum of the angle to the hy-
potheses of no or more than one parallel to a given line through a fixed point. These
sorts of results demonstrate the breadth of Hilbert’s program. However, with respect
the problem studied here, they do not affect the conclusion that Hilbert’s full axiom set
is an immodest axiomatization46 of Euclid I or Euclid II or of the Cartesian data set
since those data sets contain and are implied by the appropriate first-order axioms.

This conclusion is not affected by a further use of the Archimedean axiom by
Hilbert. In Sections 19 and 21, it is shown that the Archimedean axiom is necessary
to show equicomplementable (equal content) is the same as equidecomposable (in 2
dimensions). These are all metatheoretical results. The use of the Archimedean axiom

45I thank the referee for pointing to the next two examples and emphasizing Hilbert’s more general goals
of understanding the connections among organizing principles.

46I could add the data set Archimedes, but that would be a cheat. I restricted to Archimedes on the circle;
Archimedes proposed a general notion of arc length and studied many other transcendental curves.
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to prove equidecomposable is the same as equicomplementable is certainly a proof in
the system. But an unnecessary one. As we argued in Section 4.4 of Part I, Hilbert
could just have easily defined ‘same area’ as ‘equicomplementable’ (as is a natural
reading of Euclid).

Thus, we find no geometrical theorems in the Grundlagen that essentially de-
pend on the Axiom of Archimedes. Rather Hilbert’s use of the axiom of Archimedes
is i) to investigate the interaction of the various principles and ii) in conjunction with
the Dedekind axiom, identify the field defined in the geometry with the independent
existence of the real numbers as conceived by Dedekind. Hilbert wrote that V.1 and
V.2 allow one ‘to establish a one-one correspondence between the points of a seg-
ment and the system of real numbers’. Archimedes makes the axiom one-one and the
Vollständigkeitsaxiom makes it onto. We have noted here that the grounding of real al-
gebraic geometry (the study of systems of polynomial equations in a real closed field)
is fully accomplished by Tarski’s axiomatization. And we have provided a first-order
extension to deal with the basic properties of the circle. Since Dedekind, Weierstrass,
and others pursued the ‘arithmetization of analysis’ precisely to ground the theory of
limits, identifying the geometrical line as the Dedekind line reaches beyond the needs
of geometry.

4.2 Hilbert and Dedekind on Continuity

Hilbert’s formulation of the completeness axiom reads [Hilbert 1971]:

Axiom of Completeness (Vollständigkeitsaxiom): To a system of points,
straight lines, and planes, it is impossible to add other elements in such a
manner that the system thus generalized shall form a new geometry obey-
ing all of the five groups of axioms. In other words, the elements of geom-
etry form a system which is not susceptible of extension, if we regard the
five groups of axioms as valid.

We have used in this article the following adaptation of Dedekind’s postulate for ge-
ometry (DG):

DG: Any cut in the linear ordering imposed on any line by the betweenness
relation is realized.

While this formulation is convenient for our purposes, it misses an essential
aspect of Hilbert’s version. DG implies the Archimedean axiom and Hilbert was aiming
for an independent set of axioms. Hilbert’s axiom does not imply Archimedes. A
variant VER47 on Dedekind’s postulate that does not imply the Archimedean axiom

47 The axiom VER (see [Cantú 1999]) asserts that for a partition of a linearly ordered field into two
intervals L,U (with no maximum in the lower L or minimum in the upper U ) and third set in between at
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was proposed by Veronese in [Veronese 1889]. If we substituted VER for DG, our
axioms would also satisfy the independence criterion.

Hilbert’s completeness axiom in [Hilbert 1971] asserting any model of the rest
of the theory is maximal, is inherently model-theoretic. The later line-completeness
[Hilbert 1962] is a technical variant48. Giovannini’s account [Giovannini 2013] in-
cludes a number of points already made here; but he makes three more. First, Hilbert’s
completeness axiom is not about deductive completeness (despite having such con-
sequences), but about maximality of every model (page 145). Secondly (last line of
153) Hilbert expressly rejects Cantor’s intersection of closed intervals axiom because
it relies on a sequence of intervals and ‘sequence is not a geometrical notion’. A third
intriguing note is an argument due to Baldus in 1928 that the parallel axiom is an es-
sential ingredient in the categoricity of Hilbert’s axioms 49.

Here are two reasons for choosing Dedekind’s (or Veronese’s) version. The
most basic is that one cannot formulate Hilbert’s version as sentence Φ in second-order
logic50 with the intended interpretation (<2,G) |= Φ. The axiom requires quantifica-
tion over subsets of an extension of the model which putatively satisfies it. Here is a
second-order statement51 of the axiom, where ψ denotes the conjunction of Hilbert’s
first four axiom groups and the axiom of Archimedes.

