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Abstract

We propose a criterion to regard a property of a theory (in first or second order
logic) as virtuous: the property must have explanatory power. Explanatory power
is interpreted in pragmatic terms as having mathematical consequences for the the-
ory. We then rehearse some unpublished results of Marek, Magidor, H. Friedman
and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For
first order logic, categoricity is trivial. But ‘categoricity in power’ has enormous
structural consequences for any of the theories satisfying it. This virtue extends to
other theories according to properties defining the stability hierarchy. We describe
arguments using the properties, which essentially involve formalizing mathemat-
ics, to obtain results in ‘core’ mathematics. Further these methods (i.e. the stability
hierarchy) provide an organization for much mathematics which more than fulfils
a dream of Bourbaki.

1 What is the role of categoricity?

In correspondence in 2008, Michael Detlefsen raised a number of questions about the
role of categoricity. We discuss two of them here renumbering, for convenience, in this
paper.

Question I (philosophical question)1: (A) Which view is the more
plausible—that theories are the better the more nearly they are categor-

∗I realized while writing that the title was a subconscious homage to the splendid historical work on
Completeness and Categoricity by Awodey and Reck[3].

1These were questions III.A and III.B in the original letter. I thank Professor Detlefsen for permission to
quote this correspondence.
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ical, or that theories are the better the more they give rise to significant
non-isomorphic interpretations?

(B) Is there a single answer to the preceding question? Or is it rather the
case that categoricity is a virtue in some theories but not in others? If so,
how do we tell these apart, and how to we justify the claim that categoricity
is or would be a virtue just in the former?

I begin the main part of the paper by analyzing Question I.B. What does it
mean for a property of a theory to be virtuous? That is, before one can decide the virtue
of categoricity, one must clarify what is meant by virtue. In current model theoretic
parlance ‘categoricity’ generally means ‘categorical in some uncountable power’ while
in philosophy the traditional meaning: ‘a theory has exactly one model’ is retained. We
clarify this terminology in a first brief section.

After providing criteria for a ‘good or virtuous property’ in Section 2, we
argue in Section 3 that for second order logic categoricity is interesting for a few sen-
tences describing particular structures. But this interest arises from the importance of
those structures and not from any intrinsic consequence of 2nd order categoricity for
arbitrary theories. Section 4 contains the main argument. Formalization impacts math-
ematical practice most directly not because of its foundational aspect but by the direct
application of formal methods. In particular, the study of first order theories is a sig-
nificant mathematical tool. And identifying virtuous properties of first order theories
is a key part of that tool. In Subsection 4.1, we expound in detail the distinction (made
for example in [15]) between the axiomatic method and formal methods. We argue
that the study of formal theories (in particular by stability theoretic means) a) provides
a scheme for organizing mathematics and b) is an effective mathematical tool. Sec-
tions 4.1 through 4.4 contains the argument for a). In Subsection 4.2, we argue that
while categoricity is trivial for first order theories, categoricity in power is a notion
with significant explanatory power. The mere fact a theory T is categorical in power
tells us a great deal about the models T . Subsection 4.3 provides several example of
completeness of a theory as mathematical tool. Further categoricity in power leads to
a general dimension theory for models of first order theories with broad applications to
organize and to do mainstream mathematics. We elaborate on this in Subsection 4.4. In
Subsection 4.5 we provide some examples of the uses of model theory in mathematics
stressing the connections to the properties of theories described above. In Subsec-
tion 4.6 we give a more extended treatment of one of the topics in Subsection 4.5,
groups of finite Morley rank. We summarize the study of categoricity in Lω1,ω in Sub-
section 5.1. In Subsection 5.2, we expound recent work of Hyttinnen, Kangas, and
Väänänen that invoke the first order analysis to obtain striking results on categoricity
in infinitary second order logic. Section 6 summarizes the argument.
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2 Framing the Question
{quest}

We address Question I along two axes, ‘Why is the theory studied and what is the
logic?’. But first we analyze the underlying issue. What are the criteria by which
one property of a theory is judged better than another? After fixing terminology in
Subsection 2.1, we provide in Subsection 2.2 our criteria for what makes a property of
theories virtuous.

2.1 Terminology
{term}

I fix the following terminology.

A theory T is a collection of sentences in some logic L. (We will consider first
order, second order, Lω1,ω , L2

κ,ω and Lω1,ω(Q).) I assume the existence of a semantics
for each logic is defined in ZFC.

For simplicity, we will assume that T is consistent (has at least one model),
has only infinite models, and is in a countable vocabulary.

T is categorical if it has exactly one model (up to isomorphism).

T is categorical in power κ if it has exactly one model in cardinality κ. T is
totally categorical if it is categorical in every infinite power.

Definition 2.1.1. 1. A deductive system is complete if for every φ

` φ if and only if |= φ.

2. A theory T in a logic L is (semantically) complete if for every sentence φ ∈ L

T |= φ or |= ¬φ.

3. A theory T in a logic L is (deductively) complete if for every sentence φ ∈ L

T ` φ or ` ¬φ.

Note that under these definitions, every categorical theory is complete. Fur-
ther every theory in a logic which admits upward and downward Löwenheim-Skölem
theorem for theories that is categorical in some infinite cardinality is complete. First
order logic is the only one of our examples that satisfies this condition without any
qualification.

Note that for any structureM and any logicL, ThL(M) = {φ ∈ L : M |= φ}
is a complete theory.
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2.2 Criteria for evaluating properties of theories
{criteria}

I take the word virtue in Question I to mean: the property of theories has explanatory
value. For categoricity to have explanatory value it would have to be that some prop-
erties of theories are explained by them being categorical. And this should be more
than just having only one model. We will note in Subsection 3 that the mere fact of
categoricity has few consequences.

A property could be explanatory because it has useful equivalents. For exam-
ple a first order theory T is model complete if every submodel N of a model M is an
elementary submodel N ≺ M . This is equivalent to every formula ψ(x) is equivalent
over T to a formula (∃y)φ(x,y) where φ is quantifier free. This version is of enor-
mous help in analyzing the definable subsets of a model of T . Or as we’ll see it could
be because the property (e.g. categoricity in power) gives rich structural information
about the models of T .

Usually we will interpret explanation2 in a pragmatic vein. What are the con-
sequences for the theory or for models of the theory that follow from this property.
We will be particularly interested in ‘structural properties’, information about how the
models of the theory are constructed from simpler structures. So a property of theories
is virtuous if it has mathematical consequences beyond the mere fact asserted. In this
context Shelah’s notion of a dividing line provides those properties which are ‘most
virtuous’.

A dividing line is not just a good property, it is one for which we have some
things to say on both sides: the classes having the property and the ones
failing it. In our context normally all the classes on one side, the “high”
one, will be provably “chaotic” by the non-structure side of our theory,
and all the classes on the other side, the “low” one will have a positive
theory. The class of models of true arithmetic is a prototypical example
for a class in the “high” side and the class of algebraically closed field the
prototypical non-trivial example in the “low” side.3

We will argue in general that categoricity is not very virtuous. It’s importance
is as a qualifying sign that a theory describing a particular structure has succeeded.
But for first order theories, categoricity in power is an important property of a theory.
Further we will argue that restricting the number of models in a cardinal is a sign that
the models of the theory have a strong structure theory.

2Our view of explanation differs from that of Kitcher or Steiner; this is a matter for further study. For
now, just note that in general Kitcher tries to evaluate the explanatory value of an entire system and Steiner
discusses the explanatory value of a particular proof. In contrast, we look at the family of all properties of a
theory and try to compare the relative explanatory value of different properties.

3See page 3 of [56]. Shelah elaborates this theme in Section 2, ‘For the logically challenged’ of the same
chapter.
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3 Categoricity of Second Order Theories
{2nd}

As we argue in Section 4.1, Löwenheim-Skolem conditions undermine the significance
of categoricity in logics weaker than second order. In this section we argue against cat-
egoricity per se as a significant property of second order theories, while acknowledging
the importance of noticing certain axiomatizations are categorical.

