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Chapter 1

Expressive power of infinitary
[0, 1]-logics

Christopher J. Eagle

University of Victoria
Victoria, British Columbia, Canada
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Abstract

We consider model-theoretic properties related to the expres-
sive power of three analogues of Lω1,ω for metric structures. We
give an example showing that one of these infinitary logics is
strictly more expressive than the other two, but also show that
all three have the same elementary equivalence relation for com-
plete separable metric structures. We then prove that a continuous
function on a complete separable metric structure is automorphism
invariant if and only if it is definable in the more expressive logic.
Several of our results are related to the existence of Scott sentences
for complete separable metric structures.

1.1 Introduction

In the last several years there has been considerable interest in the con-
tinuous first-order logic for metric structures introduced by Ben Yaacov and
Usvyatsov in the mid-2000’s and published in [BYU10]. This logic is suitable
for studying structures based on metric spaces, including a wide variety of
structures encountered in analysis. Continuous first-order logic is a general-
ization of first-order logic, and shares many of its desirable model-theoretic
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4 Beyond First Order Model Theory

properties, including the compactness theorem. While earlier logics for consid-
ering metric structures, such as Henson’s logic of positive bounded formulas
(see [HI03]), were equivalent to continuous first-order logic, the latter has
emerged as the current standard first-order logic for developing the model
theory of metric structures. The reader interested in a detailed history of the
interactions between model theory and analysis can consult [Iov14].

In classical discrete logic there are many examples of logics that extend
first-order logic, yet are still tame enough to allow a useful model theory to
be developed; many of the articles in [BF85] describe such logics. The most
fruitful extension of first-order logic is the infinitary logic Lω1,ω, which extends
the formula creation rules from first-order to also allow countable conjunctions
and disjunctions of formulas, subject only to the restriction that the total
number of free variables remains finite. While the compactness theorem fails
for Lω1,ω, it is nevertheless true that many results from first-order model
theory can be translated in some form to Lω1,ω - see [Kei71] for a thorough
development of the model theory of Lω1,ω for discrete structures.

Many properties considered in analysis have an infinitary character. It is
therefore natural to look for a logic that extends continuous first-order logic
by allowing infinitary operations. In order to be useful, such a logic should still
have desirable model-theoretic properties analogous to those of the discrete
infinitary logic Lω1,ω. There have recently been proposals for such a logic by
Ben Yaacov and Iovino [BYI09], Sequeira [Seq13], and the author [Eag14]; we
call these logics LCω1,ω, LCω1,ω(ρ), and Lω1,ω, respectively. The superscript C is
intended to emphasize the continuity of the first two of these logics, in a sense
to be described below. The goal of Section 1.2 is to give an overview of some of
the model-theoretic properties of each of these logics, particularly with respect
to their expressive powers. Both Lω1,ω and LCω1,ω extend continuous first-order
logic by allowing as formulas some expressions of the form supn φn, where the
φn’s are formulas. The main difference between LCω1,ω and Lω1,ω is that the
former requires infinitary formulas to define uniformly continuous functions
on all structures, while the latter does not impose any continuity requirements.
Allowing discontinuous formulas provides a significant increase in expressive
power, including the ability to express classical negation (Proposition 1.2.8),
at the cost of a theory which is far less well-behaved with respect to metric
completions (Example 1.2.7). The logic LCω1,ω(ρ) is obtained by adding an

additional operator ρ to LCω1,ω, where ρ(x, φ) is interpreted as the distance
from x to the zeroset of φ. We show in Theorem 1.2.6 that ρ can be defined
in Lω1,ω.

One of the most notable features of the discrete logic Lω1,ω (in a countable
signature) is that for each countable structure M there is a sentence σ of Lω1,ω

such that a countable structure N satisfies σ if and only if N is isomorphic
to M . Such sentences are known as Scott sentences, having first appeared in
a paper of Scott [Sco65]. In Section 1.3 we discuss some consequences of the
existence of Scott sentences for complete separable metric structures. The ex-
istence of Scott sentences for complete separable metric structures was proved
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by Sequeira [Seq13] in LCω1,ω(ρ) and Ben Yaacov, Nies, and Tsankov [BYNT14]

in LCω1,ω. Despite having shown in Section 1.2 that the three logics we are con-
sidering have different expressive powers, we use Scott sentences to prove the
following in Proposition 1.3.4:

Theorem. Let M and N be separable complete metric structures in the same
countable signature. The following are equivalent:

• M ∼= N ,

• M ≡ N in LCω1,ω,

• M ≡ N in LCω1,ω(ρ),

• M ≡ N in Lω1,ω.

Scott’s first use of his isomorphism theorem was to prove a definability
result, namely that a predicate on a countable discrete structure is automor-
phism invariant if and only if it is definable by an Lω1,ω formula. The main new
result of this note is a metric version of Scott’s definability theorem (Theorem
1.4.1):

Theorem. Let M be a separable complete metric structure, and P : Mn →
[0, 1] be a continuous function. The following are equivalent:

• P is invariant under all automorphisms of M ,

• there is an Lω1,ω formula φ(~x) such that for all ~a ∈Mn, P (~a) = φM (~a).

The proof of the above theorem relies heavily on replacing the constant
symbols in an Lω1,ω sentence by variables to form an Lω1,ω formula; Example
1.3.5 shows that this technique cannot be used in LCω1,ω or LCω1,ω(ρ), so our

method does not produce a version of Scott’s definability theorem in LCω1,ω or

LCω1,ω(ρ).
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Iovino and Frank Tall. We thank both supervisors for their suggestions and
insights, both on the work specifically represented here, and on infinitary logic
for metric structures more generally. We also benefited from discussions with
Ilijas Farah and Bradd Hart, which led to Theorem 1.2.6 and Example 1.4.4.
The final version of this paper was completed during the Focused Research
Group “Topological Methods in Model Theory” at the Banff International Re-
search Station. We thank BIRS for providing an excellent atmosphere for re-
search and collaboration, and we also thank Xavier Caicedo, Eduardo Duéñez,
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6 Beyond First Order Model Theory

1.2 Infinitary logics for metric structures

Our goal is to study infinitary extensions of first-order continuous logic for
metric structures. To begin, we briefly recall the definition of metric structures
and the syntax of first-order continuous logic. The reader interested in an
extensive treatment of continuous logic can consult the survey [BYBHU08].

Definition 1.2.1. A metric structure is a metric space (M,dM ) of diameter
at most 1, together with:

• A set (fMi )i∈I of uniformly continuous functions fi : Mni →M ,

• a set (PMj )j∈J of uniformly continuous predicates Pj : Mmj → [0, 1],

• a set (cMk )k∈K of distinguished elements of M .

We place no restrictions on the sets I, J,K, and frequently abuse notation by
using the same symbol for a metric structure and its underlying metric space.

Metric structures are the semantic objects we will be studying. On the
syntactic side, we have metric signatures. By a modulus of continuity for a
uniformly continuous function f : Mn → M we mean a function δ : Q ∩
(0, 1) → Q ∩ (0, 1) such that such that for all a1, . . . , an, b1, . . . , bn ∈ M and
all ε ∈ Q ∩ (0, 1),

sup
1≤i≤n

d(ai, bi) < δ(ε) =⇒ d(f(ai), f(bi)) ≤ ε.

Similarly, δ is a modulus of continuity for P : Mn → [0, 1] means that for all
a1, . . . , an, b1, . . . , bn ∈M ,

sup
1≤i≤n

d(ai, bi) < δ(ε) =⇒ |P (ai)− P (bi)| ≤ ε.

Definition 1.2.2. A metric signature consists of the following information:

• A set (fi)i∈I of function symbols, each with an associated arity and
modulus of uniform continuity,

• a set (Pj)j∈J of predicate symbols, each with an associated arity and
modulus of uniform continuity,

• a set (ck)k∈K of constant symbols.

When no ambiguity can arise, we say “signature” instead of “metric signa-
ture”.

When S is a metric signature and M is a metric structure, we say that M
is an S-structure if the distinguished functions, predicates, and constants of
M match the requirements imposed by S. Given a signature S, the terms of
S are defined recursively, exactly as in the discrete case.
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Definition 1.2.3. Let S be a metric signature. The S-formulas of continuous
first-order logic are defined recursively as follows.

1. If t1 and t2 are terms then d(t1, t2) is a formula.

2. If t1, . . . , tn are S-terms, and P is an n-ary predicate symbol, then
P (t1, . . . , tn) is a formula.

3. If φ1, . . . , φn are formulas, and f : [0, 1]n → [0, 1] is continuous, then
f(φ1, . . . , φn) is a formula. We think of each such f as a connective.

4. If φ is a formula and x is a variable, then infx φ and supx φ are formulas.
We think of supx and infx as quantifiers.

Given a metric structure M , a formula φ(~x) of the appropriate signature,
and a tuple ~a ∈M , we define the value of φ in M at ~a, denoted φM (~a), in the
obvious recursive manner. We write M |= φ(~a) to mean φM (~a) = 0. The basic
notions of model theory are then defined in the expected way by analogy to
discrete first-order logic.

The only difference between our definitions and those of [BYBHU08] is
that in [BYBHU08] it is assumed that the underlying metric space of each
structure is complete. We do not want to make the restriction to complete
metric spaces in general, so our definition of structures allows arbitrary metric
spaces, and we speak of complete metric structures when we want to insist on
completeness of the underlying metric. In first-order continuous logic there is
little lost by considering only complete metric structures, since every structure
is an elementary substructure of its metric completion. This is also true in
LCω1,ω and LCω1,ω(ρ), but not in Lω1,ω, as Example 1.2.7 below illustrates.

In continuous logic the connectives max and min play the roles of ∧ and
∨, respectively, in the sense that for a metric structure M , formulas φ(~x) and
ψ(~x), and a tuple ~a, we have M |= max{φ(~a), ψ(~a)} if and only if M |= φ(~a)
and M |= ψ(~a), and similarly for min and disjunction. Consequently, the
most direct adaptation of Lω1,ω to metric structures is to allow the formation
of formulas supn φn and infn φn, at least provided that the total number of
free variables remains finite (the restriction on the number of free variables
is usually assumed even in the discrete case). However, one of the important
features of continuous logic is that it is a continuous logic, in the sense that
each formula φ(x1, . . . , xn) defines a continuous function φM : Mn → [0, 1]
on each structure M . The pointwise supremum or infimum of a sequence of
continuous functions is not generally continuous.

A second issue arises from the fact that one expects the metric version of
Lω1,ω to have the same relationship to separable metric structures as Lω1,ω

has to countable discrete structures. Separable metric structures are generally
not countable, so some care is needed in arguments whose discrete version
involves taking a conjunction indexed by elements of a fixed structure. For
instance, one standard proof of Scott’s isomorphism theorem is of this kind
(see [Kei71, Theorem 1]). Closely related to the question of whether or not
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indexing over a dense subset is sufficient is the issue of whether the zeroset of
a formula is definable.

With the above issues in mind, we present some of the infinitary logics for
metric structures that have appeared in the literature. The first and third of
the following logics were both called “Lω1,ω” in the papers where they were
introduced, and the second was called “Lω1,ω(ρ)”; we add a superscript “C”
to the first and second logics to emphasize that they are continuous logics.

Definition 1.2.4. The three infinitary logics for metric structures we will be
considering are:

• LCω1,ω (Ben Yaacov-Iovino [BYI09]): Allow formulas supn<ω φn and
infn<ω φn as long as the total number of free variables remains finite,
and the formulas φn satisfy a common modulus of uniform continuity.

• LCω1,ω(ρ) (Sequeira [Seq13]): Extend LCω1,ω by adding an operator ρ(x, φ),
interpreted as the distance from x to the zeroset of φ.

• Lω1,ω (Eagle [Eag14]): Allow formulas supn<ω φn and infn<ω φn as long
as the total number of free variables remains finite, without regard to
continuity.

The logic Lω1,ω was further developed by Grinstead [Gri14], who in par-
ticular provided an axiomatization and proof system.

Other infinitary logics for metric structures which are not extensions of
continuous first-order logic have also been studied. In a sequence of papers
beginning with his thesis [Ort97], Ortiz develops a logic based on Henson’s
positive bounded formulas and allows infinitary formulas, but also infinite
strings of quantifiers. An early version of [CL16] had infinitary formulas in a
logic where the quantifiers sup and inf were replaced by category quantifiers.

Remark 1.2.5. We will often write formulas in any of the above logics in
forms intended to make their meaning more transparent, but sometimes this
can make it less obvious that the expressions we use are indeed valid formulas.
For example, in the proof of Theorem 1.2.6 below, we will be given an Lω1,ω

formula φ(~x), and we will define

ρφ(~x) = inf
~y

min

{(
d(~x, ~y) + sup

n∈N
min{nφ(~y), 1}

)
, 1

}
.

The preceding definition can be seen to be a valid formula of Lω1,ω as follows.
For each n ∈ N define un : [0, 1] → [0, 1] by u(z) = min{nz, 1}. Define
v : [0, 1]2 → [0, 1] by v(z, w) = min{z + w, 1}. Then each un is continuous, as
is v, and we have

ρφ(~x) = inf
~y
v

(
d(~x, ~y), sup

n∈N
un(φ(~x))

)
.

A similar process may be used throughout the remainder of the paper to see
that expressions we claim are formulas can indeed be expressed in the form
of Definitions 1.2.3 and 1.2.4.
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The remainder of this section explores some of the relationships between
LCω1,ω, LCω1,ω(ρ), and Lω1,ω. It is clear that each LCω1,ω formula is both an

Lω1,ω formula and an LCω1,ω(ρ) formula. The next result shows that the ρ

operation is implemented by a formula of Lω1,ω, so each LCω1,ω(ρ) formula is
also equivalent to an Lω1,ω formula.

Theorem 1.2.6. For every Lω1,ω formula φ(~x) there is an Lω1,ω formula
ρφ(~x) such that for every metric structure M and every ~a ∈M ,

ρMφ (~a) = inf{d(~a,~b) : φM (~b) = 0}.

Proof. Let φ be an Lω1,ω formula, and define

ρφ(~x) = inf
~y

min

{(
d(~x, ~y) + sup

n∈N
min{nφ(~y), 1}

)
, 1

}
.

(See Remark 1.2.5 above for how to express this as an official Lω1,ω formula).
Now consider any metric structure M , and any ~y ∈M . We have

sup
n∈N

min{nφM (~y), 1} =

{
0 if φM (~y) = 0,

1 otherwise.

Therefore for any ~a, ~y ∈M ,

min

{(
d(~a, ~y) + sup

n∈N
min{nφ(~y), 1}

)
, 1

}
=

{
d(~a, ~y) if φM (~y) = 0,

1 otherwise.

Since all values are in [0, 1], it follows that:

ρMφ (~a) = inf
(
{d(~a, ~y) : φM (~y) = 0} ∪ {1}

)
= inf{d(~a, ~y) : φM (~y) = 0}.

Each formula of LCω1,ω or LCω1,ω(ρ) defines a uniformly continuous function
on each structure, and just as in first-order continuous logic, the modulus of
continuity of this function depends only on the signature, not the particular
structure. By contrast, the functions defined by Lω1,ω formulas need not be
continuous at all. The loss of continuity causes complications for the theory,
especially when one is interested in complete metric structures, as is often the
case in applications. Of particular note is the fact that, while every metric
structure is an LCω1,ω-elementary substructure of its metric completion, this is
very far from being true for the logic Lω1,ω:

Example 1.2.7. Let S be the signature consisting of countably many con-
stant symbols (qn)n<ω. Consider the Lω1,ω formula

φ(x) = inf
n<ω

sup
R∈N

min{1, Rd(x, qn)}.
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For any a in a metric structure M we have M |= φ(a) if and only if a = qn for
some n. In particular, if M is a countable metric space which is not complete,
and (qn)n<ω is interpreted as an enumeration of M , then

M |= sup
x
φ(x) and M 6|= sup

x
φ(x).

In particular, M 6≡Lω1,ω
M .

While discontinuous formulas introduce complications, they also give a
significant increase in expressive power. As an example, recall that continuous
first-order logic lacks an exact negation connective, in the sense that there
is no connective ¬ such that M |= ¬φ if and only if M 6|= φ. Indeed there
is no continuous function ¬ : [0, 1] → [0, 1] such that ¬(x) = 0 if and only
if x 6= 0, so LCω1,ω also lacks an exact negation connective. Similarly, the
formula infn φn is not the exact disjunction of the formulas φn, and infx is
not an exact existential quantifier, and neither exact disjunction nor exact
existential quantification is present in either continuous infinitary logic. In
Lω1,ω, we recover all three of these classical operations on formulas.

Proposition 1.2.8. The logic Lω1,ω has an exact countable disjunction, an
exact negation, and an exact existential quantifier.

Proof. We first show that Lω1,ω has an exact infinitary disjunction. Suppose
that (φn(~x))n<ω are formulas of Lω1,ω. Define

ψ(~x) = inf
n<ω

sup
R∈N

min{1, Rφn(~x)}.

Then in any metric structure M , for any tuple ~a, we have

M |= ψ(~a) ⇐⇒ M |= φn(~a) for some n.

Using the exact disjunction we define the exact negation. Given any for-
mula φ(~x), define

¬φ(~x) =
∨
n<ω

(
φ(~x) ≥ 1

n

)
,

where
∨

is the exact disjunction described above. Then for any metric struc-
ture M , and any ~a ∈M ,

M |= ¬φ(~a) ⇐⇒ (∃n < ω)M |= φ(~a) ≥ 1

n

⇐⇒ (∃n < ω)φM (~a) ≥ 1

n

⇐⇒ φM (~a) 6= 0

⇐⇒ M 6|= φ(~a)

Finally, with exact negation and the fact that M |= sup~x φ(~x) if and only
if M |= φ(~a) for every ~a ∈ M , we define ∃~xφ to be ¬ sup~x ¬φ, and have that
M |= ∃~xφ(~x) if and only if there is ~a ∈M such that M |= φ(~a).
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Remark 1.2.9. Some caution is necessary when using the negation operation
defined in Proposition 1.2.8. Consider the following properties a negation con-
nective ∼ could have for all metric structures M , all tuples ~a ∈ M , and all
formulas φ(~x). These properties mimic properties of negation in classical dis-
crete logic:

1. M |= ∼φ(~a) if and only if M 6|= φ(~a),

2. M |= ∼∼φ(~a) if and only if M |= φ(~a),

3. (∼∼φ)M (~a) = φM (~a).

Properties (1) and (3) each imply property (2). In classical {0, 1}-valued logics
there is no distinction between properties (2) and (3), but these properties
do not coincide for [0, 1]-valued logic. Property (2) is strictly weaker than
property (1), since the identity connective ∼σ = σ satisfies (2) but not (1).

The connective ¬ defined in the proof of Proposition 1.2.8 has properties
(1) and (2), but does not have property (3), because if φ(~a)M > 0 then
(¬¬φ)M (~a) = 1. The approximate negation commonly used in continuous
first-order logic, which is defined by ∼ φ(~x) = 1 − φ(~x), satisfies properties
(2) and (3), but not property (1).

In fact, there is no truth-functional connective in any [0, 1]-valued logic
that satisfies both (1) and (3). Suppose that ∼ were such a connective. Then
∼ : [0, 1] → [0, 1] would have the following two properties for all x ∈ [0, 1],
as consequences of (1) and (3), respectively:

• ∼(x) = 0 if and only if x 6= 0,

• ∼(∼(x)) = x.

The first condition implies that ∼ is not injective, and hence cannot satisfy
the second condition.

The expressive power of Lω1,ω is sufficient to introduce a wide variety of
connectives beyond those of continuous first-order logic and the specific ones
described in Proposition 1.2.8.

Proposition 1.2.10. Let u : [0, 1]n → [0, 1] be a Borel function, with n < ω,
and let (φl(~x))l<n be Lω1,ω-formulas. There is an Lω1,ω-formula ψ(~x) such
that for any metric structure M and any ~a ∈M ,

ψM (~a) = u(φM1 (~a), . . .).

Proof. Recall that the Baire hierarchy of functions f : [0, 1]n → [0, 1] is defined
recursively, with f being Baire class 0 if it is continuous, and Baire class α
(for an ordinal α > 0) if it is the pointwise limit of a sequence of functions
each from some Baire class < α. The classical Lebesgue-Hausdorff theorem
(see [Sri98, Proposition 3.1.32 and Theorem 3.1.36]) implies that a function
f : [0, 1]ω → [0, 1] is Borel if and only if it is Baire class α for some α < ω1.
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Our proof will therefore be by induction on the Baire class α of our connective
u : [0, 1]n → [0, 1]. The base case is α = 0, in which case u is continuous, and
hence is a connective of first-order continuous logic.

Now suppose that u = limk→∞ uk pointwise, with each uk of a Baire class
αk < α. By induction, for each k let ψk(~x) be such that for every metric
structure M and every ~a ∈M ψMk (~a) = uk(φM1 (~a), . . . , φMn (~a)). Then we have

u(φM1 (~a), . . . , φMn (~a)) = lim
k→∞

uk(φM1 (~a), . . . , φMn (~a))

= lim sup
k→∞

ψMk (~a)

= inf
k≥0

sup
m≥k

ψMm (~a)

The final expression shows that the required Lω1,ω formula is infk≥0 supm≥k ψm(~x).

Remark 1.2.11. The case of Proposition 1.2.10 for sentences appears, with a
different proof, in [Gri14, Theorem 1.25].

The expressive power of continuous first-order logic is essentially un-
changed if continuous functions of the form u : [0, 1]ω → [0, 1] are allowed
as connectives in addition to the continuous functions on finite powers of [0, 1]
(see [BYBHU08, Proposition 9.3]). If such infinitary continuous connectives
are permitted in Lω1,ω, then the same proof as above also shows that Lω1,ω

implements all Borel functions u : [0, 1]ω → [0, 1].

In order to obtain the benefits of both Lω1,ω and LCω1,ω or LCω1,ω(ρ), it is
sometimes helpful to work in Lω1,ω and then specialize to a more restricted
logic when continuity becomes relevant. A fragment of an infinitary metric
logic L is a set of L-formulas including the formulas of continuous first-order
logic, closed under the connectives and quantifiers of continuous first-order
logic, closed under subformulas, and closed under substituting terms for vari-
ables. In [Eag14] we defined a fragment L of Lω1,ω to be continuous if it has
the property that every L-formula defines a continuous function on all struc-
tures. The definition of a continuous fragment ensures that if L is a continuous
fragment and M is a metric structure, then M �L M .

It follows immediately from the definitions that LCω1,ω is a continuous frag-

ment of both Lω1,ω and LCω1,ω(ρ). The construction of the ρ operation as a
formula of Lω1,ω in Theorem 1.2.6 uses discontinuous formulas as subformulas,
so LCω1,ω(ρ) is not a continuous fragment of Lω1,ω, although it would be if we
viewed the formula ρφ from Theorem 1.2.6 as having only φ as a subformula.
While it is a priori possible that there are continuous fragments of Lω1,ω that
are not subfragments of LCω1,ω(ρ), we are not aware of any examples. It also re-

mains unclear whether or not the ρ operation of LCω1,ω(ρ) can be implemented

by an LCω1,ω formula. We therefore ask:

Question 1.2.12. Suppose that φ(~x) is an Lω1,ω formula such that for every
subformula ψ of φ, ψM : Mn → [0, 1] is uniformly continuous, with the
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modulus of uniform continuity not depending on M . Is φ equivalent to an
LCω1,ω formula? Is ρ(~y, φ) equivalent to an LCω1,ω formula?

A positive answer to the first part of Question 1.2.12 would imply that
every continuous fragment of Lω1,ω is a fragment of LCω1,ω. In the first part of
the question the answer is negative if we only ask for φ to define a uniformly
continuous function. For example, consider the sentence σ = supx φ(x) from
Example 1.2.7. For any M we have σM : M0 → [0, 1] is constant, yet we saw
that this σ can be a witness to M 6≡Lω1,ω

M , and hence is not equivalent to

any LCω1,ω sentence. This example can be easily modified to produce examples
of Lω1,ω formulas with free variables that are uniformly continuous but not
equivalent to any LCω1,ω sentence (for example, max{σ, d(y, y)}).

1.3 Consequences of Scott’s Isomorphism Theorem

The existence of Scott sentences for complete separable metric structures
was first proved by Sequeira [Seq13] in LCω1,ω(ρ). Sequeira’s proof of the exis-
tence of Scott sentences is a back-and-forth argument, generalizing the stan-
dard proof in the discrete setting. An alternative proof of the existence of Scott
sentences in LCω1,ω goes by first proving a metric version of the López-Escobar
theorem, which characterizes the isomorphism-invariant bounded Borel func-
tions on a space of codes for structures as exactly those functions of the form
M 7→ σM for an LCω1,ω-sentence σ. Using this method Scott sentences in LCω1,ω

were found by Coskey and Lupini [CL16] for structures whose underlying met-
ric space is the Urysohn sphere, and such that all of the distinguished functions
and predicates share a common modulus of uniform continuity. Shortly there-
after, Ben Yaacov, Nies, and Tsankov obtained the same result for all complete
metric structures.

Theorem 1.3.1 ([BYNT14, Corollary 2.2]). For each separable complete met-
ric structure M in a countable signature there is an LCω1,ω sentence σ such that
for every other separable complete metric structure N of the same signature,

σN =

{
0 if M ∼= N

1 otherwise

We note that a positive answer to Question 1.2.12 would imply that Se-
queira’s proof works in LCω1,ω, and hence give a more standard back-and-forth
proof of Theorem 1.3.1.

Remark 1.3.2. Even with the increased expressive power of Lω1,ω over LCω1,ω,
we cannot hope to prove the existence of Scott sentences for arbitrary (i.e.,

possibly incomplete) separable metric structures, because there are 22ℵ0 pair-
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wise non-isometric separable metric spaces ([KN51, Theorem 2.1]), but only
2ℵ0 sentences of Lω1,ω in the empty signature.

We can easily reformulate Theorem 1.3.1 to apply to incomplete struc-
tures, but little is gained, as we only get uniqueness at the level of the metric
completion.

Corollary 1.3.3. For each separable metric structure M in a countable sig-
nature there is an LCω1,ω sentence σ such that for every other separable metric
structure N of the same signature,

σN =

{
0 if M ∼= N

1 otherwise

Proof. Let σ be the Scott sentence for M , as in Theorem 1.3.1. Since σ is in
LCω1,ω, we have

σN = σN =

{
0 if M ∼= N

1 otherwise
.

The following observation should be compared with Example 1.2.7 and
Proposition 1.2.8, which showed that there are Lω1,ω formulas (and even sen-
tences) that are not LCω1,ω or LCω1,ω(ρ) formulas.

Proposition 1.3.4. For any separable complete metric structures M and N
in the same countable signature, the following are equivalent:

1. M ∼= N ,

2. M ≡Lω1,ω
N ,

3. M ≡LCω1,ω
(ρ) N .

4. M ≡LCω1,ω
N ,

Proof. It is clear that (1) implies (2). By Theorem 1.2.6 each LCω1,ω(ρ) formula
can be implemented as an Lω1,ω formula, so (2) implies (3). Similarly, each
LCω1,ω formula is an LCω1,ω(ρ) formula, so (3) implies (4). Finally, if M ≡LCω1,ω

N then, in particular, N satisfies M ’s Scott sentence, and both are complete
separable metric structures, so M ∼= N by Theorem 1.3.1.

The formula creation rules for Lω1,ω imply that if φ(~x) is an Lω1,ω-formula
in a signature with a constant symbol c, then the expression obtained by re-
placing each instance of c by a new variable y is an Lω1,ω-formula ψ(~x, y). In
particular, the usual identification of formulas with sentences in a language
with new constant symbols can be used in Lω1,ω. By contrast, when this proce-
dure is performed on an LCω1,ω or LCω1,ω(ρ) formula, the result is not necessarily
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again an LCω1,ω or LCω1,ω(ρ) formula, because it may not have the appropriate
continuity property. Scott’s isomorphism theorem provides a plentiful supply
of examples.

Example 1.3.5. Let M be a complete separable connected metric structure
such that Aut(M) does not act transitively on M . Pick any a ∈ M , and let
Oa be the Aut(M)-orbit of a. The fact that Aut(M) does not act transitively
implies Oa 6= M . Let θa(x) be the Lω1,ω formula obtained by replacing a by
a new variable x in the LCω1,ω Scott sentence of (M,a). Then for any b ∈ X,

θMa (b) =

{
0 if (M,a) ∼= (M, b)

1 otherwise

=

{
0 if b ∈ Oa,

1 otherwise.

Since M is connected and the image of θMa is {0, 1}, the function θMa is not
continuous. Therefore θa is not an LCω1,ω or LCω1,ω(ρ) formula.

The fact that the formula θa in the above example is an Lω1,ω formula
will be relevant in the proof of Theorem 1.4.1 below.

1.4 Definability in Lω1,ω

The original use of Scott’s isomorphism theorem in [Sco65] was to prove
a definability theorem. We obtain an analogous definability theorem for the
metric logic Lω1,ω.

Theorem 1.4.1. Let M be a separable complete metric structure in a count-
able signature. For any continuous function P : Mn → [0, 1], the following are
equivalent:

1. There is an Lω1,ω formula φ(~x) such that for all ~a ∈Mn, φM (~a) = P (~a),

2. P is fixed by all automorphisms of M (in the sense that for all Φ ∈
Aut(M), P = P ◦ Φ).

Proof. The proof that (1) implies (2) is a routine induction on the complexity
of formulas, so we only prove that (2) implies (1).

Fix a countable dense subset D ⊆ M . For each ~a ∈ D, let θ~a(~x) be the
formula obtained by replacing each occurrence of ~a in the Scott sentence of
(M,~a) by a tuple of new variables ~x. The Scott sentence is obtained from
Theorem 1.3.1. Observe that this formula has the following property, for all
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~b ∈Mn:

θM~a (~b) =

{
0 if there is Φ ∈ Aut(M) with Φ(~b) = ~a

1 otherwise

For each ε > 0, define:

σε(~x) = inf
~y

max

d(~x, ~y), inf
~a∈Dn
P (~a)<ε

θ~a(~y)

 .

Each σε(~x) is a formula of Lω1,ω(S).

Claim 1.4.1.1. Consider any ε ∈ Q ∩ (0, 1) and any ~b ∈Mn.

(a) If M |= σε(~b) then P (~b) ≤ ε.

(b) If P (~b) < ε then M |= σε(~b).

Proof. (a) Suppose thatM |= σε(~b). Fix ε′ > 0, and pick 0 < δ < 1 such that

if d(~b, ~y) < δ then
∣∣∣P (~b)− P (~y)

∣∣∣ < ε′. This exists because we assumed

that P is continuous. Now from the definition of M |= σε(~b) we can find
~y ∈Mn such that

max

d(~b, ~y), inf
~a∈Dn
P (~a)<ε

θ~a(~y)

 < δ.

In particular, we have that d(~b, ~y) < δ, so
∣∣∣P (~b)− P (~y)

∣∣∣ < ε′. On the

other hand, inf ~a∈Dn
P (~a)<ε

θ~a(~y) < δ, and θ~a(~y) ∈ {0, 1} for all ~a ∈ Dn, so in

fact there is ~a ∈ Dn with P (~a) < ε and θ~a(~y) = 0. For such an ~a there
is an automorphism of M taking ~y to ~a, and hence by (2) we have that
P (~y) < ε as well. Combining what we have,

P (~b) =
∣∣∣P (~b)

∣∣∣
≤
∣∣∣P (~b)− P (~y)

∣∣∣+ |P (~y)|

< ε′ + ε

Taking ε′ → 0 we conclude P (~b) ≤ ε.

(b) Suppose that P (~b) < ε, and again fix ε′ > 0. Using the continuity of P ,

find δ sufficiently small so that if d(~b, ~y) < δ then P (~y) < ε. The set D is
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dense in M , so we can find ~y ∈ Dn such that d(~b, ~y) < min{δ, ε′}. Then
P (~y) < ε, so choosing ~a = ~y we have

inf
~a∈Dn
P (~a)<ε

θ~a(~y) = 0.

Therefore

max

d(~b, ~y), inf
~a∈Dn
P (~a)<ε

θ~a(~y)

 = d(~b, ~y) < ε′,

and so taking ε′ → 0 shows that M |= σε(~b).
a - Claim 1.4.1.1

Consider now any ~a ∈ Mn. By (a) of the claim P (~a) is a lower bound for
{ε ∈ Q ∩ (0, 1) : M |= σε(~a)}. If α is another lower bound, and α > P (~a), then
there is ε ∈ Q ∩ (0, 1) such that P (~a) < ε < α. By (b) of the claim we have
M |= σε(~a) for this ε, contradicting the choice of α. Therefore

P (~a) = inf {ε ∈ Q ∩ (0, 1) : M |= σε(~a)} .

Now for each ε ∈ Q ∩ (0, 1), define a formula

ψε(~x) = max

{
ε, sup
m∈N

min {mσε(~x), 1}
}
.

Then for any ~a ∈Mn,

ψMε (~a) =

{
ε if σMε (~a) = 0,

1 otherwise.

Let φ(~x) = infε∈Q∩(0,1) ψε(~x). Then

φM (~a) = inf
{
ε : σMε (~a) = 0

}
= P (~a).

We also have a version where parameters are allowed in the definitions:

Corollary 1.4.2. Let M be a separable complete metric structure in a
countable signature, and fix a set A ⊆ M . For any continuous function
P : Mn → [0, 1], the following are equivalent:

1. There is an Lω1,ω formula φ(~x) with parameters from A such that for
all ~a ∈Mn,

φM (~a) = P (~a),

2. P is fixed by all automorphisms of M that fix A pointwise,
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3. P is fixed by all automorphisms of M that fix A pointwise,

Proof. Since M is a separable metric space, there is a countable set D ⊆ A
such that D = A in M . An automorphism of M fixes A pointwise if and
only if it fixes D pointwise if and only if it fixes D = A pointwise, which
establishes the equivalence of (2) and (3). For the equivalence of (1) and (2),
apply Theorem 1.4.1 to the structure obtained from M by adding a new
constant symbol for each element of D.

Theorem 1.4.1 does not hold, as stated, with Lω1,ω replaced by LCω1,ω or

LCω1,ω(ρ), because we assumed only continuity for the function P , while for-

mulas in LCω1,ω always define uniformly continuous functions. Even if P is
assumed to be uniformly continuous, some intermediate steps in our proof
use the formulas discussed in Example 1.3.5, as well as other possibly discon-
tinuous formulas, and hence our argument does not directly apply to give a
version of Scott’s definability theorem in the other infinitary logics.

Question 1.4.3. Let M be a separable complete metric structure, and let
P : Mn → [0, 1] be uniformly continuous and automorphism invariant. Is P
definable in M by an LCω1,ω-formula? Is P definable in M by an LCω1,ω(ρ)-
formula?

To conclude, we give one quite simple example of definability in Lω1,ω

where first-order definability fails.

Example 1.4.4. Recall that a (unital) C*-algebra is a unital Banach algebra

with an involution ∗ satisfying the C*-identity ‖xx∗‖ = ‖x‖2. A formalization
for treating C*-algebras as metric structures is presented in [FHS14], where
it is also shown that in an appropriate language the class of C*-algebras is ∀-
axiomatizable in continuous first-order logic. The model theory of C*-algebras
has since become an active area of investigation.

A trace on a C*-algebra A is a bounded linear functional τ : A → C
such that τ(1) = 1, and for all a, b ∈ A, τ(a∗a) ≥ 0 and τ(ab) = τ(ba). An
appropriate way to consider traces as [0, 1]-valued predicates on the metric
structure associated to a C*-algebra is given in [FHS14]. Traces appear as
important tools throughout the C*-algebra literature. In the first-order con-
tinuous model theory of C*-algebras, traces play a key role in showing that
certain important C*-algebras can be constructed as Fräıssé limits [EFH+16],
and traces are also related to the failure of quantifier elimination for most
finite-dimensional C*-algebras [EFKV15]. Several other uses of traces in the
model theory of C*-algebras can be found in [FHL+16]. Of particular interest
is the case where a C*-algebra has a unique trace; such algebras are called
monotracial.

In general, traces on C*-algebras need not be automorphism invariant.
For an example, consider C(2ω), the C*-algebra of continuous complex-valued
functions on the Cantor space. Pick any z ∈ 2ω, and define τ : C(2ω) → C
by τ(f) = f(z). It is straightforward to verify that τ is a trace. For any other
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z′ ∈ 2ω there is an autohomeomorphism φ of 2ω sending z to z′. The map
Φ : f 7→ f ◦ φ is then an automorphism of C(2ω), and we have (τ ◦ Φ)(f) =
τ(f ◦ φ) = (f ◦ φ)(z) = f(z′), so τ ◦ Φ 6= τ .

On the other hand, it is easily seen that if τ is a trace on A and Φ ∈
Aut(A), then τ ◦ Φ is again a trace on A. Thus for monotracial C*-algebras
the unique trace is automorphism invariant. The following is therefore a direct
consequence of Theorem 1.4.1:

Corollary 1.4.5. If A is a separable C*-algebra with a unique trace τ , then
τ is Lω1,ω-definable (without parameters) in A.

It is natural to ask whether Lω1,ω-definability in Corollary 1.4.5 can be
replaced by definability in a weaker logic. Monotracial C*-algebras satisfy-
ing certain additional properties do have their traces definable in first-order
continuous logic (see [FHL+16]), but the additional assumptions on the C*-
algebras are necessary. In [FHL+16] it is shown that the separable monotracial
C*-algebra constructed by Robert in [Rob15, Theorem 1.4] has the property
that the trace is not definable in first-order continuous logic.

The situation for definability in LCω1,ω is less clear. Any trace on a C*-
algebra is 1-Lipschitz, and so in particular is uniformly continuous. An inter-
esting special case of Question 1.4.3 is then whether or not the trace on a
monotracial separable C*-algebra is always LCω1,ω-definable.
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Abstract

In 1970, Morley introduced the notion of a sentence ϕ of the in-
finitary logic Lω1ω being scattered. He showed that if ϕ is scattered
then the class I(ϕ) of isomorphism types of countable models of ϕ
has cardinality at most ℵ1, and if ϕ is not scattered then I(ϕ) has
cardinality continuum. The absolute form of Vaught’s conjecture
for ϕ says that if ϕ is scattered then I(ϕ) is countable. General-
izing previous work of Ben Yaacov and the author, we introduce
here the notion of a separable randomization of ϕ, which is a sepa-
rable continuous structure whose elements are random elements of
countable models of ϕ. We improve a result by Andrews and the
author, showing that if I(ϕ) is countable then ϕ has few separable
randomizations, that is, every separable randomization of ϕ is iso-
morphic to a very simple structure called a basic randomization.
We also show that if ϕ has few separable randomizations, then
ϕ is scattered. Hence if the absolute Vaught conjecture holds for
ϕ, then ϕ has few separable randomizations if and only if I(ϕ) is
countable, and also if and only if ϕ is scattered. Moreover, assum-
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ing Martin’s axiom for ℵ1, we show that if ϕ is scattered then ϕ
has few separable randomizations.

2.1 Introduction

The notion of a scattered sentence ϕ of the infinitary logic Lω1ω was in-
troduced by Michael Morley [13] in connection with Vaught’s conjecture. The
notion of a randomization was introduced by the author in [10] and developed
in the setting of continuous model theory by Itäı Ben Yaacov and the author
in [6]. The pure randomization theory is a continuous theory with a sort
K for random elements and a sort E for events, and a set of axioms that say
that there is an event corresponding to each first order formula with random
elements in its argument places, and there is an atomless probability measure
on the events. By a separable randomization of a first order theory T we
mean a separable model of the pure randomization theory in which each axiom
of T has probability one.

In [1], Uri Andrews and the author showed that if T is a complete the-
ory with at most countably many countable models up to isomorphism, then
T has few separable randomizations, which means that all of its separable
randomizations are very simple in a sense explained below. In this paper we
generalize that result by replacing the theory T with an infinitary sentence ϕ,
and establish relationships between sentences with countably many countable
models, scattered sentences, sentences with few separable randomizations, and
Vaught’s conjecture.

Let ϕ be a sentence of Lω1ω whose models have at least two elements, and
let I(ϕ) be the class of isomorphism types of countable models of ϕ. In [13],
Morley showed that if ϕ is scattered then I(ϕ) has cardinality at most ℵ1,
and if ϕ is not scattered then I(ϕ) has cardinality continuum. The absolute
form of Vaught’s conjecture for ϕ says that if ϕ is scattered then I(ϕ) is at
most countable.

In the version of continuous model theory developed in [5], the universe
of a structure is a complete metric space with distance playing the role of
equality, and formulas take values in the unit interval [0, 1] with 0 interpreted
as true. A model is separable if its universe has a countable dense subset. The
randomization signature LR has two sorts, K for random elements and E
for events. LR has a function symbol Jψ(·)K of sort Kn → E for each first order

formula ψ(~v) with n free variables. The continuous term Jψ(~f)K is interpreted

as the event that the formula ψ(~v) is satisfied by the n-tuple ~f of random
elements. In the event sort E, LR has the Boolean operations and a predicate
µ. The continuous formula µ(E) takes values in [0, 1] and is interpreted as the
probability of the event E.

In Theorem 2.5.1 we show that in any separable model of the pure ran-
domization theory, the function Jψ(·)K can be extended in a natural way from
the case that ψ(~v) is a first order formula to the case that ψ(~v) is a formula
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of Lω1ω. We can then define a separable randomization of an infinitary
sentence ϕ to be a separable model of the pure randomization theory in which
JϕK has probability one.

A basic randomization of ϕ is a very simple kind of separable ran-
domization of ϕ that is determined up to isomorphism by taking a countable
subset J ⊆ I(ϕ) and assigning a probability ρ(j) to each j ∈ J . A basic ran-
domization of ϕ has a model Mj of isomorphism type j for each j ∈ J , and
a partition of [0, 1) into Borel sets Bj of measure ρ(j). The events are the
Borel subsets of [0, 1) with the usual measure, and the random elements are
the Borel functions that send Bj into Mj for each j ∈ J .

We say that ϕ has few separable randomizations if every separable
randomization of ϕ is isomorphic to a basic randomization of ϕ.

In Theorem 2.9.6, we show that if I(ϕ) is countable, then ϕ has few sepa-
rable randomizations. In Theorem 2.10.1 we show that if ϕ has few separable
randomizations, then ϕ is scattered. Therefore, if the absolute form of Vaught’s
conjecture holds for ϕ, then ϕ has few separable randomizations if and only
if I(ϕ) is countable, and also if and only if ϕ is scattered. In Theorem 2.10.3
we show that if Martin’s axiom for ℵ1 holds and ϕ is scattered, then ϕ has
few separable randomizations.

Section 2 reviews some results we need in the literature about scattered
sentences and Vaught’s conjecture. Section 3 contains a review of some previ-
ous results about randomizations. In Section 4 we introduce the basic random-
izations of ϕ. In Section 5 we introduce the separable randomizations of ϕ.
In Section 6 we develop a key tool for constructing separable randomizations,
called a countable generator, and in Section 7 we show that every separable
randomization of ϕ is isomorphic to one that can be constructed in that way.
In Section 8 we show that every separable randomization of ϕ can be elemen-
tarily embedded in some basic randomization if and only if only countably
many first order types are realized in countable models of ϕ. The methods
developed in Sections 6 through 8 are used to prove our main results are in
Sections 9 and 10. In Section 11 we list some open questions that are related
to our results.

2.2 Scattered Sentences

We fix a countable1 first order signature L, and all first order structures
mentioned are understood to have signature L. We refer to [9] for the infini-
tary logic Lω1ω. Note in particular that every formula of Lω1ω has at most
finitely many free variables. By a countable fragment LA of Lω1ω we mean
a countable set of formulas of Lω1ω that contains the first order formulas
and is closed under subformulas, finite Boolean combinations, quantifiers, and
change of free variables.

In general, the class of countable first order structures is a proper class.

1In this paper, “countable” means “of cardinality at most ℵ0”.
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To avoid this problem, let M(L) be the class of countable structures with
signature L, whose universe is N or an initial segment of N. Then M(L) is a
set, and every countable structure is isomorphic to some element of M(L). We
define the isomorphism type of a countable structure M to be the set of all
H ∈M(L) such that H is isomorphic to M.

Consider a sentence ϕ of Lω1ω that has at least one model. By the
Löwenheim-Skolem Theorem, ϕ has at least one countable model. We let
I(ϕ) be the set of all isomorphism types of countable models of ϕ. By a Scott
sentence for a countable structure M we mean an Lω1ω sentence θ such that
M |= θ, and every countable model of θ is isomorphic to M.

Result 2.2.1. (Scott’s Theorem, [15]) Every countable structure has a Scott
sentence.

We let I be the set of all isomorphism types of countable structures of
cardinality ≥ 2. Thus I = I((∃x)(∃y)x 6= y). For each i ∈ I, we choose once
and for all a Scott sentence θi for the countable models of isomorphism type i.
We say that two countable L-structures M,H are α-equivalent if they satisfy
the same Lω1ω-sentences of quantifier rank at most α. By Scott’s theorem, M
and H are isomorphic if and only if they are α-equivalent for all countable α.

Several equivalent characterizations of scattered sentences were given in
[4]. We will take one of these as our definition.

Definition 2.2.2. An Lω1ω sentence ϕ is scattered if for each countable
ordinal α, there are at most countably many α-equivalence classes of countable
models of ϕ. A first order theory T is scattered if the sentence

∧
T is scattered.

Result 2.2.3. (Morley [13]) If ϕ is scattered then I(ϕ) has cardinality at
most ℵ1, and if ϕ is not scattered than I(ϕ) has cardinality 2ℵ0 .

The Vaught conjecture for ϕ ([18]) says that I(ϕ) is either countable or
has cardinality 2ℵ0 . The absolute Vaught conjecture for ϕ (see Steel [17])
says that if ϕ is scattered, then I(ϕ) is countable. It is called absolute because
its truth does not depend on the underlying model of ZFC. In ZFC +GCH
the Vaught conjecture trivially holds for all ϕ. In ZFC +¬CH, the absolute
Vaught conjecture for ϕ is equivalent to the Vaught conjecture for ϕ.

Definition 2.2.4. (Morley [13]) An enumerated structure (M, a) is a
countable structure M with signature L together with a mapping a from N
onto the universe M of M.

Consider a countable fragment LA and an enumerated structure (M, a).
We take 2LA to be the Polish space whose elements are the functions from
LA into {0, 1}. We say that a point t ∈ 2LA codes (M, a) if for each formula
ψ ∈ LA with at most the free variables v0, . . . , vn−1, t(ψ) = 0 if and only
if M |= ψ(a0, . . . , an−1). Note that each enumerated structure is coded by a
unique t ∈ 2LA .

The lemma below is a variant of Theorem 3.3 in [4], and follows from its
proof.

