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What do the theorems of Gödel-Deligne, Chevalley-Tarski, Ax-Grothendieck,
Tarski-Seidenberg, and Weil-Hrushovski have in common? And what do they have
to do with the book under review? Each of these theorems was proven by tech-
niques in a particular mathematical area and by model theoretic methods. In fact,
these model theoretic methods often show a pattern that extends across these areas.

What are model theoretic methods? Model theory is the activity of a ‘self-
conscious’ mathematician. This mathematician distinguishes an object language
(syntax) and a class of structures for this language and ‘definable’ subsets of those
structures. (semantics). Semantics provides an interpretation of inscriptions in the
formal language in the appropriate structures. At its most basic level this allows the
recognition that syntactic transformations can clarify the description of the same
set of numbers. Thus, x2 − 3x < −6 is rewritten as x < −2 or x > 3; both
formulas define the same set of points if they are interpreted in the real numbers.

After clarifying these fundamental notions, we give an anachronistic survey of
three themes of 20th century model theory: the study of a) properties of first order
logic, b) specific first order theories, and c) classification of first order theories.
In this survey we will highlight the increasing interactions between ‘pure’ model
theory and the analysis of topics in core mathematics. Then we return to the book
at hand and see how Löwenheim’s 1915 paper [Löw67] set the stage for these
developments.

On the syntactic side, first order logic contains several logical symbols: equal-
ity, the quantifiers ∀,∃, a sequence of variables, vi, and the logical connectives
∧,¬,∨. A vocabulary τ for first order logic consists of a collection of relation and
function symbols that is appropriate for the area of mathematics being formalized.
Terms of the language based on τ are built up inductively from constant and vari-
ables using the function symbols of the language. An atomic formula has the form
R(t1, . . . tn) where R is a relation symbol with n-arguments and the ti are terms.
The first order language associated with τ is the least set of formulas containing
the atomic τ -formulas and closed under the Boolean operations and quantification
over individuals. Formulas in which each variable is bound by a quantifier are
called L-sentences.

On the semantical side, a structure for this vocabulary consists of a domain
(also denoted A) and a relation on An for each relation symbol with n arguments
(a function from An into A for each function symbol with n arguments) and with
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equality interpreted as identity. In a structure A, each variable-free term denotes
an element of A. Truth in a structure is also defined inductively: if there are no
quantifiers a sentence is true in the structure A if the interpretation of the terms
lies in the relation which is the interpretation of the formula. The truth of Boolean
combination and or quantified formulas is defined in the natural way. E.g., A |=
(∃v)φ(v) if for some a ∈ A, A |= φ(a). By a first order theory T we mean a set of
sentences for a vocabulary τ . The theory T is complete if every τ -sentence or its
negation is in T . The cardinality (|T |) of T is the number of non-logical symbols
in the vocabulary τ . An L-structure A is called a model of an L-sentence (or a
theory T ) if the sentence (each sentence in T ) is true in A.

‘First order’ means that the quantification is only over elements of the structure.
In contrast, second order logic allows quantification over subsets and relations.
Thus in second order logic one can specify the natural numbers up to isomorphism
with a full-second order induction axiom: every subset that is closed under succes-
sor and contains 0 is the entire universe. The Löwenheim theorem, which is the
focus of the book under review, asserts that every first order sentence which has
a model (of any size) has a model whose domain is countable. The more modern
version of this theorem, called the Löwenheim-Skolem theorem, asserts that any
set of first order sentences with an infinite model has models of every cardinality.
This formulation hides a fundamental contribution of Gödel [Göd29]. Consistency
is a syntactic condition: a set of sentences Σ is consistent if (with respect to some
well-behaved notion of proof) it is not possible to deduce a contradiction from Σ.
Via Gödel’s completeness theorem, it is equivalent to say that Σ has a model. The
finitary nature of proof implies the compactness theorem: a set of sentences is con-
sistent if and only if each finite subset is. In the seventies, categorical formulations
[MR77] showed the equivalence of the Gödel completeness theorem with results
of Deligne on the existence of enough points on a coherent topos. This observation
led to the sobriquet ‘Gödel-Deligne’.

The study of first order logic produces in addition to the completeness and com-
pactness theorems a number of applications of compactness to show syntactical
characterizations of semantic properties. For example, a class of structures is
closed under substructure if and only if it can be axiomatized by sentences whose
only quantifiers are initial occurrences of ∀. Similarly a class is closed under unions
of chains if and only if it can be axiomatized by ∀∃-sentences– the prefix is a se-
quence of universal quantifiers followed by a sequence of existential quantifiers.