We need to distinguish here between the categoricity of an axiomatization4

and the categoricity of a theory. One aim of axiomatization is to describe a particular,
fundamental structure. There are really very few such structures. In addition to the
reals and N one could add Z,C,Q and of course real geometry. In the 20th century
such structures as the p-adic numbers enter the canon. Given the ease described below
of obtaining complete second order theories, categoricity is a necessary condition for
calling a second order axiomatization of a theory successful. But it is not sufficient5.
The goal of an axiomatization is to illuminate the central intuitions about the structure.
The real linear order could be given a categorical axiomatization by describing the
construction of the rationals from the natural numbers and then the reals as Cauchy
sequences of rationals. As pointed out in [62], this construction takes place in Vω+7.
A more direct categorical axiomatization of the real order is as a complete linear order
with a countable dense subset. This axiomatization highlights the properties needed for
the foundations of calculus[59]. Thus the interest in categoricity is not really that the
theory is categorical but in the particular axiomatization that expresses the intuitions
about the target structure.

From the perspective of providing a unique description of our intuitions, even
a categorical second order axiomatization (of say the reals) is subject to attack from
radically different perspectives (e.g. constructive mathematics or Ehrlich’s absolute
continuum[18]).

It is evident that categoricity of Th(M) implies Th(M) is semantically com-
plete for any logic; the converse fails if the logic has only a set of theories as there are
a proper class of structures. Many second order theories are categorical. Consider the
following little known results6:

Marek-Magidor (V=L) The second order theory of a countable structure is categori-
cal.

H. Friedman (V=L) The second order theory of a Borel structure is categorical.

4Following modern model theoretic practice, I say a class is L-axiomatizable if it is the class of models
of a set of L-sentences. If I want to say recursively axiomatized I add this adjective.

5This perspective is highlighted by Huntington’s initial name for categoricity, sufficiency, (See page 16
of [3]).

6These results appeared in a paper by Marek[37], its review by Magidor, and a thread
on Fom (http://cs.nyu.edu/pipermail/fom/2006-May/010544.html). They
were summarised by Ali Enayat at http://mathoverflow.net/questions/72635/
categoricity-in-second-order-logic/72659#72659. Solovay’s forcing argument for
independence is at http://cs.nyu.edu/pipermail/fom/2006-May/010549.html.
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Solovay (V=L) A recursively axiomatizable complete 2nd order theory is categorical.

Solovay It is consistent with ZFC that there is a complete finitely axiomatizable second
order theory that is not categorical.

The first two results concern the 2nd-order theory of a structure. They show
that any structure which is easily described (countable or Borel) has a categorical the-
ory. Awodey and Reck [3] point out that Carnap provided (as he realized) a false proof
that every finitely axiomatized complete 2nd order theory is categorical. Solovay’s
second result above shows this question cannot have a positive answer in ZFC.

To summarize these results, if a second order theory is complete and easily de-
scribed (recursively axiomatized) or has an intended model which is an easily described
structure (countable or Borel) then it is categorical. The fact that the most fundamental
structures were categorical7 may partially explain why it took so long for the distinc-
tion between complete and categorical to arise. As reported in [3], Fraenkel [21] had
distinguished these notions in a context of higher order logic without establishing that
they are really distinct8. {fn1}

One might argue that categority, that is provable in ZFC, is hard to achieve.
But for this argument to have much weight, one would have to get around two facts.
1) Consistently, categoricity is easy to achieve. Even in ZFC, there are many examples
of categorical structures: various ordinals, the least inaccessible, the Hanf number of
second order logic etc., etc. 2) Second order categoricity tells us nothing about the
internal ‘algebraic’ properties of the structure. So the fact that a second order theory is
categorical provides little information.

Bourbaki (page 230 of [15]) wrote9,

Many of the latter (mathematicians) have been unwilling for a long time to
see in axiomatics anything other else than a futile logical hairsplitting not
capable of fructifying any theory whatever. This critical attitude can prob-
ably be accounted for by a purely historical accident. The first axiomatic
treatments and those which caused the greatest stir (those of arithmetic by
Dedekind and Peano, those of Euclidean geometry by Hilbert) dealt with
univalent theories, i.e. theories which are entirely determined by their
complete systems of axioms; for this reason they could not be applied to
any theory except the one from which they had been abstracted (quite con-
trary to what we have seen, for instance, for the theory of groups). If the

7We follow current model theoretic practice and label a structure with any property that is satisfied by its
complete first theory. We extend this practice by saying e.g. M is 2nd-order categorical when the 2nd order
theory of M is categorical.

Indeed the recent results cited above show that under V = L each of the fundamental structures had to be
categorical.

8More precisely Awodey and Reck point out that in the 2nd edition of Fraenkel’s book (1923) he had
distinguished between categoricity and deductive completeness. In the 3rd (1928) edition he also clarifies
the distinction between syntactic and semantic completeness.

9Parenthetical references added to shorten quotation.
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same had been true of all other structures, the reproach of sterility brought
against the axiomatic method, would have been fully justified.

Bourbaki misses two critical observations about the examples of Dedekind,
Peano, and Hilbert: the axiomatizations are second order and they were explicitly in-
tended to describe certain vital structures. Nevertheless from their standpoint of inves-
tigating the impact on mathematics at large, Bourbaki reasonably ascribes sterility to
such specific axiomatizations; the goal of the axiomatizers was to understand the given
structure not generalization. Even an insightful categorical axiomatization is expected
only to explain the given structure, not to organize arguments about other structures.
The other arguments mentioned above providing many other categorical second order
structures don’t even have this benefit. Their real significance is to understanding sec-
ond order logic, telling some kinds of structures it can code (at least under V = L)10.
Even though (at least in L) there are many 2nd-order categorical structures, this fact
tells us nothing much about such structures. They have fairly simple descriptions, but
not in a way that the reflects the properties of the structure. There is no uniform con-
sequence of the statement that the second order theory T is categorical beyond ‘it has
only one model’. We will see the situation is far different for first order logic and
categoricity in power.

4 First order logic
{effform}

In this section we will see that there are a family of properties of first order theories
which are virtuous in the sense of Subsection 2.2. Most were generated by Shelah’s
search for dividing lines in the spectrum of first order theories. In the first section,
we distinguish between two uses of formalization. We introduce the notion of obtain-
ing structural information about the models of a theory T by global properties11 of T
with the motivating example of categoricity in power (Subsection 4.2). Subsection 4.3
discusses how completeness yields connections among the models of such a complete
theory and thus complete theories become the natural class of theories to study. In ad-
dition the classification imposed by these properties has a small finite number classes
yielding a hierarchy of theories. We introduce in Subsection 4.4 various formal (sytac-
tic) properties that explain common properties of classes of complete first order the-
ories and so are virtuous in the sense of Subsection 2.2. Finally in Subsection 4.5,
we explore how the properties described earlier in the Section are exploited in current
mathematical research.

10The ‘idea’ of the arguments presented on fom (See footnote 3) is that for well-ordered structures one
can express in 2nd order logic that a model is minimal (no initial segment is a model) provided that the
axiomatization can be properly coded. The coding can be done in L. A similar approach (by Scott) proving
that semantic completeness does imply categoricity for pure second order logic is Proposition 3 of [4].

11Here a global property of a theory such as categoricity or a place in the stability hierarchy is distinguished
from local properties of the models of T .
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4.1 Formal methods as a mathematical tool
{formal}

In [31] and [9], Juliette Kennedy and I have discussed the development of some
‘formalism-free’ approaches in logic and especially in model theory. The goal of this
section is to show how formal symbolic logic plays an increasingly important role
in core mathematical investigations and provides schemes for organizing mathematics
aimed not at finding foundations but at organization around mathematical ideas that
link apparently diverse areas of mathematics12. We will see in Section 4.2 that these
ideas develop from appropriate weakenings of categoricity and that they provided an
unexpected fulfillment of some hopes of Bourbaki. We give our definition of formal-
ization in detail to come to grips with the thoughtful paper of Bourbaki [15] entitled
‘The Architecture of Mathematics’.