Lemma 2.2.5. Let ϕ be a sentence of Lω1ω. The following are equivalent:
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(i) ϕ is not scattered.

(ii) There is a countable fragment LA of Lω1ω and a perfect set P ⊆ 2LA

such that each t ∈ P codes an enumerated model (M(t), a(t)) of ϕ, and
if s 6= t in P then M(s) and M(t) do not satisfy the same LA-sentences.

2.3 Randomizations of Theories

2.3.1 Continuous Structures

We assume familiarity with the basic notions about continuous model the-
ory as developed in [5]. We give some brief reminders here.

In continuous model theory, the universe of a structure is a complete metric
space, and the universe of a pre-structure is a pseudo-metric space. A structure
(or pre-structure) is said to be separable if its universe is a separable metric
space (or pseudo-metric space). Formulas take truth values in [0, 1], and are
built from atomic formulas using continuous connectives on [0, 1] and the
quantifiers sup, inf. The value 0 in interpreted as truth, and a model of a set
U of sentences is a continuous structure in which each Φ ∈ U has truth value
0.

We extend the notions of embedding and elementary embedding to pre-
structures in the natural way. Given pre-structures P, N, we write h : P ≺ N (h
is an elementary embedding) if h preserves the truth values of all formulas.
If h : P ≺ N where h is the inclusion mapping, we write P ≺ N and say that
P is an elementary submodel of N (leaving off the ‘pre-’ for brevity). If
h : P ≺ N, h preserves distance but is not necessarily one-to-one. Note that
compositions of elementary embeddings are elementary embeddings. We write
h : P ∼= N if h : P ≺ N and every element of N is at distance zero from some
element of h(P). We say that P and N are isomorphic, and write P ∼= N, if
h : P ∼= N for some h. By Remark 2.4 of [1], ∼= is an equivalence relation on
pre-structures.

We call N a reduction of P if N is obtained from P by identifying el-
ements at distance zero, and call N a completion of P if N is a structure
obtained from a reduction of P by completing the metrics. Every pre-structure
has a reduction, that is unique up to isomorphism. The mapping that identifies
elements at distance zero is called the reduction mapping, and is an isomor-
phism from a pre-structure onto its reduction. Similarly, every pre-structure
P has a completion, that is unique up to isomorphism, and the reduction map
is an elementary embedding of P into its completion.

Following [6], we say that P is pre-complete if the metrics in a reduction
of P are already complete. Thus if P is pre-complete, the reductions and
completions of P are the same, and P is isomorphic to its completion.
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2.3.2 Randomizations

We assume that:

• L is a countable first order signature.

• T2 is the theory with the single axiom (∃x)(∃y)x 6= y.

• T is a theory with signature L that contains T2.

• ϕ is a sentence of Lω1ω that implies T2.

Note that T2 is just the theory whose models have at least two elements, and
I(ϕ) ⊆ I(T2) = I. The randomization theory of T is a continuous theory TR

whose signature LR has two sorts, a sort K for random elements of models of
T , and a sort E for events in an underlying probability space. The probability
of the event that a first order formula holds for a tuple of random elements
will be expressible by a formula of continuous logic. The signature LR has an
n-ary function symbol Jθ(·)K of sort Kn → E for each first order formula θ of
L with n free variables, a [0, 1]-valued unary predicate symbol µ of sort E for
probability, and the Boolean operations >,⊥,u,t,¬ of sort E. The signature
LR also has distance predicates dE of sort E and dK of sort K. In LR, we use
B,C, . . . for variables or parameters of sort E, and B

.
= C means dE(B,C) = 0.

For readability we write ∀,∃ for sup, inf.
The axioms of TR, which are taken from [6], are as follows:

Validity Axioms
∀~x(Jψ(~x)K .

= >)

where ∀~xψ(~x) is logically valid in first order logic.
Boolean Axioms The usual Boolean algebra axioms in sort E, and the

statements
∀~x(J(¬θ)(~x)K .

= ¬Jθ(~x)K)

∀~x(J(ϕ ∨ ψ)(~x)K .
= Jθ(~x)K t Jψ(~x)K)

∀~x(J(θ ∧ ψ)(~x)K .
= Jθ(~x)K u Jψ(~x)K)

Distance Axioms

∀x∀y dK(x, y) = 1− µJx = yK, ∀B∀C dE(B,C) = µ(B4C)

Fullness Axioms (or Maximal Principle)

∀~y∃x(Jθ(x, ~y)K .
= J(∃xθ)(~y)K)

Event Axiom
∀B∃x∃y(B

.
= Jx = yK)

Measure Axioms

µ[>] = 1 ∧ µ[⊥] = 0

∀B∀C(µ[B] + µ[C] = µ[B t C] + µ[B u C])
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Atomless Axiom
∀B∃C(µ[B u C] = µ[B]/2)

Transfer Axioms

JθK .
= >

where θ ∈ T .

By a separable randomization of T we mean a separable pre-model of
TR. In this paper we will focus on the pure randomization theory TR2 .
TR2 has the single transfer axiom J(∃x)(∃y)x 6= yK .

= >. Note that for any
theory T ⊇ T2, any model of TR is a model of the pure randomization theory.
By a separable randomization we mean a separable randomization of TR2 .
A separable randomization is called complete if it is a model of TR2 , and
pre-complete if it is a pre-complete model of TR2 .

We will use M,H to denote models of T2 with signature L, and use N and
P to denote models or pre-models of TR2 with signature LR. The universe of
M will be denoted by M . A pre-model of TR2 will be a pair N = (K,E) where

K is the part of sort K and E is the part of sort E. We write Jθ(~f)KN for the

interpretation of Jθ(~v)K in a pre-structure N at a tuple ~f , and write Jθ(~f)K for

Jθ(~f)KN when N is clear from the context.

Result 2.3.1. ([6], Theorem 2.7) Every model or pre-complete model N =
(K,E) of TR2 has perfect witnesses, i.e.,

(i) for each first order formula θ(x, ~y) and each ~g in Kn there exists f ∈ K

such that
Jθ(f , ~g)K .

= J(∃xθ)(~g)K;

(ii) for each B ∈ E there exist f ,g ∈ K such that B
.
= Jf = gK.

We let L be the family of Borel subsets of [0, 1), and let ([0, 1),L, λ) be the
usual probability space, where λ is the restriction of Lebesgue measure to L.
We let M[0,1) be the set of functions with countable range from [0, 1) into M
such that the inverse image of any element of M belongs to L. The elements
of M[0,1) are called random elements of M.

Definition 2.3.2. The Borel randomization of M is the pre-structure
(M[0,1),L) for LR whose universe of sort K is M[0,1), whose universe of sort
E is L, whose measure µ is given by µ(B) = λ(B) for each B ∈ L, and whose
Jψ(·)K functions are

Jψ(~f)K = {t ∈ [0, 1) : M |= ψ(~f(t))}.

(So Jψ(~f)K ∈ L for each first order formula ψ(~v) and tuple ~f in M[0,1)). Its
distance predicates are defined by

dE(B,C) = µ(B4C), dK(f ,g) = µ(Jf 6= gK),

where 4 is the symmetric difference operation.
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Result 2.3.3. ([6], Corollary 3.6) Every Borel randomization of a countable
model of T2 is a pre-complete separable randomization (in other words, a pre-
complete separable model of TR2 ).

Result 2.3.4. ([1], Theorem 4.5) Suppose N is pre-complete and elementarily
embeddable in the Borel randomization (M[0,1),L) of a countable model of T2.
Then N is isomorphic to an elementary submodel of (M[0,1),L) whose event
sort is all of L.

2.4 Basic Randomizations

Basic randomizations are generalizations of Borel randomizations. They
are very simple continuous pre-structures of sort LR. Intuitively, a basic ran-
domization is a combination of countably many Borel randomizations of first
order structures. [1] considered basic randomizations that are combinations
of Borel randomizations of models of a single complete theory T , and called
them called product randomizations.

Definition 2.4.1. Suppose that

• J is a countable subset of I;

• [0, 1) =
⋃
j∈J Bj is a partition of [0, 1) into Borel sets of positive measure;

• for each j ∈ J , Mj has isomorphism type j;

•
∏
j∈J M

Bj
j is the set of all functions f : [0, 1) →

⋃
j∈JMj such that for

all j ∈ J ,

(∀t ∈ Bj)f(t) ∈Mj and (∀a ∈Mj){t ∈ Bj : f(t) = a} ∈ L;

• (
∏
j∈J M

Bj
j ,L) is the pre-structure for LR whose whose measure and

distance functions are as in Definition 2.3.2. and Jψ(·)K functions are

Jψ(~f)K =
⋃
j∈J
{t ∈ Bj : Mj |= ψ(~f(t))},

(
∏
i∈J M

Bi
i ,L) is called a basic randomization. Given a basic randomiza-

tion, we let Mt = Mj whenever j ∈ J and t ∈ Bj . By a basic randomization
of ϕ we mean a basic randomization such that Mj |= ϕ for each j ∈ J .

Remark 2.4.2.

1. In a basic randomization, the set
⋃
j∈JMj is countable, so each f ∈∏

j∈J M
Bj
j has countable range.

2. If Mj
∼= Hj for each j ∈ J , then (

∏
j∈J M

Bj
j ,L) ∼= (

∏
j∈J H

Bj
j ,L).
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3. Every basic randomization (
∏
j∈J M

Bj
j ,L) is isomorphic to a basic ran-

domization (
∏
j∈J H

Bj
j ,L) such that for each j ∈ J , Hj ∈M(L) (so the

universe of Hj is N or an initial segment of N).

4. If Mj ≺ Hj for each j ∈ J , then (
∏
j∈J M

Bj
j ,L) ≺ (

∏
j∈J H

Bj
j ,L). (In

this part we do not require that Hj has isomorphism type j).

Lemma 2.4.3. Every basic randomization P = (
∏
j∈J M

Bj
j ,L) is a pre-model

of the pure randomization theory.

Proof. All of the axioms for TR2 except the Fullness Axioms hold trivially.

Therefore P is a pseudo-metric space in both sorts. By Result 2.3.3, (M
[0,1)
j ,L)

satisfies the Fullness Axioms for each j ∈ J , and it follows easily that P also
satisfies the Fullness Axioms, and thus is a pre-model of TR2 . �2.4.3

We next introduce useful mappings from a basic randomization

(
∏
j∈J M

Bj
j ,L) to the Borel randomizations (M

[0,1)
j ,L).

Definition 2.4.4. Suppose B ∈ L and λ(B) > 0. We say that a mapping `
stretches B to [0, 1) if ` is a Borel bijection from B to [0, 1), `−1 is also Borel,
and for each Borel set A ⊆ B, λ(`(A)) = λ(A)/λ(B).

Let P = (
∏
j∈J M

Bj
j ,L) be a basic randomization, and for each j ∈ J ,

choose an `j that stretches Bj to [0, 1). Define the mapping `j : P→ (M
[0,1)
j ,L)

by
(`j(f))(t) = f(`−1

j (t)), `j(E) = `j(Bj ∩ E).

Remark 2.4.5. Let P = (
∏
j∈J M

Bj
j ,L) be a basic randomization.

1. For each j ∈ J , there exists a mapping `j that stretches Bj to [0, 1).

2. `j maps P onto Pj := (M
[0,1)
j ,L).

3. For each first order formula ψ(~v) and tuple ~f of elements of P of sort K.

λ(Jψ(~f)KP) =
∑
j∈J

λ(Bj)λ(Jψ(`j~f)KPj ).

4. dPK(f ,g) =
∑
j∈J λ(Bj)d

Pj
K (`j(f), `j(g)).

Proof. Since ν(A) = λ(A)/λ(Bj) is a probability measure on Bj , (1) follows
from Theorem 17.41 in [8]. (2)–(4) are clear �2.4.5

The following result is a generalization of Theorem 7.3 of [1], but the proof
we give here is different.

Theorem 2.4.6. Every basic randomization is pre-complete and separable.
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Proof. Let P = (
∏
j∈J M

Bj
j ,L) be a basic randomization. By Result 2.3.3, P is

separable and pre-complete in the event sort. For each j ∈ J , pick a mapping

`j that stretches Bj to [0, 1). Pick an element a ∈
∏
j∈J M

Bj
j .

Separability in sort K: By 2.3.3, for each j ∈ J , there is a countable set Cj

that is dense in M
[0,1)
j . For each finite F ⊆ J , letDF be the set of all f such that

for all j ∈ F , f agrees with some element of `−1
j Cj on Bj , and f agrees with a

on [0, 1) \
⋃
i∈F Bj . Then D =

⋃
F DF is a countable subset of

∏
j∈J M

Bj
j . For

each ε > 0, there is a finite F ⊆ J such that
∑
j∈F µ(Bj) ≥ 1 − ε. It follows

that for each g ∈
∏
j∈J M

Bj
j , there exists f ∈ DF such that for each j ∈ F ,

dK(`j(f), `j(g)) < ε/(|F | + 1), and therefore by Remark 2.4.5, dK(f ,g) < 2ε.

Hence D is dense in
∏
j∈J M

Bj
j .

Pre-completeness in sort K: Suppose that 〈fn〉n∈N is a Cauchy sequence
of sort K. By Remark 2.4.5, for each j ∈ J , 〈`j(fn)〉n∈N is a Cauchy se-

quence in M
[0,1)
j . By Result 2.3.3, M

[0,1)
j is pre-complete, so there exists gj

in M
[0,1)
j such that limn→∞ dK(`j(fn),gj) = 0. Let g be the function that

agrees with `−1
j gj on Bj for each j ∈ J . Then gj = `j(g)) for each j ∈ J ,

so limn→∞ dK(`j(fn), `j(g)) = 0. By Remark 2.4.5, limn→∞ dK(fn,g) = 0 in
P. �2.4.6

Definition 2.4.7. By a probability density function on I we mean a
function ρ : I → [0, 1] such that ρ(i) = 0 for all but countably many i ∈ I,
and

∑
i ρ(i) = 1.

For each basic randomization P = (
∏
j∈J M

Bj
j ,L), the function ρ(i) =

λ(Bi) for i ∈ J , and ρ(i) = 0 for i ∈ I \ J , is called the density function of
P.

Remark 2.4.8. It easily seen that ρ is a probability density function on I if
and only if ρ is the density function of some basic randomization.

The following result is a generalization of Theorem 7.5 of [1], and is proved
in the same way.

Theorem 2.4.9. Two basic randomizations are isomorphic if and only if they
have the same density function.

If a continuous structure N is isomorphic to a basic randomization P, the
density function of P is also called a density function of N. Thus such an N

has a unique density function, which characterizes N up to isomorphism.

2.5 Events Defined by Infinitary Formulas

In this section we consider arbitrary complete separable randomizations.
By definition, each complete separable randomization has an event function
Jψ(·)KN of sort Kn → E for each first order formula ψ(~v) with n free variables.
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The following theorem extends this to the case where ψ(~v) is a formula of the
infinitary logic Lω1ω.

Theorem 2.5.1. Let N = (K,E) be a complete separable randomization, and
let Ψn be the class of Lω1ω formulas with n free variables. There is a unique
family of functions Jψ(·)KN, ψ ∈

⋃
n Ψn, such that:

(i) When ψ ∈ Ψn, Jψ(·)KN : Kn → E.

(ii) When ψ is a first order formula, Jψ(·)KN is the usual event function for
the structure N.

(iii) J¬ψ(~f)KN = ¬Jψ(~f)KN.

(iv) J(ψ1 ∨ ψ2)(~f)KN = Jψ1(~f)KN t Jψ2(~f)KN.

(v) J
∨
k ψk(~f)KN = supkJψk(~f)KN.

(vi) J(∃u)θ(u,~f)KN = supg∈KJθ(g,~f)KN.

Moreover, for each ψ ∈ Ψn, the function Jψ(·)KN is Lipschitz continuous with

bound one, that is, for any pair of n-tuples ~f , ~h ∈ Kn we have

dE(Jψ(~f)KN, Jψ(~h)KN) ≤
∑
m<n

dK(fm,hm).

Proof. We argue by induction on the complexity of formulas. Assume that the
result holds for all subformulas of ψ. If ψ is a first order formula or a negation
or finite disjunction, it is clear that the result holds for ψ.

Suppose ψ =
∨
k ψk. We show that the supremum exists. For each m ∈ N

we have

J
m∨
k=0

ψk(~f)KN =

m⊔
k=0

Jψk(~f)KN.

This is increasing in k, so by the completeness of the metric dE on E,
limk→∞J

∨k
j=0 ψj(

~f)KN exists and is equal to supkJψk(~f)KN. By hypothesis,
the Lipschitz condition holds for each ψk. It follows that the Lipschitz condi-
tion also holds for ψ.

Now suppose ψ(~v) = (∃u)θ(u,~v). We again show first that the supremum
exists. By separability, there is a countable dense subset D = {dk : k ∈ N}
of K. It follows from the axioms of TR2 that there is a sequence 〈gk〉k∈N of
elements of K such that g0 = d0 and for each k, gk+1 agrees with gk on the

event Jθ(gk,~f)KN and agrees with dk elsewhere. Then for each m ∈ N we have

Jθ(gm,~f)KN =

m⊔
k=0

Jθ(dk,~f)KN.

So whenever k ≤ m, we have

Jθ(gk,~f)KN v Jθ(gm,~f)KN,
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and hence
E := lim

k→∞
Jθ(gk,~f)KN = sup

k∈N
Jθ(gk,~f)KN

exists in E.
Consider any h ∈ K. To show that the supremum suph∈KJθ(h,~f)KN exists

in E, it suffices to show that Jθ(h,~f)KN v E, because it will then follow that E
is the desired supremum. Let ε > 0. For some k ∈ N we have dK(dk,h) < ε.
Moreover,

Jdk = h ∧ θ(h,~f)KN = Jdk = h ∧ θ(dk,~f)KN v Jθ(gk,~f)KN v E.

Then
Jθ(h,~f)KN u ¬E v Jdk 6= hKN,

so
µ(Jθ(h,~f)KN u ¬E) ≤ µ(Jdk 6= hKN) = dK(dk,h) < ε.

Since this holds for all ε > 0, we have Jθ(h,~f)KN v E.
To prove the Lipschitz condition for ψ, we consider a pair of n-tuples

~f , ~h ∈ Kn. By the preceding paragraph we have

Jψ(~f)KN = lim
k→∞

Jθ(gk,~f)KN, Jψ(~h)KN = lim
k→∞

Jθ(gk, ~h)KN.

Therefore for each ε > 0 there exists k ∈ N such that

dE(Jθ(gk,~f)KN, Jψ(~f)KN) < ε, dE(Jθ(gk, ~h)KN, Jψ(~h)KN) < ε.

By the Lipschitz condition for θ(u,~v) we have

dE(Jθ(gk,~f)KN, Jθ(gk, ~h)KN) ≤
∑
i<n

dK(fj ,hj).

Then by the triangle inequality, for every ε > 0 we have

dE((Jψ(~f)KN, dE(Jψ(~h)KN) <
∑
i<n

dK(fj ,hj) + 2ε,

so
dE((Jψ(~f)KN, dE(Jψ(~h)KN) ≤

∑
i<n

dK(fj ,hj).

�2.5.1

Remark 2.5.2. The proof of Theorem 2.5.1 only used the metric complete-
ness of the sort E part of N. Hence the result also holds in the case that N is
a separable randomization that has a metric in sort K and a complete metric
in sort E.

Corollary 2.5.3. Suppose that N,P are complete separable randomizations
and h : N ∼= P. Then for every Lω1ω formula ψ(~v) and every tuple ~f of sort

K in N, we have h(Jψ(~f)KN) = Jψ(h~f)KP.
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Proof. By Theorem 2.5.1 and an easy induction on the complexity of
ψ. �2.5.3

When P is a pre-complete separable randomization, h is the reduction map
from P onto its completion N, and ψ(~v) is a formula of Lω1ω, then Jψ(h~f)KN
is uniquely defined by Theorem 2.5.1. In that case, we will sometimes abuse
notation and write µ(Jψ(~f)KP) for µ(Jψ(h~f)KN).

We can now define the notion of a separable randomization of ϕ.

Definition 2.5.4. We say that N is a complete separable randomization
of ϕ if N is a complete separable randomization such that JϕKN is the true
event >. We call P a separable randomization of ϕ if the completion
of P is a complete separable randomization of ϕ. We say that ϕ has few
separable randomizations if every complete separable randomization of ϕ
is isomorphic to a basic randomization.

Thus when ϕ has few separable randomizations, each complete separable
randomization N of ϕ has a unique density function ρ, and ρ characterizes N

up to isomorphism.

Corollary 2.5.5. Let P = (
∏
j∈J M

Bj
j ,L) be a basic randomization with com-

pletion N, and let h : P ∼= N be the reduction map. For each Lω1ω formula ψ(~v)

and tuple ~f in
∏
j∈J M

Bj
j , Jψ(h~f)KN is the reduction of the event⋃
j∈J
{t ∈ Bj : Mj |= ψ(~f(t))}.

Hence P is a basic randomization of ϕ if and only if P is a basic randomization
and P is a separable randomization of ϕ.

Proof. In the case that ψ(~v) is an atomic formula, the result holds by defini-
tion. A routine induction on the complexity of formulas gives the result for
arbitrary Lω1ω formulas. �2.5.5

Note that the complete separable randomizations of the sentence
∧
T are

exactly the separable models of the continuous theory TR. With more over-
head, we could have taken an alternative approach in which the complete
separable randomizations of an Lω1ω sentence ϕ are exactly the separable
models of a theory ϕR in an infinitary continuous logic such as the logic in
[7]. The idea would be to consider a countable fragment LA of Lω1ω, and
have the randomization signature (LA)R contain a function symbol Jψ(·)K for
each formula ψ(~v) of LA. Then Theorem 2.5.1 shows that every separable ran-
domization can be expanded in a unique way to a model with the signature
(LA)R that satisfies the infinitary sentences corresponding to the conditions
(i)–(v). In this approach, ϕR would be the theory in infinitary continuous logic
with the axioms of the pure randomization theory plus the above infinitary
sentences and an axiom stating that JϕK .

= >.
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2.6 Countable Generators of Randomizations

In this section we give a general method of constructing pre-complete sepa-
rable randomizations. In the next section we will show that every pre-complete
separable randomization is isomorphic to one that can be constructed in that
way.

Definition 2.6.1. Assume that (Ω,E, ν) is an atomless probability space such
that the metric space (E, dE) is separable, and for each t ∈ Ω, Mt is a countable
model of T2.

A countable generator (in 〈Mt〉t∈Ω over (Ω,E, ν)) is a countable set C
of elements c ∈

∏
t∈ΩMt such that:

(a) Mt = {c(t) : c ∈ C} for each t ∈ Ω, and

(b) For every first order atomic formula ψ(~v) and tuple ~b in C,

{t ∈ Ω : Mt |= ψ(~b(t))} ∈ E.

Theorem 2.6.2. Let C be a countable generator in 〈Mt〉t∈Ω over (Ω,E, ν).
There is a unique pre-structure P(C) = (K,E) such that:

(c) K is the set of all f ∈
∏
t∈ΩMt such that {t ∈ Ω: f(t) = c(t)} ∈ E for

each c ∈ C;

(d) >,⊥,t,u,¬ are the usual Boolean operations on E, and µ is the measure
ν;

(e) for each first order formula ψ(~x) and tuple ~f in K, we have

Jψ(~f)K = {t ∈ Ω : Mt |= ψ(f(t))};

(f) dE(B,C) = ν(B4C), dK(f ,g) = µ(Jf 6= gK).

Moreover, P(C) is a pre-complete separable randomization.

Proof of Theorem 2.6.2. It is clear that P(C) is unique. We first show by in-
duction on the complexity of formulas that condition (b) holds for all first
order formulas ψ. The steps for logical connectives are trivial. For the quan-
tifier step, suppose (b) holds for ψ(u,~v). Then by (a) and (c)–(f),

J(∃u)ψ(u, ~b)K = {t : Mt |= (∃u)ψ(u, ~b(t))} = {t : (∃c ∈Mt)Mt |= ψ(c, ~b(t))} =

= {t : (∃c ∈ C)Mt |= ψ(c(t), ~b(t))} =
⋃
c∈C

Jψ(c, ~b)K ∈ E,

so (b) holds for (∃u)ψ(u,~v). By the definition of K, for each tuple ~g in K and
~b in C, we have J~g = ~bK ∈ E. Then for every first order formula ψ(~v) and
tuple ~g in K,

Jψ(~g)K =
⋃
{Jψ(~b) ∧ ~g = ~bK : ~b is a tuple in C}.

We therefore have
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(b’) For each first order formula ψ(~v) and tuple ~g in K, Jψ(~g)K ∈ E.

This shows that P(C) is a pre-structure with signature LR.
It is easily seen that P(C) satisfies all the axioms of TR2 except possibly the

Fullness and Event Axioms. We next show that P(C) has perfect witnesses.
Once this is done, it follows at once that P(C) also satisfies the Fullness and
Event Axioms, and hence is a pre-model of TR2 .

Consider a first order formula ψ(u,~v) and a tuple ~g in K. For each t ∈ Ω,
there is a least n(t) ∈ N such that Mt |= (∃u)ψ(u,~g(t)) → ψ(cn(t)(t), ~g(t)).
Since (b’) holds and C ⊆ K, the function f such that f(t) := cn(t)(t) belongs
to K. Therefore

Jψ(f , ~g)K .
= J(∃u)ψ(u,~g)K.

Now consider an event E ∈ E. Since each Mt |= T2, we have J(∃u)u 6= c0K
.
= >.

Therefore there exists f ∈ K such that Jf 6= c0K
.
= >. Then the function g

such that g(t) = f(t) for t ∈ E and g(t) = c0(t) for t /∈ E belongs to K,
and Jf = gK .

= E. This shows that P(C) has perfect witnesses, so P(C) is a
pre-model of TR2 .

We now show that P(C) is pre-complete. This means that when d is either
dK or dE, for every Cauchy sequence 〈xn〉n∈N with respect to d, there exists
x such that d(xn, x) → 0 as n → ∞. This is clear for dE because (Ω,E, ν) is
countably additive. Suppose 〈fn〉n∈N is a Cauchy sequence for dK. Let C =
{ck : k ∈ N}, and Cm = {c0, . . . , cm}. For each k ∈ N, 〈Jfn = ckK〉n∈N is a
Cauchy sequence with respect to dE. Therefore there exists Bk ∈ E such that
limn→∞ dE(Jfn = ckK,Bk) = 0. Then µ(Bk) = limn→∞ µ(Jfn = ckK). We now
cut the sets Bk down to disjoint sets with the same unions. Let A0 = B0, and
for each m, let Am+1 = Bm+1 \

⋃m
k=0 Bk. Note that for all m,

m⋃
k=0

Ak =

m⋃
k=0

Bk, Ak ⊆ Bk, (∀k < m)Ak ∩ Am = ∅.

Claim. µ(
⋃∞
k=0 Ak) = 1.

Proof of Claim: Fix an ε > 0. We show that there exists m such that
µ(
⋃m
k=0 Bk) > 1− ε. Note that for each m,

µ(

m⋃
k=0

Bk) = lim
n→∞

µ(Jfn ∈ CmK).

Therefore it suffices to show that

(∃m)(∀n)µ(Jfn ∈ CmK) > 1− ε.

Suppose this is not true. Then

(∀m)(∃n)µ(Jfn /∈ CmK) ≥ ε.

Since C =
⋃
m Cm,

(∀n)(∃h)µ(Jfn ∈ ChK) ≥ 1− ε/2,
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so
(∀m)(∃n)(∃h)µ(Jfn ∈ (Ch \ Cm)K) ≥ ε/2.

It follows that there are sequences n0 < n1 < . . . and m0 < m1 < . . . such
that

(∀k)µ(Jfnk ∈ (Cmk+1
\ Cmk)K) ≥ ε/2.

Therefore
(∀k)(∀h > k)dK(fnk , fnh) ≥ ε/2.

This contradicts the fact that 〈fn〉n∈N is a Cauchy sequence, and the Claim is
proved.

By Condition (c), there is an f in P(C) such that f agrees with ck on Ak
for each k ∈ N. For each n and h we have

dK(fn, f) = µ(Jfn 6= fK) =

∞∑
k=0

µ(Jfn 6= fK ∩ Ak) =

∞∑
k=0

µ(Jfn 6= ckK ∩ Ak) ≤

≤
h∑
k=0

µ(Jfn 6= ckK ∩ Ak) + µ(
⋃
k>h

Ak) ≤
h∑
k=0

µ(Jfn 6= ckK ∩ Bk) + µ(
⋃
k>h

Ak)

≤
h∑
k=0

dE(Jfn = ckK,Bk) + µ(
⋃
k>h

Ak).

By the Claim, for each ε > 0 we may take h such that µ(
⋃
k>h Ak) < ε/2. For

all sufficiently large n we have

h∑
k=0

dE(Jfn = ckK,Bk) < ε/2,

and hence dK(fn, f) < ε. It follows that limn→∞ dK(fn, f) = 0, so P(C) is
pre-complete.

We have not yet used the hypothesis that (E, dE) is separable. We use it
now to show that P(C) is separable. The Boolean algebra E has a countable

subalgebra E0 such that E0 is dense with respect to dE, and Jψ(~b)K ∈ E0 for

each first order formula ψ(~v) and tuple ~b in C. Let D be the set of all f ∈ K

such that for some k ∈ N, Jf ∈ CkK = > and Jf = cnK ∈ E0 for all n ≤ k.
Then D is countable and D is dense in K with respect to dK, so P(C) is
separable. �2.6.2

Remark 2.6.3. Suppose C is a countable generator in 〈Mt〉t∈Ω over (Ω,E, ν),
and let P(C) = (K,E). Then:

1. C ⊆ K.

2. If C ⊆ D ⊆ K and D is countable, then D is a countable generator in
〈Mt〉t∈Ω.

3. For each t ∈ Ω, Mt = {f(t) : f ∈ K}.
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4. If Mt
∼= Ht for all t, then there is a countable generator D in 〈Ht〉t∈Ω

such that P(D) ∼= P(C).

Proof. We prove (4). For each t, choose an isomorphism ht : Mt
∼= Ht. For

each c ∈ C, define hc by (hc)(t) = ht(c(t)) and let D = {hc : c ∈ C}. Then
D is a countable generator in 〈Ht〉t∈Ω and P(D) ∼= P(C). �2.6.3

The next corollary connects countable generators to basic randomizations.

Corollary 2.6.4. Let N = (
∏
j∈J M

Bj
j ,L) be a basic randomization.

(i) There is a countable generator C in 〈Mt〉t∈[0,1) over ([0, 1),L, λ) such

that C ⊆
∏
j∈J M

Bj
j .

(ii) If C is as in (i), then P(C) = N.

(iii) If C is a countable generator in 〈Ht〉t∈[0,1) over ([0, 1),L, λ), C ⊆∏
j∈J M

Bj
j , and Ht ≺Mt for all t, then P(C) ≺ N.

Proof. (i) For each j ∈ J , choose an enumerated structure (Mj , aj,0, aj,1, . . .).
Let C = {cn : n ∈ N} where cn(t) = aj,n whenever j ∈ J and t ∈ Bj . C has
the required properties.

(ii) Let P(C) = (K,L). Since C ⊆
∏
j∈J M

Bj
j , for all j ∈ J, a ∈ Mj , and

c ∈ C we have {t ∈ Bj : c(t) = a} ∈ L. It follows that for each j ∈ J and f ,

(∀a ∈Mj){t ∈ Bj : f(t) = a} ∈ L⇔ (∀c ∈ C){t ∈ Bj : f(t) = c(t)} ∈ L.

Therefore K =
∏
j∈J M

Bj
j , and (ii) holds.

(iii) Let P(C) = (K,L). For each f ∈ K we have [0, 1) =
⋃

c∈C{t : f(t) =

c(t)}, and {t : f(t) = c(t)} ∈ L for all c ∈ C. Therefore K ⊆
∏
j∈J M

Bj
j . Since

Ht ≺ Mt, Jψ(·)K has the same interpretation in P(C) as in N for every first
order formula ψ(~v). Therefore (K,L) is a pre-substructure of N. By quantifier
elimination (Theorem 2.9 of [6]) we have P(C) ≺ N. �2.6.4

The next result gives a very useful “pointwise” characterization of the event
corresponding to an infinitary formula in a complete separable randomization
that is isomorphic to P(C).

Proposition 2.6.5. Suppose N is a complete separable randomization, C is
a countable generator in 〈Mt〉t∈Ω over (Ω,E, ν), and h : P(C) ∼= N. Then for

every Lω1ω formula ψ(~v) and tuple ~f of sort K in P(C), we have

{t : Mt |= ψ(~f(t))} ∈ E, Jψ(h~f)KN = h({t : Mt |= ψ(~f(t))}).

Moreover, N is a separable randomization of ϕ if and only if µ({t : Mt |=
ϕ}) = 1.

Proof. This is proved by a straightforward induction on the complexity of
ψ(~v) using Theorems 2.5.1 and 2.6.2. �2.6.5
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2.7 A Representation Theorem

In this section we show that every complete separable randomization of ϕ
is isomorphic to P(C) for some countable generator C in countable models of
ϕ.

We will use the following result, which is a consequence of Theorem 3.11
of [3], and generalizes Proposition 2.1.10 of [2].

Proposition 2.7.1. For every pre-complete model N′ of TR, there is an
atomless probability space (Ω,E, ν) and a family of models 〈Mt〉t∈Ω of T such
that N′ is isomorphic to a pre-complete model N = (K,E) of TR such that
K ⊆

∏
t∈ΩMt and N satisfies Conditions (d), (e), and (f) of Theorem 2.6.2.

Proof. Proposition 2.1.10 of [2] gives this result in the case that T is a complete
theory, with the additional conclusion that there is a single model M of T such
that Mt ≺ M for all t ∈ Ω 2. The same argument works in the general case,
but without the model M. �2.7.1

Proposition 2.7.2. Suppose N′ is pre-complete and elementarily embeddable
in a basic randomization. Then N′ is isomorphic to a pre-complete elementary

submodel N of a basic randomization (
∏
j∈J M

Bj
j ,L) such that the event sort

of N is all of L. Moreover, Conditions (d), (e), and (f) of Theorem 2.6.2 hold

for N = (K,L) and (
∏
j∈J M

Bj
j ,L).

Proof. Suppose N′ ∼= N′′ ≺ (
∏
j∈J M

Bj
j ,L). For each j ∈ J , let `j be a map-

ping that stretches Bj to [0, 1). Then `j maps N′′ onto a pre-complete ele-

mentary submodel Nj of (M
[0,1)
j ,L). By Result 2.3.4, Nj is isomorphic to a

pre-complete elementary submodel of (M
[0,1)
j ,L) with event sort L. Using the

inverse mappings `−1
j , it follows that N′′ is isomorphic to a pre-complete ele-

mentary submodel N = (K,L) ≺ (
∏
j∈J M

Bj
j ,L) with event sort L. It is easily

checked that N satisfies Conditions (d), (e), and (f) of Theorem 2.6.2. �2.7.2

Theorem 2.7.3. (Representation Theorem) Every pre-complete separable
randomization N of ϕ is isomorphic to P(C) for some countable generator
C in a family of countable models of ϕ. Moreover, if N is elementarily em-
beddable in some basic randomization, then C can be taken to be over the
probability space ([0, 1),L, λ).

Proof. Let N′ be a pre-complete separable randomization of ϕ. By Proposition
2.7.1, there is an atomless probability space (Ω,E, ν) and a family of models
〈Mt〉t∈Ω such that N′ is isomorphic to a pre-complete model N = (K,E) of TR2
where K ⊆

∏
t∈ΩMt and N satisfies Conditions (d), (e), and (f) of Theorem

2.6.2. If N′ is elementarily embeddable in a basic randomization, then by
Proposition 2.7.2, we may take (Ω,E, ν) = ([0, 1),L, λ).

Since N is separable, there is a countable pre-structure (J0,A0) ≺ N that

2In [2], P is called a neat randomization of M
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is dense in N. We will use an argument similar to the proofs of Lemmas
4.7 and 4.8 of [1]. By Result 2.3.1, N has perfect witnesses. Hence by listing
the first order formulas, we can construct a chain of countable pre-structures
(Jn,An), n ∈ N such that for each n:

• (Jn,An) ⊆ (Jn+1,An+1) ⊆ N;

• for each first order formula θ(u,~v) and tuple ~g in Jn there exists f ∈ Jn+1

such that
Jθ(f , ~g)K .

= J(∃uθ)(~g)K;

• For each B ∈ An there exist f ,g ∈ Jn+1 such that B
.
= Jf = gK.

The union
P = (J,A) =

⋃
n

(Jn,An)

is a countable dense elementary submodel of N that has perfect witnesses.
Therefore for each first order formula θ(u,~v) and each tuple ~g in J, there
exists f ∈ J such that

J(∃u)θ(u,~g)KN = J(∃u)θ(u,~g)KP .
= Jθ(f , ~g)KP = Jθ(f , ~g)KN.

Since J is countable, there is an event E ∈ E such that ν(E) = 1 and for every
tuple ~g in J there exists f ∈ J so that

(∀t ∈ E)Mt |= [(∃u)θ(u,~g(t))↔ θ(f(t), ~g(t))].

For each t ∈ Ω let Ht = {f(t) : f ∈ J}. By the Tarski-Vaught test, we have
Ht ≺Mt, and hence Ht |= T2, for each t ∈ E.

Pick a countable model H of ϕ. For any set D ⊆ E such that D ∈ E and
ν(D) = 1, let CD be the set of all functions that agree with an element of J on D
and take a constant value in H on Ω\D. Let HD

t = Ht for t ∈ D, and HD
t = H

for t ∈ Ω \D. Then HD
t is a model of T2 for each t ∈ Ω, and CD is a countable

generator in 〈HD
t 〉t∈Ω. By Theorem 2.6.2, P(CD) is a pre-complete separable

randomization. The reduction of (J,A) is dense in the reductions of N and of
P(CD), and both N and P(CD) are pre-complete. Therefore N ∼= P(CD).

In particular, CE is a countable generator in 〈HE
t 〉t∈Ω, and N ∼= P(CE).

Now let D = {t ∈ E : HE
t |= ϕ}. Since N is a pre-complete randomization of

ϕ, we see from Proposition 2.6.5 that µ(D) = 1. Then HD
t |= ϕ for all t ∈ Ω,

P(CD) ∼= N, and CD is a countable generator in a family of countable models
of ϕ. �2.7.3

2.8 Elementary Embeddability in a Basic Randomiza-
tion

Let Sn(T ) be the set of first order n-types realized in countable models of
T , and Sn(ϕ) be the set of first order types realized in countable models of ϕ.
Note that S0(ϕ) = {Th(M) : M |= ϕ}.
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Theorem 3.12 in [6] and Proposition 5.7 in [1] show that:

Result 2.8.1. Let T be complete. The following are equivalent:

(i)
⋃
n Sn(T ) is countable.

(ii) Every complete separable randomization of T is elementarily embeddable
in the Borel randomization of a countable model of T .

(iii) For every complete separable randomization N of T , n ∈ N, and n-tuple
~f of sort K in N, there is a type p ∈ Sn(T ) such that µ(J

∧
p(~f)KN) > 0.

In Theorem 2.8.3 below, we generalize this result by replacing a complete
theory T and a Borel randomization by an arbitrary Lω1ω sentence ϕ and a
basic randomization.

We will use Proposition 6.2 of [1], which can be formulated as follows.

Result 2.8.2. Let T be complete. The following are equivalent:

(i) N is a complete separable randomization of T and for each n and each

n-tuple ~f in K,
∑
q∈Sn(T ) µ(J

∧
q(~f)KN) = 1.

(ii) N is elementarily embeddable in the Borel randomization of a countable
model of T .

Theorem 2.8.3. The following are equivalent:

(i)
⋃
n Sn(ϕ) is countable.

(ii) Every complete separable randomization of ϕ is elementarily embeddable
in a basic randomization.

(iii) For every complete separable randomization N of ϕ, n ∈ N, and n-tuple
~f in K, there is a type p ∈ Sn(ϕ) such that µ(J

∧
p(~f)KN) > 0.

In (ii), we do not know whether the basic randomization can be taken to
be a basic randomization of ϕ.

Proof of Theorem 2.8.3. We first assume (i) and prove (ii). Let N be a com-
plete separable randomization of ϕ. By Theorem 2.7.3, there is a countable
generator C in a family of countable models 〈Mt〉t∈Ω of ϕ over an atomless
probability space (Ω,E, ν), such that N ∼= P(C) = (K,E). For each t ∈ Ω,
Mt is a countable model of ϕ, so Th(Mt) ∈ S0(ϕ). By (i), S0(ϕ) is count-
able. Let BT = {t ∈ Ω: Mt |= T}. By Proposition 2.6.5, BT ∈ E. Let
G = {T ∈ S0(ϕ) : ν(BT ) > 0}, and consider any T ∈ G. Let νT be the
atomless probability measure on (Ω,E) such that νT (E) = ν(E ∩ BT )/ν(BT ).
(Note that νT is the conditional probability of ν with respect to BT .) Let
NT be the structure (K,E) with the probability measure νT instead of ν.
Then NT is a pre-complete separable randomization of both ϕ and T . Let
Sn = Sn(T ) ∩ Sn(ϕ). Since Sn(ϕ) is countable, (∀~v)

∨
q∈Sn

∧
q(~v) is a sen-

tence of Lω1ω and is a consequence of ϕ. Therefore

νT (J(∀~v)
∨
q∈Sn

∧
q(~v)K) = 1.
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Then for every n-tuple ~f in K,
∑
q∈Sn(T ) νT (J

∧
q(~f)K) = 1. Hence by Result

2.8.2, there is a countable model HT of T and an elementary embedding

hT : NT ≺ (H
[0,1)
T ,L).

Let {AT : T ∈ G} be a Borel partition of [0, 1) such that λ(AT ) = ν(BT ) for
each T . Let J be the set of isomorphism types of the models {HT : T ∈ G}. For
each T ∈ G let Hj = HT , hj = hT , and Aj = AT where j is the isomorphism

type of HT . Then P = (
∏
j∈J H

Aj
j ,L) is a basic randomization. For each j ∈ J ,

let `j be a mapping that stretches Aj to [0, 1), and let `j : P→ (H
[0,1)
j ,L) be

the mapping defined in Definition 2.4.4. We then get an elementary embedding
of N into P by sending each E ∈ E to the set

⋃
j∈J `

−1
j (hj(E)), and sending

each f ∈ K to the function that agrees with `−1
j (hj(f)) on Aj for each j ∈ J .

We next assume (ii) and prove (iii). Let N = (K,E) be a complete separable

randomization of ϕ, and let~f be an n-tuple in K. By (ii), there is an elementary

embedding h from N into a basic randomization P = (
∏
j∈J H

Aj
j ,L). Then

there is a j ∈ J and a set B ⊆ Aj such that λ(B) > 0 and (h~f) is constant on

B. Let r = λ(B). Let p be the type of h(~f) in Hj . Then for each θ(~v) ∈ p we

have P |= µ(Jθ(h~f)K) ≥ r. Since h is an elementary embedding, for each θ ∈ p
we have N |= µ(Jθ(~f)K) ≥ r. Therefore

µ(J
∧
p(~f)KN) = inf

θ∈p
µ(Jθ(~f)KN) ≥ r > 0,

and (iii) is proved.

Finally, we assume that (i) fails and prove that (iii) fails. Since (i) fails,
there exists n such that Sn(ϕ) is uncountable. We introduce some notation.
Let L0 be the set of all atomic first order formulas. Let 2L0 be the Polish
space whose elements are the functions s : L0 → {0, 1}. As in Section 2, we
say that a point t ∈ 2L0 codes an enumerated structure (M, a) if for each
formula θ(v0, . . . , vn−1) ∈ L0, t(θ) = 0 if and only if M |= θ[a0, . . . , an−1]. We
note for each t ∈ 2L0 , any two enumerated structures that are coded by t are
isomorphic. When t codes an enumerated structure, we choose one and denote
it by (M(t), a(t)). For each Lω1ω formula ψ(v0, . . . , vn−1), let [ψ] be the set of
all t ∈ 2L0 such that (M(t), a(t)) exists and M(t) |= ψ[a0(t), . . . , an−1(t)].

Claim. There is a perfect set P ⊆ [ϕ] such that for all s, t in P , we have

(M(s), a0(s), . . . , an−1(s)) ≡ (M(t), a0(t), . . . , an−1(t))

if and only if s = t.
Proof of Claim: By Proposition 16.7 in [8], for each Lω1ω formula ψ,

[ψ(~v)] is a Borel subset of 2L0 . In particular, [ϕ] is Borel. Let E be the set of
pairs (s, t) ∈ [ϕ]× [ϕ] such that

(M(s), a0(s), . . . , an−1(s)) ≡ (M(t), a0(t), . . . , an−1(t)).

E is obviously an equivalence relation on [ϕ]. Since Sn(ϕ) is uncountable, E
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has uncountably many equivalence classes. We show that E is Borel. Let F
be the set of all first order formulas θ(v0, . . . , vn−1). For each θ ∈ F , let

Eθ = {(s, t) ∈ [ϕ]× [ϕ] : s ∈ [θ]↔ t ∈ [θ]}.

Since [ϕ] and [θ] are Borel, Eθ is Borel. Moreover, F is countable, and E =⋂
θ∈F Eθ. Therefore E is a Borel equivalence relation. By Silver’s theorem in

[14], there is a perfect set P ⊆ [ϕ] such that whenever s, t ∈ [ϕ], we have
(s, t) ∈ E if and only if s = t, as required in the Claim.

By Theorem 6.2 in [8], P has cardinality 2ℵ0 . By the Borel Isomorphism
Theorem (15.6 in [8]), there is a Borel bijection β from [0, 1) onto P whose
inverse is also Borel. Each s ∈ P codes an enumerated model (M(s), a(s))
of ϕ. For each t ∈ [0, 1) and n ∈ N, an(β(t)) ∈ M(β(t)), so for each n
the composition cn = an ◦ β is a function such that cn(t) ∈ M(β(t)). Let
C = {cn : n ∈ N}. Then for each t, we have

{c(t) : c ∈ C} = {an(β(t)) : n ∈ N} = M(β(t)),

so C satisfies Condition (a) of Definition 2.6.1.
We next show that C is a countable generator. We will then show that the

completion of P(C) is a separable randomization of ϕ that is not elementarily
embeddable in a basic randomization.

For each θ ∈ L0, the set

P ∩ [θ] = {s ∈ P : M(s) |= θ[a0(s), . . . , an−1(s)]}

is Borel. Since β and its inverse are Borel functions, it follows that

{t ∈ [0, 1) : M(β(t)) |= θ(c0(t), . . . , cn−1(t))} ∈ L.