The second theme, study of particular theories, began already in the twenties and
early thirties. A theory T admits quantifier elimination if every formula is equiv-
alent over T to a formula with no quantifiers. Tarski and Pressburger began such
studies in the 20’s with such results as quantifier elimination for the theory of the
natural numbers under addition (with predicates for divisibility by n) [Pre30]. Al-
ready in 1931, Tarski proves quantifier elimination for the first order theory of the
ordered real field [Tar31]. He notes in a footnote to [Tar51] that similar arguments
(elimination theory) show quantifier elimination for algebraically closed fields.
Robinson independently obtained the result by ideal theoretic methods [Rob54].
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Chevalley phrased it as: the projection of a constructible set is constructible. And
Joyal [Joy75] popularised the name Chevalley-Tarski theorem.

Abraham Robinson introduced the important notion of model completeness (ev-
ery formula is equivalent to one with only existential quantifiers) (e.g. the real field
without order in the vocabulary). This concept allowed Robinson to provide a
context, differentially closed fields [Rob59], for the Ritt-Kolchin theory of differ-
ential algebra. Shelah’s later development of stability theory led to proving the
uniqueness of differential closure (see [Blu68, Sac72] in characteristic 0. But this
closure is not minimal [She73]. Indeed, Shelah’s analysis provided a structural
condition (eni-NDOP) which resulted in the proof 20 years later by Hrushovski
and Sokolovic that there are 2ℵ0 non-isomorphic countable differentially closed
fields (See [Mar07]).

Tarski and Vaught introduced the crucial notion of elementary submodel
[TV56]; a structure A is an elementary submodel of a structure B if every sen-
tence (with parameters from A!) has the same truth value in both A and B. This
allows the description of the correct category for first order model theory: the col-
lection of models of a complete first order theory with elementary embeddings as
morphisms.

The Ax-Grothendieck theorem [Ax68, Gro66] asserts an injective polynomial
map on an affine algebraic variety over C is surjective. The model theoretic proof
[Ax68] (see also [Tao]) observes the condition is axiomatized by a family of ‘for
all -there exist’ first order sentences φi (one for each pair of a map and a variety).
Such sentences are preserved under direct limit and then φi are trivially true on all
finite fields. So they hold for the algebraic closure of Fp for each p (as it is a direct
limit of finite fields). Note that T = Th(C), the theory of algebraically closed
fields of characteristic 0, is axiomatized by a schema Σ asserting each polynomial
has a root and stating for each p that the characteristic is not p. Since each φi is
consistent with every finite subset of Σ, it is consistent with Σ and so proved by Σ,
since the consequences T of Σ form a complete theory.

Work of many model theorists led to the understanding that first order theories
admitting elimination of quantifiers provided the most fruitful field of study. Elim-
ination of quantifiers can arise in two radically different ways. Morley [Mor65]
noticed that there is an extension by explicit definition of any complete first or-
der theory which has elimination of quantifiers. Most studies in pure model the-
ory adopt the convention that this has taken place. But this extension requires a
large price; the vocabulary is no longer tied to the basic concepts of the area of
mathematics. Thus it is a major enterprise to work with specific algebraic struc-
tures and add a few intelligible definitions to obtain quantifier elimination (or the
weaker model completeness). But there is a clear understanding in either case that
it is desirable to have a limited number (of alternations) of quantifiers available so
that definable sets can be analyzed. Further applications of quantifier elimination
include the Ax-Kochen-Ershov [AK65a, AK65b, AK66, Ers65] work on valued
fields solving Artin’s conjecture, Macintyre’s proof of quantifier elimination for
p-adic fields [Mac76], and Denef’s proof of the rationality of the Poincaré series
[Den84].
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The notion of categoricity was introduced by Huntington at the beginning of the
20th century: A sentence or theory Σ is categorical if it has exactly one model
(up to isomorphism). The Löwenheim theorem (as generalized) tells us that no
first order theory with an infinite model is categorical. Model theorists eventually
discovered that the most useful form of this concept was categoricity in power (all
models of Σ with the same cardinality are isomorphic). Morley [Mor65] proved
that a first order theory in a countable vocabulary is categorical in one uncountable
cardinality if and only if it is categorical in every uncountable cardinality. More
importantly, there is a structure theory for models of each such theory. There is a
formula whose solutions admit a dimension theory similar to that for vector spaces.
And every model is determined by the solution set in it of that formula [BL71].