Definition 4.1.1 (Formalization). A full formalization involves the following compo-
nents.

1. Vocabulary: specification of primitive notions.

2. Logic:

(a) Specify a class13 of well formed formulas.
(b) Specify truth of a formula from this class in a structure.
(c) Specify the notion of a formal deduction for these sentences.

3. Axioms: Specify the basic properties of the situation in question by sentences of
the logic.

What does this definition have to do with core mathematics? A leading rep-
resentation theorist David Kazhdan, in the first chapter, logic, of his lecture notes on
motivic integration [30], writes:

One difficulty facing one who is trying to learn Model theory is disappear-
ance of the natural distinction between the formalism and the substance.
For example the fundamental existence theorem says that the syntactic
analysis of a theory [the existence or non- existence of a contradiction]
is equivalent to the semantic analysis of a theory [the existence or non-
existence of a model].

At first glance this statement struck me as a bit strange. The fundamental
point of model theory is the distinction between the syntactic and the semantic. On re-
flection14, it seems that Kazhdan is making a crucial point which I elaborate as follows.

12Formalization is of course a crucial tool for foundational studies in the traditional global sense. We are
expounding another use of that tool.

13For most logics there are only a set of formulas, but some infinitary languages have a proper class of
formulas.

14I thank Udi Hrushovski, Juliette Kennedy, and David Marker for illuminating correspondence on this
issue.
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The separation of syntax and semantics is a relatively recent development. Dedekind
understands it late in the 19th century 15. But it is really clearly formulated as a tool
only in Hilbert’s 1917-18 lectures [58]. And immediately Hilbert smudges the line in
one direction by seeing the ‘formal objects’ as mathematical. As Sieg (page 75 of [57]
writes,

But it was only in his paper of 1904, that Hilbert proposed a radically new,
although still vague, approach to the consistency problem for mathemati-
cal theories. During the early 1920’s he turned the issue into an elementary
arithmetical problem...

Hilbert has begun the study of metamathematics, considering the formal lan-
guage and its deductive relations as mathematical objects. Thus syntactical analysis is
regarded as a study of mathematical objects (substance)16.

The first great role of formalization aims to provide a global foundation for
mathematics. The Hilbert program treats the syntax as a mathematical ‘substance’.

But Kazhdan is commenting on a smudge in the other direction; to prove
the completeness theorem, Gödel constructs a model (a mathematical object) from the
syntactical formulas17.

When one views the completeness theorem solely from the standpoint of
logic, the construction of ‘models’ from syntactic objects to make a statement about
syntactic objects is less jarring. The surprise is when a real mathematical object arises
from the syntactic paraphernalia. Marker e-mailed, ‘I’ve found when lecturing that a
similar stumbling block comes when giving the model theoretic proof of the Nullstel-
lensatz (page 88 of [39]) or Hilbert’s 17th Problem when the variables in the polyno-
mial become the witnessing elements in a field extension.’

In [30], Kazhdan is not concerned with the global foundations of mathemat-
ics; he is concerned with laying a foundation for the study of motivic integration. This
is an example of the second great application of formalization: By specifying the prim-
itive concepts involved in a particular area of mathematics and postulating the crucial
insights of that field (usually thought of as defining the concepts implicitly in Hilbert’s
sense), one can turn the resources of ‘formalization’ on the analysis of ‘normal’ math-
ematical problems.

These resources include the completeness theorem, quantifier elimination,
techniques of interpreting theories, and the entire apparatus of stability theory.

15See footnote 11 of [57]
16Even earlier this translation is seen even in the title of Post’s 1920 thesis [45].
17In fact this blurring is frequent in the standpoint of the Schröder school of algebraic logic. Badesa

makes this point in [6]; his argument is very clearly summarized in [2]. The combinatorics of the proofs
of Löwenheim and Skolem are very close to those of Gödel. But Gödel makes the distinction between the
syntactic and semantic clear since the warrant for the existence of the syntactic configuration is that it does
not formally imply a contradiction.
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Bourbaki [15] distinguishes between ‘logical formalism’ and the ‘axiomatic
method’, which, as they are too modest to say, is best exemplified by the Bourbaki
treatise18 ‘We emphasize that it (logical formalism) is but one aspect of this (the ax-
iomatic) method, indeed the least interesting one19’. In part, this remark is a reaction
to the great pedantry of early 20th century logic as the language of mathematics was
made rigorous. It also is a reaction to the use of logic only for foundational purposes
in the precise sense of finding a universal grounding for mathematics20. Bourbaki is
reacting against a foundationalism which sacrifices meaning for verifiability. The cod-
ing of mathematics into set theory performs a useful function of providing a basis;
unfortunately, the ideas are often lost in the translation. In contrast, the second role of
formalization described above provides a means for analysis of ideas in different areas
of mathematics.

In his remarks at the Vienna Gödel centenary symposium in 2006, Angus
Macintyre wrote[33],

That the 1931 paper had a broad impact on popular culture is clear. In
contrast, the impact on mathematics beyond mathematical logic has been
so restricted that it is feasible to survey the areas of mathematics where
ideas coming from Gödel have some relevance.

This sentence unintentionally makes a false identification21. Macintyre’s pa-
per surveys the areas of mathematics where he sees the ideas coming from ‘the 31
paper’ have some relevance. But incompleteness is not the only contribution of Gödel.
In Subsection 4.5 we barely touch the tip of the iceberg of results across mathematics
that develop from the Gödel completeness theorem and the use of formalization as we
describe above.

It is perhaps not surprising that in 1939, Dieudonne sees only minimal value
of formalization, ‘le principal mérite de la méthode formaliste sera d’avoir dissipé les
obscurités qui pesaieant encore sur la pensée mathématique’; the first true application
of the compactness theorem in mathematics occurs only in Malcev’s 1941 paper [35]22.

Bourbaki [15] hints at an ‘architecture’ of mathematics by describing three
great ‘types of structures’: algebraic structures, order structures, and topological struc-
tures. As we describe below in Subsection 4.4, the methods of stability theory provide
a much more detailed and useful taxonomy which provides links between areas that

18Mathias [40] has earlier made a more detailed and more emphatic but similar critique to ours of Bour-
baki’s foundations.

19Parenthetical remarks added. Page 223 of [15].
20I use the term global foundations for this study.
21Macintyre has confirmed via email that he intended only to survey the influences of the incompleteness

results.
22Malcev writes, ‘The general approach to local theorems does not, of course, give the solutions to any

difficult algebraic theorems. In many cases, however, it makes the algebraic proofs redundant.’ Malcev
goes on to point out that he significantly generalizes one earlier argument and gives a uniform proof for all
cardinalities of an earlier result of Baer that held only for countable groups.
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were not addressed by the Bourbaki standpoint.

4.2 Categoricity in Power
{cat}

Categoricity is trivial for first order logic. All and only finite structures are categorical
in Lω,ω . The interesting notion is ‘Categoricity in (uncountable) Power’. The upward
and downward Löwenheim-Skolem theorems show that for first order theories, cate-
goricity in power implies completeness of Th(M). Ryll-Nardjewski[47], characterized
first order theories that are ℵ0-categorical. Unlike the second order case, this theorem
contains a lot of information. We don’t detail all the technical definitions in the fol-
lowing description; they can be found in introductory texts in model theory such as
[39].

Theorem 4.2.1. The following are equivalent.

1. T is ℵ0-categorical.

2. T has only countably many finite n-types for each n.

3. T has only finitely many inequivalent n-ary formulas for each n.

4. T has a countable model that is both prime and saturated.

But, there are still wildly different kinds of theories that are ℵ0-categorical.
The theory of an (infinite dimensional) vector space over a finite field differs enor-
mously from the theory of an atomless Boolean algebra, the random graph or a dense
linear order. But in the 1960’s there was no way to make this difference precise. One
distinction stands out; only the vector space is categorical in an uncountable power.