Thus C satisfies condition (b) of Definition 2.6.1, and hence is a countable
generator in the family 〈M(β(t))〉t∈[0,1) of countable models of ϕ over the
probability space ([0, 1),L, λ).

By Theorem 2.6.2 and Proposition 2.6.5, P(C) is a pre-complete separable
randomization of ϕ. Then the completion N of P(C) is a complete separable
randomization of ϕ. By the properties of P , for each first-order n-type p, there
is at most one t ∈ [0, 1) such that (c0(t), . . . , cn−1(t)) realizes p in M(β(t)).
Then

µ(J
∧
p(c0, . . . , cn−1)KN) = 0.

Therefore N cannot be elementarily embeddable in a basic randomization.
This shows that (iii) fails, and completes the proof. �2.8.3

2.9 Sentences with Few Separable Randomizations

In this section we show that any infinitary sentence that has only count-
ably many countable models has few separable randomizations (Theorem 2.9.6
below). We begin by stating a result from [1].
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Result 2.9.1. ([1], Theorem 6.3). If T is complete and I(T ) is countable,
then T has few separable randomizations.

Theorem 2.9.6 below will generalize this result by replacing the complete
theory T by an arbitrary Lω1ω sentence ϕ.

The following lemma is a consequence of Theorem 7.6 in [1]. The under-
lying definitions are somewhat different in [1], so for completeness we give a
direct proof here.

Lemma 2.9.2. Let N = (H[0,1),L) be the Borel randomization of a countable
model H of T2. Suppose Mt

∼= H for each t ∈ [0, 1), and C is a countable
generator in 〈Mt〉t∈[0,1) over ([0, 1),L, λ). Then P(C) ∼= N.

Remark 2.9.3. In the special case that Mt = M for all t ∈ [0, 1) and C ⊆
M[0,1), Corollary 2.6.4 and Remark 2.4.2 (ii) immediately give

P(C) = (M[0,1),L) ∼= N.

This argument does not work in the general case, where the structures Mt

may vary with t and there is no measurability requirement on the elements of
C.

Proof of Lemma 2.9.2. Let P(C) = (J,L). Let H denote the universe of H.
Let {f1, f2, . . .} and {g′1,g′2, . . .} be countable dense subsets of J and H[0,1)

respectively.
Claim. There is a sequence 〈g1,g2, . . .〉 in J, and a sequence 〈f ′1, f ′2, . . .〉 in

H[0,1), such that the following statement S(n) holds for each n ∈ N:

For all t ∈ [0, 1),

(Mt, (f1, . . . , fn,g1, . . . ,gn)(t)) ∼= (H, (f ′1, . . . , f
′
n,g
′
1, . . . ,g

′
n)(t)).

Once the Claim is proved, it follows that for each first order formula
ψ(~u,~v),

Jψ(~f , ~g)KP(C) = Jψ(~f ′, ~g′)KN,

and hence there is an isomorphism h : P(C) ∼= N such that h(E) = E for all
E ∈ L, and h(fn) = f ′n and h(gn) = g′n for all n.

Proof of Claim: Note that the statement S(0) just says that Mt
∼= H

for all t ∈ [0, 1), and is true by hypothesis. Let n ∈ N and assume that we
already have functions g1, . . . ,gn−1 in J and f ′1, . . . , f

′
n−1 in H[0,1) such that

the statement S(n−1) holds. Thus for each t ∈ [0, 1), there is an isomorphism

ht : (Mt, (f1, . . . , fn−1,g1, . . . ,gn−1)(t)) ∼= (H, (f ′1, . . . , f
′
n−1,g

′
1, . . . ,g

′
n−1)(t)).

We will find functions gn ∈ J, f ′n ∈ H[0,1) such that S(n) holds.
Let Z be the set of all isomorphism types of structures

(H, a1, . . . , an−1, b1, . . . , bn−1, a, b),

and for each z ∈ Z let θz be a Scott sentence for structures of isomorphism
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type z. Since H is countable, Z is countable. For each a ∈ H and t ∈ [0, 1) let
z(a, t) be the isomorphism type of

(H, (f ′1, . . . , f
′
n−1,g

′
1, . . . ,g

′
n−1)(t), a,g′n(t)).

Then z(a, t) ∈ Z.
For each a ∈ H and c ∈ C, let B(a, c) be the set of all t ∈ [0, 1) such that

(Mt, (f1, . . . , fn−1,g1, . . . ,gn−1)(t), fn(t), c(t)) |= θz(a,t).

By Proposition 2.6.5, each of the sets B(a, c) is Borel. By taking a ∈ H such
that a = ht(fn(t)), and c ∈ C such that c(t) = h−1

t (g′n(t)), we see that for
every t ∈ [0, 1) there exist a ∈ H and c ∈ C with t ∈ B(a, c). Thus

[0, 1) =
⋃
{B(a, c) : a ∈ H, c ∈ C}.

Every countable family of Borel sets with union [0, 1) can be cut down to
a countable partition of [0, 1) into Borel sets. Thus there is a partition

〈D(a, c) : a ∈ H, c ∈ C〉

of [0, 1) into Borel sets D(a, c) ⊆ B(a, c).
Let f ′n be the function that has the constant value a on each set D(a, c),

and let gn be the function that agrees with c on each set D(a, c). Then f ′n
is Borel and thus belong to H[0,1), and gn belongs to J. Moreover, whenever
t ∈ D(a, c) we have t ∈ B(a, c) and hence

(Mt, (f1, . . . , fn,g1, . . . ,gn)(t)) ∼= (H, (f ′1, . . . , f
′
n,g
′
1, . . . ,g

′
n)(t)).

So the functions f ′n and gn satisfy the condition S(n). This completes the
proof of the Claim and of Lemma 2.9.2. �2.9.3

Recall that for each i ∈ I, θi is a Scott sentence for structures of isomor-
phism type i.

Lemma 2.9.4. Let P = (
∏
j∈J(Hj)

Aj ,L) be a basic randomization. Then for
each complete separable randomization N, the following are equivalent:

(i) N is isomorphic to P.

(ii) µ(JθjKN) = λ(Aj) for each j ∈ J .

Proof. Assume (i) and let h : P ∼= N. By Corollary 2.6.4, P = P(C) for some
countable generator C in 〈Ht〉t∈[0,1) over ([0, 1),L, λ). By Proposition 2.6.5,
for each j ∈ J we have

JθjKN = h({t ∈ [0, 1) : Ht |= θj}) = h(Aj),

so (ii) holds.
We now assume (ii) and prove (i). Since the events Aj , j ∈ J form a

partition of [0, 1),
∑
j∈J λ(Aj) = 1, so by (ii) we have

∑
j∈J µ(JθjKN) = 1.

Therefore J
∨
j∈J θjK

N = >, so N is a randomization of the sentence ϕ =
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j∈J θj . Since I(ϕ) is countable,

⋃
n Sn(ϕ) is countable. Then by Theorem

2.8.3, N is elementarily embeddable in a basic randomization. By Theorem
2.7.3, N is isomorphic to P(C) for some countable generator C in a family
〈Mt〉t∈[0,1) of countable models of ϕ over the probability space ([0, 1),L, λ). By
Proposition 2.6.5, for each j ∈ J the set Bj = {t ∈ [0, 1) : Mt |= θj} ∈ L and
λ(Bj) = µ(JθjKN) = λ(Aj). By Theorem 2.4.9, P ∼= P′ = (

∏
j∈J(Hj)

Bj ,L).
For each j ∈ J , let `j be a mapping that stretches Bj to [0, 1).

Our plan is to use Lemma 2.9.2 to show that the images of P(C) and P′

under `j are isomorphic for each j. Intuitively, this shows that for each j, the
part of P(C) on Bj is isomorphic to the part of P′ on Aj . The isomorphisms
on these parts can then be combined to get an isomorphism from P(C) to P′.

Here are the details. For each j, Pj = (H
[0,1)
j ,L) is the Borel randomization

of Hj , and `j maps P′ to Pj and maps C to a countable generator `j(C) in
〈M′t〉t∈[0,1) over ([0, 1),L, λ), where M′t = M`−1

j (t). Note that for each j ∈ J
and t ∈ `j(Bj), we have M′t

∼= Hj . Therefore by Lemma 2.9.2, we have an
isomorphism hj : P(`j(C)) ∼= Pj for each j ∈ J . By pulling these isomorphisms
back we get an isomorphism h : P(C) ∼= P′ as follows. For an element f of P(C)
of sort K, h(f) is the element of P′ that agrees with `−1

j (hj(`j(f))) on the set
Bj for each j. Since N ∼= P(C) and P′ ∼= P, (i) holds. �2.9.4

Lemma 2.9.5. The following are equivalent.

(i) ϕ has few separable randomizations.

(ii) For every complete separable randomization N of ϕ, there is a countable
set J ⊆ I such that J

∨
j∈J θjK

N = >.

(iii) For every complete separable model N of ϕ, µ(JθiKN) > 0 for some i ∈ I.

Proof. It follows from Lemma 2.9.4 that (i) implies (ii). It is trivial that (ii)
implies (iii).

We now assume (ii) and prove (i). Let N be a complete separable random-
ization of ϕ and let J be as in (ii). By removing j from J when JθjKN = ⊥,
we may assume that µ(JθjKN) > 0 for each j ∈ J . We also have∑

j∈J
µ(JθjKN) = µ(J

∨
j∈J

θjKN) = 1.

For each j ∈ J , choose Hj ∈ j. Choose a partition {Aj : j ∈ J} of [0, 1) such
that Aj ∈ L and λ(Aj) = µ(JθjKN) for each j ∈ J . Then by Lemma 2.9.4, N

is isomorphic to the basic randomization (
∏
j∈J H

Aj
j ,L). Therefore (i) holds.

We assume that (ii) fails and prove that (iii) fails. Since (ii) fails, there is
a complete separable randomization N of ϕ such that for every countable set
J ⊆ I, µ(J

∨
i∈I θjK

N) < 1. The set J = {i ∈ I : µ(JθjKN) > 0} is countable.
By Theorem 2.7.3, N is isomorphic to P(C) for some countable generator C in
a family 〈Mt〉t∈Ω of countable models of ϕ over a probability space (Ω,E, ν).
By Proposition 2.6.5, the set E = {t : Mt |=

∨
j∈J θj} belongs to E, and

ν(E) = µ(J
∨
j∈J θjK

N) < 1. Let P′ be the pre-structure P(C) but with the
measure ν replaced by the measure υ defined by υ(D) = ν(D \ E)/ν(Ω \ E).
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This is the conditional probability of D given Ω\E. Then the completion N′ of
P′ is a separable randomization of ϕ such that µ(JθiKN

′
) = 0 for every i ∈ I,

so (iii) fails. �2.9.5

Here is our generalization of Result 2.9.1.

Theorem 2.9.6. If I(ϕ) is countable, then ϕ has few separable randomiza-
tions.

Proof. Suppose J = I(ϕ) is countable. Then ϕ has the same countable models
as the sentence

∨
j∈J θj . Let N be a complete separable randomization of ϕ.

By Theorem 2.7.3, N ∼= P(C) for some countable generator C in a family of
〈Mt〉t∈Ω countable models of ϕ. By Proposition 2.6.5,

µ(J
∨
j∈J

θjKN) = µ(J
∨
j∈J

θjKP(C)) = µ({t : Mt |=
∨
j∈J

θj}) = µ({t : Mt |= ϕ}) = 1.

Therefore J
∨
j∈J θjK

N = >, so ϕ satisfies Condition (ii) of Lemma 2.9.5. By
Lemma 2.9.5, ϕ has few separable randomizations. �2.9.6

2.10 Few Separable Randomizations Versus Scattered

In this section we prove two main results. First, any infinitary sentence
with few separable randomizations is scattered. Second, Martin’s axiom for
ℵ1 implies that every scattered infinitary sentence has few separable random-
izations. We also discuss the connection between these results and the absolute
Vaught conjecture.

Theorem 2.10.1. If ϕ has few separable randomizations, then ϕ is scattered.

Proof. Suppose ϕ is not scattered. By Lemma 2.2.5, there is a countable frag-
ment LA of Lω1ω and a perfect set P ⊆ 2LA such that:

• Each s ∈ P codes an enumerated model (M(s), a(s)) of ϕ, and

• If s 6= t in P then M(s) and M(t) do not satisfy the same LA-sentences.

By Theorem 6.2 in [8], P has cardinality 2ℵ0 . By the Borel Isomor-
phism Theorem (15.6 in [8]), there is a Borel bijection β from [0, 1) onto
P whose inverse is also Borel. For each s ∈ P , (M(s), a(s)) can be written as
(M(s), a0(s), a1(s), . . .). For each t ∈ [0, 1), let Mt = M(β(t)). It follows that:

(i) Mt |= ϕ for each t ∈ [0, 1), and

(ii) If s 6= t in P then Ms and Mt do not satisfy the same LA-sentences.
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For each n ∈ N, the composition cn = an ◦β belongs to the Cartesian product∏
t∈[0,1)Mt. For each t ∈ [0, 1), we have

{cn(t) : n ∈ N} = {an(β(t)) : n ∈ N} = M(β(t)) = Mt.

Consider an atomic formula ψ(~v) and a tuple (ci1 , . . . , cin) ∈ C. ψ belongs to
the fragment LA. The set

{s ∈ P : M(s) |= ψ(ai1(s), . . . , ain(s))} = {s ∈ P : s(ψ(vi1 , . . . , vin)) = 0}

is Borel in P . Since β and its inverse are Borel functions, it follows that

{t ∈ [0, 1) : Mt |= ψ(ci1(t), . . . , cin(t)) ∈ L.

Thus C satisfies conditions (a) and (b) of Definition 2.6.1, and hence is a
countable generator in 〈Mt〉t∈[0,1) over ([0, 1),L, λ).

By (ii), for each i ∈ I, there is at most one t ∈ [0, 1) such that Mt |= θi. By
Theorem 2.6.2 and Proposition 2.6.5, the randomization N = P(C) generated
by C is a separable pre-complete randomization of ϕ. The event sort of N is
([0, 1),L, λ). Therefore, for each i ∈ I, the event JθiKN is either a singleton or
empty, and thus has measure zero. So by Lemma 2.9.5, ϕ does not have few
separable randomizations. �2.10.1

Corollary 2.10.2. Assume that the absolute Vaught conjecture holds for the
Lω1ω sentence ϕ. Then the following are equivalent:

(i) I(ϕ) is countable;

(ii) ϕ has few separable randomizations;

(iii) ϕ is scattered.

Proof. (i) implies (ii) by Result 2.9.1. (ii) implies (iii) by Theorem 2.10.1. The
absolute Vaught conjecture for ϕ says that (iii) implies (i). �2.10.2

Our next theorem will show that if ZFC is consistent, then the converse
of Theorem 2.10.1 is consistent with ZFC.

The Lebesgue measure is said to be ℵ1-additive if the union of ℵ1 sets of
Lebesgue measure zero has Lebesgue measure zero. Note that the continuum
hypothesis implies that Lebesgue measure is not ℵ1-additive. Solovay and
Tennenbaum [16] proved the relative consistency of Martin’s axiom MA(ℵ1),
and Martin and Solovay [12] proved that MA(ℵ1) implies that the Lebesgue
measure is ℵ1-additive. Hence if ZFC is consistent, then so is ZFC plus the
Lebesgue measure is ℵ1-additive. See [11] for an exposition.

Theorem 2.10.3. Assume that the Lebesgue measure is ℵ1-additive. If ϕ is
scattered, then ϕ has few separable randomizations.

Proof. Suppose ϕ is scattered. Then there are at most countably many ω-
equivalence classes of countable models of ϕ, so there are at most count-
ably many first order types that are realized in countable models of ϕ. Thus⋃
n Sn(ϕ) is countable.
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Let N be a complete separable randomization of ϕ. By Theorem 2.8.3, N
is elementarily embeddable in some basic randomization. By Theorem 2.7.3,
there is a countable generator C in a family 〈Mt〉t∈[0,1) of countable models of
ϕ over ([0, 1),L, λ) such that N ∼= P(C). By Proposition 2.6.5, for each i ∈ I(ϕ)
we have Bi := {t : Mt |= θi} ∈ L. Moreover, the events Bi are pairwise disjoint
and their union is [0, 1). By Result 2.2.3, I(ϕ) has cardinality at most ℵ1.

Let J := {i ∈ I(ϕ) : λ(Bi) > 0}. Then J is countable. The set I(ϕ) \
J has cardinality at most ℵ1, so by hypothesis we have λ(

⋃
j∈J Bj) = 1.

Pick an element j0 ∈ J . For j 6= j0 let Aj = Bj . Let Aj0 contain the other
elements of [0, 1), so Aj0 = Bj0 ∪ ([0, 1)\

⋃
j∈J Bj). Then 〈Aj〉j∈J is a partition

of [0, 1). For each j ∈ J , choose a model Hj of isomorphism type j. Then

P = (
∏
j∈J H

Aj
j ,L) is a basic randomization of ϕ. For each j ∈ J we have

λ(JθjKN) = λ(Aj), so by Lemma 2.9.4, N is isomorphic to P. This shows that
ϕ has few separable randomizations. �2.10.3

Corollary 2.10.4. Assume that the Lebesgue measure is ℵ1-additive. Then
the following are equivalent.

(i) For every ϕ, the absolute Vaught conjecture holds.

(ii) For every ϕ, if ϕ has few separabable randomiztions then I(ϕ) is count-
able.

Proof. Corollary 2.10.2 shows that (i) implies (ii).
Assume that (i) fails. Then there is a scattered sentence ϕ such that

|I(ϕ)| = ℵ1. By Theorem 2.10.3, ϕ has few separable randomizations. There-
fore (ii) fails. �2.10.4

2.11 Some Open Questions

Question 2.11.1. Suppose N and P are complete separable randomizations.
If

µ(JϕKN) = µ(JϕKP)

for every Lω1ω sentence ϕ, must N be isomorphic to P?

Question 2.11.2. Suppose C and D are countable generators in 〈Mt〉t∈Ω,
〈Ht〉t∈Ω over the same probability space (Ω,E, ν). If Mt

∼= Ht for ν-almost all
t ∈ Ω, must P(C) be isomorphic to P(D)?

Question 2.11.3. (Possible improvement of Theorem 2.8.3.) If
⋃
n Sn(ϕ) is

countable, must every complete separable randomization of ϕ be elementarily
embeddable in a basic randomization of ϕ?

Question 2.11.4. Can Theorem 2.10.3 be proved in ZFC (without the hy-
pothesis that the Lebesgue measure is ℵ1-additive)?
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Abstract

We study analytic Zariski structures from the point of view
of non-elementary model theory. We show how to associate an
abstract elementary class with a one-dimensional analytic Zariski
structure and prove that the class is stable, quasi-minimal and
homogeneous over models. We also demonstrate how Hrushovski’s
predimension arises in this general context as a natural geometric
notion and use it as one of our main tools.

The notion of an analytic Zariski structure was introduced in [1] by the
author and N.Peatfield in a form slightly different from the one presented
here and then in [4], Ch.6 in the current form. Analytic Zariski generalises the
previously known notion of a Zariski structure. The latter has been defined
as a structure M with a Noetherian topology on all cartesian powers Mn

of the universe, the closed sets of which are given by positive quantifier-free
formulas. Any closed set is assigned a dimension which behaves in a certain
way (modelled on algebraic geometry) with regards to projection maps Mn →
Mm, see the addition formula (AF) and the fibre condition (FC) in section
3.1 below.

In the definition of analytic Zariski structures we drop the requirement of
Noetherianity. This leads to a considerably more flexible and broader notion at
the cost of a longer list of assumptions modelled on the properties of analytic
subsets of complex manifolds.

In [1] we assumed that the Zariski structure is compact (or compactifiable),
here we drop this assumption, which may be too restrictive in applications.

We remark that in the broad setting it is appropriate to consider the
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notion of a Zariski structure as belonging to positive model theory in the sense
of Ben-Yaacov [5].

The class of analytic Zariski structures is much broader and geometrically
richer than the class of Noetherian Zariski structures. The main examples
come from two sources:

(i) structures which are constructed in terms of complex analytic functions
and relations;

(ii) “new stable structures” introduced by Hrushovski’s construction; in
many cases these objects exhibit properties similar to those of class (i).

However, although there are concrete examples for both (i) and (ii), in
many cases we lack the technology to prove that the structure is analytic
Zariski. In particular, despite some attempts the conjecture that Cexp is ana-
lytic Zariski, assuming it satisfies axioms of pseudo-exponentiation (see [17]),
is still open.

The aim of this paper is to carry out a model-theoretic analysis of analytic
Zariski structures in the appropriate language. Recall that if M is a Noetherian
Zariski structure the relevant key model-theoretic result states that its first-
order theory allows elimination of quantifiers and is ω-stable of finite Morley
rank. In particular, it is strongly minimal (and so uncountably categorical) if
dimM = 1 and M is irreducible.

For analytic Zariski 1-dimensional M we carry out a model theoretic study
it in the spirit of the theory of abstract elementary classes. We start by intro-
ducing a suitable countable fragment of the family of basic Zariski relations
and a correspondent substructure of constants over which all the further anal-
ysis is carried out. Then we proceed to the analysis of the notion of dimension
of Zariski closed sets and define more delicate notions of the predimension
and dimension of a tuple in M. In fact by doing this we reinterpret dimen-
sions which are present in every analytic structure in terms familiar to many
from Hrushovski’s construction, thus establishing once again conceptual links
between classes (i) and (ii).

Our main results are proved under assumption that M is one-dimensional
(as an analytic Zariski structure) and irreducible. No assumption on pres-
moothness is needed. We prove for such an M, in the terminology of [16]:

(1) M is a quasi-minimal pregeometry structure with regards to a closure
operator cl associated with the predimension;

(2) M has quantifier-elimination to the level of ∃-formulas in the following
sense: every two tuples which are (first-order) ∃-equivalent over a countable
submodel, are L∞,ω equivalent;

(3) The abstract elementary class associated with M is categorical in un-
countable cardinals and is excellent.

In fact, (3) is a corollary of (1) using the main result of [16], so the main
work is in proving (1) which involves (2) as an intermediate step.

Note that the class of 1-dimensional Noetherian Zariski structures is es-
sentially classifiable by the main result of [2], and in particular the class con-
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tains no instances of structures obtained by the proper Hrushovski construc-
tion. The class of analytic Zariski structures, in contrast, is consistent with
Hrushovski’s construction and at the same time, by the result above, has ex-
cellent model-theoretic properties. This gives a hope for a classification theory
based on the relevant notions.

However, it must be mentioned that some natural questions in this context
are widely open. In particular, we have no classification for presmooth analytic
Zariski groups (with the graph of multiplication analytic). It is not known if
a 1-dimensional irreducible presmooth analytic group has to be abelian. See
related analysis of groups in [9].

Acknowledgment. I want to express my thanks to Assaf Hasson who
saw a very early version of this work and made many useful comments, and
also to Levon Haykazyan who through his own contributions to the theory of
quasiminimality kept me informed in the recent developments in the field.

3.1 Analytic L-Zariski structures

Let M = (M ;L) be a structure with primitives (basic relations) L. We use
also the extension L(M0) of the language L with names for points of a subset
M0 of M.

We introduce a topology on Mn, for all n ≥ 1, by declaring a subset
P ⊆Mn closed if there is an n-type p consisting of quantifier-free positive
formulas with parameters in M such that

P = {a ∈Mn : M � p(a)}.

In other words, the sets defined by atomic L(M)-formulae form a basis for
the topology.

We say P is L-closed (L(M0)-closed) if p is over ∅ (over M0).

3.1.1 Remark

Note that it follows that projections

pri1,...,im : Mn →Mm, 〈x1, . . . , xn〉 7→ 〈xi1 , . . . , xim〉

are continuous in the sense that the inverse image of a closed set under a
projection is closed. Indeed, pr−1

i1,...,im
S = S ×Mn−m.

We will drop the subscript in pri1,...,im when it is clear from the context.

We write X ⊆op V to say that X is open in V and X ⊆cl V to say it is
closed. The latter means that X = V ∩S, for some S⊆Mn closed in Mn. The
former, that X = V \ S.
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We say that P ⊆Mn is constructible if P is a finite union of some sets
S, such that S ⊆cl U ⊆op Mn.

A subset P ⊆Mn will be called projective if P is a union of finitely many
sets of the form prS, for some S ⊆cl U ⊆op Mn+k, pr : Mn+k →Mn.

We say that P is L-constructible or L-projective if P is defined over L.

Note that any set S such that S ⊆cl U ⊆op Mn+k, is constructible, a
projection of a constructible set is projective and that any constructible set is
projective.

3.1.2 Dimension

To any nonempty projective S a non-negative integer dimS, called the
dimension of S, is attached.

We assume:

(SI) (strong irreducibility) for an irreducible set S ⊆cl U ⊆op Mn (that
is S is not a proper union of two closed in S subsets) and any closed subset
S′ ⊆cl S,

dimS′ = dimS ⇒ S′ = S;

(DP) (dimension of points) for a nonempty projective S, dimS = 0 if
and only if S is at most countable.

(CU) (countable unions) If S =
⋃
i∈N Si, all projective, then dimS =

maxi∈N dimSi;

(WP) (weak properness) given an irreducible S ⊆cl U ⊆op Mn and
F ⊆cl V ⊆op Mn+k with the projection pr : Mn+k →Mn such that prF ⊆S
and dim prF = dimS, there exists D ⊆op S such that D⊆prF.

3.1.3 Remark

(CU) in the presence of the descending chain condition implies the es-
sential uncountability property (EU) usually assumed for Noetherian Zariski
structures.

We postulate further, for an irreducible S ⊆cl U ⊆op Mn+k, a projection
pr : Mn+k →Mn and its fibres Su := pr−1(u) ∩ S on S over u ∈ prS :

(AF) dim prS = dimS −minu∈prS dimSu;

(FC) The set {a ∈ prS : dimSa ≥ m} is of the form T ∩ prS for some
constructible T, and there exists an open set V such that V ∩ prS 6= ∅
and

min
a∈prS

dimSa = dimSv, for any v ∈ V ∩ pr (S).
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The following helps to understand the dimension of projective sets.

3.1.4 Lemma

Let P = prS⊆Mn, for S irreducible constructible, and U ⊆op Mn with
P ∩ U 6= ∅. Then

dimP ∩ U = dimP.

Proof. We can write P ∩U = prS′ = P ′, where S′ = S∩pr−1U constructible

irreducible, dimS′ = dimS by (SI). By (FC), there is V ⊆op Mn such that
for all c ∈ V ∩ P,

dimSc = min
a∈P

dimSa = dimS − dimP.

Note that pr−1U ∩pr−1V ∩S 6= ∅, since S is irreducible. Taking s ∈ pr−1U ∩
pr−1V ∩ S and c = pr s we get, using (AF) for S′,

dimS′c = dimSc = min
a∈P ′

dimSa = dimS − dimP ′.

So, dimP ′ = dimP.

3.1.5 Analytic subsets

A subset S, S ⊆cl U ⊆op Mn, is called analytic in U if for every a ∈ S
there is an open Va ⊆op U such that a ∈ Va and S ∩Va is the union of finitely
many closed in Va irreducible subsets. We write S ⊆an U accordingly.

We postulate the following properties:

(INT) (Intersections) If S1, S2 ⊆an U are irreducible then S1 ∩S2 is analytic
in U ;

(CMP) (Components) If S ⊆ anU and a ∈ S, a closed point, then there is
Sa ⊆ anU, a finite union of irreducible analytic subsets of U, and some
S′a⊆anU such that a ∈ Sa \ S′a and S = Sa ∪ S′a;

Each of the irreducible subsets of Sa above is called an irreducible
component of S containing a.

(CC) (Countability of the number of components) Any S ⊆an U is a
union of at most countably many irreducible components.

3.1.6 Remark

For S analytic and a ∈ prS, the fibre Sa is analytic.
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3.1.7 Lemma

If S ⊆an U is irreducible, V open, then S ∩ V is an irreducible analytic
subset of V and, if non-empty, dimS ∩ V = dimS.

Proof. Immediate.

3.1.8 Lemma

(i) ∅, any singleton and U are analytic in U ;

(ii) If S1, S2 ⊆an U then S1 ∪ S2 is analytic in U ;

(iii) If S1 ⊆an U1 and S2 ⊆an U2, then S1 × S2 is analytic in U1 × U2;

(iv) If S ⊆an U and V ⊆U is open then S ∩ V ⊆an V ;

(v) If S1, S2 ⊆an U then S1 ∩ S2 is analytic in U.

Proof. Immediate.

3.1.9 Definition

Given a subset S ⊆cl U ⊆op Mn we define the notion of the analytic
rank of S in U, arkU (S), which is a natural number satisfying

1. arkU (S) = 0 iff S = ∅;

2. arkU (S) ≤ k + 1 iff there is a set S′ ⊆cl S such that arkU (S′) ≤ k and
with the set S0 = S \ S′ being analytic in U \ S′.

Obviously, any nonempty analytic subset of U has analytic rank 1.

The next assumption guarantees that the class of analytic subsets explic-
itly determines the class of closed subsets in M.

(AS) [Analytic stratification] For any S ⊆cl U ⊆op Mn, arkUS is de-
fined and is finite.

We will justify this non obvious property later in 3.3.10 and 3.3.11.

3.1.10 Lemma

For any S ⊆cl U ⊆op Mn,

dim prS + min
a∈prS

dimSa ≥ dimS.

Proof. We use (AS) and prove the statement by induction on arkUS ≥ 1.
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For arkUS = 1, S is analytic in U and so by (CC) is the union of countably
many irreducibles S(i). By (AF)

dim prS(i) + min
a∈prS(i)

dimS(i)
a ≥ dimS(i)

and so by (CU) lemma follows.

3.1.11 Presmoothness

The following property (which we are not going to use in the context of
the present paper) is relevant.

(PS) [Presmoothness] If S1, S2 ⊆an U ⊆op Mn and S1, S2 and U irre-
ducible, then for any irreducible component S0 of S1 ∩ S2

dimS0 ≥ dimS1 + dimS2 − dimU.

3.1.12 Definition

An L-structure M is said to be analytic L-Zariski if

• M satisfies (SI), (WP), (CU), (INT), (CMP),(CC), (AS);

• the expansion M] of M to the language L(M) (names for points in M
added) satisfies all the above with the dimension extending the one for
M;

• M] also satisfies (AF) and (FC) with V in (FC) being L-definable when-
ever S is.

An analytic Zariski structure will be called presmooth if it has the pres-
moothness property (PS).

3.2 Model theory of analytic Zariski structures

For the rest of the section we assume that M be analytic L-Zariski and
assume L is countable.

3.2.1 Lemma

There is a countable M0 4 M such that for any L(M0)-closed set S any
irreducible component P of S is L(M0)-closed.

Proof. Use the standard Löwenheim - Skolem downward arguments.

We call such M0 a core substructure (subset) of M.
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3.2.2 Assumption

By extending L to L(M0) we assume that the set of L-closed points is the
core subset.

For finite subset X of M of size n we denote ~X an n-tuple with range X.

3.2.3 Definition

For finite X⊆M we define the predimension

δ(X) = min{dimS : ~X ∈ S, S ⊆an U ⊆op Mn, S is L-constructible}, (3.1)

relative predimension for finite X,Y ⊆M

δ(X/Y ) = min{dimS : ~X ∈ S, S ⊆an U ⊆op Mn, S is L(Y )-constructible},
(3.2)

and dimension of X

∂(X) = min{δ(XY ) : finite Y ⊂M}.

(Here and below XY means X ∪ Y and Xy = X ∪ {y}).

We call a minimal S as in (3.2) an analytic locus of X over Y.

For X ⊆M finite, we say that X is self-sufficient and write X ≤ M, if
∂(X) = δ(X).

For infinite A⊆M we say A ≤ M if for any finite X⊆A there is a finite
X⊆X ′⊆A such that X ′ ≤M.

3.2.4

For the rest of the paper we assume that dimM = 1 and M is irreducible.
This is an analogue of an analytic curve.

Note that we then have

0 ≤ δ(Xy) ≤ δ(X) + 1, for any y ∈M,

since ~Xy ∈ S ×M.

3.2.5 Lemma

Given F ⊆an U ⊆op Mk, dimF > 0, there is i ≤ k such that for pri :
(x1, . . . , xk) 7→ xi,

dim priF > 0.

Proof. Use (AF) and induction on k.
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3.2.6 Proposition

Let P = prS, for some L-constructible S ⊆an U ⊆op Mn+k, pr : Mn+k →
Mn. Then

dimP = max{∂(x) : x ∈ P (M)}. (3.3)

Moreover, this formula is true when S ⊆cl U ⊆op Mn+k.

Proof. We use induction on dimS.
We first note that by induction on arkUS, if (3.3) holds for all analytic S

of dimension less or equal to k then it holds for all closed S of dimension less
or equal to k.

The statement is obvious for dimS = 0 and so we assume that dimS > 0
and for all analytic S′ of lower dimension the statement is true.

By (CU) and (CMP) we may assume that S is irreducible. Then by (AF)

dimP = dimS − dimSc (3.4)

for any c ∈ P ∩ V (such that Sc is of minimal dimension) for some open
L-constructible V.

Claim 1. It suffices to prove the statement of the proposition for the pro-
jective set P ∩ V ′, for some L-open V ′ ⊆op Mn.

Indeed,

P ∩ V ′ = pr(S ∩ pr−1V ′), S ∩ pr−1V ′ ⊆cl pr−1V ′ ∩ U ⊆op Mn+k.

And P \V ′ = pr(S ∩T ), T = pr−1(Mn \V ′) ∈ L. So, P \V ′ is the projection
of a proper analytic subset, of lower dimension. By induction, for x ∈ P \ V ′,
∂(x) ≤ dimP \ V ′ ≤ dimP and hence, using 3.1.4,

dimP ∩ V ′ = max{∂(x) : x ∈ P ∩ V ′} ⇒ dimP = max{∂(x) : x ∈ P}.

Claim 2. The statement of the proposition holds if dimSc = 0 in (3.4).
Proof. Given x ∈ P choose a tuple y ∈Mk such that S(x_y) holds. Then

δ(x_y) ≤ dimS. So we have ∂(x) ≤ δ(x_y) ≤ dimS = dimP.
It remains to notice that there exists x ∈ P such that ∂(x) ≥ dimP.
Consider the L-type

x ∈ P &{x /∈ R : dimR ∩ P < dimP and R is projective}.

This is realised in M, since otherwise P =
⋃
R(P ∩R) which would contradict

(CU).
For such an x let y be a tuple in M such that δ(x_y) = ∂(x). By definition

there exist S′ ⊆an U ′ ⊆op Mm such that dimS′ = δ(x_y). Let P ′ = prS′, the
projection into Mn. By our choice of x, dimP ′ ≥ dimP. But dimS′ ≥ dimP ′.
Hence, ∂(x) ≥ dimP. Claim proved.

Claim 3. There is a L-constructible R ⊆an S such that all the fibres Rc of
the projection map R→ prR are 0-dimensional and dim prR = dimP.
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Proof. We have by construction Sc⊆Mk. Assuming dimSc > 0 on every
open subset we show that there is a b ∈ M0 such that (up to the order of
coordinates) dimSc ∩ {b} ×Mk−1 < dimSc, for all c ∈ P ∩ V ′ 6= ∅, for some
open V ′⊆V and dim prSc ∩{b}×Mk−1 = dimP. By induction on dimS this
will prove the claim.

To find such a b choose a ∈ P ∩ V and note that by 3.2.5, up to the order
of coordinates, dim pr1S(a,M) > 0, where pr1 : Mk → M is the projection
on the first coordinate.

Consider the projection prMn,1 : Mn+k →Mn+1 and the set prMn,1S. By
(AF) we have

dim prMn,1S = dimP + dim pr1Sa = dimP + 1.

Using (AF) again for the projection pr1 : Mn+1 → M with the fibres
Mn × {b}, we get, for all b in some open subset of M,

1 ≥ dim pr1prMn,1S = dim prMn,1S − dim[prMn,1S] ∩ [Mn × {b}] =

= dimP + 1− dim[prMn,1S] ∩ [Mn × {b}].

Hence dim[prMn,1S] ∩ [Mn × {b}] ≥ dimP, for all such b, which means that

the projection of the set Sb = S ∩ (Mn×{b}×Mk−1) on Mn is of dimension
dimP, which finishes the proof if b ∈ M0. But dimSb = dimS − 1 for all
b ∈M ∩ V ′, some L-open V ′, so for any b ∈M0 ∩ V ′. The latter is not empty
since (M0, L) is a core substructure. This proves the claim.

Claim 4. Given R satisfying Claim 3,

P \ prR⊆prS′, for some S′ ⊆cl S, dimS′ < dimS.

Proof. Consider the cartesian power

Mn+2k = {x_y_z : x ∈Mn, y ∈Mk, z ∈Mk}

and its L-constructible subset

R&S := {x_y_z : x_z ∈ R & x_y ∈ S}.

Clearly R&S ⊆an W ⊆op Mn+2k, for an appropriate L-constructible W.
Now notice that the fibres of the projection prxy : x_y_z 7→ x_y over

prxyR&S are 0-dimensional and so, for some irreducible component (R&S)0

of the analytic set R&S, dim prxy(R&S)0 = dimS. Since prxyR&S⊆S and S
irreducible, we get by (WP) D⊆prxyR&S for some D ⊆op S. Clearly

prR = pr prxyR&S⊇prD

and S′ = S \D satisfies the requirement of the claim.
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Now we complete the proof of the proposition: By Claims 2 and 3

dimP = max
x∈prR

∂(x).

By induction on dimS, using Claim 4, for all x ∈ P \ prR,

∂(x) ≤ dim prS′ ≤ dimP.

The statement of the proposition follows.
In what follows a L-substructure of M is a L-structure on a subset N⊇M0.

Recall that L is purely relational.
Recall the following well-known fact, see [10].

3.2.7 Karp’s characterisation of ≡∞,ω
Given a, a′ ∈ Mn the L∞,ω(L)-types of the two n-tuples in M are equal

if and only if they are back and forth equivalent that is there is a nonempty
set I of isomorphisms of L-substructures of M such that a ∈ Dom f0 and
a′ ∈ Range f0, for some f0 ∈ I, and

(forth) for every f ∈ I and b ∈ M there is a g ∈ I such that f ⊆ g and
b ∈ Dom g;

(back) For every f ∈ I and b′ ∈ M there is a g ∈ I such that f ⊆ g and
b′ ∈ Range g.

3.2.8 Definition

For a ∈Mn, the projective type of a over M is

{P (x) : a ∈ P, P is a projective set over L}∪

∪{¬P (x) : a /∈ P, P is a projective set over L}.

3.2.9 Lemma

Suppose X ≤ M, X ′ ≤ M and the (first-order) quantifier-free L-type of
X is equal to that of X ′. Then the L∞,ω(L)-types of X and X ′ are equal.

Proof. We are going to construct a back-and-forth system for X and X ′.
Let SX ⊆an V ⊆op Mn, SX irreducible, all L-constructible, and such that

X ∈ SX(M) and dimSX = δ(X).
Claim 1. The quantifier-free L-type of X (and X ′) is determined by for-

mulas equivalent to SX ∩ V ′, for V ′ open such that X ∈ V ′(M).
Proof. Use the stratification of closed sets (AS) to choose L-constructible

S ⊆cl U ⊆op Mn such that X ∈ S and arkUS is minimal. Obviously then
arkUS = 0, that is S ⊆an U ⊆op Mn. Now S can be decomposed into irre-
ducible components, so we may choose S to be irreducible. Among all such
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S choose one which is of minimal possible dimension. Obviously dimS =
dimSX , that is we may assume that S = SX . Now clearly any constructible
set S′ ⊆cl U

′ ⊆op Mn containing X must satisfy dimS′ ∩ SX ≥ dimSX , and
this condition is also sufficient for X ∈ S′.

Let y be an element of M. We want to find a finite Y containing y and an
Y ′ such that the quantifier-free type of XY is equal to that of X ′Y ′ and both
are self-sufficient in M (recall that XY := X ∪ Y ). This, of course, extends
the partial isomorphism X → X ′ to XY → X ′Y ′ and will prove the lemma.

We choose Y to be a minimal set containing y and such that δ(XY ) is also
minimal, that is

1 + δ(X) ≥ δ(Xy) ≥ δ(XY ) = ∂(XY )

and XY ≤M.
We have two cases: δ(XY ) = ∂(X)+1 and δ(XY ) = ∂(X). In the first case

Y = {y}. By Claim 1 the quantifier-free L-type rXy of Xy is determined by the
formulas of the form (SX×M)\T, T ⊆ clMn+1, T ∈ L, dimT < dim(SX×M).

Consider

rXy(X ′,M) = {z ∈M : X ′z ∈ (SX ×M) \ T, dimT < dimSX , all T}.

We claim that rXy(X ′,M) 6= ∅. Indeed, otherwise M is the union of count-
ably many sets of the form T (X ′,M). But the fibres T (X ′,M) of T are of
dimension 0 (since otherwise dimT = dimSX +1, contradicting the definition
of the T ). This is impossible, by (CU).

Now we choose y′ ∈ rXy(X ′,M) and this is as required.
In the second case, by definition, there is an irreducible R ⊆an U ⊆op

Mn+k, n = |X|, k = |Y |, such that XY ∈ R(M) and dimR = δ(XY ) = ∂(X).
We may assume U⊆V ×Mk.

Let P = prR, the projection into Mn. Then dimP ≤ dimR. But also
dimP ≥ ∂(X), by 3.2.6. Hence, dimR = dimP. On the other hand, P ⊆SX
and dimSX = δ(X) = dimP. By axiom (WP) we have SX ∩ V ′⊆P for some
L-constructible open V ′.

Hence X ′ ∈ SX∩V ′⊆P (M), for P the projection of an irreducible analytic
set R in the L-type of XY. By Claim 1 the quantifier-free L-type of XY is of
the form

rXY = {R \ T : T ⊆cl R, dimT < dimR}.

Consider

rXY (X ′,M) = {Z ∈Mk : X ′Z ∈ R \ T, T ⊆cl R, dimT < dimR}.

We claim again that rXY (X ′,M) 6= ∅. Otherwise the set R(X ′,M) =
{X ′Z : R(X ′Z)} is the union of countably many subsets of the form
T (X ′,M). But dimT (X ′,M) < dimR(X ′,M) as above, by (AF).

Again, an Y ′ ∈ rXY (X ′,M) is as required.
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3.2.10 Corollary

There are at most countably many L∞,ω(L)-types of tuples X ≤M.

Indeed, any such type is determined uniquely by the choice of a L-
constructible SX ⊆an U ⊆op Mn such that dimSX = ∂(X).

3.2.11 Lemma

Suppose, for finite X,X ′⊆M, the projective L-types of X and X ′ coincide.
Then the L∞,ω(L)-types of the tuples are equal.

Proof. Choose finite Y such that ∂(X) = δ(XY ). Then XY ≤ M. Let
XY ∈ S ⊆an U ⊆op Mn be L-constructible and such that dimS is minimal
possible, that is dimS = δ(XY ). We may assume that S is irreducible. Notice
that for every proper closed L-constructible T ⊆cl U, XY /∈ T by dimension
considerations.

By assumptions of the lemma X ′Y ′ ∈ S, for some Y ′ in M. We also have
X ′Y ′ /∈ T, for any T as above, since otherwise a projective formula would
imply that XY ′′ ∈ T for some Y ′′, contradicting that ∂(X) > dimT.

We also have δ(X ′Y ′) = dimS. But for no finite Z ′ it is possible that
δ(X ′Z ′) < dimS, for then again a projective formula will imply that δ(XZ) <
dimS, for some Z.

It follows that X ′Y ′ ≤ M and the quantifier-free types of XY and X ′Y ′

coincide, hence the L∞,ω(L)-types are equal, by 3.2.9.

3.2.12 Definition

Set, for finite X⊆M,

clL(X) = {y ∈M : ∂(Xy) = ∂(X)}.

We fix L and omit the subscript below.

3.2.13 Lemma

The following two conditions are equivalent

(a) b ∈ cl(A), for ~A ∈Mn;

(b) b ∈ P ( ~A,M) for some projective first-order P ⊆ Mn+1 such that

P ( ~A,M) is at most countable.

In particular, cl(A) is countable for any finite A.

Proof. Let d = ∂(A) = δ(AV ), and δ(AV ) is minimal for all possible finite
V ⊆M. So by definition d = dimS0, some analytic irreducible S0 such that
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~AV ∈ S0 and S0 of minimal dimension. This corresponds to a L-definable
relation S0(x, v), where x, v strings of variables of length n,m

First assume (b), thais is that b belongs to a countable P ( ~A,M). By defi-
nition

P (x, y) ≡ ∃wS(x, y, w),

for some analytic S⊆Mn+1+k, some tuples x, y, w of variables of length n, 1
and k respectively, and the fibre S( ~A, b,Mk) is nonempty. We also assume
that P and S are of minimal dimension, answering this description. By (FC),

(AS) and minimality we may choose S so that dimS( ~A, b,Mk) is minimal

among all the fibres S( ~A′, b′,Mk).
Consider the analytic set S] ⊆Mn+m+1+k given by S0(x, v) &S(x, y, w).

By (AF), considering the projection of the set on (x, v)-coordinates,

dimS] ≤ dimS0 + dimS( ~A,M,Mk),

since S( ~A,M,Mk) is a fibre of the projection. Now we note that by count-

ability dimS( ~A,M,Mk) = dimS( ~A, b,Mk), so

dimS] ≤ dimS0 + dimS( ~A, b,Mk).

Now the projection prwS
] along w (corresponding to ∃wS]) has fibres of the

form S( ~X, y,Mk), so by (AF)

dim prwS
] ≤ dimS0 = d.

Projecting further along v we get dim prvprwS
] ≤ d, but ~Ab ∈ prvprwS

] so

by Proposition 3.2.6 ∂( ~Ab) ≤ d. The inverse inequality holds by definition, so
the equality holds. This proves that b ∈ cl(A).

Now assume (a), that is b ∈ cl(A). So, ∂( ~Ab) = ∂( ~A) = d. By definition

there is a projective set P containing ~Ab, defined by the formula ∃wS(x, y, w)

for some analytic S, dimS = d. Now ~A belongs to the projective set pryP
(defined by the formula ∃y∃wS(x, y, w)) so by Proposition 3.2.6 d ≤ dim pryP,
but dim pryP ≤ dimP ≤ dimS = d. Hence all the dimensions are equal and
so, the dimension of the generic fibre is 0. We may assume, as above, without
loss of generality that all fibres are of minimal dimension, so

dimS( ~A,M,Mk) = 0.

Hence, b belongs to a 0-dimensional set ∃wS( ~A, y, w), which is projective and
countable.

