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Formal and Informal Mathematics

Formal

1 Explicit vocabulary, syntax and notion of truth
e.g. Lω,ω, admissiblefragments, Lλ,ω(Q), L2nd etc.
‘elementary’ submodel.

2 Natural axiomatizations of much of mathematics: axiom
of Archimedes around structures up to the continuum.

3 Lindenbaum algebra and Stone space: Shelah for anything
beyond first order [She75]

Informal

1 standard mathematics including
AEC: fixed vocabulary; abstract properties of ‘elementary’
submodel

2 ‘Galois’ types

[Ken21]
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When do ℵ1-categorical theories (AEC) have a
bounded size of models?

In the mid-70’s Shelah answered my question as to whether a
sentence of Lω1,ω(Q) could be categorical in the philosophers
sense, have only one model. In different papers he proved in
different ways that ℵ1-categorical such sentence has a model in
ℵ2.

Two questions: Under what conditions does a sentence of Lω1,ω

(with LN ℵ0) that is ℵ1-categorical have models in ℵ2, 2
ℵ0 , or

even larger?
More generally, Grossberg’s question Must an aec categorical in
λ with I (K , λ+) < 2λ

+
have a model in λ++?

We already know the second is independent of ZFC. But
[MYng] have prove the result for λ < 2ℵ0 assuming ap in λ,
λ-stable and (< λ+, λ)-local.
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One Completely General Result

WGCH(λ): 2λ < 2λ
+

Let K be an abstract elementary class (AEC).

Theorem

[WGCH (λ) ] Suppose λ ≥ LS(K ) and K is λ-categorical. If
amalgamation fails in λ there are 2λ

+
models in K of

cardinality κ = λ+.

Uses [Θ̂λ+(S)] (weak diamond) for many S .

λ-categoricity plays a fundamental role.

No really specific model theoretic hypothesis but a set-theoretic
one?
Definitely not provable in ZFC for AEC (even for Lω1,ω(Q1)
maybe for Lω1,ω).
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THE counterexample: Φ

K is the models in a vocabulary with two unary relations P, Q
and two binary relations E , R which satisfy:
For any model M ∈ K ,

1 P and Q partition M.

2 E is an equivalence relation on Q.

3 P and each equivalence class of E is denumerably infinite.

4 R is a relation on P × Q so that each element of Q codes
a subset of P.

5 R induces the independence property on P × Q.

This class is axiomatized by a sentence Φ in Lω1,ω(Q1).
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Properties of models of Φ

amalgamation, ω-stablilty, and arbitrarily large models FAIL

Under MA Φ is ℵ1-categorical but is not ω-stable, fails
amalgamation in ℵ0, and has no models beyond the continuum.

Shelah suggested a variant, axiomatized in Lω1,ω with the same
properties in ℵ0. Laskowski showed that sentence had at least
2ℵ0 models in ℵ1.

The AEC attached to Φ ([She, 6.3]) is the K 3.
M,N ∈ K , M ≤K 3

N if M ⊆ N and [a]M = [b]N .
[She87, She83, She],[Bal09, §17]
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Syntax and Semantics
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The class of models

KT is the class of atomic models of the countable first order
theory T .

Definition

The atomic class KT is extendible if there is a pair M ⪯ N of
countable, atomic models, with N ̸= M.

Equivalently, KT is extendible if and only if there is an
uncountable, atomic model of T .

We assume throughout that KT is extendible. We work in the
monster model of T , which is usually not atomic.
A complete sentence of Lω1,ω has such a representation
by Chang’s trick: Expanding the language by introducing
predicates for countable conjunctions and making them
correct by omitting types.
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ω-stability in Atomic Classes

Definitions

p ∈ Sat(A) if a |= p implies Aa is atomic.
K is ω-stable if for every countable model M, Sat(M) is
countable.

But, there may be A ⊆ M, p ∈ Sat(A) that has no extension to
Sat(M).
Note also ϕ may be κ-stable in this sense while the associated
AEC is not κ-stable (for Galois types) [BK09].