We discuss below the role of ‘admitting a structure theory’. Theories that
are categorical in an uncountable power have the simplest kind of structure theory and
their study led to a more general analysis. The following theorem summarizes the basic
landscape ([41, 10, 69]). {catchar}

Theorem 4.2.2. (Morley/ Baldwin-Lachlan/Zilber) The following are equivalent:

1. T is categorical in one uncountable cardinal.

2. T is categorical in all uncountable cardinals.

3. T is ω-stable and has no two cardinal models.

4. Each model of T is prime over a strongly minimal set.

5. Each model of T can be decomposed by finite ‘ladders’ of strongly minimal
sets23.

23Zilber shows certain automorphism groups (the linking groups of the strongly minimal sets) are first
order definable; this leads to the definability of the field in certain groups of finite Morley rank (See Subsec-
tion 4.6.
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First order theories which are totally categorical have a much stronger struc-
ture theory. Zilber’s quest to prove that no totally categorical theory is finitely
axiomatizable[68, 17] not only gave a detailed description of the models of such theo-
ries but sparked ‘geometric stability theory’. Further, to eliminate the classification of
the finite simple groups from the proof Zilber gave new proofs of the classification of
two transitive groups[20, 66, 67].

Because of Morley’s theorem we can say ℵ1-categorical for a theory which
is categorical in one (and therefore) all uncountable cardinals. In addition [10] shows
an ℵ1-categorical theory has either 1 or ℵ0 models in ℵ0. Since by 4 and 5 of The-
orem 4.2.2, strongly minimal sets are the building blocks of uncountably categorical
theories, we should describe them. {smgeo}

Definition 4.2.3. Let T be a first order theory. A definable subset X of a model is T is
strongly minimal if every definable subset φ(x,a) of X is finite or cofinite (uniformly
in a).

A theory T is strongly minimal if the set defined by x = x is strongly minimal
in T .

The notion of a combinatorial geometry generalizes such examples as vector
space closure or algebraic closure in fields. An essential contribution of model theory
is to find such geometries in many different contexts. {geodef}

Definition 4.2.4. A pregeometry is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following axioms.

A1. cl(X) =
⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X)

A3. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).

A4. cl(cl(X)) = cl(X)

If points are closed the structure is called a geometry.

Note that the preceding is a mathematical (formalism-free) concept. The next
definition and theorem provide formal (syntactic conditions) on a theory for its models
to be combinatorial geometries under an appropriate notion of closure.

Definition 4.2.5. a ∈ acl(B) (algebraic closure) if for some φ(a,y) and some b ∈ B,
φ(a, b) and φ(x, b) has only finitely many solutions.
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{smgeoth }

Theorem 4.2.6. A complete theory T is strongly minimal if and only if it has infinite
models and

1. algebraic closure induces a pregeometry on models of T ;

2. any bijection between acl-bases for models of T extends to an isomorphism of
the models

The second condition is often rendered as, ‘the pre-geometry is homoge-
neous’; it is equivalent to say all independent sets of the same cardinality realize the
same type.

Thus the syntactic condition about the number of solutions of formulas leads
to the existence of a geometry and a dimension for each model of the theory.

The complex field or an infinite vector space over any field is strongly mini-
mal. By Theorem 4.2.3 all strongly minimal theories have a dimension similar to that
of vector spaces or the transcendence dimension in field theory. The dimension of
a model of an arbitrary ℵ1-categorical theory is the dimension of the strongly mini-
mal set over which it is prime by Theorem 4.2.2.2. Thus a theory is ℵ1-categorical if
and only if each model is determined by a single dimension24. Getting closer to the
Bourbaki ideal, Zilber conjectured that all strongly minimal sets had a trivial geome-
try or were ‘vector-space like’(modular) or ‘field-like’ (nonmodular). (See [68] for a
summary.) In his Gödel lecture[72], Zilber sketches his motivations and outlines the
program. Sections 5 and 6 of Pillay’s survey, Model Theory[42], gives an accessible
and more detailed account of this program, which is a refinement of Shelah’s general
classification program for first order theories. Hrushovski [26] refuted this conjecture
but Hrushovski and Zilber [27] began launched a program to rescue the conjecture (and
better attune model theory to algebraic geometry). They analyzed the counterexamples
that were at first sight pathologies (more of Bourbaki’s monsters) by showing exactly
how close ‘ample Zariski structures’ are to being algebraically closed fields. Zilber
[72] lays out a detailed account of the further development of this second program.

Moreover, this dimension theory extends to more general classes than ℵ1-
categorical. For ω-stable theories a dimension (Morley rank) can be defined on all
definable subsets similar to (and specializing to in the case of algebraically closed
fields) the notion of dimension in algebraic geometry.

If a theory is viewed as axiomatizing the properties of specific structure (e.g.
the complex field) categoricity in power is the best approximation that first order logic
can make to categoricity. But, it turns out to have far more profound implications than
categoricity for studying the original structure. If the axioms are universal existential

24For uncountable models this dimension is the same as the cardinality of the model; [10] show that
for countable models either every model has dimension ℵ0 or there are models of infinitely many finite
dimensions.
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then the theory is model complete (and under slightly more technical conditions ad-
mits elimination of quantifiers). Thus the complexity of definable sets is determined
by global properties of the models. What can be very technical proofs of quantifier
elimination by induction on quantifiers are replaced by more direct arguments for cat-
egoricity.

4.3 Complete Theories
{comp}

Before turning to complete theories, we note that the notion of a theory provides a
general method for studying ‘families of mathematical structures’. The most obvious
example is that algebraic geometers want to study ‘the same’ variety over different
fields. This is crisply described as the solution in the field k of the equations defining
the variety. Similarly the Chevalley groups can be seen as the matrix groups, given by
a specific definition interpreted as solutions in each field. For finite fields, this gives
‘most’ of the non-exceptional finite simple groups [34]. These are examples of affine
schemes. In introducing the notion of an affine group scheme, Waterhouse [63] begins
with a page and a half of examples and defines a group functor. He then writes,

The crucial additional25 property of our functors is that elements of G(R)
are given by finding solutions in R of some family of equations with coe-
ficients in k. . . . Affine group schemes are exactly the group functors con-
structed by solutions of equations. But such a definition would be tech-
nically awkward, since quite different collections of equations can have
essentially the same solutions.

He follows with another page of proof and then a paragraph with a slightly
imprecise (the source of the coefficients is not specified) definition of affine group
scheme over a field k. Note that (for Waterhouse) a k-algebra is a commutative ring
R with unit that extends k. Now, for someone with a basic understanding of logic, an
affine group scheme over R is a collection of equations φ over k that define a group
under some binary operations defined by equations ψ. The group functor F sends
R to the subgroup defined in R defined by those equations26. The key point is that,
not only is the formal version more perspicuous, it underlines the fundamental notion.
Definability is not an ‘addition’; The group functor aspect is a consequence of the
equational definition.

We give several examples that illustrate the mathematical power of the notion
of complete theory, demonstrating that completeness is a virtuous property. As we said

25My emphasis. See next paragraph.
26We are working with the incomplete theory T in the language of rings with names for the elements

of k. Two finite systems of equations over k, σ(x) and τ(x), are equivalent if T ` (∀x)σ(x) = τ(x).
The functorial aspects of F are immediate from the preservation of positive formulas under homomorphism.
Note that I am taking full advantage of k being a field by being able to embed k in each k-algebra. And to be
fair to Waterhouse’s longer exposition he is introducing further terminology that is useful in the development.
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above, axiomatic theories arise from two distinct motivations. One is to understand
a single significant structure such as (N,+, ·) or (R,+, ·). The other is to find the
common characteristics of a number of structures; theories of the second sort include
groups, rings, fields etc. In the second case, there is little gained simply from knowing
a class is axiomatized by first order sentences. In general, the various completions of
the theory simply provide too many alternatives. But for complete theories, the models
are sufficiently similar so information can be transferred from one to another.