3.2.14 Lemma

Suppose b ∈ cl(A) and the projective type of ~Ab is equal to that of ~A′b′.
Then b′ ∈ cl(A′).
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Proof. First note that, by (FC) and (AS), for analytic R(u, v) and its
fibre R(a, v) of minimal dimension one has

tp(a) = tp(a′)⇒ dimR(a, v) = dimR(a′, v).

By the second part of the proof of 3.2.13 the assumption of the lemma im-
plies that for some analytic S we have � ∃wS( ~A, b, w) and dimS( ~A,M,Mk) =

0. Hence � ∃wS( ~A′, b′, w) and dimS( ~A′,M,Mk) = 0. But this immediately
implies b′ ∈ cl(A′).

3.2.15 Lemma

(i)
cl(∅) = cl(M0) = M0.

(ii) Given finite X⊆M, y, z ∈M,

z ∈ cl(X, y) \ cl(X)⇒ y ∈ cl(X, z).

(iii)
cl(cl(X)) = cl(X).

Proof. (i) Clearly M0⊆cl(∅), by definition.

We need to show the converse, that is if ∂(y) = 0, for y ∈M, then y ∈M0.
By definition ∂(y) = ∂(∅) = min{δ(Y ) : y ∈ Y ⊂ M} = 0. So, y ∈ Y,
~Y ∈ S ⊆an U ⊆op Mn, dimS = 0. The irreducible components of S are

closed points (singletons) and {~Y } is one of them, so must be in M0, hence
y ∈M0.

(ii) Assuming the left-hand side of (ii), ∂(Xyz) = ∂(Xy) > ∂(X) and
∂(Xz) > ∂(X). By the definition of ∂ then,

∂(Xy) = ∂(X) + 1 = ∂(Xz),

so ∂(Xzy) = ∂(Xz), y ∈ cl(Xz).
(iii) Immediate by 3.2.13.
Below, if not stated otherwise, we use the language L∃ the primitives of

which correspond to relations ∃-definable in M. Also, we call a submodel of
M any L∃-substructure closed under cl.

3.2.16 Theorem

(i) Every L∞,ω(L)-type realised in M is equivalent to a projective type,
that is a type consisting of existential (first-order) formulas and the negations
of existential formulas.

(ii) There are only countably many L∞,ω(L)-types realised in M.
(iii) (M,L∃) is quasi minimal ω-homogeneous over countable submodels,

that is the following hold:
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(a) for any countable (or empty) submodel G and any n-tuples X and
X ′, both cl-independent over G, a bijection φ : X → X ′ is a G-
monomorphism;

(b) given any G-monomorphism φ : Y → Y ′ for finite tuples Y, Y ′ in M and
given a z ∈M we can extend φ so that z ∈ Domφ.

Proof. (i) Immediate from 3.2.11.
(ii) By 3.2.10 there are only countably many types of finite tuples Z ≤M.

Let N ⊆ M0 be a countable subset of M such that any finite Z ≤ M is
L∞,ω(L)-equivalent to some tuple in N. Every finite tuple X ⊂ M can be
extended to XY ≤M, so there is a L∞,ω(L)-monomorphism XY → N. This
monomorphism identifies the L∞,ω(L)-type of X with one of a tuple in N,
hence there are no more than countably many such types.

(iii) Lemma 3.2.15 proves that cl defines a pregeometry on M.
Consider first (a). Note that GX ≤M and GX ′ ≤M and so the types of

X and X ′ over G are L-quantifier-free. But there is no proper L-closed subset
S ⊆cl M

n such that ~X ∈ S or ~X ′ ∈ S. Hence the types are equal.
For (b) just use the fact that the G-monomorphism by our definition pre-

serves ∃-formulas, so by 3.2.11 complete L∞,ω(L(G))-types of X and X ′ co-
incide, so by 3.2.7 φ can be extended.

3.2.17 Theorem

M is a quasiminimal pregeometry structure (see [16]). In other words, the
following properties of M hold:

(QM1) The pregeometry cl is determined by the language. That is, if
tp(x, Y ) = tp(x′, Y ′) , then x ∈ cl(Y ) if and only x′ ∈ cl(Y ′). (Here the types
are first order).

(QM2) The structure M is infinite-dimensional with respect to cl.
(QM3) (Countable closure property). If X ⊂ M is finite, then cl(X) is

countable.
(QM4) (Uniqueness of the generic type). Suppose that H,H ′ ⊂ M are

countable closed subsets, enumerated such that tp(H) = tp(H ′). If y ∈M \H
and y′ ∈M \H ′, then tp(H, y) = tp(H ′, y′).

(QM5) (ω-homogeneity over closed sets and the empty set). LetH,H ′ ⊂M
be countable closed subsets or empty, enumerated such that tp(H) = tp(H ′),
and let Y, Y ′ be finite tuples from M such that tp(H,Y ) = tp(H ′, Y ′), and
let z ∈ cl(H,Y ). Then there is z′ ∈M such that tp(H,Y, z) = tp(H ′, Y ′, z′).

Proof. (M, cl) is a pregeometry by 3.2.15. (QM1) is proved in 3.2.14.
(QM3) is 3.2.13 and (QM2) follows from (QM3) and (CU). (QM4)&(QM5) is
3.2.16(iii).

Now we define an abstract elementary class C associated with M. We follow
[4], Ch.6 for this construction. Similar construction was used in [16].



Analytic Zariski structures and non-elementary categoricity 71

Set

C0(M) = { countable L∃-structures N : N ∼= N′⊆M, cl(N ′) = N ′}

and define embedding N1 4 N2 in the class as an L∃-embedding f : N1 → N2

such that there are isomorphisms gi : Ni → N′i, N′1⊆N′2⊆M, all embeddings
commuting and cl(N ′i) = N ′i .

Now define C(M) to be the class of L-structures H with clL defined with
respect to H and satisfying:

(i) C0(H)⊆C0(M) as classes with embeddings
and
(ii) for every finite X⊆H there is N ∈ C0(H), such that X⊆N.

Given H1⊆H2, H1,H2 ∈ C(M), we define H1 4 H2 to hold in the class, if
for every finite X ⊆H1, cl(X) is the same in H1 and H2. More generally, for
H1,H2 ∈ C(M) we define H1 4f H2 to be an embedding f such that there are
isomorphisms H1

∼= H′1, H2
∼= H′2 such that H′1⊆H′2, all embeddings commute,

and H1 4 H2.

3.2.18 Lemma

C(M) is closed under the unions of ascending 4-chains.

Proof. Immediate from the fact that for infinite Y ⊆M,

cl(Y ) =
⋃
{cl(X) : X⊆finiteY }.

3.2.19 Theorem

The class C(M) contains structures of any infinite cardinality and is cate-
gorical in uncountable cardinals.

Proof. This follows from 3.2.17 by the main result of [16].

3.2.20 Proposition

Any uncountable H ∈ C(M) is an analytic 1-dimensional irreducible Zariski
structure in the language L. Also H is presmooth if M is.

Proof. We define C(H) to consist of the subsets of Hn of the form

Pa(H) := {x ∈ Hn : H � P (aax)},

for P ∈ L of arity k + n, a ∈ Hk. The assumption (L) is obviously satisfied.
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Now note that the constructible and projective sets in C(H) are also of the
form Pa(H) for some L-constructible or L-projective P.

Define
dimPa(H) := d if dimPb(M) = d, for some b ∈ Mk such that the L∃-

quantifier-free types of a and b are equal.
This is well-defined by (FC) and the fact that any L∃-quantifier-free type

realised in H is also realised in M. Moreover, we have the following.

Claim. The set of L∃-quantifier-free types realised in H is equal to that realised
in M.

Indeed, this is immediate from the definition of the class C(M), stability
of C(M) and the fact that the class is categorical in uncountable cardinalities.

The definition of dimension immediately implies (DP), (CU),(AF) and
(FC) for H.

(SI): if P ′a1(H) ⊆cl Pa0(H), dimP ′a1(H) = dimPa0(H) and the two sets
are not equal, then the same holds for P ′b1(M) and Pb0(M) for equivalent b0, b1
in M. Then, Pb0(M) is reducible, that is for some proper P ′′b2(M) ⊂cl Pb0(M)
we have Pb0(M) = P ′b1(M)∪P ′′b2(M). Now, by homogeneity we can choose a2

in H such that Pa0(H) = P ′a1(H) ∪ P ′′a2(H), a reducible representation.
This also shows that the notion of irreducibility is preserved by equivalent

substitution of parameters. Then the same is true for the notion of analytic
subset. Hence (INT), (CMP),(CC) and (PS) follow. For the same reason (AS)
holds. Next we notice that the axioms (WP) follows by the homogeneity ar-
gument.

3.3 Some examples

3.3.1 Universal covers of semiabelian varieties

Let A be a semiabelian variety of dimension d, e.g. d = 1 and A the
algebraic torus C×. Let V be the universal cover of A, which classically can
be identified as a complex manifold Cd.

We define a structure with a (formal) topology on V and show that this
is analytic Zariski.

By definition of universal cover there is a covering holomorphic map

exp : V → A

(a generalisation of the usual exp on C).
We will assume that C has no proper semiabelian subvarieties (is simple)

and no complex multiplication.
We consider the two sorted structure (V,A) in the language that has all

Zariski closed subsets of An, all n, the addition + on V and the map exp as
the primitives.
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This case was first looked at model-theoretically in [14] and the special
case A = C× in [12], [13] and in the DPhil thesis [15] of Lucy Smith.

Our aim here is to show that the structure on the sort V with a naturally
given formal topology is analytic Zariski.

The positive quantifier-free definable subsets of V n, n = 1, 2, . . . form a
base of a topology which we call the PQF-topology. In other words

3.3.2 Definition

A PQF-closed subset of V n is defined as a finite union of sets of the form

L ∩m · lnW (3.1)

where W ⊆An, an algebraic subvariety, and L is a Q-linear subspace of V n,
that is defined by a system of equations of the form m1x1 + . . .+mnxn = a,
mi ∈ Z, a ∈ V n.

The relations on V which correspond to PQFω-closed sets are the primi-
tives of our language L.

PQF-closed subsets form a base for a topology on the cartesian powers of
V which will underlie the analytic Zariski structure on V.

Remark. Among closed sets of the topology we have sets of the form

∪a∈I(S + a)

where S is of the form (3.1) and I a subset of (ker exp)n.
Slightly rephrasing the quantifier-elimination statement proved in [14]

Corollary 2 of section 3, we have the following result.

3.3.3 Proposition

(i) Projection of a PQF-closed set is PQF-constructible, that is a boolean
combination of PQF-closed sets.

(ii) The image of a constructible set under exponentiation is a Zariski-
constructible (algebraic) subset of An. The image of the set of the form (3.1)
is Zariski closed.

We assign dimension to a closed set of the form (3.1)

dimL ∩m · lnW := dim exp (L ∩m · lnW ) .

using the fact that the object on the right hand side is an algebraic variety.
We extend this to an arbitrary closed set assuming (CU), that is that the
dimension of a countable union is the maximum dimension of its members.This
immediately gives (DP). Using 3.3.3 we also get (WP).

The analysis of irreducibility below is more involved. Since expL is defin-
ably and topologically isomorphic to Ak, some k ≥ 1, we can always reduce
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the analysis of a closed set of the form (3.1) to a one of the form lnW with
W ⊆Ak not contained in a coset of a proper algebraic subgroup.

For such a W consider its m-th “root”

W
1
m = {〈x1, . . . , xn〉 ∈ Ak : 〈xm1 , . . . , xmk 〉 ∈W}.

Let d = dW (m) be the number of irreducible components of W
1
m .

It is easy to see that if d > 1, irreducible components W
1
m
i , i = 1, . . . , d,

of W
1
m are shifts of each other by m-th roots of unity, and m · lnW

1
m
i are

proper closed subsets of lnW of the same dimension. It follows that lnW is
irreducible (in the sense of (SI)) if and only if dW (m) = 1 for all m ≥ 1. In
[18] W satisfying this condition is called Kummer generic. If W ⊂ expL for
some Q-linear subspace L ⊂ V n, then one uses the relative version of Kummer
genericity.

We say that the sequence W
1
m , m ∈ N, stops branching if the sequence

dW (m) is eventually constant, that is if W
1
m is Kummer generic for some

m ≥ 1.
The following is proved for A = C× in [12], (Theorem 2, case n = 1 and

its Corollary) and in general in [18].

3.3.4 Theorem

The sequence W
1
m stops branching if and only if W is not contained in a

coset of a proper algebraic subgroup of Ak.

3.3.5 Corollary

Any irreducible closed subset of V n is of the form L∩ lnW, for W Kummer
generic in expL.

Any closed subset of V n is analytic in V n.

It is easy now to check that the following.

3.3.6 Corollary

The structure (V ;L) is analytic Zariski and presmooth.

The reader may notice that the analysis above treats only formal notion
of analyticity on the cover C of C× but does not address the classical one. In
particular, the following question is order: is the formal analytic decomposi-
tion as described by 3.3.5 the same as the actual complex analytic one? In a
private communication F.Campana answered this question in positive, using
a cohomological argument. M.Gavrilovich proved this and much more general
statement in his thesis (see [11], III.1.2) by a similar argument.
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3.3.7 Covers in positive characteristic

Now we look into yet another version of a cover structure which is proven
to be analytic Zariski, a cover of the one-dimensional algebraic torus
over an algebraically closed field of a positive characteristic.

Let (V,+) be a divisible torsion free abelian group and K an algebraically
closed field of a positive characteristic p. We assume that V and K are both
of the same uncountable cardinality. Under these assumptions it is easy to
construct a surjective homomorphism

ex : V → K×.

The kernel of such a homomorphism must be a subgroup which is p-divisible
but not q-divisible for each q coprime with p. One can easily construct ex so
that

ker ex ∼= Z[
1

p
],

the additive group (which is also a ring) of rationals of the form m
pn , m, n ∈ Z,

n ≥ 0. In fact in this case it is convenient to view V and ker ex as Z[ 1
p ]-modules.

In this new situation Lemma 3.3.3 is still true, with obvious alterations,
and we can use the definition 3.3.2 to introduce a topology and the family L
as above. The necessary version of Theorem 3.3.4 is proved in [18]. Hence the
corresponding versions of 3.3.5 follows.

3.3.8 Remark

In all the above examples the analytic rank of any nonempty closed subset
is 1, that is any closed subset is analytic.

3.3.9 Cexp and other pseudo-analytic structures

Cexp, the structure (C; +, ·, exp), was a prototype of the field with
pseudo-exponentiation studied by the current author in [17]. It was proved
(with later corrections, see [19]) that this structure is quasi-minimal and its
(explicitly written) Lω1,ω(Q)-axioms are categorical in all uncountable cardi-
nality. This result has been generalised to many other structures of analytic
origin in [19], in particular to the the formal analogue of CP = (C; +, ·,P),
where P = P(τ, z) is the Weierstrass function of variable z with parameter τ.
We call these structures pseudo-analytic.

It is a reasonable conjecture to assume that the pseudo-analytic structures
of cardinality continuum are isomorphic to their complex prototypes. Never-
theless, even under this conjecture it is not known whether Cexp, CP or any of
the other pseudo-analytic structures (which do not satisfy 3.3.8) are analytic
Zariski. One may start by defining the family of (formal) closed sets in the
structure to coincide with the family of definable subsets which are closed in
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the metric topology of the complex manifold. The problem then is to conve-
niently classify such subsets. A suggestion for such a classification may come
from the following notion.

3.3.10 Generalised analytic sets

In [6] we have discussed the following notion of generalised analytic sub-
sets of [P1(C)]n and, more generally, of [P1(K)]n for K algebraically closed
complete valued field.

Let F ⊆C2 be a graph of an entire analytic function and F̄ its closure in
[P1(C)]2. It follows from Picard’s Theorem that F̄ = F ∪ {∞} × P1(C), in
particular F̄ has analytic rank 2.

Generalised analytic sets are defined as the subsets of [P1(C)]n for all n,
obtained from classical (algebraic) Zariski closed subsets of [P1(C)]n and some
number of sets of the form F̄ by applying the positive operations: Cartesian
products, finite intersections, unions and projections. It is clear by definition
that the complex generalised analytic sets are closed (but not obvious for the
case of K, algebraically closed complete non-Archimedean valued field).

3.3.11 Theorem (see [6])

Any generalised analytic set is of finite analytic rank.
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Abstract

We prove that a strongly compact cardinal is an upper bound for
a Hanf number for amalgamation, etc. in AECs using both semantic
and syntactic methods. To syntactically prove non-disjoint amalga-
mation, a different presentation theorem than Shelah’s is needed.
This relational presentation theorem has the added advantage of
being functorial, which allows the transfer of amalgamation.
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4.1 Introduction

This paper addresses a number of fundamental problems in logic and the
philosophy of mathematics by considering some more technical problems in
model theory and set theory. The interplay between syntax and semantics is
usually considered the hallmark of model theory. At first sight, Shelah’s notion
of abstract elementary class shatters that icon. As in the beginnings of the
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modern theory of structures ([Cor92]) Shelah studies certain classes of mod-
els and relations among them, providing an axiomatization in the Bourbaki
([Bou50]) as opposed to the Gödel or Tarski sense: mathematical requirements,
not sentences in a formal language. This formalism-free approach ([Ken13])
was designed to circumvent confusion arising from the syntactical schemes of
infinitary logic; if a logic is closed under infinite conjunctions, what is the sense
of studying types? However, Shelah’s presentation theorem and more strongly
Boney’s use [Bon] of AEC’s as theories of Lκ,ω (for κ strongly compact) rein-
troduce syntactical arguments. The issues addressed in this paper trace to the
failure of infinitary logics to satisfy the upward Löwenheim-Skolem theorem
or more specifically the compactness theorem. The compactness theorem al-
lows such basic algebraic notions as amalgamation and joint embedding to be
easily encoded in first order logic. Thus, all complete first order theories have
amalgamation and joint embedding in all cardinalities. In contrast these and
other familiar concepts from algebra and model theory turn out to be heavily
cardinal-dependent for infinitary logic and specifically for abstract elementary
classes. This is especially striking as one of the most important contributions
of modern model theory is the freeing of first order model theory from its
entanglement with axiomatic set theory ([Bal15a], Chapter 7 of [Bal15b]).

Two main issues are addressed here. We consider not the interaction of
syntax and semantics in the usual formal language/structure dichotomy but
methodologically. What are reasons for adopting syntactic and/or semantic
approaches to a particular topic? We compare methods from the very be-
ginnings of model theory with semantic methods powered by large cardinal
hypotheses. Secondly, what then are the connections of large cardinal axioms
with the cardinal dependence of algebraic properties in model theory. Here
we describe the opening of the gates for potentially large interactions between
set theorists (and incidentally graph theorists) and model theorists. More pre-
cisely, can the combinatorial properties of small large cardinals be coded as
structural properties of abstract elementary classes so as to produce Hanf
numbers intermediate in cardinality between ‘well below the first inaccessible’
and ‘strongly compact’?

Most theorems in mathematics are either true in a specific small cardinal-
ity (at most the continuum) or in all cardinals. For example all, finite division
rings are commutative, thus all finite Desarguesian planes are Pappian. But
all Pappian planes are Desarguean and not conversely. Of course this stric-
ture does not apply to set theory, but the distinctions arising in set theory
are combinatorial. First order model theory, to some extent, and Abstract
Elementary Classes (AEC) are beginning to provide a deeper exploration of
Cantor’s paradise: algebraic properties that are cardinality dependent. In this
article, we explore whether certain key properties (amalgamation, joint em-
bedding, and their relatives) follow this line. These algebraic properties are
structural in the sense of [Cor04].

Much of this issue arises from an interesting decision of Shelah. Generaliz-
ing Fräıssé [Fra54] who considered only finite and countable stuctures, Jónsson
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laid the foundations for AEC by his study of universal and homogeneous rela-
tion systems [Jón56, Jón60]. Both of these authors assumed the amalgamation
property (AP) and the joint embedding property (JEP), which in their con-
text is cardinal independent. Variants such as disjoint or free amalgamation
(DAP) are a well-studied notion in model theory and universal algebra. But
Shelah omitted the requirement of amalgamation in defining AEC. Two rea-
sons are evident for this: it is cardinal dependent in this context; Shelah’s
theorem (under weak diamond) that categoricity in κ and few models in κ+

implies amalgamation in κ suggests that amalgamation might be a dividing
line.

Grossberg [Gro02, Conjecture 9.3] first raised the question of the exis-
tence of Hanf numbers for joint embedding and amalgamation in Abstract
Elementary Classes (AEC). We define four kinds of amalgamation properties
(with various cardinal parameters) in Subsection 4.1.1 and a fifth at the end
of Section 4.3.1. The first three notions are staples of the model theory and
universal algebra since the fifties and treated for first order logic in a fairly
uniform manner by the methods of Abraham Robinson. It is a rather strik-
ing feature of Shelah’s presentation theorem that issues of disjointness require
careful study for AEC, while disjoint amalgamation is trivial for complete first
order theories.

Our main result is the following:

Theorem 4.1.1. Let κ be strongly compact and K be an AEC with
Löwenheim-Skolem number less than κ.

If K satisfies1 AP/JEP/DAP/DJEP/ NDJEP for models of size [µ,< κ),
then K satisfies AP/JEP/DAP/DJEP/ NDJEP for all models of size ≥ µ.

We conclude with a survey of results showing the large gap for many
properties between the largest cardinal where an ‘exotic’ structure exists and
the smallest where eventual behavior is determined. Then we provide specific
question to investigate this distinction.

Our starting place for this investigation was second author’s work [Bon]
that emphasized the role of large cardinals in the study of AEC. A key aspect
of the definition of AEC is as a mathematical definition with no formal syn-
tax - class of structures satisfying certain closure properties. However, Shelah’s
Presentation Theorem says that AECs are expressible in infinitary languages,
Lκ,ω, which allowed a proof via sufficiently complete ultraproducts that, as-
suming enough strongly compact cardinals, all AEC’s were eventually tame
in the sense of [GV06].

Thus we approached the problem of finding a Hanf number for amalga-
mation, etc. from two directions: using ultraproducts to give purely semantic
arguments and using Shelah’s Presentation Theorem to give purely syntac-
tic arguments. However, there was a gap: although syntactic arguments gave
characterizations similar to those found in first order, they required looking

1This alphabet soup is decoded in Definition 4.1.3.
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at the disjoint versions of properties, while the semantic arguments did not
see this difference.

The requirement of disjointness in the syntactic arguments stems from a
lack of canonicity in Shelah’s Presentation Theorem: a single model has many
expansions which means that the transfer of structural properties between an
AEC K and it’s expansion can break down. To fix this problem, we developed a
new presentation theorem, called the relational presentation theorem because
the expansion consists of relations rather than the Skolem-like functions from
Shelah’s Presentation Theorem.

Theorem 4.1.2 (The relational presentation theorem, Theorem 4.3.8). To
each AEC K with LS(K) = κ in vocabulary τ , there is an expansion of τ by
predicates of arity κ and a theory T ∗ in L(2κ)+,κ+ such that K is exactly the
class of τ reducts of models of T ∗.

Note that this presentation theorem works in L(2κ)+,κ+ and has symbols
of arity κ, a far cry from the L(2κ)+,ω and finitary language of Shelah’s Pre-
sentation Theorem. The benefit of this is that the expansion is canonical or
functorial (see Definition 4.3.1). This functoriality makes the transfer of prop-
erties between K and (ModT ∗,⊂τ∗) trivial (see Proposition 4.3.2). This allows
us to formulate natural syntactic conditions for our structural properties.

Comparing the relational presentation theorem to Shelah’s, another well-
known advantage of Shelah’s is that it allows for the computation of Hanf
numbers for existence (see Section 4.4) because these exist in Lκ,ω. However,
there is an advantage of the relational presentation theorem: Shelah’s Presen-
tation Theorem works with a sentence in the logic L(2LS(K))+,ω and there is

little hope of bringing that cardinal down2. On the other hand, the logic and
size of theory in the relational presentation theorem can be brought down by
putting structure assumptions on the class K, primarily on the number of non-
isomorphic extensions of size LS(K), |{(M,N)/ ∼=: M ≺K N from KLS(K)}|.

We would like to thank Spencer Unger and Sebastien Vasey for helpful
discussions regarding these results.

4.1.1 Preliminaries

We discuss the relevant background of AECs, especially for the case of
disjoint amalgamation.

Definition 4.1.3. We consider several variations on the joint embedding
property, written JEP or JEP[µ, κ) .

1. Given a class of cardinals F and an AEC K, KF denotes the collection
of M ∈ K such that |M | ∈ F. When F is a singleton, we write Kκ

2Indeed an AEC K where the sentence is in a smaller logic would likely have to have
satisfy the very strong property that there are < 2LS(K) many τ(K) structures that are
not in K
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instead of K{κ}. Similarly, when F is an interval, we write < κ in place
of [LS(K), κ); ≤ κ in place of [LS(K), κ]; > κ in place of {λ | λ > κ};
and ≥ κ in place of {λ | λ ≥ κ}.

2. An AEC (K,≺K) has the joint embedding property, JEP, (on the interval
[µ, κ)) if any two models (from K[µ,κ)) can be K-embedded into a larger
model.

3. If the embeddings witnessing the joint embedding property can be chosen
to have disjoint ranges, then we call this the disjoint embedding property
and write DJEP .

4. An AEC (K,≺K) has the amalgamation property, AP, (on the interval
[µ, κ)) if, given any triple of models M0 ≺M1,M2 (from K[µ,κ)), M1 and
M2 can be K-embedded into a larger model by embeddings that agree
on M0.

5. If the embeddings witnessing the amalgamation property can be cho-
sen to have disjoint ranges except for M0, then we call this the disjoint
amalgamation property and write DAP .

Definition 4.1.4. 1. A finite diagram or EC(T,Γ)-class is the class of
models of a first order theory T which omit all types from a specified
collection Γ of complete types in finitely many variables over the empty
set.

2. Let Γ be a collection of first order types in finitely many variables over
the empty set for a first order theory T in a vocabulary τ1. A PC(T,Γ, τ)
class is the class of reducts to τ ⊂ τ1 of models of a first order τ1-theory
T which omit all members of the specified collection Γ of partial types.

4.2 Semantic arguments

It turns out that the Hanf number computation for the amalgamation
properties is immediate from Boney’s “ Loś’ Theorem for AECs” [Bon, Theo-
rem 4.3]. We will sketch the argument for completeness. For convenience here,
we take the following of the many equivalent definitions of strongly compact;
it is the most useful for ultraproduct constructions.

Definition 4.2.1 ([Jec06].20). The cardinal κ is strongly compact iff for
every S and every κ-complete filter on S can be extended to a κ-complete
ultrafilter. Equivalently, for every λ ≥ κ, there is a fine3, κ-complete ultrafilter
on Pκλ = {σ ⊂ λ : |σ| < κ}.

3U is fine iff G(α) := {z ∈ Pκ(λ)|α ∈ z} is an element of U for each α < λ.
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For this paper, “essentially below κ” means “LS(K) < κ.”

Fact 4.2.1 ( Loś’ Theorem for AECs). SupposeK is an AEC essentially below κ
and U is a κ-complete ultrafilter on I. Then K and the class of K-embeddings
are closed under κ-complete ultraproducts and the ultrapower embedding is
a K-embedding.

The argument for Theorem 4.2.2 has two main steps. First, use Shelah’s
presentation theorem to interpret the AEC into Lκ,ω and then use the fact
that Lκ,ω classes are closed under ultraproduct by κ-complete ultraproducts.

Theorem 4.2.2. Let κ be strongly compact and K be an AEC with
Löwenheim-Skolem number less than κ.

• If K satisfies AP (< κ) then K satisfies AP .

• If K satisfies JEP (< κ) then K satisfies JEP .

• If K satisfies DAP (< κ) then K satisfies DAP .

Proof: We first sketch the proof for the first item, AP , and then note the
modifications for the other two.

Suppose that K satisfies AP (< κ) and consider a triple of models
(M,M1,M2) with M ≺K M1,M2 and |M | ≤ |M1| ≤ |M2| = λ ≥ κ. Now we
will use our strongly compact cardinal. An approximation of (M,M1,M2) is
a triple N = (NN, NN

1 , N
N
2 ) ∈ (K<κ)3 such that NN ≺M,NN

` ≺M`, N
N ≺

NN
` for ` = 1, 2. We will take an ultraproduct indexed by the set X below

of approximations to the triple (M,M1,M2). Set

X := {N ∈ (K<κ)3 : N is an approximation of (M,M1,M2)}

For each N ∈ X, AP (< κ) implies there is an amalgam of this triple. Fix
fN` : NN

` → NN
∗ to witness this fact. For each (A,B,C) ∈ [M ]<κ × [M1]<κ ×

[M2]<κ, define

G(A,B,C) := {N ∈ X : A ⊂ NN, B ⊂ NN
1 , C ⊂ NN

2 }

These sets generate a κ-complete filter on X, so it can be extended to a
κ-complete ultrafilter U on X; note that this ultrafilter will satisfy the appro-
priate generalization of fineness, namely that G(A,B,C) is always a U -large
set.

We will now take the ultraproduct of the approximations and their amal-
gam. In the end, we will end up with the following commuting diagram, which
provides the amalgam of the original triple.
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M1
h1 // ΠNN

1 /U

ΠfN
1

%%KK
KKK

KKK
KK

M

>>~~~~~~~~

  @
@@

@@
@@

@@ h
// ΠNN/U

99ssssssssss

%%KK
KKK

KKK
KK

ΠNN
∗ /U

M2
h2

// ΠNN
2 /U

ΠfN
2

99ssssssssss

First, we use  Loś’ Theorem for AECs to get the following maps:

h : M → ΠNN/U

h` : M` → ΠNN
` /U for ` = 1, 2

h is defined by taking m ∈ M to the equivalence class of constant function
N 7→ x; this constant function is not always defined, but the fineness-like
condition guarantees that it is defined on a U -large set (and h1, h2 are defined
similarly). The uniform definition of these maps imply that h1 � M = h �
M = h2 �M .

Second, we can average the fN` maps to get ultraproduct maps

ΠfN` : ΠNN
` /U → ΠNN

∗ /U

These maps agree on ΠNN/U since each of the individual functions do. As
each M` embeds in ΠNN

` /U the composition of the f and h maps gives the
amalgam.

There is no difficulty if one of M0 or M1 has cardinality < κ; many of the
approximating triples will have the same first or second coordinates but this
causes no harm. Similary, we get the JEP transfer if M0 = ∅. And we can
transfer disjoint amalgamation since in that case each NN

1 ∩NN
2 = NN and

this is preserved by the ultraproduct. †4.2.2

4.3 Syntactic Approaches

The two methods discussed in this section both depend on expanding
the models of K to models in a larger vocabulary. We begin with a concept
introduced in Vasey [Vasa, Definition 3.1].

Definition 4.3.1. A functorial expansion of an AEC K in a vocabulary τ is
an AEC K̂ in a vocabulary τ̂ extending τ such that

1. each M ∈ K has a unique expansion to a M̂ ∈ K̂,
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2. if f : M ∼= M ′ then f : M̂ ∼= M̂ ′, and

3. if M is a strong substructure of M ′ for K, then M̂ is strong substructure
of M̂ ′ for K̂.

This concept unifies a number of previous expansions: Morley’s adding a
predicate for each first order definable set, Chang adding a predicate for each
Lω1,ω definable set, T eq, [CHL85] adding predicates Rn(x, y) for closure (in
an ambient geometry) of x, and the expansion by naming the orbits in Frâıssè
model4.

An important point in both [Vasa] and our relational presentation is that
the process does not just reduce the complexity of already definable sets (as
Morley, Chang) but adds new definable sets. But the crucial distinction here
is that the expansion in Shelah’s presentation theorem is not ‘functorial’ in
the sense here: each model has several expansions, rather than a single ex-
pansion. That is why there is an extended proof for amalgamation transfer
in Section 4.3.1, while the transfer in Section 4.3.2 follows from the following
result which is easily proved by chasing arrows.

Proposition 4.3.2. Let K to K̂ be a functorial expansion. (K,≺) has λ-

amalgamation [joint embedding, etc.] iff K̂ has λ-amalgamation [joint embed-
ding, etc.].

4.3.1 Shelah’s Presentation Theorem

In this section, we provide syntactic characterizations of the various amal-
gamation properties in a finitary language. Our first approach to these results
stemmed from the realization that the amalgamation property has the same
syntactic characterization for Lκ,κ as for first order logic if κ is strongly com-
pact, i.e., the compactness theorem hold for Lκ,κ. Combined with Boney’s
recognition that one could code each AEC with Löwenheim-Skolem number
less than κ in Lκ,κ this seemed a path to showing amalgamation. Unfor-
tunately, this path leads through the trichotomy in Fact 4.3.1. The results
depend directly (or with minor variations) on Shelah’s Presentation Theo-
rem and illustrate its advantages (finitary language) and disadvantage (lack
of canonicity).

Fact 4.3.1 (Shelah’s presentation theorem). If K is an AEC (in a vocabulary
τ with |τ | ≤ LS(K)) with Löwenheim-Skolem number LS(K), there is a vo-
cabulary τ1 ⊇ τ with cardinality |LS(K)|, a first order τ1-theory T1 and a set
Γ of at most 2LS(K) partial types such that

1. K = {M ′ � τ : M ′ |= T1 and M ′ omits Γ};
2. if M ′ is a τ1-substructure of N ′ where M ′, N ′ satisfy T1 and omit Γ then
M ′ � τ ≺K N ′ � τ ; and

4This has been done for years but there is a slight wrinkle in e.g. [BKL15] where the
orbits are not first order definable.
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3. if M ≺ N ∈ K and M ′ ∈ EC(T1,Γ) such that M ′ � τ = M , then there
is N ′ ∈ EC(T1,Γ) such that M ′ ⊂ N ′ and N ′ � τ = N .

The exact assertion for part 3 is new in this paper; we don’t include the
slight modification in the standard proofs (e.g. [Bal09, Theorem 4.15]). Note
that we have a weakening of Definition 4.3.1 caused by the possibility of
multiple ‘good’ expansion of a model M .

Here are the syntactic conditions equivalent to DAP and DJEP.

Definition 4.3.3. • Ψ has < λ-DAP satisfiability iff for any expansion by
constants c and all sets of atomic and negated atomic formulas (in τ(Ψ)∪
{c}) δ1(x, c) and δ2(y, c) of size < λ, if Ψ ∧ ∃x (

∧
δ1(x, c) ∧

∧
xi 6= cj)

and Ψ ∧ ∃y (
∧
δ2(y, c) ∧

∧
yi 6= cj) are separately satisfiable, then so is

Ψ ∧ ∃x,y

∧ δ1(x, c) ∧
∧
δ2(y, c) ∧

∧
i,j

xi 6= yj


• Ψ has < λ-DJEP satisfiability iff for all sets of atomic and negated atomic

formulas (in τ(Ψ)) δ1(x) and δ2(y) of size < λ, if Ψ ∧ ∃x
∧
δ1(x) and

Ψ ∧ ∃y
∧
δ2(y) are separately satisfiable, then so is

Ψ ∧ ∃x,y

∧ δ1(x) ∧
∧
δ2(y) ∧

∧
i,j

xi 6= yj


We now outline the argument for DJEP ; the others are similar. Note that

(2)→ (1) for the analogous result with DAP replacing DJEP has been shown
by Hyttinen and Kesälä [HK06, 2.16].

Lemma 4.3.4. Suppose that K is an AEC, λ > LS(K), and T1 and Γ are
from Shelah’s Presentation Theorem. Let Φ be the LLS(K)+,ω theory that as-
serts the satisfaction of T1 and omission of each type in Γ. Then the following
are equivalent:

1. K<λ has DJEP .

2. (EC(T1,Γ),⊂)<λ has DJEP.

3. Φ has < λ-DJEP -satisfiability.

Proof:

(1)↔ (2): First suppose that K<λ has DJEP. Let M∗0 ,M
∗
1 ∈ EC(T1,Γ)<λ and set

M` := M∗` � τ . By disjoint embedding for ` = 0, 1, there is N ∈ K such
that each M` ≺ N . Our goal is to expand N to be a member of EC(T1,Γ)
in a way that respects the already existing expansions.

Recall from the proof of Fact 4.3.1 that expansions of M ∈ K to mod-
els M∗ ∈ EC(T1,Γ) exactly come from writing M as a directed union
of LS(K)-sized models indexed by Pω|M |, and then enumerating the
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models in the union. Thus, the expansion of M` to M∗` come from

{M`,a ∈ KLS(K) | a ∈ M`}, where |M`,a| = {
(
F i|a|

)M∗`
(a) | i < LS(K)}

and the functions F in are from the expansion. Because M1 and M2 are
disjoint strong submodels of N , we can write N as a directed union of
{Na ∈ KLS(K) | a ∈ N} such that a ∈ M` implies that M`,a = Na.
Now, any enumeration of the universes of these models of order type
LS(K) will give rise to an expansion of N to N∗ ∈ EC(T1,Γ) by setting(
F i|a|

)N∗
(a) to be the ith element of |Na|.

Thus, choose an enumeration of them that agrees with the original
enumerations from M∗` ; that is, if a ∈ M`, then the ith element of

|Na| = |M`,a| is
(
F i|a|

)M∗`
(a) (note that, as used before, the disjoint-

ness guarantees that there is at most one ` satisfying this). In other
words, our expansion N∗ will have

a ∈M` =⇒
(
F i|a|

)M∗`
(a) =

(
F i|a|

)N∗
(a) for all i < LS(K)

This precisely means that M∗` ⊂ N∗, as desired. Furthermore, we have
constructed the expansion so N∗ ∈ EC(T1,Γ). Thus, (EC(T1,Γ) ,⊂)<λ
has DJEP.

Second, suppose that EC(T1,Γ) has λ-DJEP. Let M0,M1 ∈ K; WLOG,
M0 ∩ M1 = ∅. Using Shelah’s Presentation Theorem, we can expand
to M∗0 ,M

∗
1 ∈ EC(T1,Γ). Then we can use disjoint embedding to find

N∗ ∈ EC(T1,Γ) such that M∗1 ,M
∗
2 ⊂ N∗. By Shelah’s Presentation

Theorem 4.3.1.(1), N := N∗ � τ is the desired model.

(2)↔ (3): First, suppose that Φ has < λ-DJEP satisfiability. Let M∗0 ,M
∗
1 ∈

EC(T1,Γ) be of size < λ. Let δ0(x) be the quantifier-free diagram
of M∗0 and δ1(y)be the quantifier-free diagram of M∗1 . Then M∗0 �
Φ ∧ ∃x

∧
δ0(x); similarly, Φ ∧ ∃y

∧
δ1(y) is satisfiable. By the satisfi-

ability property, there is N∗ such that

N∗ � Ψ ∧ ∃x,y

∧ δ0(x) ∧
∧
δ1(y) ∧

∧
i,j

xi 6= yj


Then N∗ ∈ EC(T1,Γ) and contains disjoint copies of M∗0 and M∗1 , rep-
resented by the witnesses of x and y, respectively.

Second, suppose that (EC(T1,Γ),⊂)<λ has DJEP. Let Φ∧∃x
∧
δ1(x) and

Φ ∧ ∃y
∧
δ2(y) be as in the hypothesis of < λ-DJEP satisfiability. Let

M∗0 witness the satisfiability of the first and M∗1 witness the satisfiability
of the second; note both of these are in EC(T1,Γ). By DJEP, there is
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N ∈ EC(T1,Γ) that contains both as substructures. This witnesses

Ψ ∧ ∃x,y

∧ δ1(x) ∧
∧
δ2(y) ∧

∧
i,j

xi 6= yj


Note that the formulas in δ1 and δ2 transfer up because they are atomic
or negated atomic.

†

The following is a simple use of the syntactic characterization of strongly
compact cardinals.

Lemma 4.3.5. Assume κ is strongly compact and let Ψ ∈ Lκ,ω(τ1) and λ > κ.
If Ψ has < κ-DJEP-satisfiability, then Ψ has < λ-DJEP-satisfiability.

Proof: < λ-DJEP satisfiability hinges on the consistency of a particular
Lκ,ω theory. If Ψ has < κ-DJEP-satisfiability, then every < κ sized subtheory
is consistent, which implies the entire theory is by the syntactic version of
strong compactness we introduced at the beginning of this section.

†

Obviously the converse (for Ψ ∈ L∞,ω) holds without any large cardinals.
Proof of Theorem 4.1.1 for DAP and DJEP : We first complete the

proof for DJEP. By Lemma 4.3.4, < κ-DJEP implies that Φ has < κ-DJEP
satisfiability. By Lemma 4.3.5, Φ has < λ-DJEP satisfiability for every λ ≥ κ.
Thus, by Lemma 4.3.4 again, K has DJEP. The proof for DAP is exactly
analogous. †

4.3.2 The relational presentation theorem

We modify Shelah’s Presentation Theorem by eliminating the two in-
stances where an arbitrary choice must be made: the choice of models in
the cover and the choice of an enumeration of each covering model. Thus the
new expansion is functorial (Definition 4.3.1). However, there is a price to pay
for this canonicity. In order to remove the choices, we must add predicates
of arity LS(K) and the relevant theory must allow LS(K)-ary quantification,
potentially putting it in L(2κ)+,κ+ , where κ = LS(K); contrast this with a the-
ory of size ≤ 2κ in Lκ+,ω for Shelah’s version. As a possible silver lining, these
arities can actually be brought down to L(I(K,κ)+κ)+,κ+ . Thus, properties of
the AEC, such as the number of models in the Löwenheim-Skolem cardinal
are reflected in the presentation, while this has no effect on the Shelah version.

We fix some notation. Let K be an AEC in a vocabulary τ and let
κ = LS(K). We assume that K contains no models of size < κ. The same
arguments could be done with κ > LS(K), but this case reduces to applying
our result to K≥κ.



92 Beyond First Order Model Theory

We fix a collection of compatible enumerations for models M ∈ Kκ. Com-
patible enumerations means that each M has an enumeration of its universe,
denoted mM = 〈mM

i : i < κ〉, and, if M ∼= M ′, there is some fixed isomor-

phism fM,M ′ : M ∼= M ′ such that fM,M ′(m
M
i ) = mM ′

i and if M ∼= M ′ ∼= M ′′,
then fM,M ′′ = fM ′,M ′′ ◦ fM,M ′ .

For each isomorphism type [M ]∼= and [M ≺ N ]∼= with M,N ∈ Kκ, we add
to τ

R[M ](x) and R[M≺N ](x; y)

as κ-ary and κ2-ary predicates to form τ∗.
A skeptical reader might protest that we have made many arbitrary choices

so soon after singing the praises of our choiceless method. The difference is
that all choices are made prior to defining the presentation theory, T ∗.

Once T ∗ is defined, no other choices are made.
The goal of the theory T ∗ is to recognize every strong submodel of size κ

and every strong submodel relation between them via our predicates. This is
done by expressing in the axioms below concerning sequences x of length at
most κ the following properties connecting the canonical enumerations with
structures in K.

R[M ](x) holds iff xi 7→ mM
i is an isomorphism

R[M≺N ](x,y) holds iff xi 7→ mM
i and yi 7→ mN

i are isomorphisms and
xi = yj iff mM

i = mN
j

Note that, by the coherence of the isomorphisms, the choice of represen-
tative from [M ]∼= doesn’t matter. Also, we might have M ∼= M ′; N ∼= N ′;
M ≺ N and M ′ ≺ N ′; but not (M,N) ∼= (M ′, N ′). In this case R[M≺N ] and
R[M ′≺N ′] are different predicates.

We now write the axioms for T ∗. A priori they are in the logic L(2κ)+,κ+(τ∗)
but the theorem states a slightly finer result. To aid in understanding, we
include a description prior to the formal statement of each property.

Definition 4.3.6. The theory T ∗ in L(I(K,κ)+κ)+,κ+(τ∗) is the collection of
the following schema:

1. If R[M ](x) holds, then xi 7→ mM
i should be an isomorphism.

If φ(z1, . . . , zn) is an atomic or negated atomic τ -formula that holds of
mM
i1
, . . . ,mM

in
, then include

∀x
(
R[M ](x)→ φ(xi1 , . . . , xin)

)
2. If R[M≺N ](x,y) holds, then xi 7→ mM

i and yi 7→ mN
i should be isomor-

phisms and the correct overlap should occur.
If M ≺ N and i 7→ ji is the function such that mM

i = mN
ji

, then include

∀x,y

(
R[M≺N ](x,y)→

(
R[M ](x) ∧R[N ](y) ∧

∧
i<κ

xi = yji

))
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3. Every κ-tuple is covered by a model.
Include the following where lg(x) = lg(y) = κ

∀x∃y

 ∨
[M ]∼=∈Kκ/∼=

R[M ](y) ∧
∧
i<κ

∨
j<κ

xi = yji


4. If R[N ](x) holds and M ≺ N , then R[M≺N ](x

◦,x) should hold for the
appropriate subtuple x◦ of x.
If M ≺ N and π : κ→ κ is the unique map so mM

i = mN
π(i), then denote

xπ to be the subtuple of x such that xπi = xπ(i) and include

∀x
(
R[N ](x)→ R[M≺N ](x

π,x)
)

5. Coherence: If M ⊂ N are both strong substructures of the whole model,
then M ≺ N .
If M ≺ N and mM

i = mN
ji

, then include

∀x,y

(
R[M ](x) ∧R[N ](y) ∧

∧
i<κ

xi = yji → R[M≺N ](x,y)

)

Remark 4.3.7. We have intentionally omitted the converse to Definition
4.3.6.(1), namely

∀x

 ∧
φ(zi1 ,...,zin )∈tpqf (M/∅)

φ(xi1 , . . . , xin)→ R[M ](x)


because it is not true. The “toy example” of a nonfinitary AEC–the L(Q)-
theory of an equivalence relation where each equivalence class is countable–
gives a counter-example.

For any M∗ � T ∗, denote M∗ � τ by M .

Theorem 4.3.8 (Relational Presentation Theorem). 1. If M∗ � T ∗ then
M∗ � τ ∈ K. Further, for all M0 ∈ Kκ, we have M∗ � R[M0](m) implies
that m enumerates a strong substructure of M .

2. Every M ∈ K has a unique expansion M∗ that models T ∗.

3. If M ≺ N , then M∗ ⊂ N∗.
4. If M∗ ⊂ N∗ both model T ∗, then M ≺ N .

5. If M ≺ N and M∗ � T such that M∗ � τ = M , then there is N∗ � T
such that M∗ ⊂ N∗ and N∗ � τ = N .

Moreover, this is a functorial expansion in the sense of Vasey [Vasa, Def-
inition 3.1] and (ModT ∗,⊂) is an AEC except that it allows κ-ary relations.
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Note that although the vocabulary τ∗ is κ-ary, the structure of objects
and embeddings from (ModT ∗,⊂) still satisfies all of the category theoretic
conditions on AECs, as developed by Lieberman and Rosicky [LR]. This is
because (ModT ∗,⊂) is equivalent to an AEC, namely K, via the forgetful
functor.