(∀X)(∀Y )∀R)[[X ⊆ Y ∧ (X,R�X) |= ψ ∧ (Y,R) |= ψ]→ X = Y ]

This anomaly has been investigated by Väänänen who makes the distinction
(on page 94 of [Väänänen 2012]) between (<2,G) |= Φ and the displayed formula
and expounds in [Väänänen 2014] a new notion, ‘Sort Logic’, which provides a logic
with a sentence Φ which by allowing a sort for an extension axiomatizes geometry
formalizes Hilbert’s V.2. The second reason is that Dedekind’s formulation, since it is
about the geometry, not about its axiomatization, directly gives the kind of information
about the existence of transcendental numbers that we observe in the paper.

most one point, there is a point between L and U just if for every e > 0, there are a ∈ A, b ∈ B such that
b − a < e. Veronese derives Dedekind’s postulate from his plus Archimedes in [Veronese 1889] and the
independence in [Veronese 1891]. In [Levi-Civita 2 93] Levi-Civita shows there is a non-Archimean ordered
field that is Cauchy complete. I thank Philip Ehrlich for the references and recommend section 12 of the
comprehensive [Ehrlich 2006]. See also the insightful reviews [Pambuccian 2014a] and [Pambuccian 2014b]
where it is observed that Vahlen [Vahlen 1907] also proved this axiom does not imply Archimedes.

48Since any point is in the definable closure of any line and any one point not one the line, one can’t
extend any line without extending the model. Since adding either the Dedekind postulate and or Hilbert
completeness gives a categorical theory satisfied by a geometry whose line is order isomorphic to < the two
axioms are equivalent (over HP5 + Arch).

49Hartshorne (sections 40-43 of [Hartshorne 2000] gives a modern account of Hilbert’s argument that
replacing the parallel postulate by the axiom of limiting parallels gives a geometry that is determined by the
underlying (definable) field. With V.2 this gives a categoricical axiomatization for hyperbolic geometry.

50Of course, this analysis is anachronistic; the clear distinction between first and second-order logic did
not exist in 1900. By G, we mean the natural interpretation in <2 of the predicates of geometry introduced
in Section 1.

51I am leaving out many details, R is a sequence of relations giving the vocabulary of geometry and the
sentence ‘says’ they are relations on Y ; the coding of the satisfaction predicate is suppressed.
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In [Väänänen 2012], Väänänen discusses the categoricity of natural structures
such as real geometry when axiomatized in second-order logic (e.g. DG). He has dis-
covered the striking phenomena of ‘internal categoricity’. Suppose the second-order
categoricity of a structure A is formalized by the existence of sentence ΨA such that
A |= ΨA and any two models of Ψ are isomorphic. If this second clause in provable
in a standard deductive system for second-order logic, then it is valid in the Henkin
semantics, not just the full semantics.

Philip Ehrlich has made several important discoveries concerning the connec-
tions between the two ‘continuity axioms’ in Hilbert and develops the role of maximal-
ity. First, he observes (page 172) of [Ehrlich 1995] that Hilbert had already pointed out
that his completeness axiom would be inconsistent if the maximality were only with re-
spect to the first-order axioms. Secondly, he [Ehrlich 1995, Ehrlich 1997] systematizes
and investigates the philosophical significance of Hahn’s notion of Archimedean com-
pleteness. Here the structure (ordered group or field) is not required to be Archimedean;
the maximality condition requires that there is extension which fails to extend an
Archimedean equivalence class52. This notion provides a tool (not yet explored) for
investigating the non-Archimedean models studied in Section 3.

In a sense, our development is the opposite of Ehrlich’s in [Ehrlich 2012],
The absolute arithmetic continuum and the unification of all numbers great and small.
Rather than trying to unify all numbers great and small, we are interested in the minimal
collection of numbers that allow the development of a geometry according with our
fundamental intuitions.

4.3 Against the Dedekind Posulate for Geometry

Our fundamental claim is that (slight variants on) Hilbert’s first-order axiom provide a
modest descriptively complete axiomatization of most of Greek geometry.

As we pointed out in Section 3 of [Baldwin 2014] various authors have proved
under V = L, any countable or Borel structure can be given a categorical axiomati-
zation. We argued there that this fact undermines the notion of categoricty as an inde-
pendent desiderata for an axiom system. There, we gave a special role to attempting to
axiomatize canonical systems. Here we go further, and suggest that even for a canoni-
cal structure there are advantages to a first-order axiomatization that trump the loss of
categoricity.

We argue then that the Dedekind postulate is inappropriate (in particular im-
modest) in any attempt to axiomatize the Euclidean or Cartesian or Archimedean data
sets for several reasons:

1. The requirement that there be a straight-line segment measuring any circular arc
52In an ordered group, a and b are Archimedes-equivalent if there are natural numbers m,n such that

m|a| > |b| and n|b| > |a|.
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clearly contradicts the intentions of Euclid and Descartes.