Detlefsen asked.

Question II (philosophical question)27: Given that categoricity can rarely
be achieved, are there alternative conditions that are more widely achiev-
able and that give at least a substantial part of the benefit that categoricity
would? Can completeness be shown to be such a condition? If so, can
we give a relatively precise statement and demonstration of the part of the
value of categoricity that it preserves?

We argue that the notion of completeness provides a formidable mathemat-
ical tool. One that is not sterile but allows for the comparison in a systematic way
structures that are closely related but not isomorphic. So we argue that completeness
gives substantial benefits that approximate the benefits of categoricity in power (but are
completely impossible for categorical theories.)

Kazhdan [30] illuminates the key reason to study complete theories:

On the other hand, the Model theory is concentrated on gap between an ab-
stract definition and a concrete construction. Let T be a complete theory.
On the first glance one should not distinguish between different models of
T, since all the results which are true in one model of T are true in any
other model. One of main observations of the Model theory says that our
decision to ignore the existence of differences between models is too hasty.
Different models of complete theories are of different flavors and support
different intuitions. So an attack on a problem often starts which a choice
of an appropriate model. Such an approach lead to many non-trivial tech-
niques for constructions of models which all are based on the compactness
theorem which is almost the same as the fundamental existence theorem.

On the other hand the novelty creates difficulties for an outsider who is
trying to reformulate the concepts in familiar terms and to ignore the dif-
ferences between models.

The next two examples use the concept of a complete theory to transfer results
between structures in way that was impossible or ad hoc without the formalism.

27This was question IV in the Detlefsen letter.
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Example 4.3.1 ( Ax-Grothedieck Theorem). The Ax-Grothendieck theorem [5, 23]
asserts an injective polynomial map on an affine algebraic variety over C is surjective.
The model theoretic proof28 [5]observes the condition is axiomatized by a family of
‘for all -there exist’ first order sentences φi (one for each pair of a map and a variety).
Such sentences are preserved under direct limit and the φi are trivially true on all finite
fields. So they hold for the algebraic closure of Fp for each p (as it is a direct limit
of finite fields). Note that T = Th(C), the theory of algebraically closed fields of
characteristic 0, is axiomatized by a schema Σ asserting each polynomial has a root and
stating for each p that the characteristic is not p. Since each φi is consistent with every
finite subset of Σ, it is consistent with Σ and so proved by Σ, since the consequences
T of Σ form a complete theory.

Note that surjective implies bijective is false. A model theorist might imme-
diately sense the failures since injective is universal and passes to substructure while
surjective is ∀∃ and so does not pass to substructures; an algebraist would immediately
note that the map x 7→ x2 is a counterexample in, for example, the complex numbers.

Tao ([60]) gives an algebraic proof. He makes extensive use of the nullstel-
lensatz and notably misses the simpler direct limit argument to go from the finite fields
to the algebraic closure of Fp; he gracefully acknowledges this simplification in reply
to a comment. But it does reflect the different perspective of logic on such a problem.

Example 4.3.2 (Division Algebras). A: Real division algebras: Any finite-dimensional
real division algebra must be of dimension 1, 2, 4, or 8. This is proved (by Hopf,
Kervaire, Milnor) using methods of algebraic topology.

B: Division algebras over real closed fields Any finite-dimensional division
algebra over a real closed field must be of dimension 1, 2, 4, or 8.

B. follows immediately from A by the completeness of the theory of real
closed fields. No other proof is known.

In a rough sense undecidability seems to disappear when a structure is ‘com-
pleted’ to answer natural questions (e.g. adding inverses and then roots to the natural
numbers). Here is a specific measure of that idea.

Example 4.3.3 (Ruler and Compass Geometry). Beeson [13] notes that the theory of
‘constructible geometry’ (i.e. the geometry of ruler and compass) is undecidable. This
result is an application of Ziegler’s proof [65] that any finitely axiomatizable theory in
the vocabulary (+, ·, 0, 1) of which the real field is a model is undecidable. Thus the
complete theory is tractable while none of its finitely axiomatized subtheories are.

In the next example, we study an infinite family of complete theories, alge-
braically closed fields of various characteristics. The Lefschetz principle was long

28There is a non-model theoretic proof in the spirit of Ax which replaces model completeness by multiple
references to the Nullstellensatz [29]. Ax was apparently unaware of Grothendiecks proof. He cites other
work by Grothendieck, and not this. And he says ”This fact seems to have been noticed only in special case
(e.g. for affine space over the reals by Bialynicki-Birula and Rosenlicht.”
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known informally by algebraic geometers and appeared in Lefschetz’ Algebraic Ge-
ometry. But the proof of the precise version described below is due to Seidenberg[49].

Example 4.3.4 ( Lefschetz Principle ). Let φ be a sentence in the language Lr =
{0, 1,+,−, ·} for rings, where 0, 1 are constants and +,−, · are binary functions.

The following are equivalent:

1. φ is true in every algebraically closed field of characteristic 0.

2. φ is true in some algebraically closed field of characteristic 0.

3. φ is true in algebraically closed fields of characteristic p for arbitrarily large
primes p.

4. φ is true in algebraically closed fields of characteristic p for sufficiently large
primes p.

Proof. This follows from the completeness of algebraically closed fields of
characteristic zero and Gödel’s completeness theorem.

There are extensions to infinitary logic[19]. Again math
overflowhttp://mathoverflow.net/questions/90551/
what-does-the-lefschetz-principle-in-algebraic-geometry-mean-exactly
provides a nice overview and pushback from algebraic geometers who prefer viewing
the principle as a heuristic to understanding undergraduate logic.

It frequently turns out that important information about a structure is only im-
plicit in the structure but can be manifested by taking a saturated elementary extension
of the theory. In particular, within the saturated models the syntactic types over a model
can be realized as orbits of automorphism of the ambient saturated model. The germs
of this idea are seen in the following example.

Example 4.3.5 (Algebraic geometry). Algebraic geometry is the study of definable
subsets of algebraically closed fields. This isn’t quite true: ‘definable by positive quan-
tifier free formulas’. More precisely, this describes ‘Weil’ style algebraic geometry.
Here are two equivalent statements of the same result.

Theorem 4.3.6. Chevalley-Tarski Theorem

Chevalley: The projection of a constructible set is constructible.

Tarski: The theory of algebraically closed fields admits elimination of quan-
tifiers.

The version of this theorem for the reals is also known as the Tarski-
Seidenberg29 theorem [48].

29Tarski announced the quantifier eliminability of the real closed fields in [61]. He apparently became

17



The notion of a generic point on a variety X defined over a field k is a rather
amorphous for much of the twentieth century. In the model theoretic approach a generic
point a is a point in an extension field of k. More precisely, if k is the algebraic closure
of k, a is a realization in an elementary extension of k of a non-forking extension of
the type of minimal Morley rank and contained in X .

4.4 Virtuous properties as an organizing principle
{fol}

The stability hierarchy is a collection of properties of theories as envisioned in Sub-
section 2.2 that organize complete first order theories (that is structures) into families
with similar mathematically important properties. Bourbaki (page 228 [15]) has some
beginning notions of combining the ‘great mother-structures’ (group, order, topology).
They write ‘the organizing principle will be the concept of a hierarchy of structures, go-
ing from the simple to complex, from the general to the particular.’ But this is a vague
vision. We now sketch a realization of a more sophisticated organization of parts of
mathematics.

There are two key components: 1) the formulation of a general scheme for a
structure of each model of a complete first order theory; 2) a classification that deter-
mines whether a given theory admits a structure theorem in the sense of 1).

