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ABSTRACT. Theorem. For each k < ω there is anLω1,ω sentence φk such that:
(1) φk is categorical in µ if µ ≤ ℵk−2;
(2) φk is not ℵk−2-Galois stable;
(3) φk is not categorical in any µ with µ > ℵk−2;
(4) φk has the disjoint amalgamation property;
(5) φk is (ℵ0,ℵk−3)-tame; indeed, syntactic types determine Galois types over

models of cardinality at most ℵk−3;
(6) φk is not (ℵk−3,ℵk−2)-tame.

Considerable work (e.g. [She83a, She83b, She99, GV06a, GV06b, GV,
Zil05]) has explored the extension of Morley’s categoricity theorem to infinitary
contexts. While the analysis in [She83a, She83b] applies only to Lω1,ω, it can be
generalized and in some ways strengthened in the context of abstract elementary
classes.

Various locality properties of syntactic types do not generalize in general
to Galois types (defined as orbits under an automorphism group) in an AEC [BS];
much of the difficulty of the work stems from this difference. One of such lo-
cality properties is called tameness. Roughly speaking, K is (µ, κ)-tame if dis-
tinct Galois types over models of size κ have distinct restrictions to some sub-
model of size µ. For classes with arbitrarily large models, that satisfy amal-
gamation and tameness, strong categoricity transfer theorems have been proved
[GV06a, GV06b, GV, Les05, BL00, Hyt]. In particular these results yield cate-
goricity in every uncountable power for a tame AEC in a countable language (with
arbitrarily large models satisfying amalgamation and the joint embedding prop-
erty) that is categorical in any single cardinal above ℵ2 ([GV]) or even above ℵ1

([Les05]).

In contrast, Shelah’s original work [She83a, She83b] showed (under weak
GCH) that categoricity up to ℵω of a sentence in Lω1,ω implies categoricity in all
uncountable cardinalities. Hart and Shelah [HS90] showed the necessity of the
assumption by constructing sentences φk which were categorical up to some ℵn

but not eventually categorical. These examples were thus a natural location to look
for examples of categoricity and failure of tameness.

The first author is partially supported by NSF grant DMS-0500841.
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Although the example expounded here is patterned on the one in Hart-
Shelah, [HS90], our analysis of their example led to the discovery of some minor
inaccuracies (the greatest categoricity cardinal is ℵk−2 rather than ℵk−1). Although
the properties we assert could be proved with more complication for the original
example, we present a simpler example. In Section 1 we describe the example and
define the sentences φk. In Section 2 we introduce the notion of a solution and
prove lemmas about the amalgamation of solutions. From these we deduce in Sec-
tion 4 positive results about tameness. In some sense, the key insight of this paper
is that the amalgamation property holds in all cardinalities (Section 3) while the
amalgamation of solutions is very cardinal dependent. We show in Section 5 that
φk is not Galois stable in ℵk−2 and deduce the non-tameness. From the instability
we derive in Section 6 the failure of categoricity in larger cardinals.

Baldwin and Shelah [BS] showed under often satisfied conditions (K ad-
mits closures i.e. is closed under arbitrary intersections) amalgamation does not
affect tameness. That is, for any tameness spectrum realized by an AEC K which
admits closures, there is another which has the amalgamation property but the same
tameness spectrum. But this construction destroys categoricity so those examples
do not address the weaker conjecture that the amalgamation property together with
categoricity in a finite number of cardinals implies (ℵ0,∞)-tameness. We refute
that conjecture here. Baldwin, Kueker and VanDieren [BKV00] showed that if K
is an (ℵ0,∞)-tame aec with arbitrarily large models that is Galois-stable in κ it is
Galois stable in κ+; our results show the tameness hypothesis was essential.

This paper and [BS] provide the first examples of AEC that are not tame.
In both papers the examples are built from abelian groups. But while [BS] obtains
non-tameness from phenomena that are closely related to the Whitehead conjecture
and so to non-continuity results in the construction of groups, this paper shows the
failure can arise from simpler considerations.