11 / 62



Lω1,ω
vs

AEC: Cam
categorical
classes be
bounded in

size?
AEC

Conference
June 26, 2024

Baylor
University

John T.
Baldwin

Two
Alternatives

Historical
Background

The Lω1,ω
case

Syntax and
Semantics

Getting Models in
the continuum

K
(2
ℵ0 )

+ ̸=∅ implies

ω-stability

The AEC Side

Further
Context

Amost quasiminimal
excellent classes

Arbitrarily large
models, bounded
categoricity

First order absoluteness

Theorem (Morley-Baldwin-Lachlan)

A first order theory T in a countable language is ℵ1 categorical
iff

1 T has no 2-cardinal models and

2 T is ω-stable.

1) is arithmetic and 2) is Π1
1.

Fact

A first order theory T in a countable language whose class of
atomic models satisfies 1) and 2) is ℵ1-categorical.

I emphasize Morley because it is his direction:
‘ℵ1-categorical implies ω-stable’ that is problematic for Lω1,ω.
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Getting ω-stability: I

Theorem: Keisler/Shelah

1 (Keisler) ZFC If some uncountable model in K realizes
uncountably many types (in a countable fragment) over ∅
then K has 2ℵ1 models in ℵ1.

2 (Shelah) (2ℵ0 < 2ℵ1) If K has < 2ℵ1 models of cardinality
ℵ1, then K is ω-stable.

Two uses of WCH

1 WCH implies AP in ℵ0. Thus, if K is not ω-stable there is
a countable model M and an uncountable N ∈ K which
realizes uncountably many types over M.

2 By Keisler, ThM(M) has 2ℵ1 models. From WCH we
conclude Th(M) has 2ℵ1 models.
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Getting ω-stability: II

Morley’s original proof using the Skolem hull gives:

Theorem

If a complete first order theory has arbitrarily large models and
is ℵ1-categorical then it is ω-stable.

More generally,

Theorem

An ℵ1-categorical atomic class K that has arbitrarily large
models and amalgamation in ℵ0 is ω-stable.

Tradeoff: ℶomega1 for weak CH
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A new notion of closure

Definition

An atomic tuple c is in the pseudo-algebraic closure of the
finite, atomic set B (c ∈ pcl(B)) if
for every atomic model M such that B ⊆ M, and Mc is
atomic, c ⊆ M.

When this occurs, and b is any enumeration of B and p(x, y) is
the complete type of cb, we say that p(x,b) is
pseudo-algebraic.
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Example I

Our notion, pcl of algebraic differs from the classical first-order
notion of algebraic as the following examples show:

Example

Suppose that an atomic model M consists of two sorts. The
U-part is countable, but non-extendible (e.g., U infinite, and
has a successor function S on it, in which every element has a
unique predecessor). On the other sort, V is an infinite set
with no structure (hence arbitrarily large atomic models).
Then, an element x0 ∈ U is not algebraic over ∅ in the normal
sense but is in pcl(∅).
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Example II

Example

Let L = A,B, π,S and T say that A and B partition the
universe with B infinite, π : A → B is a total surjective
function and S is a successor function on A such that every
π-fiber is the union of S-components. KT is the class of
M |= T such that every π-fiber contains exactly one
S-component. Now choose elements a, b ∈ M for such an M
such that a ∈ A and b ∈ B and π(a) = b. Clearly, a is not
algebraic over b in the classical sense, but a ∈ pcl(b).
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Definability of pseudo-algebraic closure

Strong ω-homogeneity of the monster model of T yields:

Fact

If p(x, y) is the complete type of cb, then

c ∈ pcl(b) if and only if c′ ∈ pcl(b′)

for any c′b′ realizing p(x, y).
In particular, the truth of c ∈ pcl(b) does not depend on an
ambient atomic model.