The fundamental tool of this organization is the study of properties of defin-
able sets. Depending on the situation, there are several reasons why the subclass of
definable sets is adequate to this task. In algebraic geometry (both real and complex) it
turns out that mathematicians are basically only studying (some) of the definable sets
in the first place. In the other direction, the Wedderburn theory for non-commutative
rings is on its face second order because of the study of ideals. But, for stable rings,
there are enough principal ideals to carry out the arguments obtaining the structure
theorems for stable rings [11].

Shelah’s stability theory[54] provides a method to categorize theories into
two major classes (the main gap): admit a structure theory (classifiable) and cre-
ative/chaotic. If a theory admits a structure theory, then all models of any cardinal-
ity are controlled by countable submodels by a mechanism which is the same for all
such theories. In particular, this implies that the number of models in cardinality ℵα is
bounded by iβ(α) (where β < |T |+). In contrast, the number of models in ℵα of a
chaotic theory is 2ℵα ; essentially new methods of creating models are always needed.
In the last 25 years, tools in the same spirit of definability allow the investigation of
the definable subsets of creative theories; these include the study of simple, o-minimal
and theories without the independence property. While the counting of the number of
models in each cardinality is the test question for this program, the greatest benefit lies
in the development of tools for investigating the fine structure of models of classifiable

aware that his argument extended to the complex numbers when Robinson proved the quantifier eliminability
of algebraically closed fields in [46]. There are rumors that Chevalley was well aware of Tarski’s proof for
the reals.
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theories.

The general idea of a structure theory is to isolate ‘definable’ subsets of mod-
els of a theory that admit a dimension theory analogous to that in vector spaces. And
then to show that all models are controlled by a family of such dimensions. Theories
that are categorical in power are the simplest case. There is a single dimension and the
control is very direct.

The Stability Hierarchy: Every complete first order theory falls into one of
the following 4 classes.

1. ω-stable

2. superstable but not ω-stable

3. stable but not superstable

4. unstable

A common reading of Shelah is that the further down the above list a theory
falls the more it lies on the side of chaos: ‘chaos’ means ‘many models’. But Shelah
has pointed out that this reads his program upside down, ‘The aim is classification,
finding dividing lines and their consequences. This should come with test problems.
The number of models is an excellent test problem and few models is the strongest
non-chaos.’ But Shelah has suggested, beginning in late 70’s, test problems for the
study of theories with many non-isomorphic models, in particular, of unstable theories
without the strict order property: existence of saturated extensions [51], the Keisler
order (Chapter 6 of [50]) and the existence of universal models [32]. And for the
theories with the strict order property [55] in SOP4.

The study of o-minimality, simple theories and recent advances in studying
nip (not the independence property30) show that ‘tame’ is a broader category than sta-
ble. Among the canonical structures, the complex field is a prototype for good be-
havior and the real field (and even the real exponential field) are o-minimal and so
admit a great deal of structure. Only arithmetic of these structures is has so far resisted
these methods of understanding. This is witnessed by its having both the independence
property and being linearly ordered. Of course set theory is equally unruly; a pairing
function is incompatible with a dimension theory. Recent work has studied the territory
of unstable theories. The following diagram illustrates some of the continuing analysis
of unstable theories.

30also called dependent
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This hierarchy is essentially orthogonal to decidability. There are continuum
many strongly minimal theories so most are not decidable. The random graph has the
independence property but is recursively axiomatized and ℵ0 categorical so decidable.
Similarly, the theory of atomless Boolean algebras has both the strict order property
and the independence property but is decidable.

The proof of the main gap relies on discovering several more dividing lines.
We omit the technical definitions of the dimensional order property (DOP), the omit-
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ting types order property (OTOP) and the shallow/deep dichotomy. Such properties
lead to the existence of 2κ models of cardinality κ31. If none of these properties hold
the number of models is bounded well below 2κ and there is good decomposition the-
orem for the models. We discuss this in more detail in section 5.2. Hart, Hrushovski,
Laskowski produced a full account of the spectrum problem for countable theories,
including the greater intricacy for small infinite cardinalities in [25].

In the last few paragraphs we have glimpsed the ways in which complete the-
ories provide a framework for analysis. In Subsection 4.5, we discuss some of the
profound implications of the hierarchy of complete theories for work in core mathe-
matics. Thus I argue that the study of complete theories a) focuses attention on the
fundamental concepts of specific mathematical disciplines and b) even provides tech-
niques for solving problems in these disciplines.

4.5 Formal Methods as a tool in mathematics
{apps}

In the last few paragraphs we have glimpsed the ways in which complete theories pro-
vide a framework for analysis. In Subsection 4.5, we discuss some of the profound im-
plications of this development in the study of real algebraic geometry and diophantine
geometry. Thus I would argue that the study of complete theories a) focuses attention
on the fundamental concepts of specific mathematical disciplines and b) even provides
techniques for solving problems in these disciplines.

The next list contains examples of theorems of core mathematics that are
proved using at least the spirit of the formal tools of stability theory. We analyze in
very general terms below the kind of use that is involved. The crucial point is that the
stability hierarchy is defined by syntactic conditions. For example, a formula φ(x,y)
has the order property in a model M if there are ai, bi ∈M such that

M |= φ(ai, bj) iff i < j.

T is stable if no formula has the order property in any model of T . But existen-
tially quantifying out the ai, bi, φ is unstable in T just if for every n the sentence
∃x1, . . . xn∃y1, . . . yn

∧
i<j φ(xi, yi) ∧

∧
j≥i ¬φ(xi, yi) is in T . This last is clearly a

syntactic condition. The (local) dimension theory of a stable theory which leads to the
structural results follows from this syntactic condition.

In an echo of the Bourbaki assertion of the importance of groups, in the pres-
ence of a group the stability conditions translate to chain conditions on ‘definable sub-
groups’32. In an ω-stable (superstable) theory there is no descending chain of definable
subgroups (with infinite index at each stage). This principle is now seen to apply to the

31The non-structure arguments are not tightly linked to first order logic. They correspond to a theorem
scheme for building many non-isomorphic models as Skolem hulls of sets of (linearly ordered or tree ordered)
indiscernibles. The Skolem hull can accomodate some infinitary languages.

32In rings these subgroups become ideals.
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different algebraic structures and gives a unified explanation for finding various kinds
of radicals. (See [8] for a very early account of this phenomena.)

1. Shelah: uniqueness of differential closures

2. Zilber’s classification of 2-transitive groups

3. Hrushovski Mordell-Lang for function fields, interaction of ‘1-based’ with arith-
metic algebraic geometry.

4. Sela: All free groups on more than two generators are elementarily equivalent.

5. o-minimality, Hardy’s problem

6. Denef-van den Dries: rationality of Poincaire series by induction on quantifiers

7. motivic integration: Denef/Cluckers/Hrushovski/Kazhdan/Loeser

8. MacPherson-Steinhorn: asypmtotic classes, understanding the classification of
simple groups

Let us try to categorize these arguments. Shelah’s proof is a direct application
of his theorem of the uniqueness of prime models over sets for ω-stable theories. With
some actual investigation of differential equations, he shows they need not be minimal.
It might be objected that ‘differentially closed field’ is a logical notion introduced by
Abraham Robinson. This is belied by the active research integrating model theoretic
tools.

Zilber’s classification is a purely mathematical result he needed to solve a
logical problem. Are there any totally categorical finitely axiomatizable first order
theories with only infinite models? In fact, solving this problem led to the discovery
that classical groups are definably embedded in e.g. all sufficiently complicated first
order theories that are categorical in power.

Hrushovski’s proof involves both direct applications of Shelah’s notions of
orthogonality and p-regularity and such notions from geometric stability theory as one-
based but integrating these tools with the arithmetic algebraic geometry.