Around 1970 Shelah burst on the scene with a revolutionary program, classify-
ing theories. The 25 page abstract introducing [She70] outlines the new paradigm
for model theory. The Stone space S(A) of a set A ⊂ M |= T is the space of
ultrafilters on the Boolean algebra of formulas (with one free variable) with pa-
rameters from A (up to T -equivalence). Shelah defined for each countable theory
T its stability function: fT (κ) = sup{|S(A)| : |A| ≤ κ}. His remarkable theorem
asserts: fT is one of four functions, the identity (ω-stable), the identity above 2ℵ0

(superstable), κω (stable), and 2κ (unstable). More importantly, if the function is
one of the first three (T is stable), then the models of T admit a ‘dimension the-
ory’. By categorizing first order theories into a small finite number of classes he
provided a tool that continues to dominate the area today. The prescient ideas of
[She75] were still being mined or rediscovered thirty years later.

Stability theory, summarized in [She91], begins by the classification of com-
plete first order theories by translating the four possibilities for stability function
fT (κ) into certain ‘syntactic conditions’. For example, slightly roughly, a theory is
unstable if it interprets a linear ordering on n-tuples for some n. If a theory is not
stable it has the maximal number of models in every uncountable cardinality. If it
is stable, there is a notion of independence, generalizing Van Der Waerden’s. This
notion of independence allows one to ascribe dimensions to certain subsets of the
universe and eventually (modulo some more technical conditions) to decompose
each model into a tree of countable submodels.

This classification leads to two major kinds of theories (the main gap): clas-
sifiable and creative/chaotic. If a theory T is classifiable, then all models of any
cardinality are controlled by countable submodels via a mechanism (decomposi-
tion into a tree of submodels) which is the same for all such theories. In particular,
this implies that the number of models in cardinality ℵα is bounded by iβ(α)1 (for
some β < |T |+). In contrast, the number of models in ℵα of a chaotic theory is
2ℵα ; essentially new methods of creating models are always needed. The general
idea of a structure theory is to isolate ‘definable’ subsets of models of a theory that
admit a dimension theory analogous to that in vector spaces. And then to show that

1The beth function is defined by recursion: iβ+1(α) = 2iβ(α) where i0(α) = ℵα and sups are
taken at limit ordinals.
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all models are controlled by a family of such dimensions. Theories that are cate-
gorical in power are the simplest case. There is a single dimension and the control
is very direct.

The fine structure of the independent sets was investigated by the methods of
geometric stability theory in the eighties. The spark was the proof by Zilber [Zil84]
and Cherlin, Harrington, and Lachlan [CHL85] that no complete theory categorical
in every infinite cardinality could be axiomatized by a single first order sentence.
Although this problem is phrased as a logical one, the solution reveals deep struc-
tural properties of each model of such a theory (Compare [Pil94]). The [CHL85]
proof relied on the classification of finite simple groups. Zilber’s proof avoided
this by providing a new proof of the classification of finite two-transitive groups
that is fully worked out in [Eva86]. Hrushovski took a decisive step by interpreting
groups and fields in structures based on technical model theoretic properties of the
structure and then using algebraic properties of the interpreted structure to solve
purely model theoretic problems (e.g. [Hru90]). Pillay’s book [Pil96] summarises
this synthesizes of the local geometric analysis with Shelah’s techniques for global
analysis: orthogonality, canonical bases, regular types, etc.. Hrushovski combined
these methods with a deep understanding of Diophantine geometry to provide fun-
damental advances related to the Manin-Mumford conjecture [Bou99, Hru96].

At the base of Shelah’s hierarchy are the so called ω-stable theories. One of the
early applications of this concept was the proof that differentially closed fields of
characteristic zero admit a canonical ‘completion’ (prime model) of each subset
but this extension is not minimal. A large team of model theorists [BN94, ABC08]
has been investigating groups of finite Morley rank (a particularly strong form of
ω-stability). They have developed a strong analogy to the analysis of the finite
simple groups aimed at the conjecture: a simple group of finite Morley rank is
an algebraic group over an algebraically closed field. This study builds on and
extends the finite simple group machinery. The Weil-Hrushovski theorem: Every
constructible group is definably isomorphic to an algebraic group (Theorem 4.13
of [Poi87]) arose in this analysis.