Further, since a model which atomic over the empty set is also
atomic over any finite subset, moving M to N we have:

Fact

If c ̸∈ pcl(B), witnessed by M then for every countable, atomic
N ⊃ B, there is a realization c′ of p(x,B) such that c′ ̸⊆ N.

18 / 62



Lω1,ω
vs

AEC: Cam
categorical
classes be
bounded in

size?
AEC

Conference
June 26, 2024

Baylor
University

John T.
Baldwin

Two
Alternatives

Historical
Background

The Lω1,ω
case

Syntax and
Semantics

Getting Models in
the continuum

K
(2
ℵ0 )

+ ̸=∅ implies

ω-stability

The AEC Side

Further
Context

Amost quasiminimal
excellent classes

Arbitrarily large
models, bounded
categoricity

Pseudo-minimal sets

Definition

1 A possibly incomplete type q over b is pseudominimal if for
any finite, b∗ ⊇ b, a |= q, and c such that b∗ca is atomic,
if c ⊂ pcl(b∗a), and c ̸∈ pcl(b∗), then a ∈ pcl(b∗c).

2 M is pseudominimal if x = x is pseudominimal in M.

I.e, pcl satisfies exchange (and more); we have a geometry.
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‘Density’

Definition

KT satisfies ‘density’ of pseudominimal types if for every
atomic e and atomic type p(e, x) there is a b with eb atomic
and q(e,b, x) extending p such that q is pseudominimal.

So density fails if there is a single type p(e, x) over which
exchange fails.
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Method: ‘Consistency implies Truth’:I

[BL16]
Let ϕ be a τ -sentence in Lω1,ω(Q) such that it is consistent
that ϕ has a model.
Let A be the countable ω-model of set theory, containing ϕ,
that thinks ϕ has an uncountable model.

Construct B, an uncountable model of set theory, which is an
elementary extension of A, such that B is correct about
uncountability. Then the model of ϕ in B is actually an
uncountable model of ϕ.
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Main Theorem

Goal Theorem [BLS16]

If KT fails ‘density of pseudominimal types’ then KT has 2ℵ1

models of cardinality ℵ1.

We prove this in two steps

1 Force to construct a model (M,E ) of set theory in which
a model of T codes model theoretic and combinatorial
information sufficient to guarantee the non-isomorphism of
its image in the different ultralimits.

2 Apply Skolem ultralimits of the models of set theory from
1) to construct 2ℵ1 atomic models of T with cardinality
ℵ1 in V .
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Extension

Definition

K is pcl-small if Sat(pcl(a)) is countable for every finite
sequence a.

[LS19] show:

Theorem

If K has fewer than 2ℵ1 models in ℵ1, then K is pcl-small.
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Getting models in 2ℵ0: Method

In the novel White Light [Ruc80], Rudy Rucker proposes a
metaphor for the continuum hypothesis. One can reach ℵ1 by a
laborious climb up the side of Mt. ON, pausing at ϵ0.

Or one can take
Cantor’s elevator An instantaneous trip up a shaft at the center
of the mountain.

For atomic models we take the slightly slower
Shelah’s elevator The elevator is a bit slower but has only
countably many floors. After building finitely many rooms at
each step we reach an object of cardinality 2ℵ0 .
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Asymptotic similarity

Definition

Fix an L-structure M. A subset of M, indexed by {aη :η ∈ 2ω},
is asymptotically similar if, for every k-ary L-formula θ, there is
an integer Nθ such that for every ℓ ≥ Nθ,

M |= θ(aη0 , . . . , aηk−1
) ↔ θ(aτ0 , . . . , aτk−1

)

whenever (η0, . . . , ηk−1) and (τ0, . . . , τk−1) are similar (mod ℓ).