The notion of o-minimality arose with work of van den Dries on the analysis
of real exponentiation. But Pillay and Steinhorn recognized the notion as a gener-
alization of strong minimality. Strong minimality characterizes the definable subsets
(no matter how extensive the ambient vocabulary) as easily describeable using only
equality (finite or cofinite). A theory is o-minimal if every definable subset is easily
described in terms of a linear order of the model (finite union of intervals). Wilkie [64]
proved that the real exponential field is o-minimal. A number of examples of further
o-minimal structures were discovered, many expansions of the real field. [38]. Al-
though this notion is explicitly defined in terms of formal definability, in real algebraic
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geometry as in algebraic geometry in general, the only relations considered are defin-
able. This has led to enormous intergration between real algebraic geometry and model
theory.

Denef’s original work is more in the school of just using the formality of quan-
tifier induction systematically; tools of desingularization can be avoided by a careful
induction on quantifier rank. But the development of the theory in the 21st century
connects with the ideas of cell decomposition arising in the study of o-minimality and
with issues arising from the study of p-adically closed fields as NIP theories.

I have tagged the Sela work with Tarski’s famous conjecture since that is the
easiest for logicians to understand. But there are intimate connections and ramifications
for combinatorial group theory.

Macpherson and Steinhorn [34] define an asymptotic class as a class of fi-
nite models in which the number of solutions of a formula φ(x,a) in a finite model
M can be uniformly approximated as µMd/N where N is a parameter of the class
and µ, d are uniformly defined depending on a. This generalizes classical results on
finding the number of solutions of diophantine equations in finite fields. But it also
provides a scheme to try to explain the families of finite simple groups, (in terms of
their definability).

4.6 Groups of finite Morley rank
{FMR}

In this subsection, we sketch how the resources of formalization, in particular interpre-
tation and the stability apparatus contribute to the study of a class of groups that were
in fact defined by model theorists. This example illustrates the ways that formalization
interacts with core mathematics and exhibits the power of formalization to introduce a
generalizing principle. In this case the formalization (considering groups of finite Mor-
ley rank) provides a framework which includes both finite groups and algebraic groups
over algebraically closed fields, thereby illuminating the role of finiteness conditions
in each case. A group of finite Morley rank (FMR) is a structure which admits a group
operation and is ω-stable with finite rank33. The driving Conjecture 4.6.1, posed by
model theorists, links a model theoretic concept with algebraic geometry. The 25 year
project to solve the conjecture has developed as an amalgam of basic stability theoretic
tools with many different tools from finite and, recently, combinatorial group theory.

The basic scheme for understanding of the structure of groups relies on the
Jordan-Hölder theorem: Each finite group can be written (uniquely up to the order of
the decomposition) as G = G0 > G1 . . . Gn = 1, where Gi+1 is normal in Gi and
the quotient groups Gi/Gi+1 are simple. Thus identifying the finite simple groups is

33I am not giving a detailed historical survey here so I do not give every attribution or reference. The
book of Poizat [43, 44] provides the general setting as in the late 80’s. Borovik and Nesin [14] gives a good
overview of the finite rank case in the mid 90’s. Cherlin’s webpage [16] lays out the Borovik program in
broad strokes with references. The most recent summary is [1].
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a key step to understanding all finite groups. (We also need to know the nature of the
extension at each level.)

Macintyre proved in the early 70’s that an ℵ1-categorical, indeed any ω-stable
field is algebraically closed. An algebraic group is variety G over a field k equipped
with a group operation from G×G→ G that is a morphism (in the sense of algebraic
geometry34. The definition of an algebraic group (over an algebraically closed field)
yields immediately that it is interpretable35 in an algebraically closed field and so has
finite Morley rank. The algebraic definition of the dimension of an (in fact definable)
subset yields the same value as the Morley rank.

Work in the late 1970’s, showed similar properties of algebraic groups over
algebraically closed field and groups of finite Morley rank in low rank. Cherlin showed
the conditions rank 1 implies abelian; rank 2 implies solvable extend from algebraic
groups to FMR groups. Zilber showed that a solvable connected (see below) FMR
group which is not nilpotent interprets an algebraically closed field. From this it ensues
that every FMR group ‘involves’ an algebraically closed field; the issue is, ‘how close
is the involvement?’. Although algebraic groups over algebraically closed fields have
FMR, Groups of finite Morley rank (FMR) are clearly more general. The Prüfer group
Z∞ is ω-stable but not algebraic and FMR groups are closed under direct sum while
algebraic groups are not. But the role of rank/dimension in each of the cases and the
identification of the field in the group led to the idea that groups of finite Morley rank
were some kind of natural closure of the algebraic groups. In particular, the basic
building blocks are the same. {czconj}

Conjecture 4.6.1 (Cherlin/Zilber). A simple group of finite Morley rank is algebraic.

The classification of the finite simple groups identifies most of them as falling
into families of algebraic groups over finite fields, the Chevalley groups. Families such
as the Chevalley groups are a natural notion in model theory. They are the solution
of the same definition of a matrix group as the field changes. A further impetus for
this study is an analogy between finite groups and FMR groups. In the proofs, the
descending chain conditions on all subgroups for finite subgroups is replaced by the
descending chain condition on definable subgroups. This allows an algebraic definition
of ‘connected’ replacing the topological definition in the study of algebraic groups.
Induction on the cardinality of the group is replaced by induction on its Morley rank.
The use of definability now provides a common framework for the study of algebraic
and finite groups36. The quest for Conjecture 4.6.1 has led to intricate analysis of all
three generations of the proof of the classification of finite simple groups. In particular
the main strategy of the proof is an induction on the ‘minimal counterexample’ and the

34A by-product of the study under discussion is that an equivalent definition is: group defined in an
algebraically closed field.

35We don’t spell out here the definition of an interpretation; any of the general sources in model theory
mentioned above do so.

36Borovik had independently introduced the notion of ranked group (one which admits a collection of
subsets containing the finite set and closed under (Boolean operation, projection, quotient). Poizat showed
the class of such groups is exactly the FMR groups.
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possibilities for this counterexample are sorted analogously to the finite case.

The following (slightly shortened) passage from the introduction to Chapter 3,
Interpretation, in [14] shows the deep ties between the logical notion of ‘interpretation’
and algebra.

The notion of interpretation in model theory corresponds to a number of
familiar phenomena in algebra which are often considered distinct: coor-
dinatization, structure theory, and constructions like direct product and ho-
momorphic image. For example a Desarguesian projective plane is coordi-
natized by a division ring; Artinian semisimple rings are finite direct prod-
ucts of matrix rings over divisions rings; many theorems of finite group
theory have as their conclusion that a certain abstract group belongs to a
standard family of matrix groups over . . . . All of these examples have a
common feature: certain structures of one kind are somehow encoded in
terms of structures of another kind. All of these examples have a further
feature which plays no role in algebra but which is crucial for us: in each
case the encoded structures can be recovered from the encoding structures
definably.

The last sentence is one reason why a FMR group is allowed to have relations
beyond the group operation. Since the underlying field structure is often recoverable,
it should be permitted in the language.

Another role of the formalization is seen in the ability to focus on the key idea
of a proposition. The standard statement of the Borel Tits theorem takes half a page
and gives a laundry list of the possible kinds of maps (albeit considering the fields of
definition of the groups). Zilber (fully proved by Poizat see 4.17 [43, 44].) gives the
following elegant statement.

Theorem 4.6.2 (Borel-Tits a la Zilber/Poizat). Every pure group isomorphism between
two simple algebraic groups over algebraically closed fields K and L respectively can
be written as the composition of a map induced by a field isomorphism between K and
L followed by a quasi-rational function over L.

Both the explanation of the role of interpretation in [14] and the statement
of the Borel-Tits theorem illustrate the role of formalization in providing context and
clarity to mathematical results. While the development of this particular project takes
place in the context of ω-stable theories, the role of classes further down the Shelah
hierarchy appears in other examples.
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5 Infinitary Logic

We begin by describing the role of categoricity in power the logic Lω1,ω . This logic
is ‘first order’ in the sense that only quantification over individuals is allowed. But
countable conjunctions are permitted. Then we return to the beginning with a slight
twist. We consider second order logic with infinite conjunctions of various lengths.