2. Since it yields categoricity, it is not part of the data set but rather an external
limitative principle. The notion that there was ‘one’ geometry (i.e. categoricity)
was implicit in Euclid. But it is not a geometrical statement. Indeed, Hilbert
described his metamathematical formulation of the completeness axiom (page
23 of [Hilbert 1962]), ‘not of a purely geometrical nature’.

3. As we have pointed out repeatedly, it is not needed to establish the properly
geometrical propositions in the data set.

4. Proofs from Dedekind’s postulate obscure the true geometric reason for certain
theorems. Hartshorne writes53:

‘... there are two reasons to avoid using Dedekind’s axiom. First, it
belongs to the modern development of the real number systems and
notions of continuity, which is not in the spirit of Euclid’s geometry.
Second, it is too strong. By essentially introducing the real num-
bers into our geometry, it masks many of the more subtle distinctions
and obscures questions such as constructibility that we will discuss
in Chapter 6. So we include the axiom only to acknowledge that it is
there, but with no intention of using it.

5. The use of second-order logic undermines a key proof method – informal (se-
mantic) proof. A crucial advantage of a first-order axiomatization is that it li-
censes the kind of argument54 described in Hilbert and Ackerman55:

Derivation of Consequences from Given Premises; Relation to Uni-
versally Valid Formulas
So far we have used the predicate calculus only for deducing valid
formulas. The premises of our deductions, viz Axioms a) through f),
were themselves of a purely logical nature. Now we shall illustrate by
a few examples the general methods of formal derivation in the pred-
icate calculus . . . It is now a question of deriving the consequences
from any premises whatsoever, no longer of a purely logical nature.
The method explained in this section of formal derivation from
premises which are not universally valid logical formulas has its main
application in the setting up of the primitive sentences or axioms for
any particular field of knowledge and the derivation of the remain-
ing theorems from them as consequences . . . We will examine, at the
end of this section, the question of whether every statement which
would intuitively be regarded as a consequence of the axioms can be
obtained from them by means of the formal method of derivation.

53page 177 of [Hartshorne 2000]
54We noted that Hilbert proved that a Desarguesian plane embeds in 3 space by this sort of argument in

Section 2.4 of [Baldwin 2013].
55Chapter 3, §11 Translation taken from [Blanchette 2014].
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We exploited this technique in Section 3 to provide axioms for the calculation
of the circumference and area of a circle. Väänänen56 makes a variant of this apply to
those sentences in second-order logic that are internally categorical. He shows certain
second-order propositions can be derived from the formal system of second-order logic
by employing 3rd (and higher) order arguments to provide semantic proofs.

Venturi57 formulates a distinction, which nicely summarises our argument:
‘So we can distinguish two different kinds of axioms: the ones that are necessary for
the development of a theory and the sufficient one used to match intuition and formal-
ization.’ In our terminology only the necessary axioms make up a ‘modest descrip-
tive axiomatization’. For the geometry Euclid I (basic polygonal geometry), Hilbert’s
first-order axioms meet this goal. With E2π,A,C , a less immodest complete descriptive
axiomatization is provided even including the basic properties of π. The Archimedes
and Dedekind postulates have a different goal; they secure the 19th century conception
of <2 to be the unique model and thus ground elementary analysis.

4.4 But what about analysis?

We expounded a procedure [Hartshorne 2000] to define the field operations in an ar-
bitrary model of HP5. We argued that the first-order axioms of EG suffice for the
geometrical data sets Euclid I and II, not only in their original formulation but by find-
ing proportionality constants for the area formulas of polygon geometry. By adding
axioms to require the field is real closed we obtain a complete first-order theory that
encompasses many of Descartes innovations. The plane over the real algebraic num-
bers satisfies this theory; thus, there is no guarantee that there is a line segment of
length π. Using the o-minimality of real closed fields, we can guarantee there is such a
segment by adding a constant for π and requiring it to realize the proper cut in the ra-
tionals. However, guaranteeing the uniqueness of such a realization requires the Lω1,ω

Archimedean axiom.

Hilbert and the other axiomatizers of 100 years ago wanted more; they wanted
to secure the foundations of calculus. In full generality, this surely depends on second-
order properties. But there are a number of directions of work on ‘definable analysis’.
One of the directions of research in o-minimality has been to prove the expansion of
the real numbers by a particular functions (e.g. the Γ-function on the positive reals
[Speissinger & van den Dries 2000]).

Peterzil and Starchenko study the foundations of calculus in
[Peterzil & Starchenko 2000]. They approach complex analysis through o-minimality
of the real part in [Peterzil & Starchenko 2010]. The impact of o-minimality on
number theory was recognized by the Karp prize of 2014. And a non-logician, sug-
gests using methods of Descartes to teach Calculus [Range 2014]. For an interesting

56Discussion with Väänänen.
57page 96 of [Venturi 2011]
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perspective on the historical background of the banishment of infinitesimals in analysis
see [Borovik & Katz 2012].
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