1. THE BASIC STRUCTURE

This example is a descendent of the example in [BL71] of an ℵ1-
categorical theory which is not almost strongly minimal. That is, the universe is not
in the algebraic closure of a strongly minimal set. Here is a simple way to describe
such a model. Let G be a strongly minimal group and let π map X onto G. Add
to the language a binary function t : G × X → X for the fixed-point free action
of G on π−1(g) for each g ∈ G. That is, we represent π−1(g) as {ga : g ∈ G}
for some a with π(a) = g. Recall that a strongly minimal group is abelian and so
this action of G is strictly 1-transitive. This guarantees that each fiber has the same
cardinality as G and π guarantees the number of fibers is the same as |G|. Since
there is no interaction among the fibers, categoricity in all uncountable powers is
easy to check.
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Notation 1.1. The formal language for this example contains unary predicates
I,K,G,G∗,H,H∗; binary function eG takingG×K toH; a function πG mapping
G∗ toK, a function πH mappingH∗ toK, a 4-ary relation tG onK×G×G∗×G∗,
a 4-ary relation tH on K ×H ×H∗ ×H∗. Certain other projection functions are
in the language but not expressly described. These symbols form a vocabulary L′;
we form the vocabulary L by adding a k + 1-ary relation Q on (G∗)k ×H∗.

We start by describing the L′-structure M(I) constructed from any set I
with at least k elements. Typically, the set I will be infinite; but it is useful to
have all the finite structures as well. We will see that the L′-structure is completely
determined by the cardinality of I . So we need to work harder to get failure of
categoricity, and this will be the role of the predicate Q.

The structure M(I) is a disjoint union of sets I,K,H,G,G∗ and H∗. Let
K = [I]k be the set of k-element subsets of I . H is a single copy of Z2. Let G
be the direct sum of K copies of Z2. So G, K, and I have the same cardinality.
We include K, G, and Z2 as sorts of the structure with the evaluation function eG:
for γ ∈ G and k ∈ K, eG(γ, k) = γ(k) ∈ Z2. So in L′

ω1,ω we can say that the
predicate G denotes exactly the set of elements with finite support of KZ2.

Now, we introduce the sets G∗ and H∗. The set G∗ is the set of affine
copies of G indexed by K. First, we have a projection function πG from G∗ onto
K. Thus, for u ∈ K, we can represent the elements of π−1

G (u) in the form (u, x) ∈
G∗; or alternatively, as x ∈ G∗

u. We refer to the set π−1
G (u) as the G∗-stalk, or

fiber over u. Then we encode the affine action by the relation tG(u, γ, x, y) ⊂
K × G × G∗ × G∗ which is the graph of a regular transitive action of G on G∗

u.
(Of course, this can be expressed in L′

ω,ω. That is, for all x = (u, x′), y = (u, y′)
there is a unique γ ∈ G such that tG(u, γ, x, y) holds.

As a set, H∗ = K × Z2. As before if πH(x) = v holds x has the form
(v, x′), and we denote by H∗

v the preimage π−1
H (v). Finally, for each v ∈ K,

tH(v, δ, x, y) ⊂ K × Z2 ×H∗ ×H∗ is the graph of a regular transitive action of
Z2 on the stalk H∗

v .

(∗): We use the additive notation for the action of G (H) on the stalks of
G∗ (of H∗).

(1) For γ ∈ G, denote the action by y = x+ γ whenever it is clear that x and
y come from the same G∗-stalk. It is also convenient to denote by y − x
the unique element γ ∈ G such that y = γ + x.

(2) For δ ∈ H , denote the action by y = x+ δ, whenever it is clear that x and
y come from the same H∗-stalk. Say that δ = y − x.

Let ψ1
k be the Scott sentence for the L′-structure that we have described so

far. This much of the structure is clearly categorical (and homogeneous). Indeed,
suppose two such models have been built on I and I ′ of the same cardinality.
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Take any bijection between I and I ′. To extend the map to G∗ and H∗, fix one
element in each partition class (stalk) in each model. The natural correspondence
(linking those selected in corresponding classes) extends to an isomorphism. Thus
we may work with a canonical L′-model; namely with the model that has copies
of G (without the group structure) as the stalks G∗

u and copies of Z2 (also without
the group structure) as the stalks H∗

v . The functions tG and tH impose an affine
structure on the stalks.