Remark

Asymptotic similarity is a type of indiscernibility, but, the
indiscernibility is only formula by formula. Consider
M = (2ω,Ua)a∈2<ω , where each Ua is a unary predicate
interpreted as the cone above a, i.e., Ua(M) = {η ∈ 2ω : a ◁ η}.
In M, the entire universe {η : η ∈ 2ω} is asymptotically similar,
despite the fact that no two elements have the same 1-type.
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Getting models in 2ℵ0

Theorem [BL19]

If a countable first order theory T has an atomic
pseudominimal model M of cardinality ℵ1 then there is an
atomic pseudominimal model N of T which a contains a set of
asymptotically similar elements with cardinality 2ℵ0 .
Equivalently, if the models of a complete sentence Φ in Lω1,ω

are pseudominimal and Φ has an uncountable model, it has a
model in the continuum.

A simple application of the method gives Borel models in the
continuum of any theory with trivial definable closure.
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Goal Theorem [BLS24]

Theorem

If an atomic class At is ℵ1-categorical and has a model of size
(2ℵ0)+ then At is ω-stable.

Old and new definitions:

Definition

1 A type p ∈ Sat(M) splits over F ⊆ M if there are tuples
b,b′ ⊆ M and a formula ϕ(x, y) such that
tp(b/F ) = tp(b′/F ), but ϕ(x,b) ∧ ¬ϕ(x,b′) ∈ p.

2 We call p ∈ Sat(M) constrained if p does not split over
some finite F ⊆ M and unconstrained if p splits over every
finite subset of M.

3 CM := {p ∈ Sat(M) : p is constrained}, for an atomic
model M, . We say At has only constrained types if
Sat(N) = CN for every atomic model N. 29 / 62
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Basic Properties

Lemma

1 If M is a countable atomic model and p ∈ Sat(M) then p
is realized in an atomic extension of M.

2 For any atomic models M ⪯ N and finite A ⊆ M, then for
any q ∈ Sat(N) that does not split over A, the restriction
q↾M does not split over A; and any p ∈ Sat(M) that does
not split over A has a unique non-splitting extension
q ∈ Sat(N).

3 If some atomic N has an unconstrained p ∈ Sat(N), then
for every countable A ⊆ N, there is a countable M ⪯ N
with A ⊆ M for which the restriction p↾M is
unconstrained.

4 At has only constrained types if and only if Sat(M) = CM

for every/some countable atomic model M.

Straightforward proofs using atomicity.
30 / 62
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Limit types

Definition

For |N| = ℵ1, a type p ∈ Sat(N) is a limit type if the
restriction p↾M is realized in N for every countable M ⪯ N.

Trivially, for every N, every type in Sat(N) realized in N is a
limit type. Since we allow M = N in the definition of a limit
type, if M is countable, then the only limit types in Sat(M) are
those realized in M.

Definition [MYng]

An AEC is (< ℵ1,ℵ0)-local if for every increasing chain
⟨Mi : i < ℵ1⟩ of countable structures in K , if M

⋃
<ℵ1

Mi , for
any p, q ∈ S(M) if p ↾ Mi = q ↾ Mi for all i then p = q.
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‘Consistency implies Truth’: II

Note that there are no additional assumptions on At, other
than the existence of an uncountable, atomic model.

KEY Theorem:

If At admits an uncountable, atomic model, then there is some
N ∈ At with |N| = ℵ1 for which every limit type in Sat(N) is
constrained.

So if ℵ1 -categorical: limit = constrained on the model in ℵ1.
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Linking a largish model with ω-stability

Theorem

If an atomic class At is ℵ1-categorical and has a model of size
(2ℵ0)+ with a relatively ℵ1-saturated submodel of cardinality
continuum, then SAt(M) has only constrained types
(Choose a c realizing an unconstrained and use relative
ℵ1-saturation to build an unconstrained limit type.) This
contra the KEY.
Similarly argue that if there is a unconstrained type over a
countable model then there is a model in ℵ1 with an
unconstrained limit type. Apply KEY again [BLS24, Theorem
2.4.4]
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Relatively saturated models exist!

Proof.