Proof: (1): We will build a ≺-directed system {Ma ⊂M : a ∈ <ωM} that
are members of Kκ. We don’t (and can’t) require in advance that Ma ≺ M ,
but this will follow from our argument.

For singletons a ∈ M , taking x to be 〈a : i < κ〉 in (4.3.6.3), implies that
there is M ′a ∈ Kκ and ma ∈ κM with a ∈ ma such that M � R[M ′a](m

a). By

(1), this means that ma
i 7→ m

M ′a
i is an isomorphism. Set Ma := ma.5

Suppose a is a finite sequence in M and Ma′ is defined for every a′ ( a.
Using the union of the universes as the x in (4.3.6.3), there is some N ∈ Kκ

and ma ∈ κM such that

• |Ma′ | ⊂ma for each a′ ( a.

• M � R[N ](m
a).

By (4.3.6.4), this means that M � RM̄a′≺N̄ (ma′ ,ma), after some permutation
of the parameters. By (2) and (1), this means that Ma′ ≺ N ; set Ma := ma.

Now that we have finished the construction, we are done. AECs are closed
under directed unions, so ∪a∈MMa ∈ K. But this model has the same uni-
verse as M and is a substructure of M ; thus M = ∪a∈MMa ∈ K.

For the further claim, suppose M∗ � R[M0](m). We can redo the same
proof as above with the following change: whenever a ∈M is a finite sequence
such that a ⊂m, then set ma = m directly, rather than appealing to (4.3.6.3)
abstractly. Note that m witnesses the existential in that axiom, so the rest of
the construction can proceed without change. At the end, we have

m = Ma ≺
⋃

a′∈<ωM

Ma′ = M

(2): First, it’s clear that M ∈ K has an expansion; for each M0 ≺ M of
size κ, make R[M0](〈mM0

i : i < κ〉) hold and, for each M0 ≺ N0 ≺ M of size

κ, make R[M0≺N0](〈mM0
i : i < κ〉, 〈mN0

i : i < κ〉) hold. Now we want to show
this expansion is the unique one.
Suppose M+ � T ∗ is an expansion of M . We want to show this is in fact the
expansion described in the above paragraph. Let M0 ≺ M . By (4.3.6.3) and
(1) of this theorem, there is N0 ≺M and n ∈ κM such that

5We mean that we set Ma to be τ -structure with universe the range of ma and functions
and relations inherited from M ′a via the map above.
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• M+ � R[N0](n)

• |M0| ⊂ n

By coherence, M0 ≺ n. Since ni 7→ mN0
i is an isomorphism, there is

M∗0
∼= M0 such that M∗0 ≺ N0. Note that T ∗ |= ∀xR[M∗0 ](x) ↔ R[M0](x). By

(4.3.6.4),
M+ � R[M∗0≺N0](〈mM0

i : i < κ〉,n)

By (4.3.6.2), M+ � R[M∗0 ](〈mM0
i : i < κ〉), which gives us the conclusion by

the further part of (1) of this theorem.
Similarly, if M0 ≺ N0 ≺M , it follows that

M+ � R[M0≺N0](〈mM0
i : i < κ〉, 〈mN0

i : i < κ〉)

Thus, this arbitrary expansion is actually the intended one.
(3): Apply the uniqueness of the expansion and the transitivity of ≺.

(4): As in the proof of (1), we can build ≺-directed systems {Ma : a ∈
<ωM} and {Nb : b ∈ <ωN} of submodels of M and N , so that Ma = Na

when a ∈ <ωM . From the union axioms of AECs, we see that M ≺ N .
(5): This follows from (3), (4) of this theorem and the uniqueness of the

expansion.
Recall that the map M∗ ∈ ModT ∗ to M∗ � τ ∈ K is a an abstract Mor-

leyization if it is a bijection such that every isomorphism f : M ∼= N in K
lifts to f : M∗ ∼= N∗ and M ≺ N implies M∗ ⊂ N∗. We have shown that this
is true of our expansion. †

Remark 4.3.9. The use of infinitary quantification might remind the reader
of the work on the interaction between AECs and L∞,κ+ by Shelah [She09,
Chapter IV] and Kueker [Kue08] (see also Boney and Vasey [BV] for more in
this area). The main difference is that, in working with L∞,κ+ , those authors
make use of the semantic properties of equivalence (back and forth systems
and games). In contrast, particularly in the following transfer result we look
at the syntax of L(2κ)+,κ+ .

The functoriality of this presentation theorem allows us to give a syntactic
proof of the amalgamation, etc. transfer results without assuming disjointness
(although the results about disjointness follow similarly). We focus on amal-
gamation and give the details only in this case, but indicate how things are
changed for other properties.

Proposition 4.3.2 applied to this context yields the following result.

Proposition 4.3.10. (K,≺) has λ-amalgamation [joint embedding, etc.] iff
(ModT ∗,⊂) has λ-amalgamation [joint embedding, etc.].

Now we show the transfer of amalgamation between different cardinalities
using the technology of this section.
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Notation 4.3.11. Fix an AEC K and the language τ∗ from Theorem 4.3.8.

1. Given τ∗-structures M∗0 ⊂M∗1 ,M∗2 , we define the amalgamation diagram
AD(M∗1 ,M

∗
2 /M

∗
0 ) to be

{φ(cm0
, cm1

)) : φ is quantifier-free from τ∗ and for ` = 0 or 1,
M∗` � φ(cm0

, cm1
), with m0 ∈M∗0 and m1 ∈M∗` }

in the vocabulary τ∗ ∪ {cm : m ∈ M∗1 ∪ M∗2 } where each constant is
distinct except for the common submodel M0 and cm denotes the finite
sequence of constants cm1 , . . . , cmn .
The disjoint amalgamation diagram DAD(M∗1 ,M

∗
2 /M

∗
0 ) is

AD(M∗1 ,M
∗
2 /M

∗
0 ) ∪ {cm1 6= cm2 : m` ∈M∗` −M∗0 }

2. Given τ∗-structures M∗0 ,M
∗
1 , we define the joint embedding diagram

JD(M∗0 ,M
∗
1 ) to be

{φ(cm) : φ is quantifier-free from τ∗ and

for ` = 0 or 1,M∗` � φ(cm) with m ∈M∗` }

in the vocabulary τ∗ ∪ {cm : m ∈ M∗1 ∪ M∗2 } where each constant is
distinct.
The disjoint amalgamation diagram DJD(M∗0 ,M

∗
1 ) is

AD(M∗1 ,M
∗
2 /M

∗
0 ) ∪ {cm1

6= cm2
: m` ∈M∗` −M∗0 }

The use of this notation is obvious.

Claim 4.3.1.1. Any amalgam of M1 and M2 over M0 is a reduct of a model
of

T ∗ ∪AD(M∗1 ,M
∗
2 /M

∗
0 )

Proof: An amalgam of M0 ≺ M1,M2 is canonically expandable to
an amalgam of M∗0 ⊂ M∗1 ,M

∗
2 , which is precisely a model of T ∗ ∪

AD(M∗1 ,M
∗
2 /M

∗
0 ). Conversely, a model of that theory will reduct to a mem-

ber of K with embeddings of M1 and M2 that fix M0. †

There are similar claims for other properties. Thus, we have connected
amalgamation in K to amalgamation in (ModT ∗,⊂) to a syntactic condition,
similar to Lemma 4.3.4. Now we can use the compactness of logics in various
large cardinals to transfer amalgamation between cardinals. To do this, recall
the notion of an amalgamation base.

Definition 4.3.12. For a class of cardinals F, we say M ∈ KF is a F-
amalgamation base (F-a.b.) if any pair of models from KF extending M can be
amalgamated over M . We use the same rewriting conventions as in Definition
4.1.3.(1), e. g., writing ≤ λ-a.b. for [LS(K), λ]-amalgamation base.
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We need to specify two more large cardinal properties.

Definition 4.3.13. 1. A cardinal κ is weakly compact if it is strongly in-
accessible and every set of κ sentence in Lκ,κ that is < κ-satisfiable is
satisfiable is satisfiable6.

2. A cardinal κ is measurable if there exists a κ-additive, non-trivial, {0, 1}-
valued measure on the power set of κ.

3. κ is (δ, λ)-strongly compact for δ ≤ κ ≤ λ if there is a δ-complete, fine
ultrafilter on Pκ(λ).

κ is λ-strongly compact if it is (κ, λ)-strongly compact.

This gives us the following results syntactically.

Proposition 4.3.14. Suppose LS(K) < κ.

• Let κ be weakly compact and M ∈ Kκ. If M can be written as an in-
creasing union ∪i<κMi with each Mi ∈ K<κ being a < κ-a.b., then M is
a κ-a.b.

• Let κ be measurable and M ∈ K. If M can be written as an increasing
union ∪i<κMi with each Mi being a λi-a.b., then M is a (supi<κ λi)-a.b.

• Let κ be λ-strongly compact and M ∈ K. If M can be written as a directed
union ∪x∈PκλMx with each Mx being a < κ-a.b., then M is a ≤ λ-a.b.

Proof: The proof of the different parts are essentially the same: take a
valid amalgamation problem over M and formulate it syntactically via Claim
4.3.1.1 in Lκ,κ(τ∗). Then use the appropriate syntactic compactness for the
large cardinal to conclude the satisfiability of the appropriate theory.

First, suppose κ is weakly compact and M = ∪i<κMi ∈ Kκ where Mi ∈
K<κ is a < κ-a.b. Let M ≺ M1,M2 is an amalgamation problem from Kκ.
Find resolutions 〈M `

i ∈ K<κ : i < κ〉 with Mi ≺M `
i for ` = 1, 2. Then

T ∗ ∪AD(M1∗,M2∗/M∗) =
⋃
i<κ

(
T ∗ ∪AD(M1∗

i ,M2∗
i /M∗i )

)
and is of size κ. Each member of the union is satisfiable (by Claim 4.3.1.1
because Mi is a < κ-a.b.) and of size < κ, so T ∗ ∪ AD(M1∗,M2∗/M∗) is
satisfiable. Since M1,M2 ∈ Kκ were arbitrary, M is a κ-a.b.

Second, suppose that κ is measurable and M = ∪i<κMi where Mi is a
λi-a.b. Set λ = supi<κ λi and let M ≺ M1,M2 is an amalgamation problem
from Kλ. Find resolutions 〈M `

i ∈ K : i < κ〉 with Mi ≺ M `
i for ` = 1, 2 and

‖M `
i ‖ = λi. Then

T ∗ ∪AD(M1∗,M2∗/M∗) =
⋃
i<κ

(
T ∗ ∪AD(M1∗

i ,M2∗
i /M∗i )

)
6At one time strong inaccessiblity was not required, but this is the current definition
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Each member of the union is satisfiable because Mi is a λi-a.b. By the syntac-
tic characterization of measurable cardinals (see [CK73, Exercise 4.2.6]), the
union is satisfiable. Thus, M is λ-a.b.

Third, suppose that κ is λ-strongly compact and M = ∪x∈PκλMx with
each Mx being a < κ-a.b. Let M ≺ M1,M2 be an amalgamation problem
from Kλ. Find directed systems 〈M `

x ∈ K<κ | x ∈ Pκλ〉 with Mx ≺ M `
x for

` = 1, 2. Then

T ∗ ∪AD(M1∗,M2∗/M∗) =
⋃

x∈Pκλ

(
T ∗ ∪AD(M1∗

x ,M2∗
x /M∗x)

)
Every subset of the left side of size < κ is contained in a member of the right
side because Pκλ is < κ-directed, and each member of the union is consistent
because each Mx is an amalgamation base. Because κ is λ-strongly compact,
this means that the entire theory is consistent. Thus, M is a λ-a.b. †

From this, we get the following corollaries computing upper bounds on the
Hanf number for the ≤ λ-AP.

Corollary 4.3.15. Suppose LS(K) < κ.

• If κ is weakly compact and K has < κ-AP, then K has ≤ κ-AP.

• If κ is measurable, cf λ = κ, and K has < λ-AP, then K has ≤ λAP .

• If κ is λ-strongly compact and K has < κ-AP, then K has ≤ λ-AP.

Moreover, when κ is strongly compact, we can imitate the proof of [MS90,
Corollary 1.6] to show that being an amalgamation base follows from being
a < κ-existentially closed model of T ∗. This notion turns out to be the same
as the notion of < κ-universally closed from [Bon], and so this is an alternate
proof of [Bon, Lemma 7.2].

4.4 The Big Gap

This section concerns examples of ‘exotic’ behavior in small cardinalities
as opposed to behavior that happens unboundedly often or even eventually.
We discuss known work on the spectra of existence, amalgamation of various
sorts, tameness, and categoricity.

Intuitively, Hanf’s principle is that if a certain property can hold for only
set-many objects then it is eventually false. He refines this twice. First, if K
a set of collections of structures K and φP (X, y) is a formula of set theory
such φ(K, λ) means some member of K with cardinality λ satisfies P then
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there is a cardinal κP such that for any K ∈ K, if φ(K, κ′) holds for some
κ′ ≥ κP , then φ(K, λ) holds for arbitrarily large λ. Secondly, he observed that
if the property P is closed down for sufficiently large members of each K, then
‘arbitrarily large’ can be replaced by ‘on a tail’ (i.e. eventually).

Existence: Morley (plus the Shelah presentation theorem) gives a de-
cisive concrete example of this principle to AEC’s. Any AEC in a countable
vocabulary with countable Löwenheim-Skolem number with models up to iω1

has arbitrarily large models. And Morley [Mor65] gave easy examples show-
ing this bound was tight for arbitrary sentences of Lω1,ω. But it was almost
40 years later that Hjorth [Hjo02, Hjo07] showed this bound is also tight for
complete-sentences of Lω1,ω. And a fine point in his result is interesting.

We say a φ characterizes κ, if there is a model of φ with cardinality κ but
no larger. Further, φ homogeneously [Bau74] characterizes κ if φ is a complete
sentence of Lω1,ω that characterizes κ, contains a unary predicate U such that
if M is the countable model of φ, every permutation of U(M) extends to an
automorphism of M (i.e. U(M) is a set of absolute indiscernibles.) and there
is a model N of φ with |U(N)| = κ.

In [Hjo02], Hjorth found, by an inductive procedure, for each α < ω1, a
countable (finite for finite α) set Sα of complete Lω1,ω-sentences such that
some φα ∈ Sα characterizes ℵα7. This procedure was nondeterministic in
the sense that he showed one of (countably many if α is infinite) sentences
worked at each ℵα; it is conjectured [Sou13] that it may be impossible to
decide in ZFC which sentence works. In [BKL15], we show a modification of
the Laskowski-Shelah example (see [LS93, BFKL16]) gives a family of Lω1,ω-
sentences φr, such that φr homogeneously characterizes ℵr for r < ω. Thus for
the first time [BKL15] establishes in ZFC, the existence of specific sentences
φr characterizing ℵr.

Amalgamation: In this paper, we have established a similar upper bound
for a number of amalgamation-like properties. Moreover, although it is not
known beforehand that the classes are eventually downward closed, that fact
falls out of the proof. In all these cases, the known lower bounds (i. e., ex-
amples where AP holds initially and eventually fails) are far smaller. We
state the results for countable Löwenheim-Skolem numbers, although the
[BKS09, KLH14] results generalize to larger cardinalities.

The best lower bounds for the disjoint amalgamation property is iω1
as

shown in [KLH14] and [BKS09]. In [BKS09], Baldwin, Kolesnikov, and Shelah
gave examples of Lω1,ω-definable classes that had disjoint embedding up to ℵα
for every countable α (but did not have arbitrarily large models). Kolesnikov
and Lambie-Hanson [KLH14] show that for the collection of all coloring classes
(again Lω1,ω-definable when α is countable) in a vocabulary of a fixed size
κ, the Hanf number for amalgamation (equivalently in this example disjoint
amalgamation) is precisely iκ+ (and many of the classes have arbitrarily large

7Malitz [Mal68] (under GCH) and Baumgartner [Bau74] had earlier characterized the
iα for countable α.
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models). In [BKL15], Baldwin, Koerwein, and Laskowski construct, for each
r < ω, a complete Lω1,ω-sentence φr that has disjoint 2-amalgamation up
to and including ℵr−2; disjoint amalgamation and even amalgamation fail in
ℵr−1 but hold (trivially) in ℵr; there is no model in ℵr+1.

The joint embedding property and the existence of maximal models are
closely connected8. The main theorem of [BKS16] asserts: If 〈λi : i ≤ α < ℵ1〉
is a strictly increasing sequence of characterizable cardinals whose models
satisfy JEP(< λ0), there is an Lω1,ω-sentence ψ such that

1. The models of ψ satisfy JEP(< λ0), while JEP fails for all larger cardinals
and AP fails in all infinite cardinals.

2. There exist 2λ
+
i non-isomorphic maximal models of ψ in λ+

i , for all i ≤ α,
but no maximal models in any other cardinality; and

3. ψ has arbitrarily large models.

Thus, a lower bound on the Hanf number for either maximal models of the
joint embedding property is again iω1 . Again, the result is considerably more
complicated for complete sentences. But [BS15b] show that there is a sentence
φ in a vocabulary with a predicate X such that if M |= φ, |M | ≤ |X(M)|+
and for every κ there is a model with |M | = κ+ and |X(M)| = κ. Further
they note that if there is a sentence φ that homogenously characterizes κ, then
there is a sentence φ′ with a new predicate B such that φ′ also characterizes
κ, B defines a set of absolute indiscernibles in the countable model, and there
are models Mλ for λ ≤ κ such that (|M |, |B(Mλ)|) = (κ, λ). Combining these
two with earlier results of Souldatos [Sou13] one obtains several different ways
to show the lower bound on the Hanf number for a complete Lω1,ω-sentence
having maximal models is iω1 . In contrast to [BKS16], all of these examples
have no models beyond iω1 .

No maximal models: Baldwin and Shelah [BS15a] have announced that
the exact Hanf number for the non-existence of maximal models is the first
measurable cardinal. Souldatos observed that this implies the lower bound on
the Hanf number for K has joint embedding of models at least µ is the first
measurable.

Tameness: Note that the definition of a Hanf number for tameness is
more complicated as tameness is fundamentally a property of two variables:
K is (< χ, µ)-tame if for any N ∈ Kµ, if the Galois types p and q over N are
distinct, there is an M ≺ N with |M | < χ and p �M 6= q �M .

Thus, we define the Hanf number for < κ-tameness to be the minimal λ
such that the following holds:

if K is an AEC with LS(K) < κ that is (< κ, µ)-tame for some µ ≥ λ, then
it is (< κ, µ)-tame for arbitrarily large µ.

The results of [Bon] show that Hanf number for < κ-tameness is κ when κ is

8Note that, under joint embedding, the existence of a maximal model is equivalent to
the non-existence of arbitrarily large models
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strongly compact9. However, this is done by showing a much stronger “global
tameness” result that ignores the hypothesis: every AEC K with LS(K) < κ
is (< κ, µ)-tame for all µ ≥ κ. Boney and Unger [BU], building on earlier work
of Shelah [Shec], have shown that this global tameness result is actually an
equivalence (in the almost strongly compact form). Also, due to monotonicity
results for tameness, the Boney results show that the Hanf number for < λ-
tameness is at most the first almost strongly compact above λ (if such a
thing exists). The results [BU, Theorem 4.9] put a large restriction on the
structure of the tameness spectrum for any ZFC Hanf number. In particular,
the following

Fact 4.4.1. Let σ = σω < κ ≤ λ. Every AEC K with LS(K) = σ is(
< κ, σ(λ<κ)

)
-tame iff κ is (σ+, λ)-strongly compact.

This means that a ZFC (i. e., not a large cardinal) Hanf number for < κ-

tameness would consistently have to avoid cardinals of the form σ(λ<κ) (under
GCH, all cardinals are of this form except for singular cardinals and successors
of singulars of cofinality less than κ).

One could also consider a variation of a Hanf number for < κ that requires
(< κ, µ)-tameness on a tail of µ, rather than for arbitrarily large µ. The
argument above shows that that is exactly the first strongly compact above
κ.

Categoricity: Another significant instance of Hanf’s observation is She-
lah’s proof in [She99a] that if K is taken as all AEC’s K with LSK bounded
by a cardinal κ, then there is such an eventual Hanf number for categoricity
in a successor. Boney [Bon] places an upper bound on this Hanf number as
the first strongly compact above κ. This depended on the results on tameness
discussed in the previous paragraphs.

Building on work of Shelah [She09, She10], Vasey [Vasb] proves that if a
universal class (see [She87]) is categorical in a λ at least the Hanf number
for existence, then it has amalgamation in all µ ≥ κ. The he shows that for
universal class in a countable vocabulary, that satisifies amalgamation, the
Hanf number for categoricity is at most ii(2ω)+

. Note that the lower bound

for the Hanf number for categoricity is ℵω, ([HS90, BK09]).

Question 4.4.1. 1. Can one calculate in ZFC an upper bound on these
Hanf numbers for ‘amalgamation’? Can10 the gaps in the upper and
lower bounds of the Hanf numbers reported here be closed in ZFC? Will
smaller large cardinal axioms suffice for some of the upper bounds? Does
categoricity help?

2. (Vasey) Are there any techniques for downward transfer of amalgama-
tion11?

9This can be weakened to almost strongly compact; see Brooke-Taylor and Rosický
[BTR15] or Boney and Unger [BU].

10Grossberg initiated this general line of research.
11Note that there is an easy example in [BKS09] of a sentence in Lω1,ω that is categorical

and has amalgamation in every uncountable cardinal but it fails both in ℵ0.
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3. Does every AEC have a functional expansion to a PCΓ class. Is there a
natural class of AEC’s with this property — e.g. solvable groups?

4. Can12 one define in ZFC a sequence of sentences φα for α < ω1, such
that φα characterizes ℵα?

5. (Shelah) If ℵω1
< 2ℵ0 Lω1,ω-sentence has models up to ℵω1

, must it have
a model in 2ℵ0? (He proves this statement is consistent in [She99b]).

6. (Souldatos) Is any cardinal except ℵ0 characterized by a complete sen-
tence of Lω1,ω but not homogeneously?

12This question seems to have originated from discussions of Baldwin, Souldatos,
Laskowski, and Koerwien.
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Publ. Sci. Univ. Algeria Sèr. A, 1:35–182, 1954.
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Abstract

Tame abstract elementary classes are a broad nonelementary
framework for model theory that encompasses several examples of
interest. In recent years, progress toward developing a classification
theory for them has been made. Abstract independence relations
such as Shelah’s good frames have been found to be key objects.
Several new categoricity transfers have been obtained. We survey
these developments using the following result (due to the second
author) as our guiding thread:

[. If a universal class is categorical in cardinals of arbitrarily high
cofinality, then it is categorical on a tail of cardinals.
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5.1 Introduction

Abstract elementary classes (AECs) are a general framework for nonele-
mentary model theory. They encompass many examples of interest while still
allowing some classification theory, as exemplified by Shelah’s recent two-
volume book [She09b, She09c] titled Classification Theory for Abstract Ele-
mentary Classes.

So why study the classification theory of tame AECs in particular? Before
going into a technical discussion, let us simply say that several key results
can be obtained assuming tameness that provably cannot be obtained (or are
very hard to prove) without assuming it. Among these results are the con-
struction, assuming a stability or superstability hypothesis, of certain global
independence notions akin to first-order forking. Similarly to the first-order
case, the existence of such notions allows us to prove several more structural
properties of the class (such as a bound on the number of types or the fact that
the union of a chain of saturated models is saturated). After enough of the
theory is developed, categoricity transfers (in the spirit of Morley’s celebrated
categoricity theorem [Mor65]) can be established.

A survey of such results (with an emphasis on forking-like independence) is
in Section 5.5. However, we did not want to overwhelm the reader with a long
list of sometimes technical theorems, so we thought we would first present an
application: the categoricity transfer for universal classes from the abstract
(Section 5.4). We chose this result for several reasons. First, its statement is
simple and does not mention tameness or even abstract elementary classes.
Second, the proof revolves around several notions (such as good frames) that
might seem overly technical and ill-motivated if one does not see them in action
first. Third, the result improves on earlier categoricity transfers in several
ways, for example not requiring that the categoricity cardinal be a successor
and not assuming the existence of large cardinals. Finally, the method of
proof leads to Theorem 5.5.47, the currently best known ZFC approximation
to Shelah’s eventual categoricity conjecture (which is the main test question
for AECs, see below).

Let us go back to what tameness is. Briefly, tameness is a property of AECs
saying that Galois (or orbital) types are determined locally: two distinct Galois
types must already be distinct when restricted to some small piece of their
domain. This holds in elementary classes: types as sets of formulas can be
characterized in terms of automorphisms of the monster model and distinct
types can be distinguished by a finite set of parameters. However, Galois types
in general AECs are not syntactic and their behavior can be wild, with “new”
types springing into being at various cardinalities and increasing chains of
Galois types having no unique upper bound (or even no upper bound at all).
This wild behavior makes it very hard to transfer results between cardinalities.

For a concrete instance, consider the problem of developing a forking-like
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independence notion for AECs. In particular, we want to be able to extend
each (Galois) type p over M to a unique nonforking1 extension over every
larger set N . If the AEC, K, is nice enough, one might be able to develop an
independence notion allows one to obtain a nonforking extension q of p over
N . But suppose that K is not tame and that this non-tameness is witnessed
by q. Then there is another type q′ over N that has all the same small restric-
tions as q. In particular it extends p and (assuming our independence notion
has a reasonable continuity property) is a nonforking extension. In this case
the quest to have a unique nonforking extension is (provably, see Example
5.3.2.1.(4)) doomed.

This failure has led, in part, to Shelah’s work on a local approach where the
goal is to build a structure theory cardinal by cardinal without any “traces of
compactness” (see [She01a, p. 5]). The central concept there is that of a good
λ-frame (the idea is, roughly, that if an AEC K has a good λ-frame, then
K is “well-behaved in λ”). Multiple instances of categoricity together with
non-ZFC hypotheses (such as the weak generalized continuum hypothesis:

2µ < 2µ
+

for all µ) are used to build a good λ-frame [She01a], to push it up
to models of size λ+ (changing the class in the process) [She09b, Chapter II],
and finally to push it to models of sizes λ+ω and beyond in [She09b, Chapter
III] (see Section 5.2.5).

In contrast, the amount of compactness offered by tameness and other
locality properties has been used to prove similar results in simpler ways and
with fewer assumptions (after tameness is accounted for). In particular, the
work can often be done in ZFC.

In tame AECs, Galois types are determined by their small restrictions and
the behavior of these small restrictions can now influence the behavior of the
full type. An example can be seen in uniqueness results for nonsplitting exten-
sions: in general AECs, uniqueness results hold for non-µ-splitting extensions
to models of size µ, but no further (Theorem 5.2.24). However, in µ-tame
AECs, uniqueness results hold for non-µ-splitting extensions to models of all
sizes (Theorem 5.5.15). Indeed, the parameter µ in non-µ-splitting becomes
irrelevant. Thus, tameness can replace several extra assumptions. Compared
to the good frame results above, categoricity in a single cardinal, tameness,
and amalgamation are enough to show the existence of a good frame (Theo-
rem 5.5.44) and tameness and amalgamation are enough to transfer the frame
upwards without any change of the underlying class (Theorem 5.5.26).

Although tameness seems to only be a weak approximation to the nice
properties enjoyed by first-order logic, it is still strong enough to import more
of the model-theoretic intuition and technology from first-order. When dealing
with tame AECs, a type can be identified with the set of all of its restrictions
to small domains, and these small types play a role similar to formulas. This
can be made precise: one can even give a sense in which types are sets of (infini-

1In the sense of the independence notion mentioned above. This will often be different
from the first-order definition.
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tary) formulas (see Theorem 5.3.5). This allows several standard arguments
to be painlessly repeated in this context. For instance, the proof of the prop-
erties of < κ-satisfiability and the equivalence between Galois-stability and
no order property in this context are similar to their first-order counterparts
(see Section 5.5.2). On the other hand, several arguments from the theory of
tame AECs have no first-order analog (see for example the discussion around
amalgamation in Section 5.4).

On the other side, while tameness is in a sense a form of the first-order
compactness theorem, it is sufficiently weak that several examples of nonele-
mentary classes are tame. Section 5.3.2.1 goes into greater depth, but diverse
classes like locally finite groups, rank one valued fields, and Zilber’s pseudoex-
ponentiation all turn out to be tame. Tameness can also be obtained for free
from a large cardinal axiom, and a weak form of it follows from model-theoretic
hypotheses such as the combination of amalgamation and categoricity in a
high-enough cardinal.

Indeed, examples of non-tame AECs are in short supply (Section 5.3.2.2).
All known examples are set-theoretic in nature, and it is open whether there
are non-tame “natural” mathematical classes (see (5) in Section 5.6). The
focus on ZFC results for tame AECs allows us to avoid situations where,
for example, conclusions about rank one valued fields depend on whether
2ℵ0 < 2ℵ1 . This replacing of set-theoretic hypotheses with model-theoretic
ones suggests that developing a classification theory for tame AECs is possible
within ZFC.

Thus, tame AECs seem to strike an important balance: they are gen-
eral enough to encompass several nonelementary classes and yet well-
behaved/specific enough to admit a classification theory. Even if one does
not believe that tameness is a justified assumption, it can be used as a first
approximation and then one can attempt to remove (or weaken) it from the
statement of existing theorems. Indeed, there are several results in the liter-
ature (see the end of Section 5.2.4) which do not directly assume tameness,
but whose proof starts by deducing some weak amount of tameness from the
other assumptions, and then use this tameness in crucial ways.

We now highlight some results about tame AECs that will be discussed
further in the rest of this survey. We first state two motivating test questions.
The first is the well-known categoricity conjecture which can be traced back
to an open problem in [She78]. The following version appears as [She09b,
Conjecture N.4.2]:

Conjecture 5.1.1 (Shelah’s eventual categoricity conjecture). There exists
a function µ 7→ λ(µ) such that if K is an AEC categorical in some λ ≥
λ(LS(K)), then K is categorical in all λ′ ≥ λ(LS(K)).

Shelah’s categoricity conjecture is the main test question for AECs and
remains the yardstick by which progress is measured. Using this yardstick,
tame AECs are well-developed. Grossberg and VanDieren [GV06b] isolated
tameness from Shelah’s proof of a downward categoricity transfer in AECs
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with amalgamation [She99]. Tameness was one of the key (implicit) prop-
erties there (in the proof of [She99, Main claim 2.3], where Shelah proves
that categoricity in a high-enough successor implies that types over Galois-
saturated models are determined by their small restrictions2, this property has
later been called weak tameness). Grossberg and VanDieren defined tameness
without the assumption of saturation and developed the theory in a series of
papers [GV06b, GV06c, GV06a], culminating in the proof of Shelah’s eventual
categoricity conjecture from a successor in tame AECs with amalgamation3.

Progress towards other categoricity transfers often proceed by first proving
tameness and then using it to transfer categoricity. One of the achievements
of developing the classification theory of tame AECs is the following result,
due to the second author [Vasf]:

Theorem 5.1.2. Shelah’s eventual categoricity conjecture is true when K
is a universal class with amalgamation. In this case, one can take λ(µ) :=
i(2µ)+ . Moreover amalgamation can be derived from categoricity in cardinals
of arbitrarily high cofinality.

The proof starts by observing that every universal class is tame (a result
of the first author [Bonc], see Theorem 5.3.11).

The second test question is more vague and grew out of the need to gen-
eralize some of the tools of first-order stability theory to AECs.

Question 5.1.3. Let K be an AEC categorical in a high-enough cardinal.
Does there exists a cardinal χ such that K≥χ admits a notion of independence
akin to first-order forking?

The answer is positive for universal classes with amalgamation (see The-
orem 5.5.41), and more generally for classes with amalgamation satisfying a
certain strengthening of tameness:

Theorem 5.5.53. Let K be a fully < ℵ0-tame and -type short AEC with
amalgamation. If K is categorical in a λ > LS(K), then K≥i

(2LS(K))
+ has (in

a precise sense) a superstable forking-like independence notion.
Varying the locality assumption, one can obtain weaker, but still powerful,

conclusions that are key in the proof of Theorem 5.1.2.
One of the big questions in developing classification theory outside of first-

order is which of the characterizations of dividing lines to take as the definition
(see Section 5.2.1). This is especially true when dealing with superstability.
In the first-order context, this is characterizable by forking having certain
properties or the union of saturated models being saturated or one of several
other properties. In tame AECs, these characterizations have recently been
proven to also be equivalent! See Theorem 5.5.23.

2In [She01a, Definition 0.24], Shelah defines a type to be local if it is defined by all its
LS(K)-sized restrictions.

3The work on [GV06b] was done in 2000-2001 and preprints of [GV06c, GV06a] were
circulated in 2004.
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This survey is organized as follows: Section 5.2 reviews concepts from the
study of general AEC. This begins with definitions and basic notions (Galois
type, etc.) that are necessary for work in AECs. Subsection 5.2.1 is a review of
classification theory without tameness. The goal here is to review the known
results that do not involve tameness in order to emphasize the strides that
assuming tameness makes. Of course, we also setup notation and terminology.
Previous familiarity with the basics of AECs as laid out in e.g. [Bal09, Chapter
4] would be helpful. We also assume that the reader knows the basics of first-
order model theory.

Section 5.3 formally introduces tameness and related principles. Subsection
5.3.2.1 reviews the known examples of tameness and non-tameness.

Section 5.4 outlines the proof of Shelah’s Categoricity Conjecture for uni-
versal classes. The goal of this outline is to highlight several of the tools that
exist in the classification theory of tame AECs and tie them together in a sin-
gle result. After whetting the reader’s appetite, Section 5.5 goes into greater
detail about the classification-theoretic tools available in tame AECs.

This introduction has been short on history and attribution and the his-
torical remarks in Section 5.7 fill this gap. We have written this survey in a
somewhat informal style where theorems are not attributed when they are
stated: the reader should also look at Section 5.7, where proper credits are
given. It should not be assumed that an unattributed result is the work of the
authors.

Let us say a word about what is not discussed: We have chosen to focus
on recent material which is not already covered in Baldwin’s book [Bal09], so
while its interest cannot be denied, we do not for example discuss the proof of
the Grossberg-VanDieren upward categoricity transfer [GV06c, GV06a]. Also,
we focus on tame AECs, so tameness-free results (such as Shelah’s study of
Ehrenfeucht-Mostowski models in [She09b, Chapter IV], [Shea], or the work
of VanDieren and the second author on the symmetry property [Vanb, Van16,
VV]) are not emphasized. Related frameworks which we do not discuss much
are homogeneous model theory (see Example 5.3.2.1.(7)), tame finitary AECs
(Example 5.3.2.1.(6)), and tame metric AECs (see Example 5.3.2.1.(9)).

Finally, let us note that the field is not a finished body of work but is
still very much active. Some results may become obsolete soon after, or even
before, this survey is published4 . Still, we felt there was a need to write this
paper, as the body of work on tame AECs has grown significantly in recent
years and there is, in our opinion, a need to summarize the essential points.

5.1.1 Acknowledgments

This paper was written while the second author was working on a Ph.D.
thesis under the direction of Rami Grossberg at Carnegie Mellon University

4Indeed, since this paper was first circulated (in December 2015) the amalgamation
assumption has been removed from Theorem 5.1.2 [Vasg] and Question 5.2.37 has been
answered positively [Vasd].
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and he would like to thank Professor Grossberg for his guidance and assistance
in his research in general and in this work specifically.

We also thank Monica VanDieren and the referee for useful feedback that
helped us improve the presentation of this paper.

5.2 A primer in abstract elementary classes without
tameness

In this section, we give an overview of some of the main concepts of the
study of abstract elementary classes. This is meant both as a presentation of
the basics and as a review of the “pre-tameness” literature, with an emphasis
of the difficulties that were faced. By the end of this section, we give several
state-of-the-art results on Shelah’s categoricity conjecture. While tameness is
not assumed, deriving a weak version from categoricity is key in the proofs.

We only sketch the basics here and omit most of the proofs. The reader
who wants a more thorough introduction should consult [Gro02], [Bal09], or
the upcoming [Gro]. We are light on history and motivation for this part;
interested readers should consult one of the references or Section 5.7.

Abstract elementary classes (AECs) were introduced by Shelah in the mid-
seventies. The original motivation was axiomatizing classes of models of cer-
tain infinitary logics (Lω1,ω and L(Q)), but the definition can also be seen
as extracting the category-theoretic essence of first-order model theory (see
[Lie11a]).

Definition 5.2.1. An abstract elementary class (AEC) is a pair (K,≤) sat-
isfying the following conditions:

1. K is a class of L-structures for a fixed language L := L(K).

2. ≤ is a reflexive and transitive relation on K.

3. Both K and ≤ are closed under isomorphisms: If M,N ∈ K, M ≤ N ,
and f : N ∼= N ′, then f [M ], N ′ ∈ K and f [M ] ≤ N ′.

4. If M ≤ N , then M is an L-substructure of N (written5 M ⊆ N).

5. Coherence axiom: If M0,M1,M2 ∈ K, M0 ⊆ M1 ≤ M2, and M0 ≤ M2,
then M0 ≤M1.

6. Tarski-Vaught chain axioms: If δ is a limit ordinal and 〈Mi : i < δ〉 is an
increasing chain (that is, for all i < j < δ, Mi ∈ K and Mi ≤Mj), then:

(a) Mδ :=
⋃
i<δMi ∈ K.

5We write |M | for the universe of an L-structure M and ‖M‖ for the cardinality of the
universe. Thus M ⊆ N means M is a substructure of N while |M | ⊆ |N | means that the
universe of M is a subset of the universe of N .
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(b) Mi ≤Mδ for all i < δ.

(c) If N ∈ K and Mi ≤ N for all i < δ, then Mδ ≤ N .

7. Löwenheim-Skolem-Tarski axiom6: There exists a cardinal µ ≥ |L(K)|+
ℵ0 such that for every M ∈ K and every A ⊆ |M |, there exists M0 ≤M
so that A ⊆ |M0| and ‖M0‖ ≤ µ+ |A|. We define the Löwenheim-Skolem-
Tarski number of K (written LS(K)) to be the least such cardinal.

We often will not distinguish between K and the pair (K,≤). We write
M < N when M ≤ N and M 6= N .

Example 5.2.2. (Mod(T ),�) for T a first-order theory, and more generally
(Mod(ψ),�Φ) for ψ an Lλ,ω sentence and Φ a fragment containing ψ are
among the motivating examples. The Löwenheim-Skolem-Tarski numbers in
those cases are respectively |L(T )|+ ℵ0 and |Φ|+ |L(Φ)|+ ℵ0. In the former
case, we say that the class is elementary. See the aforementioned references
for more examples.

Notation 5.2.3. For K an AEC, we write Kλ for the class of M ∈ K with
‖M‖ = λ, and similarly for variations such as K≥λ, K<λ, K[λ,θ), etc.

Remark 5.2.4 (Existence of resolutions). Let K be an AEC and let λ >
LS(K). If M ∈ Kλ, it follows directly from the axioms that there exists an
increasing chain 〈Mi : i ≤ λ〉 which is continuous7 and so that Mλ = M and
Mi ∈ K<λ for all i < λ; such a chain is called a resolution of M . We also use
this name to refer to the initial segment 〈Mi : i < λ〉 with Mλ = M =

⋃
i<λMi

left implicit.

Remark 5.2.5. Let K be an AEC. A few quirks are not ruled out by the
definition:

• K could be empty.

• It could be that K<LS(K) is nonempty. This can be remedied by replacing
K with K≥LS(K) (also an AEC with the same Löwenheim-Skolem-Tarski
number as K). Note however that in some examples, the models below
LS(K) give a lot of information on the models of size LS(K), see Baldwin,
Koerwein, and Laskowski [BKL].

Most authors implicitly assume that K<LS(K) = ∅ and KLS(K) 6= ∅, and
the reader can safely make these assumptions throughout. However, we will
try to be careful about these details when stating results.

An AEC K may not have certain structural properties that always hold
in the elementary case:

6This axiom was initially called the Löwenheim-Skolem axiom, which explains why it is
written LS(K). However, later works have referred to it this way (and sometimes written
LST(K)) as an acknowledgment of Tarski’s role in the corresponding first-order result.

7That is, for every limit i, Mi =
⋃
j<iMj .
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Definition 5.2.6. Let K be an AEC.

1. K has amalgamation if for any M0,M1,M2 ∈ K with M0 ≤M`, ` = 1, 2,
there exists N ∈ K and f` : M` −−→

M0

N , ` = 1, 2.

M1
f1 // N

M0

OO

// M2

f2

OO

2. K has joint embedding if for any M1,M2 ∈ K, there exists N ∈ K and
f` : M` → N , ` = 1, 2.

3. K has no maximal models if for any M ∈ K there exists N ∈ K with
M < N .

4. K has arbitrarily large models if for any cardinal λ, K≥λ 6= ∅.

We define localizations of these properties in the expected way. For ex-
ample, we say that Kλ has amalgamation or K has amalgamation in λ (or
λ-amalgamation) if the definition of amalgamation holds when all the models
are required to be of size λ.

There are several easy relationships between these properties. We list here
a few:

Proposition 5.2.7. Let K be an AEC, λ ≥ LS(K).

1. If K has joint embedding and arbitrarily large models, then K has no
maximal models.

2. If K has joint embedding in λ, K<λ has no maximal models, and K≥λ
has amalgamation, then K has joint embedding.

3. If K has amalgamation in every µ ≥ LS(K), then K≥LS(K) has amalga-
mation.

In a sense, joint embedding says that the AEC is “complete”. Assuming
amalgamation, it is possible to partition the AEC into disjoint classes each of
which has amalgamation and joint embedding.

Proposition 5.2.8. Let K be an AEC with amalgamation. For M1,M2 ∈ K,
say M1 ∼ M2 if and only if M1 and M2 embed inside a common model (i.e.
there exists N ∈ K and f` : M` → N). Then ∼ is an equivalence relation,
and its equivalence classes partition K into at most 2LS(K)-many AECs with
joint embedding and amalgamation.

Thus if K is an AEC with amalgamation and arbitrarily large models,
we can find a sub-AEC of it which has amalgamation, joint embedding, and
no maximal models. In that sense, global amalgamation implies all the other
properties (see also Corollary 5.2.12).
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Using the existence of resolutions, it is not difficult to see that an AEC
(K,≤) is determined by its restriction to size λ (Kλ,≤ ∩(Kλ ×Kλ)). Thus,
there is only a set of AECs with a fixed Löwenheim-Skolem-Tarski number and
hence there is a Hanf number for the property that the AEC has arbitrarily
large models.

While this analysis only gives an existence proof for the Hanf number, She-
lah’s presentation theorem actually allows a computation of the Hanf number
by establishing a connection between K and L∞,ω.

Theorem 5.2.9 (Shelah’s presentation theorem). If K is an AEC with
L(K) = L, there exists a language L′ ⊇ L with |L′| + LS(K), a first-order
L′-theory T ′, and a set of T ′-types Γ such that

K = PC(T ′,Γ, L) := {M ′ � L |M ′ |= T ′ and M ′ omits all the types in Γ}

The proof proceeds by adding LS(K)-many functions of each arity. For
each M , we can write it as the union of a directed system {Nā ∈ KLS(K) :
ā ∈ <ω|M |} with ā ∈ Nā. Then, the intended expansion M ′ of M is where
the universe of Nā is enumerated by new functions of arity `(ā) applied to ā.
The types of Γ are chosen such that M ′ omits them if and only if the reducts
of the substructures derived in this way actually form a directed system8.

In particular, K is the reduct of a class of models of an LLS(K)+,ω-theory.
An important caveat is that if K was given by the models of some LLS(K)+,ω-
theory, the axiomatization given by Shelah’s Presentation Theorem is different
and uninformative. However, it is enough to allow the computation of the Hanf
number for existence.

Corollary 5.2.10. If K is an AEC such that K≥χ 6= ∅ for all χ < i(2LS(K))+ ,
then K has arbitrarily large models.

The cardinal i(2LS(K))+ appears frequently in studying AECs, so has been
given a name:

Notation 5.2.11. For λ an infinite cardinal, write h(λ) := i(2λ)+ . When K
is a fixed AEC, we write H1 := h(LS(K)) and H2 := h(h(LS(K))).

We obtain for example that any AEC with amalgamation and joint em-
bedding in a single cardinal eventually has all the structural properties of
Definition 5.2.6.

Corollary 5.2.12. Let K be an AEC with amalgamation. If K has joint
embedding in some λ ≥ LS(K), then there exists χ < H1 so that K≥χ has
amalgamation, joint embedding, and no maximal models. More precisely, there
exists an AEC K∗ such that:

1. K∗ ⊆ K.

8Note that there are almost always the maximal number of types in Γ.
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2. LS(K∗) = LS(K).

3. K∗ has amalgamation, joint embedding, and no maximal models.

4. K≥χ = (K∗)≥χ.

Proof sketch. First use Proposition 5.2.8 to decompose the AEC into at most
2LS(K) many subclasses, each of which has amalgamation and joint embedding.
Now if one of these partitions does not have arbitrarily large models, then there
must exists a χ0 < H1 in which it has no models. Take the sup of all such χ0s
and observe that cf(H1) = (2LS(K))+ > 2LS(K).

If K is an AEC with joint embedding, amalgamation, and no maximal
models, we may build a proper-class9 sized model-homogeneous universal
model C, where:

Definition 5.2.13. Let K be an AEC, let M ∈ K, and let λ be a cardinal.

1. M is λ-model-homogeneous if for every M0 ≤M , M ′0 ≥M0 with ‖M‖ <
λ, there exists f : M ′0 −−→

M0

M . When λ = ‖M‖, we omit it.

2. M is universal if for every M ′ ∈ K with ‖M ′‖ ≤ ‖M‖, there exists
f : M ′ →M .

Definition 5.2.14. We say that an AEC K has a monster model if it has a
model C as above. Equivalently, it has amalgamation, joint embedding, and
arbitrarily large models.

Remark 5.2.15. Even if K only has amalgamation and joint embedding,
we can construct a monster model, but it may not be proper-class sized. If
in addition joint embedding fails, for any M ∈ K we can construct a big
model-homogeneous model C ≥M .

Note that if K were in fact an elementary class, then the monster model
constructed here is the same as the classical concept.

When K has a monster model C, we can define a semantic notion of type10

by working inside C and specifying that b̄ and c̄ have the same type over A if
and only if there exists an automorphism of C taking b̄ to c̄ and fixing A. In
fact, this can be generalized to arbitrary AECs:

Definition 5.2.16 (Galois types). Let K be an AEC.

1. For an index set I, an I-indexed Galois triple is a triple (b̄, A,N), where
N ∈ K, A ⊆ |N |, and b̄ ∈ I |N |.

9To make sense of this, we have to work in Gödel-Von Neumann-Bernays set theory.
Alternatively, we can simply ask for the monster model to be bigger than any sizes involved
in our proofs. In any case, the way to make this precise is the same as in the elementary
theory, so we do not elaborate.