Notation 1.2. The L-structure is imposed by a (k+ 1)-ary relation Q on (G∗)k ×
H∗, which has a local character. We will use only the following list of properties
of Q, which are easily axiomatized in Lω1,ω:

(1) Q is symmetric, with respect to all permutations, for the k elements from
G∗;

(2) Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1)) implies that u1, . . . , uk+1 form
all the k element subsets of a k + 1 element subset of I . We call
u1, . . . , uk+1 a compatible (k + 1)-tuple;

(3) using the notation introduced at (*) Q is related to the actions tG and tH
as follows:
(a) for all γ ∈ G, δ ∈ H

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ ¬Q((u1, x1 + γ), . . . , (uk, xk), (uk+1, xk+1))

if and only if γ(uk+1) = 1;
(b)

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ ¬Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1 + δ))

if and only if δ = 1.

Let ψ2
k be the conjunction of sentences expressing (1)–(3) above, and we

let φk := ψ1
k ∧ ψ2

k.

It remains to show that such an expansion to L = L′ ∪ {Q} exists. We do
this by explicitly showing how to define Q on the canonical L′-structure. In fact,
we describe 2|I| such structures parameterized by functions `.

Fact 1.3. Let M be an L′-structure satisfying ψ1
k. Let I := I(M) and

K := K(M). Let ` : I ×K → 2 be an arbitrary function.

For each compatible k+1 tuple u1, . . . , uk+1, such that u1∪· · ·∪uk+1 =
{a} ∪ uk+1 for some a ∈ I and uk+1 ∈ K, define an expansion of M to L by

M |= Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

if and only if x1(uk+1) + · · ·+ xk(uk+1) + xk+1 = `(a, uk+1) mod 2. Then M is
a model of φk.
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Indeed, it is straightforward to check that the expanded structure M satis-
fies ψ2

k.

We describe the interaction of G and Q a bit more fully. Using symmetry
in the first k components, we obtain the following.

Fact 1.4. For all γ1, . . . , γk ∈ G and all δ ∈ H we have

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ Q((u1, x1 + γ1), . . . , (uk, xk + γk), (uk+1, xk+1 + δ))

if and only if γ1(uk+1) + · · ·+ γk(uk+1) + δ = 0 mod 2.

In the next section, we show that φk is categorical in ℵ0, . . . ,ℵk−2. So in
particular φk is a complete sentence for all k.

Now we obtain abstract elementary classes (Kk,≺K) where Kk is the
class of models of φk and for M,N |= φk, M ≺K N if M is a substructure of
N . This is a stronger requirement than it seems; compare Lemma 3.1 Note that if
M ≺K N and g ∈ G(M), since G is a group, the support of g in M equals the
support of g in N . This allows us to verify that (Kk,≺K) is closed under unions
of chains and satisfies the axioms for an AEC. We freely use various notions from
the general theory of AEC, such as Galois type, below. All are defined in [Bal00].
For convenience we repeat the three most used definitions.

Definition 1. The AEC K has the disjoint amalgamation property if for any M0 ≺
M1,M2, there is a model M |= φk with M � M0 and embeddings fi : Mi →
M , i = 1, 2 such that f1(M1) ∩ f2(M2) = f1(M0) = f2(M0). If we omit the
requirement on the intersection of the images, we have the amalgamation property.

Under assumption of amalgamation (disjointness is not needed) one can
construct monster models and give the following simple definition of a Galois type.

Definition 2. Let K be an AEC with amalgamation. Let M ∈ K, M ≺K M
and a ∈ M. The Galois type of a over M (∈ M) is the orbit of a under the
automorphisms of M which fix M .

The set of all Galois types over M is denoted ga-S(M).

Definition 3. We say K is (χ, µ)-tame if for any N ∈ K with |N | = µ, for all
p, q ∈ ga-S(N), if p � N0 = q � N0 for every N0 ≤ N with |N0| ≤ χ, then p = q.

2. SOLUTIONS AND CATEGORICITY

As we saw at the end of the previous section, the predicate Q can be de-
fined in somewhat arbitrary way. Showing categoricity of the L-structure amounts
to showing that any model M , of an appropriate cardinality, is isomorphic to the
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model where all the values of ` are chosen to be zero; we call such a model a
standard model. This motivates the following definition:

Definition 2.1. Fix a model M . A solution for M is a selector f that chooses (in
a compatible way) one element of the fiber in G∗ above each element of K and
one element of the fiber in H∗ above each element of K. Formally, f is a pair of
functions (g, h), where g : K(M) → G∗(M) and h : K(M) → H∗(M) such that
πGg and πHh are the identity and for each compatible (k+1) tuple u1, . . . , uk+1:

Q(g(u1), . . . , g(uk), h(uk+1)).