There are however weaker notions of ‘well-behaved theory’ available, which
allow the investigation of the definable subsets of chaotic theories; these include
the methods of study of simple, o-minimal and theories without the independence
property (nip). Although the notion of simple theory was introduced by She-
lah in [She80], its significance only became clear with the further development
of both applications to difference fields (e.g. [CH99])and a definitive grounding
of the model theoretic notions as a weakening of the notion of independence in
[KP97]. The notion of o-minimality returns to our first example. An ordered
structure is o-minimal if every definable set is a Boolean combination of intervals
[PC86]. Tarski’s quantifier elimination theorem [Tar31] (also known as the Tarski-
Seidenberg theorem) shows the real field is o-minimal. More dramatically, Wilkie
showed the real field with exponentiation is o-minimal [Wil96]. This spurred a still
continuing study of o-minimal structures which has many connections with real al-
gebraic geometry [dD99] and led, for example, to a solution of a problem of Hardy
[vdDMM97].
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A later generation of model theorists takes quantifier elimination a step further
and seeks ‘elimination of imaginaries’. Shelah introduced the notion of imaginary
elements – a name for each equivalence class of each definable equivalence re-
lation. Poizat [Poi83] provided the tools for exploiting this concept in algebraic
contexts, by noting that many important theories admit elimination of imaginaries.
This concept is further exploited in a major fusion of sophisticated model theory
and valued fields [HHM07]. The role of definability as a tool for mathematical
investigation is further highlighted by the model theoretic explanations of motivic
integration (e.g. [CL08, DL02, HKxx]).

There are important mathematical structures, e.g. complex exponentiation
which exhibit the Gödel undecidability phenomena and so cannot be analyzed by
these techniques in first order logic. However, Zilber has provided a means for
such analysis in the logic Lω1,ω(Q) [Zil04, Zil05]. (Now formulas may contain
countable disjunctions and conjunctions; the quantifier Q, means, ‘there exist un-
countably many’.) This study also draws on Shelah’s notion of excellent classes
of sentences in Lω1,ω [She83a, She83b]. Zilber’s analysis led to a number of strik-
ing conjectures in algebraic number theory; Shelah provides a more general theory
with profound connections to axiomatic set theory [Bal, She00]. As in the first or-
der case, he provides conditions on countable structures that determine the behav-
ior of models of all cardinalities. In this case, Zilber identifies algebraic conditions
[Zil06, Zil03] (studied by such as Serre and Bashmakov), which are the special
cases of excellence for covers of Abelian varieties.

The mention of Lω1,ω brings us back to the book at hand. Badesa analyzes
in detail one of the seminal papers in model theory. The division of logical lan-
guages into first and second order, finitary and infinitary had not been made when
Löwenheim wrote. Coming from the algebraic tradition of Pierce and Shroeder,
Löwenheim was dealing implicitly with infinitary first order logic - now formal-
ized as L∞,ω. Lówenheim’s actual paper had limited direct influence; the work of
Skolem quickly superceded it. Van Heijenoort’s epic sourcebook of mathematical
logic [VH67] reprinted the Löwenheim paper along with an introduction identi-
fying an alleged flaw in the proof. Badesa describes two possible interpretations
of Löwenheim’s theorem: a) if a first order formula has a model, then it has a
countable model; b) if a first order formula φ has a model M then M has a count-
able substructure M0 in which φ is also true. Badesa coherently argues that Van
Heijenoort misinterpreted Löwenheim’s argument as a giving a flawed argument
for a) when in fact Löwenheim gave a more correct argument for b). As Avigad
[Avi06] points out in a review that focuses more directly on Badesa’s book, the
source of the confusion is that the distinction between syntax and semantics that
is fundamental for the model theoretic advances described in this review were not
available to Löwenheim but rather arose in the context of his work. Strikingly,
crucial problems in the modern study of infinitary logic stem precisely from the
failure of the upward Löwenheim-Skolem theorem.

The essence of model theory is its ‘metamathematical’ orientation. The common
properties (originally syntactic but increasingly structural) of various mathematical
theories or families of theories are isolated and general arguments are provided that
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enable generalizations and improvements. This review has only sketched the de-
velopments in this field in the almost a century since Löwenheim’s seminal result.
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