10A semantic (as opposed to syntactic) notion of type is the only one that makes sense
in a general AEC as there is no natural logic to work in. Even in AECs axiomatized in a
logic such as Lω1,ω , syntactic types do not behave as they do in the elementary framework;
see the discussion of the Hart-Shelah example in Section 5.3.2.1.
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2. We say that the I-indexed Galois triples (b̄1, A1, N1), (b̄2, A2, N2) are
atomically equivalent and write (b̄1, A1, N1)EIat(b̄2, A2, N2) if A1 = A2,
and there exists N ∈ K and f` : N` −→

A
N so that f1(b̄1) = f2(b̄2). When

I is clear from context, we omit it.

3. Note that Eat is a symmetric and reflexive relation. We let E be its
transitive closure.

4. For an I-indexed Galois triple (b̄, A,N), we let gtp(b̄/A;N) (the Galois
type of b̄ over A in N) be the E-equivalence class of (b̄, A,N).

5. For N ∈ K and A ⊆ |N |, we let gSI(A;N) := {gtp(b̄/A;N) | b̄ ∈ I |N |}.
We also let gSI(N) :=

⋃
N ′≥N gSI(N ;N ′). When I is omitted, this means

that |I| = 1, e.g. gS(N) is gS1(N).

6. We can define restrictions of Galois types in the natural way: for p ∈
gSI(A;N), I0 ⊆ I and A0 ⊆ A, write p � A0 for the restriction of p to
A0 and pI0 for the restriction of p to I0. For example, if p = gtp(b̄/A;N)
and A0 ⊆ A, p � A0 := gtp(b̄/A0;N) (this does not depend on the choice
of representative for p).

7. Given p ∈ gSI(M) and f : M ∼= M ′, we can also define f(p) in the
natural way.

Remark 5.2.17.

1. If M ≤ N , then gtp(b̄/A;M) = gtp(b̄/A;N). Similarly, if f : M ∼=A N ,
then gtp(b̄/A;M) = gtp(f(b̄)/A;N). Equivalence of Galois types is the
coarsest equivalence relation with these properties.

2. If K has amalgamation, then E = Eat.

3. If C is a monster model for K, b̄1, b̄2 ∈ <∞|C|, A ⊆ |C|, then
gtp(b̄1/A;C) = gtp(b̄2/A;C) if and only if there exists f ∈ AutA(C)
so that f(b̄1) = b̄2. When working inside C, we just write gtp(b̄/A) for
gtp(b̄/A;C), but in general, the model in which the Galois type is com-
puted is important.

4. The cardinality of the index set is all that is important. However, when
discussing type shortness later, it is convenient to allow the index set to
be arbitrary.

When dealing with Galois types, one has to be careful about distinguishing
between types over models and types over sets. Most of the basic definitions
work the same for types over sets and models, and both require just amal-
gamation over models to make the transitivity of atomic equivalence work.
Allowing types over sets gives slightly more flexibility in the definitions. For
example, we can say what is meant to be < ℵ0-tame or to be (< LS(K))-tame
in K≥LS(K). See the discussion around Definition 5.3.1.

On the other hand, several basic results–such as the construction of κ-
saturated models–require amalgamation over the sort of object (set or model)
desired in the conclusion. For instance, the following is true.
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Proposition 5.2.18. Suppose that K is an AEC with amalgamation11.

1. The following are equivalent.

• A is an amalgamation base12.

• For every p ∈ gS1(A;N) and M ⊇ A, there is an extension of p to
M .

2. The following are equivalent.

• K has amalgamation over sets.

• For every M and κ, there is an extension N ≥M with the following
property:

For every A ⊆ |N | and |M∗| ⊇ A with |A| < κ, any
p ∈ gS<κ(A;M∗) is realized in N .

A more substantial result is [She99, Claim 3.3], which derives a local char-
acter for splitting in stable AECs (see Lemma 5.2.23 below), but only in the
context of Galois types over models.

One can give a natural definition of saturation in terms of Galois types.

Definition 5.2.19. A model M ∈ K is λ-Galois-saturated if for any A ⊆ |M |
with |A| < λ, any N ≥M , any p ∈ gS(A;N) is realized in M . When λ = ‖M‖,
we omit it.

Note the difference between this definition and Proposition 5.2.18.(2)
above. When K does not have amalgamation or when λ ≤ LS(K), it is not
clear that this definition is useful. But if K has amalgamation and λ > LS(K),
the following result of Shelah is fundamental:

Theorem 5.2.20. Assume that K is an AEC with amalgamation and let
λ > LS(K). Then M ∈ K is λ-Galois-saturated if and only if it is λ-model-
homogeneous.

5.2.1 Classification Theory

One theme of the classification theory of AECs is what Shelah has dubbed
the “schizophrenia” of superstability (and other dividing lines) [She09b, p. 19].
Schizophrenia here refers to the fact that, in the elementary framework, di-
viding lines are given by several equivalent characterizations (e.g. stability is
no order property or few types), typically with the existence of a definable,
combinatorial object on the “high” or bad side and some good behavior of
forking on the “low” or good side. However, this equivalence relies heavily
on compactness or other ideas central to first-order and breaks down when
dealing with general AECs. Thus, the search for stability, superstability, etc.

11Recall that this is defined to mean over models.
12This should be made precise, for example by considering the embedding of A inside a

fixed monster model.
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is in part a search for the “right” characterization of the dividing line and in
part a search for equivalences between the different faces of the dividing line.

One can roughly divide approaches towards the classification of AECs into
two categories: local approaches and global approaches13. Global approaches
typically assume one or more structural properties (such as amalgamation or
no maximal models) as well as a classification property (such as categoricity
in a high-enough cardinal or Galois stability in a particular cardinality), and
attempt to derive good behavior on a tail of cardinals. The local approach
is a more ambitious strategy pioneered by Shelah in his book [She09b]. The
idea is to first show (assuming e.g. categoricity in a proper class of cardinals)
that the AEC has good behavior in some suitable cardinal λ. Shelah precisely
defines “good behavior in λ” as having a good λ-frame (see Section 5.2.5).
In particular, this implies that the class is superstable in λ. The second step
in the local approach is to argue that good behavior in some λ transfers
upward to λ+ and, if the behavior is good enough, to all cardinals above λ.
Having established global good behavior, one can rely on the tools of the
global approach to prove the categoricity conjecture.

The local approach seems more general but comes with a price: increased
complexity, and often the use of non-ZFC axioms (like the weak GCH: 2λ <

2λ
+

for all λ), as well as stronger categoricity hypotheses. The two approaches
are not exclusive. In fact in recent years, tools from local approach have been
used and studied in a more global framework. We now briefly survey results
in both approaches that do not use tameness.

5.2.2 Stability

Once Galois types have been defined, one can define Galois-stability :

Definition 5.2.21. An AEC K is Galois-stable in λ if for any M ∈ K with
‖M‖ ≤ λ, we have | gS(M)| ≤ λ.

One can ask whether there is a notion like forking in stable AECs. The next
sections discuss this problem in detail. A first approximation is µ-splitting :

Definition 5.2.22. Let K be an AEC, µ ≥ LS(K). Assume that K has
amalgamation in µ. Let M ≤ N both be in K≥µ. A type p ∈ gS<∞(N) µ-
splits over M if there exists N1, N2 ∈ Kµ with M ≤ N` ≤ N , ` = 1, 2, and
f : N1

∼=M N2 so that f(p � N1) 6= p � N2.

One of the early results was that µ-splitting has a local character properties
in stable AECs:

Lemma 5.2.23. Let K be an AEC, µ ≥ LS(K). Assume that K has amal-
gamation in µ and is Galois-stable in µ. For any N ∈ K≥µ and p ∈ gS(N),
there exists N0 ∈ Kµ with N0 ≤ N so that p does not µ-split over N0.

13Monica VanDieren suggested set-theoretic scaffolding and model-theoretic scaffolding
as alternate names for the local and global approaches.
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With stability and amalgamation, we also get that there are unique non-
µ-splitting extensions to universal models of the same size.

Theorem 5.2.24. Let K be an AEC, µ ≥ LS(K). Assume that K has amalga-
mation in µ and is Galois-stable in µ. If M0,M1,M2 ∈ Kµ with M1 universal
over M0

14, then each p ∈ gS(M1) that does not µ-split over M0 has a unique
extension q ∈ gS(M2) that does not split over M0. Moreover, p is algebraic if
and only if q is.

Note in passing that stability gives existence of universal extensions:

Lemma 5.2.25. Let K be an AEC and let λ ≥ LS(K) be such that K has
amalgamation in λ and is Galois-stable in λ. For any M ∈ Kλ, there exists
N ∈ Kλ which is universal over M .

Similar to first-order model theory, there is a notion of an order property
in AECs. The order property is more parametrized due to the lack of com-
pactness. In the elementary framework, the order property is defined as the
existence of a definable order of order type ω. However, the essence of it is
that any order type can be defined. Thus the lack of compactness forces us
to make the the order property in AECs longer in order to be able to build
complicated orders:

Definition 5.2.26.

1. K has the κ-order property of length α if there exists N ∈ K, p ∈
gS<κ(∅;N), and 〈āi ∈ <κ|M | : i < α〉 such that:

i < j ⇔ gtp(āiāj/∅;N) = p

2. K has the κ-order property if it has the κ-order property of all lengths.

3. K has the order property if it has the κ-order property for some κ.

From the presentation theorem, having the κ-order property of all lengths
less than h(κ) is enough to imply the full κ-order property. In this case, one
can show that α above can be replaced by any linear ordering.

5.2.3 Superstability

A first-order theory T is superstable if it is stable on a tail of cardinals.
One might want to adapt this definition to AECs, but it is not clear that
it is enough to derive the property that we really want here: an analog of
κ(T ) = ℵ0. A possible candidate is to say that a class is superstable if every
type does not µ-split over a finite set. However, splitting is only defined for
models, and, as remarked above, types over arbitrary sets are not too well-
behaved. Instead, as with Galois types, we take an implication of the desired
property as the new definition: no long splitting chains.

14That is, for every M ′ ∈ Kµ with M0 ≤M ′, there exists f : M ′ −−→
M0

M1.
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Definition 5.2.27. An AEC K is µ-superstable (or superstable in µ) if:

1. µ ≥ LS(K).

2. Kµ is nonempty, has amalgamation15, joint embedding, and no maximal
models.

3. K is Galois-stable in µ.

4. for all limit ordinal δ < µ+ and every increasing continuous sequence
〈Mi : i ≤ δ〉 in Kµ with Mi+1 universal over Mi for all i < δ, if p ∈
gS(Mδ), then there exists i < δ so that p does not µ-split over Mi.

If K is the class of models of a first-order theory T , then K is µ-superstable
if and only if T is stable in every λ ≥ µ.

Remark 5.2.28. In (4), note that Mi+1 is required to be universal over
Mi, rather than just strong extension. For reasons that we do not completely
understand, it unknown whether this variation follows from categoricity (see
Theorem 5.2.36). On the other hand, it seems to be sufficient for many pur-
poses. In the tame case, the good frames derived from superstability (see
Theorem 5.5.22) will have this stronger property.

Another possible definition of superstability in AECs is the uniqueness of
limit models:

Definition 5.2.29. Let K be an AEC and let µ ≥ LS(K).

1. A model M ∈ Kµ is (µ, δ)-limit for limit δ < µ+ if there exists a strictly
increasing continuous chain 〈Mi ∈ Kµ : i ≤ δ〉 such that Mδ = M and
for all i < δ, Mi+1 is universal over Mi. If we do not specify the δ, it
means that there is one. We say that M is limit over N when such a
chain exists with M0 = N .

2. K has uniqueness of limit models in µ if whenever M0,M1,M2 ∈ Kµ and
both M1 and M2 are limit over M0, then M1

∼=M0
M2.

3. K has weak uniqueness of limit models in µ if whenever M1,M2 ∈ Kµ

are limit models, then M1
∼= M2 (the difference is that the isomorphism

is not required to fix M0).

Limit models and their uniqueness have come to occupy a central place
in the study of superstability of AECs. (µ+, µ+)-limit models are Galois-
saturated, so even weak uniqueness of limit models in µ+ implies that (µ+, ω)-
limit models are Galois-saturated. This tells us that Galois-saturated models
can be built in fewer steps than expected, which is reminiscent of first-order
characterizations of superstability. As an added benefit, the analysis of limit
models can be carried out in a single cardinal (as opposed to Galois-saturated

15This requirement is not made in several other variations of the definition but simplifies
notation. See the historical remarks for more.
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models, which typically need smaller models) and, thus, lends itself well to
the local analysis16.

The following question is still open (the answer is positive for elementary
classes):

Question 5.2.30. Let K be an AEC and let µ ≥ LS(K). If Kµ is nonempty,
has amalgamation, joint embedding, no maximal models, and is Galois-stable
in µ, do we have that K has uniqueness of limit models in µ if and only if K
is superstable in µ?

This phenomenon of having two potentially non-equivalent definitions of
superstability that are equivalent in the first-order case is an example of the
“schizophrenia” of superstability mentioned above.

Shelah and Villaveces [SV99] started the investigation of whether super-
stability implies the uniqueness of limit models. Eventually, VanDieren intro-
duced a symmetry property for µ-splitting to show the following.

Theorem 5.2.31. If K is a µ-superstable17 AEC such that µ-splitting has
symmetry, then K has uniqueness of limit models in µ.

In fact, the full strength of amalgamation in µ is not needed, see [Vana] in
this volume for more.

5.2.4 Categoricity

For an AEC K, let us denote by I(K, λ) the number of non-isomorphic
models in Kλ. We say that K is categorical in λ if I(K, λ) = 1. One of Shelah’s
motivation for introducing AECs was to make progress on the following test
question:

Conjecture 5.2.32 (Shelah’s categoricity conjecture for Lω1,ω). If a sentence
ψ ∈ Lω1,ω is categorical in some λ ≥ iω1

, then it is categorical in all λ′ ≥ iω1
.

Note that the lower bound is the Hanf number of this class. One of the
best results toward the conjecture is:

Theorem 5.2.33. Let ψ ∈ Lω1,ω be a sentence in a countable language.
Assume18 V = L. If ψ is categorical in all ℵn, 1 ≤ n < ω, then ψ is categorical
in all uncoutable cardinals.

Shelah’s categoricity conjecture for Lω1,ω can be generalized to AECs,
either by requiring only “eventual” categoricity (Conjecture 5.1.1) or by asking
for a specific Hanf number.

This makes a difference: using the axiom of replacement and the fact that

16For example, it gives a way to define what it means for a model of size LS(K) to be
saturated.

17Recall that the definition includes amalgamation and no maximal models in µ.
18Much weaker set-theoretic hypotheses suffice.
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every AEC K is determined by its restrictions to models of size at most LS(K),
it is easy to see that Shelah’s eventual categoricity conjecture is equivalent to
the following statement: If an AEC is categorical in a proper class of cardinals,
then it is categorical on a tail of cardinals. Thus requiring that the Hanf
number can in some sense be explicitly computed makes sure that one cannot
“cheat” and automatically obtain a free upward transfer.

When the Hanf number is H1 (recall Notation 5.2.11), we call the resulting
statement Shelah’s categoricity conjecture for AECs. This is widely recognized
as the main test question19 in the study of AECs.

Conjecture 5.2.34. If an AEC K is categorical in some λ > H1, then it is
categorical in all λ′ ≥ H1.

One of the milestone results in the global approach to this conjecture is
Shelah’s downward transfer from a successor in AECs with amalgamation.

Theorem 5.2.35. Let K be an AEC with amalgamation. If K is categorical
in a successor λ ≥ H2, then K is categorical in all µ ∈ [H2, λ].

The structure of the proof involves first deriving a weak version of tame-
ness from the categoricity assumption (see Example 5.3.2.1.(2)). A striking
feature of this result (and several other categoricity transfers) is the successor
requirement, which is, of course, missing from similar results in the first-order
case. Removing it is a major open question, even in the tame framework (see
Shelah [She00, Problem 6.14]). We see at least three difficulties when working
with an AEC categorical in a limit cardinal λ > LS(K):

1. It is not clear that the model of size λ should be Galois-saturated, see
Question 5.2.37.

2. It is not clear how to transfer “internal characterizations” of categoric-
ity such as no Vaughtian pairs or unidimensionality. In the first-order
framework, compactness is a key tool to achieve this.

3. It is not clear how to even get that categoricity implies such an internal
characterization (assuming λ = λ+

0 is a successor, there is a relatively
straightforward argument for the non-existence of Vaughtian pairs in
λ0). In the first-order framework, all the arguments we are aware of use
in some way primary models but here we do not know if they exist or
are well-behaved. For example, we cannot imitate the classical argument
that primary models are primes (this relies on the compactness theorem).

Assuming tameness, the first two issues can be solved (see Theorem 5.5.44
and the proof of Theorem 5.5.50). It is currently not known how to solve the
third in general, but adding the assumption that K has prime models over
sets of the form M ∪ {a} is enough. See Theorem 5.5.47.

19It is not expected that solving it will produce a useful lemma in solving other prob-
lems. Rather, like Morley’s Theorem, it is expected that the solution will necessitate the
development of ideas that will be useful in solving other problems.
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A key tool in the proof of Theorem 5.2.35 is the existence of Ehrenfeucht-
Mostowski models which follow from the presentation theorem. In AECs with
amalgamation and no maximal models, several structural properties can be
derived below the categoricity cardinal. For example:

Theorem 5.2.36 (The Shelah-Villaveces theorem, [SV99]). Let K be an AEC
with amalgamation and no maximal models. Let µ ≥ LS(K). If K is categorical
in a λ > µ, then K is µ-superstable.

Note that Theorem 5.2.36 fails to generalize to λ ≥ µ. In general, K may
not even be Galois-stable in λ, see the Hart-Shelah example (Section 5.3.2.2
below). In the presence of tameness, the difficulty disappears: superstability
can be transferred all the way up (see Theorem 5.5.22). This seems to be a re-
curring feature of the study of AECs without tameness: some structure can be
established below the categoricity cardinal (using tools such as Ehrenfeucht-
Mostowski models), but transferring this structure upward is hard due to the
lack of locality. For example, in the absence of tameness the following question
is open:

Question 5.2.37. Let K be an AEC with amalgamation and no maximal
models. If K is categorical in a λ > LS(K), is the model of size λ Galois-
saturated?

It is easy to see that (if cf(λ) > LS(K)), the model of size λ is cf(λ)-Galois-
saturated. Recently, it has been shown that categoricity in a high-enough
cardinal implies some degree of saturation:

Theorem 5.2.38. Let K be an AEC with amalgamation and no maximal
models. Let λ ≥ χ > LS(K). If K is categorical in λ and λ ≥ h(χ), then the
model of size λ is χ-Galois-saturated.

What about the uniqueness of limit models? In the course of establishing
Theorem 5.2.35, Shelah proves that categoricity in a successor λ implies weak
uniqueness of limit models in all µ < λ. Recently, VanDieren and the second
author have shown:

Theorem 5.2.39. Let K be an AEC with amalgamation and no maximal
models. Let µ ≥ LS(K). If K is categorical in a λ ≥ h(µ), then K has unique-
ness of limit models in µ.

5.2.5 Good frames

Roughly speaking, an AEC K has a good λ-frame if it is well-behaved in λ
(i.e. it is nonempty, has amalgamation, joint embedding, no maximal model,
and is Galois-stable, all in λ) and there is a forking-like notion for types of
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length one over models in Kλ that behaves like forking in superstable first-
order theories20. In particular, it is λ-superstable. One motivation for good
frames was the following (still open) question:

Question 5.2.40. If an AEC is categorical in λ and λ+, does it have a model
of size λ++?

Now it can be shown that if K has a good λ-frame (or even just λ-
superstable), then it has a model of size λ++. Thus it would be enough to
obtain a good frame to solve the question. Shelah has shown the following:

Theorem 5.2.41. Assume 2λ < 2λ
+

< 2λ
++

.
Let K be an AEC and let λ ≥ LS(K). If:

1. K is categorical in λ and λ+.

2. 0 < I(K, λ++) < µunif(λ
++, 2λ

+

)21.

Then K has a good λ+-frame.

Corollary 5.2.42. Assume 2λ < 2λ
+

< 2λ
++

. If K is categorical in λ, λ+,
and λ++, then K has a model of size λ+++.

Note the non-ZFC assumptions as well as the strong categoricity hypoth-
esis22. We will see that this can be removed in the tame framework, or even
already by making some weaker (but global) assumptions than tameness.

Recall from the beginning of Section 5.2.1 that Shelah’s local approach
aims to transfer good behavior in λ upward. The successor step is to turn a
good λ-frame into a good λ+ frame . Shelah says a good λ-frame is successful
if it satisfies a certain (strong) technical condition that allows it to extend it
to a good λ+-frame.

Theorem 5.2.43. Assume 2λ < 2λ
+

< 2λ
++

. If an AEC K has a good
λ-frame s and 0 < I(K, λ++) < µunif(λ

++, 2λ
+

), then there exists a good
λ+-frame s+ with underlying class the Galois-saturated models of size λ+ (the
ordering will also be different).

The proof goes by showing that the weak GCH and few models assump-
tions imply that any good frame is successful.

So assuming weak GCH and few models in every λ+n, one obtains an
increasing sequence s̄ = s, s+, s++, . . . of good frames. One of the main results
of Shelah’s book is that the natural limit of s̄ is also a good frame (the strategy

20There is an additional parameter, the set of basic types. These are a dense set of types
over models of size λ such that forking is only required to behave well with respect to
them. However, basic types play little role in the discussion of tameness (and eventually are
eliminated in most cases even in general AECs), so we do not discuss them here, see the
historical remarks.

21The cardinal µunif(λ
++, 2λ

+
) should be interpreted as 2λ

++
; this is true when λ ≥ iω

and there is no example of inequality when 2λ
+
< 2λ

++
.

22It goes without saying that the proof is also long and complex, see the historical remarks.
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is to show that a good frame in the sequence is excellent). Let us say that
a good frame is ω-successful if s+n is successful for all n < ω. At the end
of Chapter III of his book, Shelah claims the following result and promises a
proof in [Sheb]:

Claim 5.2.0.1. Assume 2λ
+n

< 2λ
+(n+1)

for all n < ω. If an AEC K has an
ω-successful good λ-frame, is categorical in λ, and Kλ+ω-sat (the class of λ+ω-

Galois-saturated models in K) is categorical in a λ′ > λ+ω, then Kλ+ω-sat is
categorical in all λ′′ > λ+ω.

Can one build a good frame in ZFC? In Chapter IV of his book, Shelah
proves:

Theorem 5.2.44. Let K be an AEC categorical in cardinals of arbitrarily
high cofinality. Then there exists a cardinal λ such that K is categorical in λ
and K has a good λ-frame.

Theorem 5.2.45. Let K be an AEC with amalgamation and no maximal
models. If K is categorical in a λ ≥ h(ℵLS(K)+), then there exists µ < ℵLS(K)+

such that Kµ-sat has a good µ-frame.

The proofs of both theorems first get some tameness (and amalgamation
in the first case), and then use it to define a good frame in λ by making use
of the lower cardinals (as in Theorem 5.5.17).

Assuming amalgamation and weak GCH, Shelah shows that the good
frame can be taken to be ω-successful. Combining this with Claim 5.2.0.1,
Shelah deduces the eventual categoricity conjecture in AECs with amalgama-
tion:

Theorem 5.2.46. Assume Claim 5.2.0.1 and 2θ < 2θ
+

for all cardinals θ. Let
K be an AEC with amalgamation. If K is categorical in some λ ≥ h(ℵLS(K)+),
then K is categorical in all λ′ ≥ h(ℵLS(K)+).

Note that the first steps in the proof are again proving enough tameness
to make the construction of an ω-successful good frame.

5.3 Tameness: what and where

5.3.1 What – Definitions and basic results

Syntactic types have nice locality properties: different types must differ on
a formula and this difference can be seen by restricting the type to the finite23

set of parameters in such a formula. Galois types do not necessarily have this

23Or larger if the logic allows infinitely many free variables.
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property. Indeed, assuming the existence of a monster model C, this would
imply a strong closure property on Aut(C). Nonetheless, a generalization of
this idea, called tameness, has become a key tool in the study of AECs.

For a set A, we write PκA for the collection of subsets of A of size less
than κ. We also define an analog notation for models: for M ∈ K≥κ:

P ∗κM := {M0 ∈ K<κ : M0 ≤M}

Definition 5.3.1. K is < κ-tame if, for all M ∈ K and p 6= q ∈ gS1(M),
there is A ∈ Pκ|M | such that p � A 6= q � A.

For κ > LS(K), it is equivalent if we quantify over P ∗κM (models) rather
than P ∗κ |M | (sets). Quantifying over sets is useful to isolate notions such
as < ℵ0-tameness. Several parametrizations (e.g. of the length of type) and
variations exist. Below we list a few that we use; note that, in all cases, writing
“κ” in place of “< κ” should be interpreted as “< κ+”.

Definition 5.3.2. Suppose K is an AEC with κ ≤ λ.

1. K is (< κ, λ)-tame if for any M ∈ Kλ and p 6= q ∈ gS1(M), there is
some A ∈ Pκ|M | such that p � A 6= q � A.

2. K is < κ-type short if for any M ∈ K, index set I, and p 6= q ∈ gSI(M),
there is some I0 ∈ PκI such that pI0 6= qI0 .

3. K is κ-local if for any increasing, continuous 〈Mi ∈ K : i ≤ κ〉 and any
p 6= q ∈ gS(Mκ), there is i0 < κ such that p �Mi0 6= q �Mi0 .

4. K is κ-compact if for any increasing, continuous 〈Mi : i ≤ κ〉 and in-
creasing 〈pi ∈ gS(Mi) : i < κ〉, there is p ∈ gS(M) such that pi ≤ p for
all i < κ.

5. K is fully < κ-tame and -type short if for any M ∈ K, index set I,
and p 6= q ∈ gSI(M), there are A ∈ Pκ|M | and I0 ∈ PκI such that
pI0 � A 6= qI0 � A.

When κ is omitted, we mean that there exists κ such that the property
holds at κ. For example, “K is tame” means that there exists κ such that K is
< κ-tame. Note that definitions of locality and compactness implicitly assume
κ is regular.

These types of properties are often called locality properties for AECs
because they assert, in different ways, that Galois types are locally defined.

Each of these notions also has a weak version: weak < κ-tameness, etc. This
variation means that the property holds when the domain is Galois-saturated.

A brief summary of the ideas is below. In each (and throughout this paper),
“small” is used to mean “of size less than κ”.

• < κ-tameness says that different types differ over some small subset of
the domain.

• < κ-type shortness says that different types differ over some small subset
of their length.
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• κ-locality says that each increasing chain of Galois types of length κ has
at most one upper bound.

• κ-compactness says that each increasing chain of Galois types of length
κ has at least one upper bound.24

A combination of tameness and type shortness allows us to conceptualize
Galois types as sets of smaller types.

There are several relations between the properties:

Proposition 5.3.3.

1. For κ > LS(K), < κ-type shortness implies < κ-tameness.

2. < cf(κ)-tameness implies κ-locality.

3. µ-locality for all µ < λ implies (LS(K), λ)-tameness.

4. µ-locality for all µ < λ implies λ-compactness.

As discussed, one of the draws of working in a short and tame AEC is
that Galois types behave much more like first-order syntactic types in the
sense that a Galois type p ∈ gS(M) can be identified with the collection
{pI0 �M0 : I0 ∈ Pκ`(p) and M0 ∈ P ∗κM} of its small restrictions:

Proposition 5.3.4. K is fully < κ-tame and -type short if and only if the
map:

p ∈ gS(M) 7→ {pI0 �M0 : I0 ∈ PκI,M0 ∈ P ∗κM}

is injective.

In fact, one can see these small restrictions as formulas (this will be used
later to generalize heir and coheir to AECs). This productive intuition can
be made exact using Galois Morleyization. Start with an AEC K and add
to the language an α-ary predicate Rp for each N ∈ K, each p ∈ gSα(∅;N),

and each α < κ. This gives us an infinitary language L̂. Then expand each
M ∈ K to a L̂-structure M̂ by setting Rp(ā) to be true in M if and only if

gtp(ā/∅;M) = p. We obtain a class K̂<κ := {M̂ | M ∈ K}. K̂ has relations

of infinite arity but it still behaves like an AEC. We call K̂<κ the < κ-Galois
Morleyization of K. The connection between tameness and K̂ is given by the
following theorem:

Theorem 5.3.5. Let K be an AEC. The following are equivalent:

1. K is fully < κ-tame and -type short.

2. The map gtp(b̄/M ;N) 7→ tpqf-Lκ,κ(L̂)(b̄/M̂ ; N̂) is an injection.

24All AECs are ω-compact and global compactness statements have large cardinal
strength; see [Shec, Section 2].
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Here, the Galois type is computed in K, and the type on the right is the
(syntactic) quantifier-free Lκ,κ-type in the language L̂. Note that the locality
hypothesis in (1) can be weakened to < κ-tameness if in (2) we ask that
`(b̄) = 1. Several other variations are possible.

The Galois Morleyization gives a way to directly use syntactic tools (such
as the results of stability theory inside a model, see for example [She09c,
Chapter V.A]) in the study of tame AECs. See for example Theorem 5.5.14.

Another way to see tameness is as a topological separation principle: con-
sider the set XM of Galois types over M . For a fixed κ, we can give a topology
on XM with basis given by sets of the form Up,A := {q ∈ gS(M) | A ⊆ |M |∧q �
A = p}, for p a Galois type over A and |A| < κ. This is the same topology as
that generated by quantifier-free Lκ,κ-formulas in the < κ-Galois Morleyiza-
tion. Thus one can show:

Theorem 5.3.6. Let K be an AEC and let λ ≥ LS(K). K is (< κ, λ)-tame if
and only if for any M ∈ Kλ, the topology on XM defined above is Hausdorff.

5.3.2 Where – Examples and counterexamples

5.3.2.1 Examples

Several “mathematically interesting” classes turn out to be tame. More-
over, there are several general ways to derive tameness from structural as-
sumptions. We list some here, roughly in decreasing order of generality.

1. Locality from large cardinals
Large cardinals κ allow the generalization of compactness results from
first-order logic to Lκ,ω in various ways (see, for instance, [Jec03, Lemma
20.2]). Since tameness is a weak form of compactness, these generaliza-
tions correspond to compactness results in AECs that can be “captured”
by Lκ,ω. We state a simple version of these results here:

Theorem 5.3.7. Suppose K is an AEC with LS(K) < κ.

• If κ is weakly compact, then K is (< κ, κ)-tame.

• If κ is measurable, then K is κ-local.

• If κ is strongly compact, then K is fully < κ-tame and -type short.

These results can be strengthened in various ways. First, they apply also
to AECs that are explicitly axiomatized in Lκ,ω. The key fact is that
ultraproducts by κ-complete ultrafilters preserve the AEC (the proof uses
the presentation theorem, Theorem 5.2.9). Second, each large cardinal
can be replaced by its “almost” version: for example, almost strongly
compact means that, for each δ < κ, Lδ,δ is κ-compact; equivalently,
given a κ-complete filter, for each δ < κ, it can be extended to a δ-
complete ultrafilter. See [BU, Definition 2.1] for a full list of the “almost”
versions.
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Note that other structural properties (such as amalgamation) follow from
the combination of large cardinals with categoricity. Thus these large
cardinals make the development of a structure theory (culminating for
example in the existence of well-behaved independence notion, see Corol-
lary 5.5.54) much easier.

2. Weak tameness from categoricity under amalgamation
Recall from Section 5.3.1 that an AEC K is (χ0, < χ)-weakly tame if
for every Galois-saturated M ∈ K<χ, every p 6= q ∈ gS(M), there exists
M0 ≤M with M0 ∈ K≤χ0 such that p �M0 6= q �M0. It is known that,
in AECs with amalgamation categorical in a sufficiently high cardinal,
weak tameness holds below the categoricity cardinal. More precisely:

Theorem 5.3.8. Assume that K is an AEC with amalgamation and no
maximal models which is categorical in a λ > LS(K).

(a) Let χ be a limit cardinal such that cf(χ) > LS(K). If the model of
size λ is χ-Galois-saturated, then there exists χ0 < χ such that K is
(χ0, < χ)-weakly tame.

(b) If the model of size λ is H1-Galois-saturated, then there exists χ0 <
H1 such that whenever χ ≥ H1 is so that the model of size λ is
χ-Galois-saturated, we have that K is (χ0, < χ)-weakly tame25.

Remark 5.3.9. The model in the categoricity cardinal λ is χ-Galois-
saturated whenever cf(λ) ≥ χ (e.g. if λ is a successor) or (by Theorem
5.2.38) if26 λ ≥ h(χ).

The proof of Theorem 5.3.8 heavily uses Ehrenfeucht-Mostowski models
to transfer the behavior below H1 to a larger model that is generated by
a nice enough linear order. Then the categoricity assumption is used to
embed every model of size χ into such a model of size λ.

Theorem 5.3.8 is key to prove several of the categoricity transfers listed
in Section 5.2.4.

3. Tameness from categoricity and large cardinals
The hypotheses in the last two examples can be combined advanta-
geously.

Theorem 5.3.10. Let K be an AEC and let κ > LS(K) be a measurable
cardinal. If K is categorical in a λ ≥ κ, then K[κ,λ) has amalgamation
and is (κ,< λ)-tame.

In particular, if there exists a proper class of measurable cardinals and
K is categorical in a proper class of cardinals, then K is tame. It is
conjectured that the large cardinal hypothesis is not necessary. Note that
the tameness here is “full”, i.e. not the weak tameness in Theorem 5.3.8.

25Note that χ0 does not depend on χ.
26A more clever application of Theorem 5.2.38 shows that it is enough to have λ ≥

supθ<χ h(θ+).
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4. Tameness from stable forking
Suppose that the AEC K has amalgamation and a stable “forking-like”
relation ^ (see Definition 5.5.7). That is, we ask that there is a notion
“p ∈ gS(N) does not fork over M” for M ≤ N satisfying the usual
monotonicity properties, uniqueness, and local character27 : there exists
a cardinal κ̄ = κ̄(^) such that for every p ∈ gS(N), there is M ≤ N
of size less than κ̄ such that p does not fork over M (see more on such
relations in Section 5.5).

Then, given any two types p, q ∈ gS(N) we can find M ≤ N over which
both types do not fork over and so that ‖M‖ < κ̄. If p � M = q � M ,
then uniqueness implies p = q. Thus, K is (< κ̄)-tame.

5. Universal Classes
A universal class is a class K of structures in a fixed language L(K)
that is closed under isomorphism, substructure, and unions of increasing
chains. In particular, (K,⊆) is an AEC with Löwenheim-Skolem-Tarski
number |L(K)|+ ℵ0.

In a universal class, any partial isomorphism extends uniquely to an
isomorphism (just take the closure under the functions). This fact is key
in the proof of:

Theorem 5.3.11. Any universal class is fully (< ℵ0)-tame and short.

Thus, for instance, the class of locally finite groups (ordered with sub-
group) is tame. Theorem 5.3.11 generalizes to any AEC K equipped with
a notion of “generated by” which is (in a sense) canonical (for universal
classes, this notion is just the closure under the functions). Note that
this does not need to assume that K has amalgamation.

6. Tame finitary AECs
A finitary AEC K is defined by several properties (including amalgama-
tion and LS(K) = ℵ0), but the key notion is that the strong substructure
relation ≤ has finite character. This means that, for M,N ∈ K, we have
M ≤ N if and only if M ⊆ N and:

For every ā ∈ <ωM , we have that gtp(ā/∅;M) = gtp(ā/∅;N).

This means that there is a finitary test for when ≤ holds between two
models that are already known to be members of K. This definition is
motivated by the observation that this condition holds for any AEC ax-
iomatized in a countable fragment of Lω1,ω by the Tarski-Vaught test28.
Homogeneous model theory can be seen as a special case of the study
of finitary AECs. Hyttinen and Kësäla have shown that every ℵ0-stable
ℵ0-tame finitary AEC is (< ℵ0)-tame. These classes seem very amenable
to some classification theory. For example, an ℵ0-tame finitary AEC cat-
egorical in some uncountable λ is categorical in all λ′ ≥ min(λ,H1).

27The extension property is not needed here.
28Kueker [Kue08] has asked whether any finitary AEC must be L∞,ω-axiomatizable.
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Recent work has even developed some geometric stability theory in a
larger class (Finite U -Rank classes, which included quasiminimal classes
below) [HK16].

7. Homogeneous model theory
Homogeneous model theory takes place in the context of a large “monster
model” (for a first-order theory T ) that omits a set of types D, but is
still as saturated as possible with respect to this omission. The notion of
“as saturated as possible” is captured by requiring it to be sequentially
homogeneous rather than model homogeneous. Note that the particular
case when D = ∅ is the elementary case. In this context, amalgamation,
joint embedding, and no maximal models hold for free and Galois types
are first-order syntactic types. This identification means that the AEC of
models of T omitting D (ordered with elementary substructure) is fully
(< ℵ0)-tame and short. Homogeneous model theory has a rich classifica-
tion theory in its own right, with connections to continuous first-order
logic (see the historical remarks).

8. Averageable Classes
Averageable classes are type omitting classes EC(T,Γ) (ordered with
a relation ≤) that are nice enough to have a relativized ultraproduct
that preserves the omission of types in Γ and satisfies enough of  Loś’
Theorem to interact well with ≤. This relativized ultraproduct gives
enough compactness to show that types are syntactic (and much more),
which implies that an averageable class is fully (< ℵ0)-tame and short.
Examples of averageable classes include torsion modules over PIDs and
densely ordered abelian groups with a cofinal and coinitial Z-chain.

9. Continuous first-order logic
Continuous first-order logic can be studied in a fragment of Lω1,ω by
using the infinitary logic to have a standard copy of Q and then study-
ing dense subsets of complete metric spaces. Although the logic Lω1,ω is
incompact, the fragment necessary to code this information is compact
(as evidenced by the metric ultrapower and compactness results in con-
tinuous first-order logic), so the classes are fully (< ℵ0)-tame and short.
Beyond first-order, continuous model theory can be done in the so-called
metric AECs, where a notion of tameness (d-tameness) can also be de-
fined.

10. Quasiminimal Classes
A quasiminimal class is an AEC satisfying certain additional axioms;
most importantly, the structures carry a pregeometry with certain nice
properties. The axioms directly imply that Galois types over countable
models are quantifier-free first-order types, and the excellence axiom can
be used to transfer this to uncountable models. Therefore quasiminimal
classes are < ℵ0-tame. Examples of quasiminimal classes include covers
of C× and Zilber fields with pseudoexponentiation. Note that it can be
shown (from the countable closure axiom) that these classes are strictly
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Lω1,ω(Q)-definable. This gives important examples of categorical AECs
that are not finitary.

11. λ-saturated models of a superstable first-order theory
Let T be a first-order superstable theory. We know that unions of in-
creasing chains of λ-saturated models are λ-saturated and that models
of size λ have saturated extensions of size at most λ + 2|T |. Thus the
class of λ-saturated models of T (ordered with elementary substructure)
forms an AEC KT

λ with LS(KT
λ ) ≤ λ+ 2|T |. Furthermore, this class has

a monster model and is fully (< ℵ0)-tame and short.

12. Superior AECs
Superior AECs are a generalization of what some call excellent classes.
An AEC is superior if it carries an axiomatic notion of forking for which
one can state multi-dimensional uniqueness and extension properties. A
combination of these gives some tameness:

Theorem 5.3.12. Let K be a superior AEC with weak (λ, 2)-uniqueness
and λ-extension for some λ ≥ LS(K) + κ̄(K). Then K is λ+-local. In
particular, it is (λ, λ+)-tame.

13. Hrushovski fusions
Villaveces and Zambrano have studied Hrushovski’s method of fusing pre-
geometries over disjoint languages as an AEC with strong substructure
being given by self-sufficient embedding. They show that these classes
satisfy a weakening of independent 3-amalgamation. This weakening is
still enough to show, as with superior AECs, that the classes are LS(K)-
tame.

14. ⊥N when N is an abelian group
Given a module N , ⊥N is the class of modules {M : Extn(M,N) =
0 for all 1 ≤ n < ω}. We make this into an AEC by setting M ≤⊥ M ′
if and only if M ′/M ∈ ⊥N . If N is an abelian group, then ⊥N is set of
all abelian groups that are p-torsion free for all p in some collection of
primes P .

Theorem 5.3.13. If N is an abelian group, then ⊥N is < ℵ0-tame.

Moreover, such a ⊥N is Galois-stable in exactly the cardinals λ = λω.

15. Algebraically closed, rank one valued fields
Let ACVFR be the Lω1,ω-theory of an algebraically closed valued field
such that the value group is Archimedean; equivalently, the value group
can be embedded into R. After fixing the characteristic, this AEC has
a monster model and Galois types are determined by syntactic types.
Thus the class is fully < ℵ0-tame and -type short. This determination
of Galois types can be seen either through algebraic arguments or the
construction of an appropriate ultraproduct.

Such a class cannot have an uncountable ordered sequence, so it has the
ℵ0-order property of length α for every α < ω1, but it does not have the
ℵ0-order property of length ω1.



A survey on tame abstract elementary classes 137

5.3.2.2 Counterexamples

Life would be too easy if all AECs were tame. Above we have seen that
several natural mathematical classes are tame; in contrast, all the known coun-
terexamples to tameness are pathological29, with the most natural being the
Baldwin-Shelah example of short exact sequences. We list the known ones
below in increasing “strength”.

1. The Hart-Shelah example
The Hart-Shelah examples are a family of examples axiomatized by com-
plete sentences in Lω1,ω.

Theorem 5.3.14. For each n < ω, there is an AEC Kn that is axiom-
atized by a complete sentence in Lω1,ω with LS(Kn) = ℵ0 and disjoint
amalgamation such that:

(a) Kn is (ℵ0,ℵn−1)-tame (in fact, the types are first-order syntactic);

(b) Kn is categorical in [ℵ0,ℵn];

(c) Kn is Galois-stable in µ for µ ∈ [ℵ0,ℵn−1] ; and

(d) Each of these properties is sharp. That is:

i. Kn is not (ℵ0,ℵn)-tame,

ii. Kn is not categorical in ℵn+1
30.

iii. Kn is not Galois-stable in ℵn.

Each model M ∈ Kn begins with an index set I (called the spine);
the direct sum G := ⊕[I]n+2Z2; G∗ ⊆ [I]k × G with a projection π :
G∗ → [I]n+2 such that each stalk G∗u = π−1{u} has a regular, transitive
action of G on it; and, similarly, H∗ = [I]n+2 × H with a projection
π′ : H∗ → [I]k such that each stalk has an action of Z2 on it. So far, the
structure described (along with the extra information required to code
it) is well-behaved and totally categorical. Added to this is a n + 3-ary
relation Q ⊆ (G∗)n+2 × H∗ such that Q(u1, . . . , un+2, v) is intended to
code

• there are exactly n + 3 elements of I that make up the projections
of u1, . . . , un+2, v (so each (n + 2)-element subset shows up exactly
once in the projections); and

• the sum of the second coordinates evaluated at π′(v) is equal to some
fixed function of the n+ 3 elements of the projections.

This coding allows one to “hide the zeros” and find nontameness at ℵn.
The example shows that Theorem 5.2.33 is sharp.

It should be noted that the ideas used in constructing the Hart-Shelah
examples come from constructions that characterize various cardinals.
Thus, although the construction takes place in ZFC, it still involves

29In the dictionary sense that they were constructed as counter-examples.
30Note that this follows from (1(d)i) by (the proof of) the upward categoricity transfer of

Grossberg and VanDieren [GV06a].
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set-theoretic ideas. Work in preparation by Shelah and Villaveces [SV]
contains an extension of the Hart-Shelah example to larger cardinals,
proving:

Theorem 5.3.15. Assume the generalized continuum hypothesis. For
each λ and k < ω, there is ψλk ∈ L(2λ)+,ω that is categorical in

λ+2, . . . , λ+(k−1) but not in ik+1(λ)+.

As for the countable case, this example is likely not to be tame.

2. The Baldwin-Shelah example
The Baldwin-Shelah example K consists of several short exact sequences,
each beginning with Z.

Hj

  @
@@

@@
@@

0 // Z //

??~~~~~~~

  @
@@

@@
@@

@ Hi
// G // 0

Hk

>>}}}}}}}}

Formally this consists of of sorts Z, G, I, and H with a projection π :
H → I and group operations and embeddings such that each fiber Hi :=
π−1({i}) is a group that is in the middle of a short exact sequence.

The locality properties of Galois types over a model depend heavily on
the group G used. The key observation is that, given i, j ∈ I, their
Galois types are equal precisely when there is an isomorphism of the
fibers π−1{i} and π−1{j} that commute with the rest of the short exact
sequence. Thus, Baldwin and Shelah consider an ℵ1-free, not free, not
Whitehead group31 G∗ of size ℵ1. With G∗ in hand, we can construct a
counterexample to (ℵ0,ℵ1)-tameness: set i0 and i1 to be in a short exact
sequence that ends in G∗ such that π−1{i0} = G∗ ⊕Z and π−1{i1} = H
is not isomorphic to G∗ ⊕ Z; such a group exists exactly because H is
not Whitehead. Then, by the observation above, i0 and i1 have different
types over the entire uncountable set G∗. However, any countable ap-
proximation G0 of G∗ will see that i0 and i1 have the same Galois type
over it: the countable approximation will have that the fibers over i0 and
i1 are both the middle of a short exact ending in G0. By the choice of
G∗, G0 is free, thus Whitehead, so these fibers are both isomorphic to
G0 ⊕ Z. This isomorphism witnesses the equality of the Galois types of
i0 and i1 over the countable approximation.

31It is a ZFC theorem that such a group exists at ℵ1. Having such a group at κ (κ-free,
not free, not Whitehead of size κ) is, in the words of Baldwin and Shelah, “sensitive to set
theory”. The known sensitivities are summarized in [Bon14c, Section 8], primarily drawing
on work in [MS94] and [EM02].
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Given a κ version G∗κ of this group allows one to construct a counterex-
ample to (< κ, κ)-tameness. Indeed, all that is necessary is that G∗κ is
‘almost Whitehead:’ it is not Whitehead, but every strictly smaller sub-
group of it is.