5.1 Lω1,ω
{inf}

In this subsection we survey the status of categoricity and categoricity in power for
sentences of Lω1,ω . The main results are in [52, 53]; we give a systematic development
in [7].

Since there are 2ℵ0 inequivalent sentences and 22
ℵ0 theories but a proper class

of structures some theories must fail to be categorical. In contrast to first order there
are countable structures that are categorical for Lω1,ω . By the downward Löwenheim-
Skolem theorem, no uncountable structure can be categorical for a sentence of Lω1,ω .
But the Lω1,ω-theory of the reals is categorical.

A countable structure is categorical iff it has no proper Lω1,ω-elementary sub-
model. For sentences in Lω1,ω , categoricity in power ℵ1implies the existence of a
complete sentence satisfied by the model of cardinality ℵ1. It is open whether this
implication holds for ℵ2-categoricity in Lω1,ω .

The best generalization of Morley’s theorem toLω1,ω is due to Shelah[52, 53].
Shelah shows that one can more profitably study this subject by focusing on classes of
the form EC(T,Atomic), the class of atomic37 models of complete countable first
order theory.

The class of models of a complete sentence of Lω1,ω is in 1-1 correspondnce
with an EC(T,Atomic)-class (Chapter 6 of [7]). Regarding it as the class of atomic
models of a first order theory is a key simplification. EC(T,Atomic) is one defined
An EC(T,Atomic)-class is excellent if for every finite n it is possible to find a unique
amalgamation of n independent countable models in the class.

Theorem 5.1.1 (ZFC: Shelah 1983). If K is an excellent EC(T,Atomic)-class then
if it is categorical in one uncountable cardinal, it is categorical in all uncountable
cardinals.

Theorem 5.1.2 (Shelah 1983). Assume 2ℵn < 2ℵn+1 for finite n. If an
EC(T,Atomic)-class K is categorical in ℵn, for all n < ω, then it is excellent.

Thus for Lω1,ω the study of categoricity in power is in a relatively complete
state; the outstanding question from a philosophical standpoint is whether the very

37Each finite sequence realizes a complete type over the empty set.
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weak generalized continuum hypothesis (VWGCH: for all n, 2ℵn < 2ℵn+1 ) is actually
needed. There are only a few papers aimed at finding an extension to the stability
hierarchy in this framework ([22, 12]).

There are important mathematical structures, e.g. complex exponentiation
which exhibit the Gödel phenomena and so cannot be analyzed by stability techniques
in first order logic. However, Zilber[71, 70, 7] has conjectured a means for such an
analysis in the logic Lω1,ω(Q).

5.2 Deja vu: Categoricity in infinitary second order logic
{dejavu}

We rehearse here some recent results of Hyttinnen, Kangas, and Väänänen [28]38 that
identify in a systematic way a proper class of categorical structures. Consider the logic
L2
κ,ω which allows first and second order quantification and conjunctions of length κ.

In this family of logics, there are a class of sentences so the cardinality argument for
the existence of non-categorical structures fails. In fact, every structure of cardinality κ
is categorical in L2

κ+,ω . The goal is to identify those structures of cardinality κ that are
categorical L2

κ,ω (κ not κ+). Since this work draws on the first order stability hierarchy
discussed in Section 4.4, we begin with more detail on the main gap.

Any standard text in stability theory shows that if T is stable then via the
notion of non-forking an independence relation generalizing the combinatorial geome-
tries discussed in Subsection 4.2 can be defined on all models of T . In general the
closure relation fails to be a geometry because cl(cl(X) 6= cl(X). But on the set of
realizations of a so-called regular type it is. Thus in a model M and for any regular
type p with domain in M , we can define the dimension of the realizations of p in M .

If T is not stable or even not superstable, T has 2κ models in every uncount-
able κ [54]). We discussed the role of DOP and OTOP in Subsection 4.4. If either
DOP fails T has the maximal number of models in each uncountable cardinal. If the
dimensional order property and the omitting types order property do not hold (NDOP
and NOTOP), each model M of cardinality κ can be decomposed as a tree of count-
able submodels indexed by some tree I; essentially ‘deep’ means this tree is not well-
founded. This root of this tree, M0 is a prime39 model. Each Ms has a set of up to κ
extension extensions Mŝ i which are independent over Ms; M is prime over

⋃
s∈IMs.

The systematic representation of a model as prime over a tree of (independent) sub-
models is a fundamentally new mathematical notion. The theory is shallow if there is
a uniform bound over all models on the rank of the tree; essentially ‘deep’ means this
tree is not well-founded. If a theory satisfies NDOP, NOTOP and is shallow the theory
is called classifiable.

For a classifiable theory the number of models in ℵα is bounded by iβ(α)
where β is a bound on the rank of the decomposing tree for all models of T (indepen-

38The authors use ‘characterizable’ for what we call ‘categorical’.
39That is, under an appropriate notion of submodel, it can embedded in every model of T .
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dently of cardinality). [54] claims that each model of such a theory is characterized by
a sentence in a certain ‘dimension logic’. Unfortunately there are technical difficulties
in the definition of this logic. However, the new paper [28] shows how to find such a
categorical sentence in L2

κ+,ω . Thus they obtain (in a slightly less general form):

Theorem 5.2.1 ( Hyttinnen, Kangas, and Väänänen). Assume GCH. The countable
complete theory T is classifiable if and only if for every modelM of T with |M | ≥ iω1 ,
the L2

κ+,ω theory of M is categorical.

The deduction from classifiable is a highly technical argument that the de-
composition of the models (and the dimensions of the types involved) can be defined
in L2

κ+,ω . Conversely, if a theory is not classifiable (on the chaotic side of the main
gap), it has 2κ models in κ. But there are only 2<κ sentences in L2

κ+,ω so there must
be a sentence which is not categorical in the logic L2

κ+,ω .

So using the virtuous properties developed in first order logic, the authors
are able to uniformly identify a large family of structures with cardinality κ that are
categorical in L2

κ,ω . But categoricity is used in Huntington’s role of ‘sufficiency’. It
is again a test of an axiomatization. In contrast to the ad hoc search for the axioms
of the fundamental structure, since there is a scheme (implicit in Shelah’s structure
theorems) for obtaining the axiomatization, categoricity of a theory is an informative
property. But while the axiomatizations of the fundamental structures informed us
about the principles underlying proofs in the underlying number theory and real analy-
sis, these axiomatizations inform us about the structure of the models of the underlying
classifiable first order theory.

6 Conclusion and Further Directions
{conc}

We have argued that the criteria for evaluating the significance of a property of theories
(in some logic) is the explanatory power of the property. Specifically, do the theories
or more importantly the models of the theories which have this property display other
significant similarities?

From this standpoint we have argued that categoricity is not very interesting
for second order logic and trivial for first order logic. But for first order logic, cate-
goricity in power is very significant because all categorical theories are seen to possess
a dimension theory similar to prototypical examples such as vector spaces. The stabil-
ity hierarchy provides both a classification of first order theories which calibrates their
ability to support nice structure theories and the details of such a structure theory. The
key to the structure is the definition of local dimensions extending the basic phenomena
in theories which are categorical in power.

We see this analysis as demonstrating the use of formal methods in mathe-
matics. In the Subsection 4.5 we gave more examples of the use of a formal language
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as a tool for proving mathematical results. Thus, this paper is a counterpoint to our
[9] where we discussed certain ‘formalism-free’ developments in model theory. In this
paper we stressed one of the dominant themes of model theory: the role of formal
language in understanding mathematical questions. More than the use of formalism
in seeking global foundations for mathematics40, these applications have real effect in
mathematics.

Here are some further directions.

1. Connect the notion of ‘explanation’ here with the work of Steiner, Kitcher, Man-
cosu,Hafner [36].

2. Connect the analysis of rcf in [24] with o-minimality and classification of alge-
bras

3. Discuss interpretability of theories as a key tool for the generality.

4. Give more examples of how the connections across fields work.
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