Let M∗∗ be an atomic model of size (2ℵ0)+. We construct a
relatively ℵ1-saturated elementary substructure M∗ ⪯ M∗∗ of
size 2ℵ0 as the union of a continuous chain (Nα : α ∈ ω1) of
elementary substructures of M∗∗, each of size 2ℵ0 , where, for
each α < ω1 and each of the 2ℵ0 countable M ⪯ Nα, Nα+1

realizes each of the at most 2ℵ0 p ∈ S(M) that is realized in
M∗∗.

Note there is no reason to think any of these models are even
ℵ1-saturated, until we conclude ω-stability. [BLS24, Theorem
2.4.5]
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Larger models from stability and locality

Definition [MYng]

1 Let |M| = λ. p ∈ S(M) is λ-extendible if for every
M ′ ∈ Kλ with M ≤ M ′, there is a q ∈ Sna(M ′) (not
realized in M ′) extending p.

2 q is λ-unique (quasiminimal) if it is λ-extendible and has a
unique λ-extendible extension ‘to any M ′ ≥ M.

Theorem [MYng]

Suppose λ < 2ℵ0 . Let K be an AEC with λ ≥ LS(K ). If Kλ

has amalgamation, no maximal model, and is stable (for
λ-algebraic types) in λ. Then:
i) Each λ-extendible type in any M ∈ Kλ extends to a
λ-unique (quasiminimal) type.
ii) Moreover, if K is (< λ+, λ)-local, then K has a model of
cardinality λ++. 36 / 62
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Distinction from BLS

Take λ = ℵ0

Orthogonal to earlier.

1 EARLIER: ℵ1-categoricity assumed, Lω1,ω

From model in (2ℵ0)+ and ℵ1-categoricity get ω-stable.

2 HERE: ω-stability and amalgamation assumed; AEC,
locality
From locality get a model in ℵ2.
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Common elements I

Definition [MYng]

Kλ is (λ+, λ)-local if for every increasing chain with⋃
α<λ+ Mα = M with each |Mα| = λ, if p ̸= q ∈ S(M), for

some α, p↾α ̸= p↾α.

Definition [BLS24]

1 A type p ∈ Sat(N) is a limit type if the restriction p↾M is
realized in N for every countable M ⪯ N
and constrained if p does not split over a finite set.
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Common elements II

Theorem [MYng]

Suppose λ < 2ℵ0 . Let K be an abstract elementary class with
λ ≥ LS(K ). Assume K has amalgamation in λ, no maximal
model in λ, and is stable in λ.
check hypotheses Then there is a λ-unique type in S(N).

Theorem

If At admits an uncountable, atomic model, then there is some
N ∈ At with |N| = ℵ1 for which every limit type in Sat(N) is
constrained.
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Covers of Algebraic Varieties

exp : (C,+)↠(C,×).

j : H↠.C

p : C↠S(C).

Zilber conjecture that the most complicated (Shimura
Varieties) were (almost) quasiminimal exellent and so
uncountably categorical. The many partial results/methods are
represented in the next chart.
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Approaches to categoricity of covers

topic paper method/context section

1 Complex exponentiation [Zil05] quasiminimality §??
2 cov mult group [Zil06] quasiminimality §??
3 [BZ11] quasiminimality

4 j-function [Har14] background §??
5 Modular/Shimura Curves [DH17] quasiminimality §??
6 Modular/Shimura Curves [DZ22] quasiminimality

7 Abelian Varieties [BGH14] finite Morley rank groups §??
8 Abelian Varieties [BHP20] fmr & notop §??
9 Shimura varieties [Ete22] notop §??
10 Smooth varieties [Zil22] o-quasiminimality §??
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Almost quasiminimal excellence: I

Definition (Quasiminimal structure)

A structure M is quasiminimal if every first order (Lω1,ω)
definable subset of M is countable or cocountable. Algebraic
closure is generalized by saying b ∈ acl′(X ) if there is a first
order formula with countably many solutions over X which is
satisfied by b.
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Almost quasiminimal excellence: II

Definition (Quasiminimal excellent geometry)

Let K be a class of L-structures such that M ∈ K admits a
closure relation clM mapping X ⊆ M to clM(X ) ⊆ M that
satisfies the following properties.