3. The Shelah-Boney-Unger example
While the Baldwin-Shelah example reveals a connection between tame-
ness and set theory, the Shelah-Boney-Unger example shows an outright
equivalence between certain tameness statements and large cardinals.
For each cardinal σω = σ, there is an AEC Kσ that consists of an index
predicate J with a projection Q : H → J such that each fiber Q−1{j}
has a specified structure and a projection π : H → I32. Given some
partial order (D,C) and set of functions F with domain D, filtrations
{M`,d : d ∈ D} of a larger models M`,D, all from Kσ, are built, for
` = 1, 2. Similar to the Baldwin-Shelah example, types pd and qd are
defined such that the types are equal if and only if there is a nice iso-
morphism between M1,d and M2,d; the same is true of pD and qD. Thus,
various properties of type locality (pD = qD following from pd = qd for
all d ∈ D) is once more coded by “isomorphism locality”.

In turn, the structure was built so that a nice isomorphism between M1,D

and M2,D is equivalent to a combinatorial property #(D,F).

Definition 5.3.16.

• Given functions f and g with the same domain, we define f ≤∗ g to
hold if and only if there is some e : ran g → ran f such that f = e◦g.

• Given a function f with a domain D that is partially ordered by
≤D, we define ran∗ f =

⋂
d∈D ran (f � {d′ ∈ D : d ≤ d′}) to be the

eventual range of f .

• #(D,F) holds if and only if there are f∗ ∈ F and a collection of
nonempty finite sets {uf ⊆ ran∗ f : f∗ ≤∗ f} such that, given any e
witnessing f∗ ≤∗ f , e � uf is a bijection from uf to uf∗ .

So #(D,F) eventually puts some kind of structure on functions in F.
Shockingly, this principle can, under the right assumption on D and F,
define a very complete (ultra)filter on D: for each f with f ≤∗ f∗, set
if ∈ uf to be the unique image of minuf by some e witnessing f∗ ≤∗ f .
Then, for A ⊆ D,

A ∈ U ⇐⇒ ∃d ∈ D, f ∈ F
(
f−1{if} ∩ {d′ ∈ D : d C d′} ⊆ A

)
Thus, we get that type locality in Kσ implies the existence of filters
and ultrafilters used in the definitions of large cardinals; the converse is
mentioned above.

This argument can be used to give the following theorems.

32Although there are two projections, they are used differently: the projection Q is a
technical device to code isomorphisms of structures via equality of Galois types, while the
interaction of (a fiber of) H and I is more interesting.



140 Beyond First Order Model Theory

Theorem 5.3.17. Let κ such that µω < κ for all µ < κ.

(a) If33 κ<κ = κ and every AEC K with LS(K) < κ is (< κ, κ)-tame,
then κ is almost weakly compact.

(b) If every AEC K with LS(K) < κ is κ-local, then κ is almost mea-
surable.

(c) If every AEC K with LS(K) < κ is < κ-tame, then κ is almost
strongly compact.

We obtain a characterization of the statement “all AECs are tame” in
terms of large cardinals.

Corollary 5.3.18. All AECs are tame if and only if there is a proper
class of almost strongly compact cardinals.

Note that Corollary 5.3.18 says nothing about “well-behaved” classes of
AECs such as AECs categorical in a proper class of cardinals. In fact,
Theorem 5.3.10 shows that the consistency strength of the statement
“all AECs are tame” is much higher than that of the statement “all
unboundedly categorical AECs are tame”.

5.4 Categoricity transfer in universal classes: an overview

In this section, we sketch a proof of Theorem 5.1.2, emphasizing the role
of tameness in the argument:

Theorem 5.4.1. Let K be a universal class. If K is categorical in cardinals
of arbitrarily high cofinality34, then K is categorical on a tail of cardinals.

The arguments in this section are primarily from Vasey [Vasf].
Note that (as pointed out in Section 5.2.4), we can replace the categoricity

hypotheses of Theorem 5.4.1 by categoricity in a single “high-enough” cardinal
of “high-enough” cofinality.

We avoid technical definitions in this section, instead referring the reader
to Section 5.2 or Section 5.5.

So let K be a universal class categorical in cardinals of arbitrarily high
cofinality. To prove the categoricity transfer, we first show that K has sev-
eral structural properties that hold in elementary classes. As we have seen,
amalgamation is one such property.

33The additional cardinal arithmetic here can be dropped at the cost of only concluding
(κ is weakly compact)L.

34This cofinality restriction is only used to obtain amalgamation. See the historical re-
marks for more.
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5.4.1 Step 1: Getting amalgamation

It is not clear how to directly prove amalgamation in all cardinals, but
Theorem 5.2.44 is a deep result of Shelah which says (since good frames must
have amalgamation) that it holds for models of some suitable size35.

This leads to a new fundamental question:

Question 5.4.2. If an AEC K has amalgamation in a cardinal λ, under what
condition does it have amalgamation above λ?

One such condition is excellence (briefly, excellence asserts strong unique-
ness of n-dimensional amalgamation results). However, it is open whether it
follows from categoricity, even for classes of models of an uncountable first-
order theory. Excellence also gives much more, and (for now) we are only in-
terested in amalgamation. Another condition would be the existence of large
cardinals. For example, a strongly compact κ with LS(K) < κ ≤ λ would be
enough.

At that point, we recall a key theme in the study of tameness: when large
cardinals appear in a model-theoretic result, tameness36 can often replace
them. For the purpose of an amalgamation transfer it is not clear that this
suffices. For one thing, one can ask what tameness really means without amal-
gamation (of course, its definition makes sense, but how do we get a handle on
the transitive closure of atomic equality, Definition 5.2.16.(2)). In the case of
universal classes, this question has a nice answer: even without amalgamation,
equality of Galois types is witnessed by an isomorphism and, in fact, tameness
holds for free! This is Theorem 5.3.11. From its proof, we isolate a technical
weakening of amalgamation:

Definition 5.4.3. An AEC K has weak amalgamation if whenever
gtp(a1/M ;N1) = gtp(a2/M ;N2), there exists M1 ∈ K with M ≤ M1 ≤ N1

and a1 ∈ |M1| such that (a1,M,M1) is atomically equivalent to (a2,M,N2).

It turns out that universal classes have weak amalgamation: we can take
M1 to be the closure of |M1| ∪ {a} under the functions of N1 and expand the
definition of equality of Galois types.

We now rephrase Question 5.4.2 as follows:

Question 5.4.4. Let K be an AEC which has amalgamation in a cardinal λ.
Assume that K is λ-tame and has weak amalgamation. Under what condition
does it have amalgamation above λ?

To make progress, a characterization of amalgamation will come in handy
(this lemma is reminiscent of Proposition 5.2.18.(1)):

35This is the only place where we use the cofinality assumptions on the categoricity
cardinals.

36Or really, a “tameness-like” property like full tameness and shortness.
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Lemma 5.4.5. Let K be an AEC with weak amalgamation. Then K has
amalgamation if and only if for any M ∈ K, any Galois type p ∈ gS(M), and
any N ≥M , there exists q ∈ gS(N) extending p.

The proof is easy if one assumes that atomic equivalence of Galois types
is transitive. Weak amalgamation is a weakening of this property, but allows
us to iterate the argument (when atomic equivalence is transitive) and obtain
full amalgamation.

Now, it would be nice if we could not only extend Galois types, but also
extend them canonically. This is reminiscent of first-order forking, a basic
property of which is that every type has a (unique under reasonable conditions)
nonforking extension. Thus, out of the apparently very set-theoretic problem
of obtaining amalgamation, forking, a model-theoretic notion, appears in the
discussion. What is an appropriate generalization of forking to AECs? Shelah’s
answer is that the bare-bone generalization are the good λ-frames, see Section
5.2.5. There are several nonelementary setups where a good frame exists (see
the next section). For example, Theorem 5.2.44 tells us that a good frame
exists in our setup.

Still with the question of transferring amalgamation up in mind, one can
ask whether it is possible to transfer an entire good frame up. In particular,
given a notion of forking for models of size λ, is there one for models of size
above λ? This is where tameness starts playing a very important role:

Theorem 5.4.6. Let K be an AEC with amalgamation. Let s be a good λ-
frame with underlying AEC K. Then s extends to a good (≥ λ)-frame (i.e. all
the properties hold for models in K≥λ) if and only if K is λ-tame.

We give a sketch of the proof in Theorem 5.5.26. Let us also note that not
only do the properties of forking transfer, but also the structural properties
of K. Thus K≥λ has no maximal models (roughly, this is obtained using the
extension property and the fact that nonforking extensions are nonalgebraic).

Even better, it turns out that not too much amalgamation is needed for
the proof of the frame transfer to go through: weak amalgamation is enough!
Moreover types can be extended by simply taking their nonforking extension.
Thus we obtain:

Theorem 5.4.7. Let K be an AEC with weak amalgamation. If there is a
good λ-frame s with underlying AEC K and K is λ-tame, then s extends to a
good (≥ λ)-frame. In particular K≥λ has amalgamation.

Corollary 5.4.8. Let K be a universal class categorical in cardinals of arbi-
trarily high cofinality. Then there exists λ such that K≥λ has amalgamation.

Proof. By Theorem 5.2.44, there is a cardinal λ such that K has a good λ-
frame with underlying class Kλ. By Theorem 5.3.11, K is λ-tame and (it is
easy to see), K has weak amalgamation. Now apply Theorem 5.4.7.

Remark 5.4.9. Theorem 5.4.7 will be used even in the next steps, see the
proof of Theorem 5.4.18.
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5.4.2 Step 2: Global independence and orthogonality calcu-
lus

From the results so far, we see that we can replace K by K≥λ if necessary
to assume without loss of generality that K is a universal class37 categorical in
a proper class of cardinals that has amalgamation. Other structural properties
such as joint embedding and no maximal models follow readily. In fact, we
have just pointed out that we can assume there is a good (≥ LS(K))-frame
with underlying class K. In particular, K is Galois-stable in all cardinals and
has a superstable-like forking notion for types of length one.

What is the next step to get a categoricity transfer? The classical idea
is to show that all big-enough models are Galois-saturated (note that by the
above we have stability everywhere, so the model in the categoricity cardinal
is Galois-saturated). Take M a model in a categoricity cardinal λ and p a
nonalgebraic type over M . Assume that there exists N > M of size λ such
that p is omitted in N . If we can iterate this property λ+-many times, we
obtain a non λ+-Galois-saturated models. If K was categorical in λ+, this
gives a contradiction. More generally, if we can iterate longer to find N > M
of size µ > λ such that N omits p and K is categorical in µ, we also get
a contradiction. This is reminiscent of a Vaughtian pair argument and more
generally of Shelah’s theory of unidimensionality. Roughly speaking, a class is
unidimensional if it has essentially only one Galois type. Then a model cannot
have arbitrarily large extensions omitting the type. Conversely if the class is
not unidimensional, then it has two “orthogonal” types and a model would
be able to grow by adding more realizations of one type without realizing the
other.

So we want to give a sense in which our class K is unidimensional. If K
is categorical in a successor, this can be done much more easily than for the
limit case using Vaughtian pairs. In fact a classical result of Grossberg and
VanDieren for tame AECs says:

Theorem 5.4.10. Suppose K has amalgamation and no maximal models.
If K is a λ-tame AEC categorical in λ and λ+, then K is categorical in all
µ ≥ λ.

To study general unidimensionality, we will use a notion of orthogonality.
As for forking, we focus on developing a theory of orthogonality for types of
length one over models of a single size.

We already have a good (≥ LS(K))-frame available but for our purpose
this is not enough. We will also use a notion of primeness:

Definition 5.4.11. We say an AEC K has primes if whenever M ≤ N are
in K and a ∈ |N |\|M |, there is a prime model M ′ ≤ N over |M | ∪ {a}. This

37There is a small wrinkle here: if K is a universal class, K≥λ is not necessarily a universal
class. We ignore this detail here since K≥λ will have enough of the properties of a universal
class to carry the argument through.
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means that if gtp(b/M ;N ′) = gtp(a/M ;N), then38 there exists f : M ′ −→
M

N ′

so that f(b) = a. We call (a,M,M ′) a prime triple.

Note that this makes sense even if the AEC does not have amalgamation.
Some computations give us that:

Proposition 5.4.12. If K is a universal class, then K has primes.

Definition 5.4.13. Let K be an AEC with a good λ-frame. Assume that
K has primes (at least for models of size λ). Let M ∈ Kλ and let p, q ∈
gS(M). We say that p and q are weakly orthogonal if there exists a prime
triple (a,M,M ′) such that gtp(a/M ;M ′) = q and p has a unique extension to
gS(M ′). We say that p and q are orthogonal if for any N ≥M , the nonforking
extensions p′, q′ to N of p and q respectively are weakly orthogonal.

Orthogonality and weak orthogonality coincide assuming categoricity:

Theorem 5.4.14. Let K be an AEC which has primes and a good λ-frame.
Assume that K is categorical in λ. Then weak orthogonality and orthogonality
coincide.

We have arrived to a definition of unidimensionality (we say that a good
λ-frame is categorical when the underlying class is categorical in λ):

Definition 5.4.15. Let K be an AEC which has primes and a categorical
good λ-frame. Kλ is unidimensional if there does not exist M ∈ K, and types
p, q ∈ gS(M) such that p and q are orthogonal.

Theorem 5.4.16. Let K be an AEC which has primes and a categorical good
λ-frame. If K is unidimensional, then K is categorical in λ+.

Using the result of Grossberg and VanDieren, if in addition K is λ-tame,
K will be categorical in every cardinal above λ. Therefore it is enough to prove
unidimensionality. While step 2 was only happening locally in λ and did not
use tameness, tameness will again have a crucial use in the next step.

5.4.3 Step 3: Proving unidimensionality

Let us make a slight diversion from unidimensionality. Recall that we work
in a universal class K categorical in a proper class of cardinals with a lot
of structural properties (amalgamation and existence of good frames, even
global). We want to show that all big-enough models are Galois-saturated.
Let M be a big model and assume it is not Galois-saturated, say it omits
p ∈ gS(M0), M0 ≤ M . Consider the class K¬p of all models N ≥ M0 that
omit p. After adding constant symbols for M0 and closing under isomorphisms,

38Why the formulation using Galois types? We have to make sure that the types of Ma
in N and N ′ are the same.
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this is an AEC. We would like to show that it has arbitrarily large models,
for then this means that there exists a categoricity cardinal λ > ‖M0‖ and
N ∈ K of size λ omitting p. This is a contradiction since we know that the
model in the categoricity cardinal is Galois-saturated.

What are methods to show that a class has arbitrarily large models? A
powerful one is again based on good frames: by definition, a good λ-frame has
no maximal models in λ. If we can expand it to a good (≥ λ)-frame, then its
underlying class K≥λ has no maximal models and hence models of arbitrarily
large size. Recall that Theorem 5.4.7 gave mild conditions (tameness and weak
amalgamation) under which a good frame can be transferred. Tameness was
the key property there.

Moreover we know already that K itself has a good LS(K)-frame, amal-
gamation, and is LS(K)-tame. But it is not so clear that these properties
transfer to K¬p. Consider for example amalgamation: let M0 ≤ M`, ` = 1, 2,
and assume that p ∈ gS(M0) is omitted in both M1 and M2. Even if in K
there exists amalgams of M1 and M2 over M0, it is not clear that any such
amalgams will omit p. Similarly, even if q1, q2 ∈ gS(M) are Galois types in
K¬p and they are equal in K, there is no guarantee that they will be equal in
K¬p (the amalgam witnessing it may not be a member of K¬p). So it is not
clear that K¬p is tame.

However we are interested in universal classes, so consider the last property
if K is a universal class. Say q1 = gtp(a1/M ;N1), q2 = gtp(a2/M ;N2). If q1

is equal to q2 in K, then since K has primes there exists M1 ≤ N1 containing
a1 and M and f : M1 −→

M
N2 so that f(a1) = a2. If N1 omits p, then M1 also

omits p and so q1 and q2 are equal also in K¬p. By the same argument, K¬p
also has primes (in fact it is itself universal). Thus it has weak amalgamation.
Similarly, since K is tame, K¬p is also tame39.

The last problem to solve is therefore whether a good λ-frame in K is
also a good λ-frame in K¬p. This is where we use orthogonality calculus and
unidimensionality. However the class we consider is slightly different than
K¬p: for p ∈ gS(M0) nonalgebraic, we let K¬∗p be the class of M such that
M0 ≤ M and p has a unique extension to M (we add constant symbols for
M0 to make K¬∗p closed under isomorphisms). Note that K¬∗p ⊆ K¬p, as
the unique extension must be the nonforking extension, which is nonalgebraic
if p is. Using orthogonality calculus, we can show:

Theorem 5.4.17. Let K be an AEC which has primes and a categorical good
λ-frame s for types at most λ. If K is not unidimensional, then there exists
M ∈ Kλ and a nonalgebraic p ∈ gS(M) such that s restricted to K¬∗p is still
a good λ-frame.

39A technical remark: if we only knew that K was weakly tame (i.e. tame for types over
Galois-saturated models), we would not be able to conclude that K¬p was weakly tame:
models that omit p of size larger than |dom(p)| are not Galois-saturated. Thus while many
arguments in the study of tame AECs can be adapted to the weakly tame context, this one
cannot.
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We are ready to conclude:

Theorem 5.4.18. Suppose that K is an AEC which has primes and a cate-
gorical good λ-frame for types at most λ. If K is categorical in some µ > λ
and is λ-tame, then Kλ is unidimensional, and therefore K is categorical in
all µ′ > λ.

Proof. The last “therefore” follows from combining Theorem 5.4.16 and the
Grossberg-VanDieren transfer (using tameness heavily) Theorem 5.4.10. To
show that Kλ is unidimensional, suppose not. By Theorem 5.4.17, there exists
M ∈ Kλ and a nonalgebraic p ∈ gS(M) such that there is a good λ-frame on
K¬∗p. By the argument above, K¬∗p is λ-tame and has weak amalgamation.
But is K¬∗p an AEC? Yes! The only problematic part is if 〈Mi : i < δ〉 is
increasing in K¬∗p, and we want to show that Mδ :=

⋃
i<δMi is in K¬∗p. Let

q1, q2 ∈ gS(Mδ) be extensions of p, we want to see that q1 = q2. By tameness,
the good λ-frame of K transfers to a good (≥ λ)-frame. So we can fix i < δ
such that q1, q2 do not fork over Mi. By definition of K¬∗p, q1 �Mi = q2 �Mi.
By uniqueness of nonforking extension, q1 = q2.

By Theorem 5.4.7 (using that K¬∗p is tame), K¬∗p has a good (≥ λ)-
frame. In particular, it has arbitrarily large models. Thus, K has non-Galois-
saturated models in every µ > λ, hence cannot be categorical in any µ > λ.

We wrap up:

Proof of Theorem 5.4.1. Let K be a universal class categorical in cardinals of
arbitrarily high cofinality.

1. Just because it is a universal class, K has primes and is LS(K)-tame
(recall Example 5.3.2.1.(5)).

2. By Theorem 5.2.44, there exists a good λ-frame on K.

3. By the upward frame transfer (Theorem 5.4.7), K≥λ has amalgamation
and in fact a good (≥ λ)-frame. This step uses λ-tameness.

4. By orthogonality calculus, if Kλ is not unidimensional then there exists
a type p such that K¬∗p has a good λ-frame.

5. Since K has primes, K¬∗p is also λ-tame and has weak amalgamation, so
by the upward frame transfer again (using tameness) it must have arbi-
trarily large models. So arbitrarily large models omit p, hence K has no
Galois-saturated models of size above λ, so cannot be categorical above
λ (by stability, K has a Galois-saturated model in every categoricity
cardinal). This is a contradiction, therefore Kλ is unidimensional.

6. By Theorem 5.4.16, K is categorical in λ+.

7. By the upward transfer of Grossberg and VanDieren (Theorem 5.4.10),
K is categorical in all µ ≥ λ. This again uses tameness in a key way.

Remark 5.4.19. The proof can be generalized to abstract elementary classes
which are tame and have primes. See Theorem 5.5.47.
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5.5 Independence, stability, and categoricity in tame
AECs

We have seen that good frames are a crucial tool in the proof of Shelah’s
eventual categoricity conjecture in universal classes. In this section, we give
the precise definition of good frames in a more general axiomatic independence
framework. We survey when good frames and more global independence no-
tions are known to exist (i.e. the best known answers to Question 5.1.3).

We look at what can be said in both strictly stable and superstable AECs.
Along the way we look at stability transfers, and the equivalence of various
definitions of superstability in tame AECs.

Finally, we survey the theory of categorical tame AECs and give the best
known approximations to Shelah’s categoricity conjecture in this framework.

5.5.1 Abstract independence relations

To allow us to state precise results, we first fix some terminology. The terms
used should be familiar to readers with experience in working with forking,
either in the elementary or nonelementary context. One potentially unfamiliar
notation: we sometimes refer to the pair i = (K,^) as an independence
relation. This is particularly useful to deal with multiple classes as we can
differentiate between the behavior of a possible forking relation on the class
K compared to its behavior on the class Kλ-sat of λ-Galois-saturated models
of K.

Definition 5.5.1. An independence relation is a pair i = (K,^), where:

1. K is an AEC40 with amalgamation (we say that i is on K and write
Ki = K).

2. ^ is a relation on quadruples of the form (M,A,B,N), where M ≤ N

are all in K and A,B ⊆ |N |. We write ^(M,A,B,N) or A
N

^
M
B instead

of (M,A,B,N) ∈^.

3. The following properties hold:

(a) Invariance: If f : N ∼= N ′ and A
N

^
M
B, then f [A]

N ′

^
f [M ]

f [B].

(b) Monotonicity: Assume A
N

^
M
B. Then:

40We may look at independence relations where K is not an AEC (e.g. it could be a class
of Galois-saturated models in a strictly stable AEC).
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i. Ambient monotonicity: If N ′ ≥ N , then A
N ′

^
M
B. If M ≤ N0 ≤ N

and A ∪B ⊆ |N0|, then A
N0

^
M
B.

ii. Left and right monotonicity: If A0 ⊆ A, B0 ⊆ B, then A0

N

^
M
B0.

iii. Base monotonicity: If A
N

^
M
B and M ≤M ′ ≤ N , |M ′| ⊆ B∪|M |,

then A
N

^
M ′
B.

(c) Left and right normality: If A
N

^
M
B, then AM

N

^
M
BM .

When there is only one relation to consider, we sometimes write “^ is an
independence relation on K” to mean “(K,^) is an independence relation”.

Definition 5.5.2. Let i = (K,^) be an independence relation. Let M ≤ N ,
B ⊆ |N |, and p ∈ gS<∞(B;N) be given. We say that p does not i-fork over

M if whenever p = gtp(ā/B;N), we have that ran(ā)
N

^
M
B. When i is clear

from context, we omit it.

Remark 5.5.3. By the ambient monotonicity and invariance properties, this
is well-defined (i.e. the choice of ā and N does not matter).

An independence relation can satisfy several natural properties:

Definition 5.5.4 (Properties of independence relations). Let i = (K,^) be
an independence relation.

1. i has disjointness if A
N

^
M
B implies A ∩B ⊆ |M |.

2. i has symmetry if A
N

^
M
B implies B

N

^
M
A.

3. i has existence if A
N

^
M
M for any A ⊆ |N |.

4. i has uniqueness if whenever M0 ≤ M ≤ N`, ` = 1, 2, |M0| ⊆ B ⊆ |M |,
q` ∈ gS<∞(B;N`), q1 � M0 = q2 � M0, and q` does not fork over M0,
then q1 = q2.

5. i has extension if whenever p ∈ gS<∞(MB;N) does not fork over M and
B ⊆ C ⊆ |N |, there exists N ′ ≥ N and q ∈ gS<∞(MC;N ′) extending p
such that q does not fork over M .

6. i has transitivity if whenever M0 ≤M1 ≤ N , A
N

^
M0

M1 and A
N

^
M1

B imply

A
N

^
M0

B.
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7. i has the < κ-witness property if whenever M ≤ N , A,B ⊆ |N |, and

A0

N

^
M
B0 for all A0 ⊆ A, B0 ⊆ B of size strictly less than κ, then A

N

^
M
B.

The λ-witness property is the (< λ+)-witness property.

The following cardinals are also important objects of study:

Definition 5.5.5 (Locality cardinals). Let i = (K,^) be an independence
relation and let α be a cardinal.

1. Let κ̄α(i) be the minimal cardinal µ ≥ α+ + LS(K)+ such that for any
M ≤ N in K, any A ⊆ |N | with |A| ≤ α, there exists M0 ≤ M in K<µ

with A
N

^
M0

M . When µ does not exist, we set κ̄α(i) =∞.

2. Let κα(i) be the minimal cardinal µ ≥ α+ +ℵ0 such that for any regular
δ ≥ µ, any increasing continuous chain 〈Mi : i ≤ δ〉 in K, any N ≥ Mδ,

and any A ⊆ |N | of size at most α, there exists i < δ such that A
N

^
Mi

Mδ.

When µ does not exist, we set κα0(i) =∞.

We also let κ̄<α(i) := supα0<α κ̄α0(i). Similarly define κ<α(i). When clear,
we may write κα(^), etc., instead of κα(i).

Definition 5.5.6. Let us say that an independence relation i has local char-
acter if κ̄α(i) <∞ for all cardinals α.

Compared to the elementary framework, we differentiate between two local
character cardinals, κ and κ̄. The reason is that we do not in general (but see
Theorem 5.5.41) know how to make sense of when a type does not fork over an
arbitrary set (as opposed to a model). Thus we cannot (for example) define
superstability by requiring that every type does not fork over a finite set:
looking at unions of chains is a replacement.

We make precise when an independence relation is “like forking in a first-
order stable theory”:

Definition 5.5.7. We say that i is a stable independence relation if it is an
independence relation satisfying uniqueness, extension, and local character.

We could also define the meaning of a superstable independence relation,
but here several nuances arise so to be consistent with previous terminology
we will call it a good independence relation, see Definition 5.5.28.

As defined above, independence relations are global objects: they define an
independence notion “p does not fork over M” for M of any size and p of
any length. This is a strong requirement. In fact, the following refinement of
Question 5.1.3 is still open:

Question 5.5.8. Let K be a fully tame and short AEC with amalgamation.
Assume that K is categorical in a proper class of cardinals. Does there exists
a λ and a stable independence relation i on K≥λ?
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It is known that one can construct such an i with local character and
uniqueness, but proving that it satisfies extension seems hard in the absence
of compactness. Note in passing that i as above must be unique:

Theorem 5.5.9 (Canonicity of stable independence). If i and i′ are stable
independence relations on K, then i = i′.

As seen in Example 5.3.2.1.(4), we know that uniqueness and local charac-
ter are enough to conclude some tameness and there are several relationships
between the properties. We give one example:

Proposition 5.5.10. Assume that ^ is a stable independence relation on K.

1. ^ has symmetry, existence, and transitivity.

2. If K is fully < κ-tame and -type short, then ^ has the < κ-witness
property.

3. For every α, κα(^) ≤ κ̄α(^).

4. ^ has disjointness over sufficiently Galois-saturated models: if M is

LS(K)+-Galois-saturated and A
N

^
M
B, then A ∩B ⊆ |M |.

Proof sketch for (2). By symmetry and extension it is enough to show that

for a given A, A0

N

^
M0

M for all A0 ⊆ A of size less than κ implies A
N

^
M0

M . By

extension, pick N ′ ≥ N and A′ ⊆ |N ′| so that A′
N ′

^
M0

M and gtp(ā′/M0;N ′) =

gtp(ā/M0;N) (where ā, ā′ are enumerations of A and A′ respectively). By
the uniqueness property, gtp(ā′ � I/M ;N ′) = gtp(ā � I/M0;N) for all I ⊆
dom(ā) of size less than κ. Now use by shortness this implies gtp(ā/M ;N) =

gtp(ā′/M ;N ′), hence by invariance A
N

^
M0

M .

In what follows, we consider several approximations to Question 5.5.8 in
the stable and superstable contexts. We also examine consequences on cate-
gorical AECs. It will be convenient to localize Definition 5.5.1 so that:

1. The relation ^ is only defined on types of certain lengths (that is, the
size of the left hand side is restricted).

2. The relation ^ is only defined on types over domains of certain sizes
(that is, the size of the right hand side and base is restricted).

More precisely:

Notation 5.5.11. Let F = [λ, θ) be an interval of cardinals. We say that
i = (K,^) is a (< α,F)-independence relation if it satisfies Definition 5.5.1
localized to types of length less than α and models in KF (so only amalgama-
tion in F is required). We always require that θ ≥ α and λ ≥ LS(K).
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(≤ α,F) means (< α+,F), and if F = [λ, λ+), then we say that i is a
(≤ α, λ)-independence relation. Similar variations are defined as expected,
e.g. (≤ α,≥ λ) means (≤ α, [λ,∞)).

We often say that i is a (< α)-ary independence relation on KF rather
than a (< α,F)-independence relation. We write α-ary rather than (≤ α)-ary.

The properties in Definition 5.5.4 can be adapted to such localized inde-

pendence relations. For example, we say that i has symmetry if A
N

^
M
B implies

that for every B0 ⊆ B of size less than α, B0

N

^
M
A.

Using this terminology, we can give the definition of a good λ-frame (see
Section 5.2.5), and more generally of a good F-frame for F an interval of
cardinals41:

Definition 5.5.12. Let F = [λ, θ) be an interval of cardinals. A good F-frame
is a 1-ary independence relation i on KF such that:

1. i satisfies disjointness, symmetry, existence, uniqueness, extension, tran-
sitivity, and κ1(i) = ℵ0.

2. KF has amalgamation in F, joint embedding in F, no maximal models
in F, and is Galois-stable in every µ ∈ F. Also of course KF 6= ∅.

When F = [λ, λ+), we talk of a good λ-frame, and when F = [λ,∞), we
talk of a good (≥ λ)-frame. As is customary, we may use the letter s rather
than i to denote a good frame.

5.5.2 Stability

We compare results for stability in tame classes with those in general
classes, summarized in Section 5.2.2. At a basic level, tameness strongly con-
nects types over domains of different cardinalities. While a general AEC might
be Galois-stable in λ but not in λ+ (see the Hart-Shelah example in Section
5.3.2.2), this cannot happen in tame classes:

Theorem 5.5.13. Suppose that K is an AEC with amalgamation which is
λ-tame42 and Galois-stable in λ. Then:

1. K is Galois-stable in λ+.

2. K is Galois-stable in every µ > λ such that µ = µλ.

There is also a partial stability spectrum theorem for tame AECs:

Theorem 5.5.14. Let K be an AEC with amalgamation that is LS(K)-tame.
The following are equivalent:

41Note that the definition here is different (but equivalent to) Shelah’s notion of a type-full
good λ-frame, see the historical remarks for more.

42For the first part, weak tameness suffices.
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1. K is Galois-stable in some cardinal λ ≥ LS(K).

2. K does not have the order property (see Definition 5.2.26).

3. There are µ ≤ λ0 < H1 such that K is Galois-stable in any λ = λ<µ+λ0.

The proof makes heavy use of the Galois Morleyization (Theorem 5.3.5)
to connect “stability theory inside a model” (results about formal, syntactic
types within a particular model) to Galois types in an AEC. This allows the
translation of classical proofs connecting the order property and stability.

This achieves two important generalizations from the elementary frame-
work. First, it unites the characterizations of stability in terms of counting
types and no order property from first-order, a connection still lacking in gen-
eral AECs. Second, it gives one direction of the stability spectrum theorem
by showing that, given stability in any one place, there are many stability
cardinals, and some of the stability cardinals are given by satisfying some car-
dinal arithmetic above the first stability cardinal. Still lacking from this is a
converse saying that the stability cardinals are exactly characterized by some
cardinal arithmetic.

Another important application of the Galois Morleyization in stable tame
AECs is that averages of suitable sequences can be analyzed. Roughly speak-
ing, we can work inside the Galois Morleyization of a monster model and
define the χ-average over A of a sequence I to be the set of formulas φ over
A so that strictly less than χ-many elements of I satisfy φ. If χ is big-enough
and under reasonable conditions on I (i.e. it is a Morley sequence with re-
spect to nonsplitting), we can show that the average is complete and (if I is
long-enough), realized by an element of I. Unfortunately, a detailed study is
beyond the scope of this paper, see the historical remarks for references.

Turning to independence relations in stable AECs, there are two main
candidates. The first is the familiar notion of splitting (see Definition 5.2.22).
Tameness simplifies the discussion of splitting by getting rid of the cardinal
parameter: it is impossible for a type to λ+-split over M and also not λ-
split over M in a (λ, λ+)-tame AEC, as the witness to λ+-splitting could be
brought down to size λ. This observation allows for a stronger uniqueness
result in non-splitting. Rather than just having unique extensions in the same
cardinality as in Theorem 5.2.24, we get a cardinal-free uniqueness result.

Theorem 5.5.15. Suppose K is a LS(K)-tame AEC with amalgamation and
that M0 ≤ M1 ≤ M2 are in K≥LS(K) with M1 universal over M0. If p, q ∈
gS(M2) do not split over M0 and p �M1 = q �M1, then p = q.

Proof sketch. If p 6= q, then there is a small M− ≤M2 with p �M− 6= q �M−;
Without loss of generality pick M− to contain M0. By universality, we can
find f : M− −−→

M0

M1. By the nonsplitting,

p � f(M−) = f(p �M−) 6= f(q �M−) = q � f(M−)

Since f(M−) ≤ M1, this contradicts the assumption they have equal restric-
tions.
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Attempting to use splitting as an independence relation for K runs into the
issue that several theorems require that the extension be universal (such as
the above theorem). This can be mitigated by moving to the class of saturated
enough models and looking at a localized version of splitting.

Definition 5.5.16.

1. Let K be an AEC with amalgamation. For µ > LS(K), let Kµ-sat denote
the class of µ-Galois-saturated models in K≥µ.

2. Let K be an AEC with amalgamation and let µ ≥ LS(K) be such that

K is Galois-stable in µ. For M0 ≤ M both in Kµ+-sat and p ∈ gS(M),
we say that p does not µ-fork over M0 if there exists M ′0 ≤ M0 with
M ′0 ∈ Kµ such that p does not µ-split over M ′0 (see Definition 5.2.22).

Note that, by the µ+-saturation of M0, we have guaranteed that M0 is a
universal extension of M ′0. This gives us the following result.

Theorem 5.5.17. Let K be an AEC with amalgamation and let µ ≥ LS(K) be

such that K is Galois-stable in µ and K is µ-tame. Let
µ

^ be the µ-nonforking
relation restricted to the class Kµ+-sat. Then

1.
µ

^ is a 1-ary independence relation that further satisfies disjointness,
existence, uniqueness, and transitivity when all models are restricted
to Kµ+-sat (in the precise language of Section 5.5.1, this says that

(Kµ+-sat,
µ

^) is an independence relation with these properties).

2.
µ

^ has set local character in Kµ+-sat: Given p ∈ gS(M), there is M0 ∈
Kµ+-sat such that M0 ≤M and p does not µ-fork over M0.

3.
µ

^ has a local extension property: If M0 ≤ M are both Galois-saturated
and ‖M0‖ = ‖M‖ ≥ µ+ and p ∈ gS(M0), then there exists q ∈ gS(M)
extending p and not µ-forking over M0.

Proof sketch. Tameness ensures that µ-splitting and λ-splitting coincide when
λ ≥ µ. The local extension property uses the extension property of splitting
(see Theorem 5.2.24). Local character and uniqueness are also translations of
the corresponding properties of splitting. Disjointness is a consequence of the
moreover part in the extension property of splitting. Finally, transitivity is
obtained by combining the extension and uniqueness properties of splitting.

The second candidate for an independence relation, drawing from stable
first-order theories, is a notion of coheir, which we call < κ-satisfiability.

Definition 5.5.18. Let M ≤ N and p ∈ gS<∞(N).

1. We say that p is a < κ-satisfiable over M if for every I ⊆ `(p) and
A ⊆ |N | both of size strictly less than κ, we have that pI � A is realized
in M .
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2. We say that p is a < κ-heir over M if for every I ⊆ `(p) and every
A0 ⊆ |M |, N0 ≤ N , with A0 ⊆ |N0| and I, A0, N0 all of size less than κ,
there is some f : N0 −−→

A0

M such that

f(pI � N0) = pI � f [N0]

< κ-satisfiable is also called κ-coheir. As expected from first-order, these
notions are dual43 and they are equivalent under the κ-order property of length
κ.

< κ-satisfiability turns out to be an independence relation in the stable
context.

Theorem 5.5.19. Let K be an AEC and κ > LS(K). Assume:

1. K has a monster model and is fully < κ-tame and -type short.

2. K does not have the κ-order property of length κ.

Let ^ be the independence relation induced by < κ-satisfiability on the
κ-Galois-saturated models of K. Then ^ has disjointness, symmetry, local
character, transitivity, and the κ-witness property. Thus if ^ also has exten-
sion, then it is a stable independence relation on the κ-Galois-saturated models
of K.

If κ = iκ, then it turns out that not having the κ-order property of length
κ is equivalent to not having the order property, which by Theorem 5.5.14 is
equivalent to stability.

Note that the conclusion gives already that the AEC is stable. Similarly,
the < κ-satisfiability relation analyzes a type by breaking it up into its κ-sized
components, so the tameness and type shortness assumptions seem natural44.

Theorem 5.5.19 does not tell us if < κ-satisfiability has the extension
property. At first glance, it seems to be a compactness result about Galois
types. In fact:

Theorem 5.5.20. Under the hypotheses of Theorem 5.5.19, if κ is a strongly
compact cardinal, then < κ-satisfiability has the extension property.

Extension also holds in some nonelementary classes (such as averageable
classes) and we will see that it “almost” follows from superstability (see Section
5.5.4).

The existence of a reasonable independence notion for stable classes can
be combined with averages to obtain a result on chains of Galois-saturated
models:

Theorem 5.5.21. Let K be a LS(K)-tame AEC with amalgamation. If K
is Galois-stable in some µ ≥ LS(K), then there exists χ < H1 satisfying the
following property:

43A must be a model for the question to make sense.
44Although it is open if they are necessary.
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If λ ≥ χ is such that K is Galois-stable in µ for unboundedly many µ <
λ, then whenever 〈Mi : i < δ〉 is a chain of λ-Galois-saturated models and
cf(δ) ≥ χ, we have that

⋃
i<δMi is λ-Galois-saturated.

Proof sketch. First note that Theorem 5.5.13.(2) and tameness imply that K
is Galois-stable in stationary many cardinals. Then, develop enough of the
theory of averages (and also investigate their relationship with forking) to be
able to imitate Harnik’s first-order proof [Har75].

We will see that this can be vastly improved in the superstable case: the
hypothesis that K be Galois-stable in µ for unboundedly many µ < λ can
be removed and the Hanf number improved. Moreover, there is a proof of a
version of the above theorem using only independence calculus and not relying
on averages. Nevertheless, the use of averages has several other applications
(for example getting solvability from superstability, see Theorem 5.5.23).

5.5.3 Superstability

As noted at the beginning of Section 5.2.1, Shelah has famously stated that
superstability in AECs suffers from “schizophrenia”. However superstability is
much better behaved in tame AECs than in general. Recall Definition 5.2.27
which gave a definition of superstability in a single cardinal using local charac-
ter of splitting. Recall also that there are several other local candidates such as
the uniqueness of limit models (Definition 5.2.29) and the existence of a good
frame (Section 5.2.5 and Definition 5.5.12). Theorem 5.5.21 suggests another
definition saying that the union of a chain of µ-Galois-saturated models is µ-
Galois-saturated. As noted before, it is unclear whether these definitions are
equivalent cardinal by cardinal, that is, µ-superstability and λ-superstability
for µ 6= λ are potentially different notions and it is not easy to combine them.
With tameness, this difficulty disappears:

Theorem 5.5.22. Assume that K is µ-superstable, µ-tame, and has amalga-
mation. Then for every λ > µ:

1. K is λ-superstable.

2. If 〈Mi : i < δ〉 is an increasing chain of λ-Galois-saturated models, then⋃
i<δMi is λ-Galois-saturated.

3. There is a good λ-frame with underlying class Kλ-sat.

4. K has uniqueness of limit models in λ. In fact, K also has uniqueness of
limit models in µ.

Proof sketch. Fix λ > µ. We can first prove an approximation to (3) by defin-
ing forking as in Definition 5.5.16 and following the proof of Theorem 5.5.17.
We obtain an independence relation i on 1-types whose underlying class is
Kλ-sat (at that point we do not yet know yet if it is an AEC), and which
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satisfies all the properties from the definition of a good frame45 (including the
structural properties on K) except perhaps symmetry.

Still we can use this to prove that K satisfies (4) in Definition 5.2.27. Using
just this together with uniqueness, we can show that K is Galois-stable in λ.
Joint embedding follows from amalgamation and no maximal models holds by
a variation on a part of the proof of Theorem 5.4.7. Therefore (1) holds: K
is λ-superstable. We can prove the symmetry property of the good λ-frame
by proving that a failure of it implies the order property. This also give the
symmetry property for splitting, and hence by Theorem 5.2.31 the condition
(4), uniqueness of limit models in λ, holds. Uniqueness of limit models can in
turn be used to obtain (2), hence the underlying class of i is really an AEC
so (3) holds.

Strikingly, a converse to Theorem 5.5.22 holds. That is, several definitions
of superstability are eventually equivalent in the tame framework:

Theorem 5.5.23. Let K be a tame AEC with a monster model and as-
sume that K is Galois-stable in unboundedly many cardinals. The following
are equivalent:

1. For all high enough λ, the union of a chain of λ-Galois-saturated models
is λ-Galois-saturated.

2. For all high enough λ, K has uniqueness of limit models in λ.

3. For all high enough λ, K has a superlimit model of size λ.

4. There is θ such that, for all high enough λ, K is (λ, θ)-solvable.

5. For all high enough λ, K is λ-superstable.

6. For all high enough λ, there is κ = κλ ≤ λ such that there is a good
λ-frame on Kκ-sat

λ .

Any of these equivalent statements also implies that K is Galois-stable in all
high enough λ.

Note that the “high enough” threshold can potentially vary from item
to item. Also, note that the stability assumption in the hypothesis is not too
important: in several cases, it follows from the assumption and, in others (such
as the uniqueness of limit models), it is included to ensure that the condition
is not vacuous. Finally, if K is LS(K)-tame, we can add in each of that λ < H1

in each of the conditions (except in (4) where we can say that θ < H1).
Superlimit models and solvability both capture the notion of the AEC K

having a “categorical core”, a sub-AEC K0 that is categorical in some κ. In
the case of superlimits, M ∈ Kκ is superlimit if and only if M is universal46

and the class of models isomorphic to M generates a nontrivial AEC. That
is, the class:

{N ∈ K≥κ | ∀N0 ∈ P ∗κ+(N)∃N1 ∈ P ∗κ+N : N0 ≤ N1 ∧N1
∼= M}

45Note that tameness was crucial to obtain the uniqueness property.
46That is, every model of size κ embeds into M .
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is an AEC with a model of size κ+47. (λ, κ)-solvability further assumes that
this superlimit is isomorphic to EML(K)(I,Φ) for some proper Φ of size κ and
any linear order I of size λ.

Note that although we did not mention them in Section 5.2, superlimits
and especially solvable AECs play a large role in the study of superstability
in general AECs (see the historical remarks).

The proof that superstability implies solvability relies on a characterization
of Galois-saturated models using averages (essentially, a model M is Galois-
saturated if and only if for every type p ∈ gS(M), there is a long-enough
Morley sequence I inside M whose average is p). We give the idea of the
proof that a union of Galois-saturated models being Galois-saturated implies
superstability. This can also be used to derive superstability from categoricity
in the tame framework (without using the much harder proof of the Shelah-
Villaveces Theorem 5.2.36).

Lemma 5.5.24. Let K be an AEC with a monster model. Assume that K is
LS(K)-tame and let κ = iκ > LS(K) be such that K is Galois-stable in κ.
Assume that for all λ ≥ κ and all limit δ, if 〈Mi : i < δ〉 is an increasing
chain of λ-Galois-saturated models, then

⋃
i<δMi is λ-Galois-saturated.

Then K is κ+-superstable.

Proof sketch. By tameness and Theorem 5.5.13.(1), we have that K is Galois-
stable in κ+. Thus, we only have to show Definition 5.2.27.(4), that there are
no long splitting chains. There is a Galois-saturated model in κ+ and, by a
back and forth argument, it is enough to show Definition 5.2.27.(4) when all
the models are κ+-Galois-saturated.

Let δ < κ++ be a limit ordinal and let 〈Mi : i ≤ δ〉 be an increasing
continuous chain of Galois-saturated models in Kκ+ ; that we can make the
models at limit stages Galois-saturated crucially uses the assumption. Let
p ∈ gS(Mδ). We need to show that there is i < δ such that p does not κ+-split
over Mi. By standard means, one can show that there is an i < δ such that p
is < κ+ satisfiable in Mi. Tameness gives the uniqueness of < κ-satisfiability,
which allows us to conclude that p is < κ-satisfiable in Mi, which in turn
implies that p does not κ+-split over Mi, as desired.

Remark 5.5.25. From the argument, we obtain the following intriguing con-
sequence in first-order model theory48: if T is a stable first-order theory,
〈Mi : i ≤ δ〉 is an increasing continuous chain of ℵ1-saturated models (so
Mi is ℵ1-saturated also for limit i), then for any p ∈ S(Mδ), there exists i < δ
so that p does not fork over Mi. This begs the question of whether any such
chain exists in strictly stable theories.

47An equivalent definition: M ∈ Kκ is superlimit if and only if it is universal, has a proper
extension isomorphic to it, and for any limit δ < κ+, and any increasing continuous chain
〈Mi : i ≤ δ〉, if Mi

∼= M for all i < δ, then Mδ
∼= M .

48Hence showing that perhaps the study of AEC can also lead to new theorems in first-
order model theory.
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We now go back to the study of good frames. One can ask when instead of
a good λ-frame, we obtain a good (≥ λ)-frame (i.e. forking is defined for types
over models of all sizes). It turns out that the proof of Theorem 5.5.22 gives

a good (≥ µ+)-frame on Kµ+-sat. This still has the disadvantage of looking
at Galois-saturated models. The next result starts from a good µ-frame and
shows that µ-tameness can transfer it up (note that this was already stated
as Theorem 5.4.6):

Theorem 5.5.26. Assume K is an AEC with LS(K) ≤ λ and s is a good
λ-frame on K. If K has amalgamation, then K is λ-tame if and only if there
is a good (≥ λ)-frame ≥ s on K that extends s.

Proof sketch. That tameness is necessary is discussed in Example 5.3.2.1.(4).
For the other direction, it is easy to check that if there is any way to extends

forking to models of size at least λ, the definition must be the following:

p ∈ gS(M) does not fork over M0 if and only if there exists M ′0 ≤M0 with
M ′0 ∈ Kλ and p �M ′ does not fork over M ′0 for all M ′ ≤M with M ′ ∈ Kλ.