Notation 2.2. As usual k = {0, 1, . . . k − 1} and we write [A]k for the set of
k-element subsets of A.

We will show momentarily that if M and N have the same cardinality and
have solutions fM and fN then M ∼= N . Thus, in order to establish categoricity
of φk in ℵ0, . . . ,ℵk−2, it suffices to find a solution in an arbitrary model of φk of
cardinality up to ℵk−2. Our approach is to build up the solutions in stages, for
which we need to describe selectors over subsets of I(M) (or of K(M)) rather
than all of I(M).

Definition 2.3. We say that (g, h) is a solution for the subset W of K(M) if for
each u ∈ W there are g(u) ∈ G∗

u and h(u) ∈ H∗
u such that if u1, . . . , uk, uk+1

are a compatible k + 1 tuple from W , then

Q(g(u1), . . . , g(uk), h(uk+1)).

If (g, h) is a solution for the setW , whereW = [A]k for someA ⊂ I(M),
we say that (g, h) is a solution over A.

Definition 2.4. The models of φk have the extension property for solutions over
sets of size λ if for every M |= φk, any solution (g, h) over a set A with |A| = λ,
and every a ∈ I(M) \A there is a solution (g′, h′) over the set A∪{a}, extending
(g, h).

One can treat the element g(u) as the image of the element (u, 0) under the
isomorphism between the standard model andM , where 0 represents the constantly
zero function in the stalk G∗

u. Not surprisingly, we have the following:

Lemma 2.5. If M and N have the same cardinality and have solutions fM and
fN then M ∼= N .

Moreover, suppose K has solutions and has extension of solutions
for models of cardinality less than |M |; if g is an isomorphism between L-
substructures M ′, N ′ of M and N , then the isomorphism ĝ between M and N
can be chosen to extend g. Finally, if fM ′ is a solution on M ′ which extends to a
solution fM on M , then ĝ maps them to a similar extending pair on N ′ and N .
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Proof. We prove the ‘moreover’ clause; the first statement is a special case
when g is empty and the ‘finally’ is included in the proof. Say, g maps M ′ to N ′.
Without loss of generality,M � L′ = M(I),N � L′ = M(I ′). Let α be a bijection
between I and I ′ which extends g � I . Extend naturally to a map from K(M) to
K(N) and from G(M) to G(N), which extends g on M ′. By assumption there
is a solution fM ′ on M ′. It is clear that g maps fM ′ to a solution fN ′ on N ′;
by assumption fN ′ extends to a solution on N . (Note that if we do not have to
worry about g, we let α be an arbitrary bijection from I to I ′ and let α(fM (u)) be
fN (α(u)).) For x ∈ G∗(M −M ′) such that M |= πG(x) = u, there is a unique
a ∈ G(M) with a = x− fM (u) (the operation makes sense because a and fM (u)
are in the same stalk).

Let α(x) be the unique y ∈ N −N ′ such that

N |= t(α(u), α(a), fN (α(u)), y)

i.e., y = α(a) + fN (α(u)) in the stalk G∗
α(u)(N).

Do a similar construction for H∗ and observe that Q is preserved. �2.5

We temporarily specialize to the case k = 2.

Claim 2.6. The models of φ2 have the extension property for solutions over finite
sets.

Proof. Let A := {a0, . . . , an−1} and (g, h) be a solution over A. For each v =
{a, ai}, let yv be an arbitrary element of H∗

v . Now extend h to the function h′ with
domain [A ∪ {a}]2 by defining h′(v) := yv.

It remains to define the function g′ on each {a, ai}, and we do it by induc-
tion on i.

For i = 0, pick an arbitrary element x ∈ G∗
a,a0

. Let γ0 ∈ G be such that
for j = 1, . . . , n− 1

γ0(a, aj) = 1 if and only if M |= ¬Q(({a, a0}, x), g(a0, aj), h′(a, aj)).

It is clear that letting g′({a, a0}) := ({a, a0}, x+ γ0), we have a partial solution.

Suppose that g′({a, aj}), j < i, have been defined. Pick an arbitrary
element x ∈ G∗

a,ai
. Let γi ∈ G be such that for j ∈ {0, . . . , n− 1} \ {i}

γi(a, aj) = 1 if and only if M |= ¬Q(({a, ai}, x), g(ai, aj), h′(a, aj)).