1 Basic Conditions
1 Each clM defines a pregeometry on M.
2 For each X ⊆ M, clM(X ) ∈ K .
3 countable closure property (ccp): If |X | ≤ ℵ0 then

|cl(X )| ≤ ℵ0.
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Almost quasiminimal excellence: II

4 Homogeneity
1 A class K of models has ℵ0-homogeneity over ∅

(Definition 4) if the models of K are pairwise qf-back and
forth equivalent

2 A class K of models has ℵ0-homogeneity over models if
for any G ∈ K with G empty or a countable member of
K , any H,H ′ with G ≤ H,G ≤ H ′, H is qf-back and forth
equivalent with H ′ over G .

5 K is an almost quasiminimal excellent geometry if the
universe of any model H ∈ K is in cl(X ) for any maximal
cl-independent set X ⊆ H.

6 We call a class which satisfies these conditions an almost
quasiminimal excellent geometry [BHH+14].
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Terminology

An almost quasiminimal excellent geometry with strong
submodel taken as A ≤ M, if aclM(A) = A, gives an abstract
elementary class (AEC). But the distinct notion of a
quasiminimal AEC (defined in terms of ≤ rather than any
axioms) is due to [Vas18].
The almost is essential because the structures are two-sorted.
But in the quasi-minimal covers: Galois type are quantifier-free
first order types (in a suitably Morleyized theory).
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Arbitrarily large models, bounded categoricity
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Galois may properly refine Syntactic

Theorem Hart-Shelah/B-Kolesnikov

For each 2 ≤ k < ω there is an Lω1,ω-sentence ϕk such that:

1 ϕk is categorical in µ if µ ≤ ℵk−2;

2 ϕk is not ℵk−2-Galois stable;

3 ϕk is not categorical in any µ with µ > ℵk−2;

4 ϕk has the disjoint amalgamation property in every κ;

5 For k > 2,

1 ϕk is (ℵ0,ℵk−3)-tame; indeed, syntactic first-order types
determine Galois types over models of cardinality at most
ℵk−3;

2 ϕk is ℵm-Galois stable for m ≤ k − 3;
3 ϕk is not (ℵk−3,ℵk−2)-tame.

[Bal09, BK09] refining an example of [HS90].
48 / 62



Lω1,ω
vs

AEC: Cam
categorical
classes be
bounded in

size?
AEC

Conference
June 26, 2024

Baylor
University

John T.
Baldwin

Two
Alternatives

Historical
Background

The Lω1,ω
case

Syntax and
Semantics

Getting Models in
the continuum

K
(2
ℵ0 )

+ ̸=∅ implies

ω-stability

The AEC Side

Further
Context

Amost quasiminimal
excellent classes

Arbitrarily large
models, bounded
categoricity

Galois may properly refine Syntactic: II

1 ϕ2 is ℵ0-categorical but not ω-Galois stable nor categorical
in any power. (ω-synactic stability unclear in paper.)

2 ϕ3 is categorial in ℵ1,ℵ2 and never again:
In ℵ0, syntactic = Galois and ω-stable.

Thus, Morley’s result that ω-stable implies κ-stable for all κ is
gone (for Galois and likely? syntactic).
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Questions/Problems

Let ϕ be a complete sentence of Lω1,ω.

1 Give a definition of a ‘complete’ that eliminates
uninformative counterexamples [BKS16, BHK13].

2 Do the BLS results on Lω1,ω generalize at all? E.g. to
analytic classes? [BL16]

3 If ϕ characterizes κ > ℵ0, must ϕ have 2κ models in κ?

4 For κ < ℵω1 , describe an explicit sentence that
characterizes κ. [BKL17]

5 Give a definition of a ‘complete’ AEC that eliminates
uninformative counterexamples [BKS16, BHK13].
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