Several frame properties transfer without tameness; however, the key prop-
erties of uniqueness, extension, stability, and symmetry can fail. λ-tameness
can be easily seen to be equivalent to the transfer of uniqueness from s to
≥ s. Using uniqueness, extension and stability can easily be shown to follow.
Symmetry is harder and the proof goes through independent sequences (see
below and the historical remarks).

As an example, we show how to prove the extension property. Note that
one of the key difficulties in proving extension in general is that upper bounds
of types need not exist; while this is trivial in first-order, such AECs are
called compact (see Definition 5.3.2). To solve this problem, we use the forking
machinery of the frame to build a chain of types with a canonical extension
at each step. This canonicity provides the existence of types.

Let M ∈ K≥λ and let p ∈ gS(M). Let N ≥ M . We want to find a
nonforking extension of p to N . By local character and transitivity, without
loss of generality M ∈ Kλ. We now work by induction on µ := ‖N‖. If
µ = λ, we know that p can be extended to N by definition of a good frame,
so assume µ > λ. Write N =

⋃
i<µNi, where Ni ∈ Kλ+|i|. By induction, let

pi ∈ gS(Ni) be the nonforking extension of p to Ni. Note that by uniqueness
pj � Ni = pi for i ≤ j < µ. We want to take the “direct limit” of the pi’s:
build 〈fi : i < µ〉, 〈N ′i : i < µ〉, 〈ai : i < µ〉 such that pi = gtp(ai/Ni;N

′
i),

fi : N ′i −−→
Ni

N ′i+1 such that fi(ai) = ai+1. If this can be done, then taking the

direct limit of the system induced by 〈fi, aiN ′i : i < µ〉, we obtain aµ, N
′
µ such

that gtp(aµ/Nµ;N ′µ) is a nonforking extension of p. How can we build such a
system? The base and successor cases are no problem, but at limits, we want
to take the direct limit and prove that everything is still preserved. This will
be the case because of the local character and uniqueness property.
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This should be compared to Theorem 5.2.43 which achieves the more mod-
est goal of transferring s to λ+ (over Galois-saturated models and with a differ-
ent ordering) with assumptions on the number of models and some non-ZFC
hypotheses.

An interesting argument in the proof of Theorem 5.5.26 is the transfer of
the symmetry property. One could ignore that issue and use that failure of
the order property implies symmetry, however this would make the argument
non-local in the sense that we require knowledge about the AEC near the Hanf
of λ to conclude good property at λ. A more local (but harder) approach is
to study independent sequences.

Given a good (≥ λ)-frame and M0 ≤ M ≤ N , we want to say that
a sequence 〈ai ∈ N : i < α〉 is independent in (M0,M,N) if and only if
gtp(ai/|M |∪{aj : j < i};N) does not fork over M0. However, forking behaves
better for types over models so instead, we require that there is a sequence
of models M ≤ Ni ≤ N growing with the sequence 〈ai : i < α〉 such that
ai ∈ |Ni+1|\|Ni| and require gtp(ai/Ni;N) does not fork over M0.

The study of independent sequences shows that under tameness they them-
selves form (in a certain technical sense) a good frame. That is, from an inde-
pendence relation for types of length one, we obtain an independence relation
for types of independent sequences of all lengths. One other ramification of the
study of independence sequence is the isolation of a good notion of dimension:
inside a fixed model, any two infinite maximal independent sets must have
the same size.

Theorem 5.5.27. Let K be an AEC, λ ≥ LS(K). Assume that K is λ-tame
and has amalgamation. Let s be a good (≥ λ)-frame on K. Let M0 ≤M ≤ N
all be in K≥λ.

1. Symmetry of independence: For a fixed set I, I is independent
in (M0,M,N) if and only if all enumerations are independent in
(M0,M,N).

2. Let p ∈ gS(M). Assume that I1 and I2 are independent in (M0,M,N)
and every a ∈ I1 ∪ I2 realizes p. If both I1 and I2 are ⊆-maximal with
respect to that property and I1 is infinite, then |I1| = |I2|.

5.5.4 Global independence and superstability

Combined with Theorem 5.5.22, Theorem 5.5.26 shows that every tame
superstable AEC has a good (≥ λ)-frame. It is natural to ask whether this
frame can also be extended in the other direction: to types of length larger than
one. More precisely, we want to build a superstability-like global independence
relation (i.e. the global version of a good frame):

Definition 5.5.28. We say an independence relation ^ on K is good if:

1. K is an AEC with amalgamation, joint embedding, and arbitrarily large
models.
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2. K is Galois-stable in all µ ≥ LS(K).

3. ^ has disjointness, symmetry, existence, uniqueness, extension, transi-
tivity, and the LS(K)-witness property.

4. For all cardinals α > 0:

(a) κ̄α(^) = (α+ LS(K))+.

(b) κα(^) = α+ + ℵ0.

We say that an AEC K is good if there exists a good independence relation
on K.

We would like to say that if K is a LS(K)-superstable AEC with amal-
gamation that is fully tame and short, then there exists λ such that K≥λ is
good. At present, we do not know if this is true (see Question 5.5.8). All we
can conclude is a weakening of good:

Definition 5.5.29. We say an independence relation ^ is almost good if it
satisfies all the conditions of Definition 5.5.28 except it only has the following
weakening of extension: If p ∈ gSα(M) and N ≥ M , we can find q ∈ gSα(N)
extending p and not forking over M provided that at least one of the following
conditions hold:

1. M is Galois-saturated.

2. M ∈ KLS(K).

3. α < LS(K)+.

An AEC K is almost good if there is an almost good independence relation
on K.

Remark 5.5.30. Assume that i is an independence relation on K which
satisfies all the conditions in the definition of good except extension, and it
has extension for types over Galois-saturated models. Then we can restrict i to
KLS(K)+-sat and obtain an almost good independence relation. Thus extension
over Galois-saturated models is the important condition in Definition 5.5.29.

We can now state a result on existence of global independence relation:

Theorem 5.5.31. Let K be a fully LS(K)-tame and short AEC with amalga-

mation. Let λ :=
(
2LS(K)

)+4
. If K is LS(K)-superstable, then Kλ-sat is almost

good.

We try to describe the proof. For simplicity, we will work with < κ-
satisfiability, so will obtain a Hanf number approximately equal to a fixed point
of the beth function. The better bound is obtained by looking at splitting but
this makes the proof somewhat more complicated. So let κ = iκ > LS(K).
We know that the < κ-satisfiability independence relation is an independence
relation on Kκ-sat with uniqueness, local character, and symmetry (but not
extension). Let i denote this relation independence relation. Furthermore we
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can show that κ1(i) = ℵ0. In fact, i restricted to types of length one induces
a good κ-frame s on Kκ-sat

κ . We would like to extend s to types of length at
most κ.

To do this, we need to make use of the notion of domination and successful
frames49:

Definition 5.5.32. Suppose ^ is an independence relation on K. Work inside
a monster model50.

1. For M ≤ N κ-Galois-saturated and a ∈ |N |, a dominates N over M if
for any B, a^

M
B implies N ^

M
B.

2. s is successful if for every Galois-saturated M ∈ Kκ, every nonalgebraic
type p ∈ gS(M), there exists N ≥ M and a ∈ |N | with N ∈ Kκ Galois-
saturated such that a dominates N over M .

3. s is ω-successful if s+n is successful for all n < ω. Here, s+n is the
good κ+n induced on the Galois-saturated models of size κ+n by < κ-
satisfiability.

An argument of Makkai and Shelah [MS90, Proposition 4.22] shows that s
is successful (in fact ω-successful), and a deep result of Shelah shows that if s
is successful, then we can extend s to a κ-ary independence relation i′ which
has extension, uniqueness, symmetry, and for all α ≤ κ, κα(i′) = α+ + ℵ0.
This completes the first step of the proof. Note that we have taken i (which
was built on < κ-satisfiability), restricted it to 1-types and then “lengthened”
it to κ-ary types. However, we do not necessarily get < κ-satisfiability back!
We do get, however, an independence relation with a better local character
property.

From ω-successfulness, we could extend the frame s to models of size κ+n.
Now we would like to extend i′ to models of all sizes above κ. However, the
continuity of i′ is not strong enough. The missing property is:

Definition 5.5.33. An independence relation i = (K,^) has full model conti-
nuity if for any limit ordinal δ, for any increasing continuous chain 〈M `

i : i ≤ δ〉

with ` < 4, and M0
i ≤ Mk

i ≤ M3
i for k = 1, 2 and i ≤ δ, if M1

i

M3
i

^
M0
i

M2
i for all

i < δ, then M1
δ

M3
δ

^
M0
δ

M2
δ .

Let us say that i is fully good [almost fully good ] if it is good [almost good]
and has full model continuity. As before, K is [almost] fully good if it there is
an [almost] fully good independence relation on K.

49Note that the definitions here do not coincide with Shelah’s, although they are equiva-
lent in our context. The equivalence uses tameness again, including a result of Adi Jarden.
See the historical remarks for more.

50So if C is the monster model, a^
M
B means a

C

^
M
B.
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Another powerful result of Shelah [She09b, III.8.19] connects ω-successful
good frames with full model continuity. Suppose that s is an ω-successful good
κ-frame (as we have). We do not know that i′ defined above has full model
continuity, but it we move to the (still ω-successful) good κ+3-frame s+3 and
“lengthen” this to an independence relation i′+3 on κ+3-ary types, then i′+3

has full model continuity!
This allows us to transfer all of the nice properties of i′+3 to a κ+3-ary

independence relation i′′ on models of all sizes above κ+3. To get a truly global
independence relation, we can define an independence relation i′′′ on types of
all lengths by specifying that p ∈ gSα(M) do not i′′′-fork over M0 ≤ M if
and only if p � I does not i′′-fork over M0 for every I ⊆ α with |I| ≤ κ+3.
With some work, we can show that i′′′ is almost fully good (thus “fully” can
be added to the conclusion of Theorem 5.5.31).

What about getting the extension over property over all models (not just
the Galois-saturated models). It is known how to do it by making one more
locality hypothesis:

Definition 5.5.34 (Type locality).

1. Let δ be a limit ordinal, and let p̄ := 〈pi : i < δ〉 be an increasing chain
of Galois types, where for i < δ, pi ∈ gSαi(M) and 〈αi : i ≤ δ〉 are
increasing. We say p̄ is κ-type-local if cf(δ) ≥ κ and whenever p, q ∈
gSαδ(M) are such that pαi = qαi = pi for all i < δ, then p = q.

2. We say K is κ-type-local if every p̄ as above is κ-type-local.

We think of κ-type-locality as the dual to κ-locality (Definition 5.3.2.(3))
in the same sense that shortness is the dual to tameness.

Remark 5.5.35. If κ is a regular cardinal and K is < κ-type short, then K
is κ-type-local. In particular, if K is fully < ℵ0-tame and -type short, then K
is ℵ0-type-local.

Remark 5.5.36. If there is a good λ-frame on K, then Kλ is ℵ0-local (use
local character and uniqueness), and thus assuming λ-tameness K is ℵ0-local.
This is used in the transfer of a good λ-frame to a good (≥ λ)-frame. Unfor-
tunately, an analog for this fact is missing when looking at ℵ0-type-locality,
i.e. it is not clear that even a fully good AEC is ℵ0-type-local.

Using type-locality, we can start from a fully good LS(K)-ary independence
relation on K and prove extension for types of all lengths. Thus we obtain the
following variation of Theorem 5.5.31:

Theorem 5.5.37. Let K be a fully LS(K)-tame and short AEC with amalga-

mation. Assume that K is ℵ0-type-local. Let λ :=
(
2LS(K)

)+4
. If K is LS(K)-

superstable, then Kλ-sat is fully good.

Remark 5.5.38. It is enough to assume that ℵ0-type-locality holds “densely”
in a certain technical sense. See the historical remarks.
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Finally, we know of at least two other ways to obtain extension: using total
categoricity and large cardinals. We collect all the results of this section in a
corollary:

Corollary 5.5.39. Let K be an AEC. Assume that K is LS(K)-superstable
and fully LS(K)-tame and short.

1. If κ > LS(K) is a strongly compact cardinal, then Kκ-sat is fully good.

2. If either K is ℵ0-type-local (e.g. it is fully (< ℵ0)-tame and short) or K

is totally categorical, then Kλ-sat is fully good, where λ :=
(
2LS(K)

)+4
.

Proof sketch. By Theorem 5.5.31, Kλ-sat is almost good, and in fact (as we
have discussed) almost fully good. If K is totally categorical, all the models
are Galois-saturated and hence by definition of almost fully good, K is fully
good. If K is ℵ0-type-local, then apply Theorem 5.5.37. Finally, if κ > LS(K)
is strongly compact, then the extension property for < κ-satisfiability holds
(see Theorem 5.5.20) and using a canonicity result similar to Theorem 5.5.9
one can conclude that Kκ-sat is fully good.

Since the existence of a strongly compact cardinal implies full tameness
and shortness (see Theorem 5.3.7), we can state a version of the first part of
Corollary 5.5.39 as follows:

Theorem 5.5.40. If K is an AEC which is superstable in every µ ≥ LS(K)
and κ > LS(K) is a strongly compact cardinal, then Kλ-sat is fully good, where

λ :=
(
2LS(K)

)+4
.

Note that in all of the results above, we are restricting ourselves to classes
of sufficiently saturated models. This is related to the fact that the uniqueness
property is required in the definition of a good independence relation, i.e. all
types must be stationary. But what if we relax this requirement? Can we
obtain an independence relation that specifies what it means to fork over an
arbitrary set? A counterexample of Shelah [HL02, Section 4] shows that this
cannot be done in general. However this is possible for universal classes:

Theorem 5.5.41. If K is an almost fully good universal class, then:

1. K is fully good.

2. We can define A
N

^
A0

B (for A0 an arbitrary set) to hold if and only if

clN (A0A)
N

^
clN (A0)

clN (A0B). Here clN is the closure under the functions

of N . This has the expected properties (extension, existence, local char-
acter).

3. This also has the finite witness property: A
N

^
A0

B if and only if A′
N

^
A0

B′

for all A′ ⊆ A, B′ ⊆ B finite.
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Remark 5.5.42. It is enough to assume that K admits intersections, i.e. for
any N ∈ K and any A ⊆ |M |,

⋂
{M ≤ N | A ⊆ |M |} ≤ N .

5.5.5 Categoricity

One of the first marks made by tame AEC was the theorem by Grossberg
and VanDieren [GV06a] that tame AECs (with amalgamation) satisfy an up-
ward categoricity transfer from a successor (see Theorem 5.4.10). Combining
it with Theorem 5.2.35, we obtain that tame AECs satisfy Shelah’s eventual
categoricity conjecture from a successor:

Theorem 5.5.43. Let K be an H2-tame AEC with amalgamation. If K is
categorical in some successor λ ≥ H2, then K is categorical in all λ′ ≥ H2.

Recall that categoricity implies superstability below the categoricity cardi-
nal (Theorem 5.2.36). A powerful result is that assuming tameness, supersta-
bility also holds above, while this need not be true without tameness; recall the
discussion after Theorem 5.2.36. In particular, Question 5.2.38 has a positive
answer: the model in the categoricity cardinal is Galois-saturated.

Theorem 5.5.44. Let K be a LS(K)-tame AEC with amalgamation and no
maximal models. If K is categorical in some λ > LS(K), then:

1. K is superstable in every µ ≥ LS(K).

2. For every µ > LS(K), there is a good µ-frame with underlying class
Kµ-sat.

3. The model of size λ is Galois-saturated.

Proof.

1. By Theorem 5.2.36, K is superstable in LS(K). Now apply Theorem
5.5.22.

2. As above, using Theorem 5.5.22.

3. K is λ-superstable, so in particular Galois-stable in λ. It is not hard to
build a µ+-Galois-saturated model in λ for every µ < λ so the result
follows from categoricity.

Theorem 5.5.44 allows one to show that a tame AEC categorical in some
cardinal is categorical in a closed unbounded set of cardinals of a certain
form. This already plays a key role in Shelah’s proof of Theorem 5.2.35. The
key is what we call Shelah’s omitting type theorem, a refinement of Morley’s
omitting type theorem. Note that a version of this theorem is also true without
tameness, but removing the tameness assumption changes the condition on p
being omitted to requiring that the small approximations to p be omitted51.

51In the sense that each element omits some small approximation of p.
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Theorem 5.5.45 (Shelah’s omitting type theorem). Let K be a LS(K)-tame
AEC with amalgamation. Let M0 ≤M and let p ∈ gS(M0). Assume that p is
omitted in M . If ‖M0‖ ≥ LS(K) and ‖M‖ ≥ i(2LS(K))

+(‖M0‖), then there is

a non-LS(K)+-Galois-saturated model in every cardinal.

Corollary 5.5.46. Let K be a LS(K)-tame AEC with amalgamation and no
maximal models. If K is categorical in some λ > LS(K), then K is categorical

in all cardinals of the form iδ, where
(
2LS(K)

)+
divides δ.

Proof. Let δ be divisible by
(
2LS(K)

)+
. If there is a model M ∈ Kiδ which is

not Galois-saturated, then by Shelah’s omitting type theorem we can build a
non LS(K)+-Galois-saturated model in λ. This contradicts Theorem 5.5.44.

In section 5.4, a categoricity transfer was proven without assuming that
the categoricity cardinal is a successor. As hinted at there, this generalizes to
tame AECs that have primes (recall from Definition 5.4.11 that an AEC has
primes if there is a prime model over every set of the form M ∪ {a}):

Theorem 5.5.47. Let K be an AEC with amalgamation and no maximal
models. Assume that K is LS(K)-tame and has primes. If K is categorical in
some λ > LS(K), then K is categorical in all λ′ ≥ min(λ,H1).

Remark 5.5.48. A partial converse is true: if a fully tame and short AEC
with amalgamation and no maximal models is categorical on a tail, then it
has primes on a tail.

We deduce Shelah’s categoricity conjecture in homogeneous model theory
(see Section 5.3.2.1.(7)):

Corollary 5.5.49. Let D be a homogeneous diagram in a first-order theory T .
If D is categorical in a λ > |T |, then D is categorical in all λ′ ≥ min(λ, h(|T |)).

Using a similar argument, we can also get rid of the hypothesis that K has
primes if the categoricity cardinal is a successor. This allows us to obtain a
downward transfer for tame AECs which improves on Theorem 5.5.43 (there
H1 was H2). The price to pay is to assume more tameness.

Theorem 5.5.50. Let K be a LS(K)-tame AEC with amalgamation and no
maximal models. If K is categorical in a successor λ > LS(K)+, then K is
categorical in all λ′ ≥ min(λ,H1).

Proof sketch. Let us work in a good (≥ LS(K)+)-frame s on KLS(K)+-sat (this
exists by Theorems 5.2.36, 5.5.22, and 5.5.26). As in Section 5.4.2, we can de-
fine what it means for two types p and q to be orthogonal (written p ⊥ q) and
say that s is µ-unidimensional52 if no two types are orthogonal. We can show

52In this framework, this definition need not be equivalent to categoricity in the next
successor but we use it for illustrative purpose.
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that s is µ-unidimensional if and only if KLS(K)+-sat is categorical in µ+, and
argue by studying the relationship between forking and orthogonality that s is
unidimensional in some µ if and only if it is unidimensional in all µ′ (this uses

tameness, since we are moving across cardinals). Thus KLS(K)+-sat is categor-
ical in every successor cardinal, hence also (by a straightforward argument
using Galois-saturated models) in every limit. We conclude by using a version

of Morley’s omitting type theorem to transfer categoricity in KLS(K)+-sat to
categoricity in K (this is where the H1 comes from).

What if we do not want to assume that the AEC has primes or that it is
categorical in a successor? Then the best known results are essentially Shelah’s
results from Section 5.2.5. We show how to obtain a particular case using the
results presented in this section:

Theorem 5.5.51. Assume Claim 5.2.0.1 and 2θ < 2θ
+

for every cardinal
θ. Let K be a fully LS(K)-tame and short AEC with amalgamation and no
maximal models. If K is categorical in some λ ≥ H1, then K is categorical in
all λ′ ≥ H1.

Proof sketch. By Theorem 5.2.36, K is LS(K)-superstable. By the proof of
Theorem 5.5.31, we can find an ω-successful good µ-frame (see Definition

5.5.32) on Kµ-sat
µ for some λ < H1. By Claim 5.2.0.1, Kµ+ω-sat is categorical

in every µ′ > µ+ω. Using a version of Morley’s omitting type theorem, we get
that K must be categorical on a tail of cardinals, hence in a successor above
H1. By Theorem 5.5.50, K is categorical in all λ′ ≥ H1.

Remark 5.5.52. Slightly different arguments show that the locality assump-
tion can be replaced by only LS(K)-tameness. Moreover, it can be shown that
categoricity in some λ > LS(K) implies categoricity in all λ′ ≥ min(λ,H1).

The proof shows in particular that almost fully good independence rela-
tions can be built in fully tame and short categorical AECs:

Theorem 5.5.53. Let K be a fully LS(K)-tame and -type short AEC
with amalgamation and no maximal models. If K is categorical in a λ ≥(
2LS(K)

)+4
, then:

1. K≥min(λ,H1) is almost fully good.

2. If K is fully < ℵ0-tame and -type short, then K≥min(λ,H1) is fully good.

Proof. As in the proof above. Note that by Corollary 5.5.46, K is categorical
in H1.

Using large cardinals, we can remove all the hypotheses except categoricity:

Corollary 5.5.54. Let K be an AEC. Let κ > LS(K) be a strongly compact
cardinal. If K is categorical in a λ ≥ h(κ), then:
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1. K≥λ is fully good.

2. If 2θ < 2θ
+

for every cardinal θ and Claim 5.2.0.1 hold, then53 K is
categorical in all λ′ ≥ h(κ).

Proof sketch. By a result similar to Theorem 5.3.10, K≥κ has amalgamation
and no maximal models. By Theorem 5.3.7, K is fully < κ-tame and -type
short. Now Corollary 5.5.39 gives the first part. Theorem 5.5.51 gives the
second part.

5.6 Conclusion

The classification theory of tame AECs has progressed rapidly over the last
several years. The categoricity transfer results of Grossberg and VanDieren
indicated that tameness (along with amalgamation, etc.) is a powerful tool to
solve questions that currently seem out of reach for general AECs.

Looking to the future, there are several open question and lines of research
that we believe deserve to be further explored.

1. Levels of tameness
This problem is less grandiose than other concerns, but still concerns a
basic unanswered question about tameness: are there nontrivial relation-
ships between the parametrized versions of tameness in Definition 5.3.2?
For example, does κ-tameness for α-types imply κ-tameness for β-types
when α < β? This question reveals a divide in the tameness literature:
some results only use tameness for 1-types (such as the categoricity trans-
fer of Grossberg and VanDieren Theorem 5.4.10 and the deriving a frame
from superstability Theorem 5.5.22), while others require full tameness
and shortness (such as the development of < κ-satisfiability Theorem
5.5.19). Answering this question would help to unify these results.

Another stark divide is revealed by examining the list of examples of
tame AECs in Section 5.3.2.1: the list begins with general results that
give some form of locality at a cardinal λ. However, once the list reaches
concrete classes of AECs, every example turns out to be < ℵ0-tame
(often this is a result of a syntactic characterization of Galois types, but
not always). This suggests the question of what lies between or even
if the general results can be strengthened down to < ℵ0-tameness. For
the large cardinal results, this seems impossible: the large cardinal κ
should give no information about the low properties of K below it because

53The same conclusion holds assuming only that κ is a measurable cardinal. Moreover,
if K is axiomatized by an Lκ,ω theory, we can replace h(κ) with h(κ+ LS(K)) and do not
need to assume that κ > LS(K).
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this cardinal disappears in Kκ. The other results also seem unlikely to
have this strengthening, but no counter example is known. Indeed, the
following is still open: Is there an AEC K that is ℵ0-tame but not < ℵ0-
tame?

2. Dividing lines
This direction has two prongs. The first prong is to increase the number
of dividing lines. So far, the classification of tame AECs (and AECs in
general) has focused on the superstable or better case with a few for-
ays into strictly stable [BG, BVa]. Towards the goal of proving Shelah’s
Categoricity Conjecture, this focus makes sense. However, this develop-
ment pales in comparison to the rich structure of classification theory
in first-order54. Exploring the correct generalizations of NIP, NTP2, etc.
may help fill out the AEC version of this map. It might be that stronger
locality hypotheses than tameness will have to be used: as we have seen
already in the superstable case, it is only known how to prove the ex-
istence of a global independence relation assuming full (< ℵ0)-tameness
and shortness.

The other prong is to turn classification results into true dividing lines. In
the first-order case, dividing lines correspond to nice properties of forking
on one side and to chaotic non-structure results on the other. In AECs,
the non-structure side of dividing lines is often poorly developed and
most results either revolve around the order property or use non-ZFC
combinatorial principle. While these combinatorial principles seem po-
tentially necessary in arbitrary AECs55, a reasonable hope is that tame
AECs will allow the development of stronger ZFC nonstructure princi-
ples. For example, Shelah claims that in AECs with amalgamation, the
order property (or equivalently in the tame context stability, see Theo-
rem 5.5.14) implies many models on a tail of cardinals. However there
is no known analog for superstability: does unsuperstability imply many
models?

3. Interaction with other fields
Historically, examples have not played a large role in the study of AECs.
Examples certainly exist because Lκ,ω sentences provide them, but the
investigation of specific classes is rarely carried out56. A better under-
standing of concrete examples would help advance the field in two ways.
First, nontrivial applications would help provide more motivation for

54Part of this structure is represented graphically at http://forkinganddividing.com by
Gabe Conant.

55For instance, result the statement “Categoricity in λ and less than the maximum number
of models in λ+ implies λ-AP” holds under weak diamond, but fails under Martin’s axiom
[She09b, Conclusion I.6.13].

56A large exception to this is the study of quasiminimal classes (see Example 5.3.2.1.(10))
by Zilber and others, which are driven by questions from algebra.
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exploring AECs57. Second, interesting applications can help drive the
isolation of new AEC properties that might, a priori, seem strange.

This interaction has the potential to go the other way as well: one can
attempt to study a structure or a class of structures by determining
where the first-order theory lies amongst the dividing lines and using the
properties of forking there. However, if the class is not elementary, then
the first-order theory captures new structures that have new definable
objects. These definable objects might force the elementary class into
a worse dividing line. However, AECs offer the potential to look at a
narrower, better behaved class. For instance, an interesting class might
only have the order property up to some length λ58 or only be able to
define short and narrow (but infinite) trees. Looking at the first-order
theory loses this extra information and looking at the class as an AEC
might move it from an unstable elementary class to a stable AEC.

4. Reverse mathematics of tameness
The compactness theorem of first-order logic is equivalent to a weak
version of the axiom of choice (Tychonoff’s theorem for Hausdorff spaces).
If we believe that tameness is a natural principle, then maybe the first-
order version of “tameness” is also, in the choiceless context, equivalent
to some topological principle: what is this principle?

5. How “natural” is tameness?
We have seen that all the known counterexamples of tameness are patho-
logical. Is this a general phenomenon? Are there natural mathematical
structures that are, in some sense, well-behaved and should be amenable
to a model-theoretic analysis, but are not tame? Would this example
then satisfy a weaker version of tameness?

6. Categoricity and tameness
We have seen that tameness helps with Shelah’s Categoricity Conjec-
ture, but there are still unanswered questions about eliminating the suc-
cessor assumption and amalgamation property. For example, does the
categoricity conjecture hold in fully < ℵ0-tame and -type short AECs
with amalgamation?

Going the other way, what is the impact of categoricity on tameness?
Grossberg has conjectured that amalgamation should follow from high
enough categoricity. Does something like this hold for tameness?

7. On stable and superstable tame AECs
From the work discussed in this survey, several more down to earth ques-
tions arise:

(a) Can one build a global independence relation in a fully tame and
short superstable AEC? See also Question 5.5.8.

57It should be noted that some prominent AEC theorists disagree with this as a motivating
principle.

58Like example the algebraically closed valued fields of rank one, Example 5.3.2.1.(15).
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(b) Is there a stability spectrum theorem for tame AECs (i.e. a converse
to Theorem 5.5.14)?

(c) In superstable tame AECs, can one develop the theory of forking
further, say by generalizing geometric stability theory to that con-
text?

5.7 Historical remarks

5.7.1 Section 5.2

Abstract elementary classes were introduced by Shelah [She87a]; see Gross-
berg [Gro02] for a history. Shelah [She87a] (an updated version appears in
[She09b, Chapter I]) contains most of the basic results in this Section 5.2,
including Theorem 5.2.9. Notation 5.2.11 is due to Baldwin and is used in
[Bal09, Chapter 14]. Galois types are implicit in [She87b] where Theorem
5.2.20 also appears. Existence of universal extensions (Lemma 5.2.25) is also
due to Shelah and has a similar proof ([She99, I.2.2.(4)]).

Splitting (Definition 5.2.22) is introduced by Shelah in [She99, Definition
3.2]. Lemma 5.2.23 is [She99, Claim 3.3]. The extension and uniqueness prop-
erties of splitting (Theorem 5.2.24) are implicit in [She99] but were first ex-
plicitly stated by VanDieren [Van06, I.4.10, I.4.12]. The order property is first
defined for AECs in [She99, Definition 4.3].

Definition 5.2.27 is implicit already in [SV99], but there amalgamation in
µ is not assumed (only a weak version: the density of amalgamation bases). It
first appears59 explicitly (and is given the name “superstable”60) in [Gro02,
Definition 7.12]. Limit models appear in [SK96, Definition 4.1] under the name
“(θ, σ)-saturated”. The “limit” terminology is used starting in [SV99]. The
reader should consult [GVV] for a history of limit models and especially the
question of uniqueness. Theorem 5.2.31 is due to VanDieren [Vanb].

Shelah’s eventual categoricity conjecture can be traced back to a question
of o [ Lo54] which eventually became Morley’s categoricity theorem [Mor65].
See the introduction to [Vasf] for a history. Conjecture 5.2.32 appears as an
open problem in [She78]. Theorem 5.2.33 is due to Shelah [She83a, She83b].
Conjecture 5.2.34 appears as [She00, Question 6.14]. Theorem 5.2.35 is the
main result of [She99]. Theorem 5.2.36 appears in [SV99, Theorem 2.2.1] un-
der GCH but without amalgamation. Assuming amalgamation (but in ZFC),

59With minor variations: joint embedding and existence of a model in µ is not required.
60This can be seen as a somewhat unfortunate naming, as there are several potentially

non-equivalent definitions of superstability in AECs. Some authors use “no long splitting
chains”, but this omits the conditions of amalgamation, no maximal models, and joint
embedding in µ. Perhaps it is best to think of the definition as a weak version of having a
good µ-frame.
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the proof is similar, see [GV, Corollary 6.3]. The proof of Shelah and Villave-
ces omits some details. A clearer version will appear in [BGVV]. An easier
proof exists if the categoricity cardinal has high-enough cofinality, see [She99,
Lemma 6.3]. Question 5.2.37 is stated explicitly as an open problem in [Bal09,
Problem D.1.(2)]. Theorems 5.2.38 and 5.2.39 are due to VanDieren and the
second author [VV, Section 7].

Good frames are the main concept in Shelah’s book on classification theory
for abstract elementary classes [She09b]. The definition appears at the begin-
ning of Chapter II there, which was initially circulated as Shelah [She09a].
There are some minor differences with the definition we give here, see the
notes for Section 5.5 for more. Question 5.2.40 originates in the similar ques-
tion Baldwin asked for L(Q) [Fri75, Question 21]. For AECs, this is due to
Grossberg (see the comments around [She01a, Problem 5]). A version also
appears as [She00, Problem 6.13]. Theorem 5.2.41 is due to Shelah [She09c,
Theorem VI.0.2]. A weaker version with the additional hypothesis that the
weak diamond ideal is not λ++-saturated appears is proved in Shelah [She01a],
see [She09b, Theorem II.3.7]. Corollary 5.2.42 is the main result of [She01a].
Theorem 5.2.43 is the main result of [She09b, Chapter II]. Claim 5.2.0.1 is
implicit in [She09b, Discussion III.12.40] and a proof should appear in [Sheb].
Theorem 5.2.44 is due to Shelah and appears in [She09b, Section IV.4]. She-
lah claims that categoricity in a proper class of cardinals is enough but this
is currently unresolved, see [BVb] for a more in-depth discussion. Theorems
5.2.44, 5.2.45, and 5.2.46 appear in [She09b, Section IV.7]. However we have
not fully checked Shelah’s proofs. A stronger version of Theorem 5.2.44 has
been shown by VanDieren and the second author in [VV, Section 7], while
[Vasc, Section 11] gives a proof of Theorems 5.2.45 and 5.2.46 (with alternate
proofs replacing the hard parts of Shelah’s argument).

5.7.2 Section 5.3

The version of Definition 5.3.1 using types over sets is due to the sec-
ond author [Vas16b, Definition 2.22]. Type-shortness was isolated by the first
author [Bon14c, Definition 3.3]. Locality and compactness appear in [BS08].
Proposition 5.3.4 is folklore. As for Proposition 5.3.3, the first part appears
as [Bon14c, Theorem 3.5], the second and third first appear in Baldwin and
Shelah [BS08], and the third is implicit in [She99] and a short proof appears
in [Bal09, Lemma 11.5].

In the framework of AECs, the Galois Morleyization was introduced by
the second author [Vas16b] and Theorem 5.3.5 is proven there. After the work
was completed, we were informed that a 1981 result of Rosick [Ros81] also
uses a similar device to present concrete categories as syntactic classes. That
tameness can be seen as a topological principle (Theorem 5.3.6) appears in
Lieberman [Lie11b].

On Section 5.3.2.1:

1. Tameness could (but historically was not) also have been extracted from
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the work of Makkai and Shelah on the model theory of Lκ,ω, κ a strongly
compact [MS90]. There the authors prove that Galois types are, in some
sense, syntactic [MS90, Proposition 2.10]61. The first author [Bon14c]
generalized these results to AECs and later observations in [BTR, BU]
slightly weakened the large cardinal hypotheses.

2. Theorem 5.3.8 is due to Shelah. The first part appears essentially as
[She99, II.2.6] and the second is [She09b, IV.7.2]. The statement given
here appears as [Vasc, Theorem 8.4].

3. Theorem 5.3.10 is essentially [She01b, Conclusion 3.7].

4. This is folklore and appears explicitly on [GK, p. 15].

5. The study of the classification theory of universal classes starts with
[She87b] (an updated version appears as [She09c, Chapter V]), where
Shelah claims a main gap for this framework (the details have not fully
appeared yet). Theorem 5.3.11 is due to the first author [Bonc]. A full
proof appears in [Vasf, Theorem 3.7].

6. Finitary AECs were introduced by Hyttinen and Kesl [HK06]. That ℵ0-
Galois-stable ℵ0-tame finitary AECs are < ℵ0-tame is Theorem 3.12
there. The categoricity conjecture for finitary AECs appears in [HK11].
The beginning of a geometric stability theory for finitary AECs appears
in [HK16].

7. Homogeneous model theory was introduced by Shelah in [She70]. See
[GL02] for an exposition. The classification theory of this context is well
developed, see, for instance [Les00, HS00, HS01, BL03, HLS05]. For con-
nections with continuous logic, see [BB04, SU11].

8. Averageable classes are introduced by the first author in [Bona].

9. A summary of continuous first-order logic in its current form can be found
in [BYBHU08]. Metric AECs were introduced in [HH09] and tameness
there is first defined in [Zam12].

10. Quasiminimal classes were introduced by Zilber [Zil05]. See [Kir10] for
an exposition and [BHHKK14] for a proof of the excellence axiom (and
hence of tameness).

11. That the λ-saturated models of a first-order superstable theory forms an
AEC is folklore. That it is tame is easy using that the Galois types are
the same as in the original first-order class.

12. Superior AECs are introduced in [GK].

13. Hrushovski fusions are studied as AECs in [ZV].

14. This appears in [BET07].

15. This is analyzed in [Bonb].

61This was another motivation for developing the Galois Morleyization.



A survey on tame abstract elementary classes 173

The Hart-Shelah example appears in [HS90], where the authors show that
it is categorical in ℵ0, . . . ,ℵn but not in ℵn+1. The example was later exten-
sively analyzed by Baldwin and Kolesnikov [BK09] and the full version of The-
orem 5.3.14 appears there. The Baldwin-Shelah example appears in [BS08].
The Shelah-Boney-Unger example was first introduced by Shelah [Shec] for a
measurable cardinal and adapted by Boney and Unger [BU] for other kinds
of large cardinals.

5.7.3 Section 5.4

The categoricity transfer for universal classes is due to the second author
[Vasf]62. This section presents a proof incorporating ideas from the later paper
[Vase]. If not mentioned otherwise, results and definitions there are due to the
second author.

Lemma 5.4.5 is folklore when atomic equivalence is transitive but is [Vasf,
Theorem 4.14] in the general case. As for Theorem 5.4.6, one direction is
folklore. The other direction (tameness implies that the good frame can be
extended) is due to the authors, see the notes on Theorem 5.5.26 below. The
version with weak amalgamation (Theorem 5.4.7) is due to the second author.

Theorem 5.4.10 is due to Grossberg and VanDieren [GV06a]. Definition
5.4.11 is due to Shelah [She09b, Definition III.3.2]. The account of orthogo-
nality and unidimensionality owes much to Shelah’s development in [She09b,
Sections III.2,III.6] but differs in some technical points explained in details in
[Vase]. Theorem 5.4.16 is due to Shelah [She09b, III.2.3]. Theorem 5.4.17 is
due to Shelah with stronger hypotheses [She09b, Claim III.12.39] and to the
second author as stated [Vase, Theorem 2.15].

5.7.4 Section 5.5

Question 5.1.3 is implicit in [She99, Remark 4.9]. A more precise statement
appears as [BGKV16, Question 7.1].

The presentation of abstract independence given here appears in [Vasa]63.
The definition of a good frame given here (Definition 5.5.12) also appears
in [Vasa, Definition 8.1]. Compared to Shelah’s original definition ([She09b,
Definition II.2.1]), the definition given here is equivalent [Vasa, Remarks 3.5,
8.2] except for three minor differences:

• The existence of a superlimit model is not required. This has been
adopted in most subsequent works on good frames, including e.g. [JS13].

• Shelah’s definition requires forking to be defined for types over models
only. However it is possible to close the definition to types over sets (see
for example [BGKV16, Lemma 5.4]).

62Previous version of this preprint claimed the full categoricity conjecture but gaps have
been found and a complete solution has been delayed to a sequel.

63There independence relations are not required to satisfy base monotonicity.
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• Shelah defines forking only for a subclass of all types which he calls basic.
They are required to satisfy a strong density property (if M < N , then
there is a basic type over M realized in N). If the basic types are all the
(nonalgebraic) types, Shelah calls the good frame type-full. In the tame
context, a type-full good frame can always be built (see [GV, Remark
3.10]). Even in Theorem 5.2.41, the frame can be taken to be type-full
(see [She09b, Claim III.9.6]). The bottom line is that in all cases where
a good frames is known to exist, a type-full one also exists.

Question 5.5.8 appears (in a slightly different form) as [BGKV16, Question
7.1]. Theorem 5.5.9 is Corollary 5.19 there64. As for Proposition 5.5.10, all are
folklore except (2) which appears as [Vasa, Lemma 4.5] and symmetry which
in this abstract framework is [BGKV16, Corollary 5.18] (in the first-order
case, the result is due to Shelah [She78] and uses the same method of proof:
symmetry implies failure of the order property).

Galois stability was defined for the first time in [She99]. The second part
of Theorem 5.5.13 is due to Grossberg and VanDieren [GV06b, Corollary 6.4].
Later the argument was refined by Baldwin, Kueker, and VanDieren [BKV06]
to prove the first part. Theorem 5.5.14 is due to the second author [Vas16b,
Theorem 4.13].

Averages in the nonelementary framework were introduced by Shelah (for
stability theory inside a model) in [She87b], see [She09c, Chapter V.A]. They
are further used in the AEC framework in [She09b, Chapter IV]. The Galois
Morleyization is used by the authors to translate Shelah’s results from stability
theory inside a model to tame AECs in [BVc, Section 5]. They are further used
in [GV].

That tameness can be used to obtain a global uniqueness property for
splitting (Theorem 5.5.15) is due to Grossberg and VanDieren [GV06b, Theo-
rem 6.2]. < κ-satisfiability was introduced as κ-coheir in the AEC framework
by Grossberg and the first author [BG]. This was strongly inspired from the
work of Makkai and Shelah [MS90] on coheir in Lκ,ω, κ a strongly compact.
A weakening of Theorem 5.5.19 appears in [BG], assuming that coheir has
the extension property. The version stated here is due to the second author
and appears as [Vas16b, Theorem 5.15]. Theorem 5.5.20 is [BG, Theorem 8.2].
The definition of µ-forking (5.5.16) is due to the second author and appears
in [Vas16a]. Theorem 5.5.17 is proven in [Vasa, Section 7]. Theorem 5.5.21 is
due to the authors [BVc, Theorem 6.10].

Theorem 5.5.22.(1) is due to the second author [Vasa, Proposition 10.10].
Theorem 5.5.22.(2) is due to VanDieren and the second author [VV, Corollary
6.10] (an eventual version appears in [BVc], and an improvement of VanDieren
[Van16] can be used to obtain the full result). Theorem 5.5.22.(3-4) are also
due to VanDieren and the second author [VV], although (3) and (4) were

64Of course the general idea of looking at forking as an abstract independence relation
which turns out to be canonical is not new (see for example Lascar’s proof that forking is
canonical in superstable theories [Las76, Theorem 4.9]).
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observed by the second author in [Vas16a] in the categorical case (i.e. when
we know that the union of a chain of λ-Galois-saturated models is λ-Galois-
saturated).

Theorem 5.5.23 and Remark 5.5.25 are due to Grossberg and the sec-
ond author [GV]. The notion of a superlimit model appears already in She-
lah’s original paper on AECs [She87a] (see [She09b, Chapter I]). Shelah intro-
duces solvability in [She09b, Definition IV.1.4]. Lemma 5.5.24 appears in [GV,
Lemma 3.8]. When κ is strongly compact, it can be traced back to Makkai-
Shelah [MS90, Proposition 4.12].

Theorem 5.5.26 is due to the authors and appears in full generality in
[BVd]. Rami Grossberg told us that he privately conjectured the result in
2006 and told it to Adi Jarden and John Baldwin (see also the account in the
introduction to [Jar16]). In [Bon14b, Theorem 8.1], the first author proved
the theorem with an additional assumption of tameness for two types used to
transfer symmetry. Later, [BVd] showed that symmetry transfer holds with-
out this extra assumption. At about the same time as [BVd] was circulated,
Adi Jarden gave a proof of symmetry from tameness assuming an extra prop-
erty called the continuity of independence (he also showed that this property
followed from the existence property for uniqueness triples). The argument in
[BVd] shows that the continuity of independence holds under tameness and
hence also completes Jarden’s proof.

Independent sequences were introduced by Shelah in the AEC framework
[She09b, Definition III.5.2]. A version of Theorem 5.5.27 for models of size λ
is proven as [She09b, III.5.14] with the assumption that the frame is weakly
successful. This is weakened in [JS12], showing that the so-called continu-
ity property of independence is enough. In [BVd], the continuity property is
proven from tameness and hence Theorem 5.5.27 follows, see [BVd, Corollary
6.10].

Definition 5.5.28 is due to the second author [Vasa, Definition 8.1]. The
definition of almost good (Definition 5.5.29) is implicit there and made explicit
in [Vasf, Definition A.2]. Fully good and almost fully good are also defined
there. Theorem 5.5.31 and Theorem 5.5.37 are due to the second author. A
statement with a weaker Hanf number is the main result of [Vasa] (the proof
uses ideas from Shelah [She09b, Chapter III] and Adi Jarden [Jar16]). The
full result is proven in [Vasf, Appendix A]. What it means for a frame to
be successful (Definition 5.5.32) is due to Shelah [She09b, Definition III.1.1]
but we use the equivalent definition from [Vasa, Section 11]. Type locality
(Definition 5.5.34) is introduced by the second author in [Vasa, Definition
14.9]. Corollary 5.5.39 and Theorem 5.5.40 is implicit in [Vasa] (with the
Hanf number improvement in [Vasf, Appendix A]). Theorem 5.5.41 is due to
the second author [Vasf, Appendix C].

Theorem 5.5.43 appears in [GV06c]. A version of Theorem 5.5.44 is al-
ready implicit in [Vasa, Section 10]. Shelah’s omitting type theorem (Theorem
5.5.45) appears in its AEC version as [She99, Lemma II.1.6] and has its roots
in [MS90, Proposition 3.3], where a full proof already appears. Corollary 5.5.46
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is due to the second author [Vasc, Theorem 9.8]. The categoricity conjecture
for tame AECs with primes (Theorem 5.5.47) is due to the second author
(the result as stated here was proven in a series of papers [Vasf, Vase, Vasc],
see [Vasc, Corollary 10.9]). The converse from Remark 5.5.48 is stated in
[Vasb]. The categoricity conjecture for homogeneous model theory is more or
less implicit in [She70] and is made explicit by Hyttinen in [Hyt98] (when the
language is countable, this is due to Lessmann [Les00]65). More precisely, Hyt-
tinen proves that categoricity in a λ > |T | with λ 6= |T |+ω implies categoricity
in all λ′ ≥ min(λ, h(|T |)). Corollary 5.5.49 is stronger (as it includes the case
λ = |T |+ω) and is due to the second author [Vase, Theorem 0.2]. Theorem
5.5.50 is due to the second author [Vasc, Corollary 10.6]. Theorem 5.5.51 is
due to the second author (although the main idea is due to Shelah, and the
only improvement given by tameness is the Hanf number, see Theorem 5.2.46).
With full tameness and shortness, a weaker version appears in [Vasa, Theorem
1.6], and the full version using only tameness is [Vasc, Corollary 11.9]. The
second part of Corollary 5.5.54 also appears there.

5.7.5 Section 5.6

Several of these questions have been in the air and there is some overlap
with the list [Bal09, Appendix D]. The question about the length of tameness
appears in the first author’s Ph.D. thesis [Bon14a]. A question about exam-
ples of tameness and nontameness appear in [Bal09, Appendix D.2]. Whether
failure of superstability implies many models is conjectured in [She99] (see the
remark after Claim 5.5 there) and further discussed at the end of [GV].

The idea of exploring the reverse mathematics of tameness (and the spe-
cific question of what tameness corresponds to if compactness is the Tychnoff
theorem for Hausdorff spaces) was communicated to the second author by
Rami Grossberg. That tameness follows from categoricity was conjectured
by Grossberg and VanDieren [GV06a, Conjecture 1.5]. That one can build a
global independence relation in a fully tame and short superstable AEC is
conjectured by the second author in [Vasa, Section 15].

65In that case, a stronger statement can be proven: if D is categorical in some uncountable
cardinal, then it is categorical in all uncountable cardinals.
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