Also let γ′i ∈ G be such that for j < i

γ′i(ai, aj) = 1 if and only if M |= ¬Q(({a, aj}, x), g′(a, aj), h(ai, aj)).

Now letting g′({a, ai}) := ({a, ai}, x+ γi + γ′i) yields a well-defined solution on
A ∪ {a}. �

Corollary 2.7. The sentence φ2 is ℵ0-categorical, and hence is a complete sen-
tence.
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Proof. Let M be a countable model. Enumerate I(M) as {ai | i < ω}. It is
clear that a solution exists over the set {a0, a1} (any elements in stalks G∗

a0,a1

and H∗
a0,a1

work). By the extension property for solutions over finite sets we get
a solution defined over the entire I(M). Hence φ2 is countably categorical by
Lemma 2.5. �

We see that extension for solutions over finite sets translates into existence
of solutions over countable sets. This is part of a general phenomenon that we
describe below. We return to the general case k ≥ 2.

Definition 2.8. Let A be a subset of I of size λ, and consider an arbitrary n-
element set {b0, . . . , bn−1} ⊂ I . Suppose that, for each (n − 1)-element subset w
of n = {0, . . . , n − 1}, we have a solution (gw, hw) over A ∪ {bl | l ∈ w} such
that the solutions are compatible (i.e., (

⋃
w gw,

⋃
w hw) is a function).

We say that M has n-amalgamation for solutions over sets of size λ if for
every such set A, there is a solution (g, h) over A ∪ {b0, . . . , bn−1} that simulta-
neously extends all the given solutions {(gw, hw) | w ∈ [n]n−1}.

For n = 0 the given system of solutions is empty, thus 0-amalgamation
over sets of size λ is existence for solutions over sets of size λ. For n = 1, the
initial system of solutions degenerates to just (g∅, h∅), a solution on A; so the 1-
amalgamation property corresponds to the extension property for solutions. Gener-
ally, the number n in the statement of n-amalgamation property for solutions refers
to the “dimension” of the system of solutions that we are able to amalgamate.

Remark 2.9. Immediately from the definition we see that n-amalgamation for so-
lutions of certain size implies m-amalgamation for solutions of the same size for
any m < n. Indeed, we can obtain m-amalgamation by putting n−m elements of
the set {b0, . . . , bn−1} inside A.

Lemma 2.10. The models of φk have the (k − 1)-amalgamation property for so-
lutions over finite sets.

Proof. Enumerate A = {a0, . . . , ar−1}. We are given that (
⋃

w gw,
⋃

w hw) is a
function (where the union is over all w ∈ [k − 1]k−2). Moreover, it is a solution
over W =

⋃
w dom(gw), (dom gw = A ∪ {bi : i ∈ w}), since if u1, . . . uk+1

is a compatible k + 1-tuple of k-tuples from W , then each ui is in dom(gw) =
dom(hw) for at least one w ∈ [k − 1]k−2. Denote the function

⋃
w gw by g−1.

It is clear that in order to extend to a solution on A ∪ {b0, . . . , bk−2}, we
only need to define the values (g, h) on the stalks {ai, b0, . . . , bk−2} for all i < r.
For each i < r, let h(ai, b0, . . . , bk−2) be an arbitrary element of H∗

ai,b0,...,bk−2
. We

need to check that (g−1, h) is still a solution.

Remark 2.11. Hart and Shelah assert categoricity holds up to ℵk−1; we show in
Theorem 6.1 that this statement is incorrect. The Hart-Shelah argument breaks
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down at this very point. Their formulation of the analog of Lemma 2.10 asserts
essentially k, not k−1, amalgamation property for solutions over finite sets. How-
ever, they did not make the compatibility requirement in Definition 2.8; and did not
check that the function obtained after defining h is a partial solution. In fact, in
their setting without the compatibility condition it need not be a solution, and there
may not be a way of defining h to make (g−1, h) a solution.

As we will see in Lemma 2.12, k−1 amalgamation for solutions over finite
sets translates into existence of solutions, and hence categoricity, in ℵk−2. This is
the reason for subscript of the categoricity cardinal being off by one in [HS90].

It is clear that (g−1, h) is a function with values in the appropriate stalks.
To check that it is a solution, we need to make sure that we have not introduced new
values that violate the predicate Q. This is easy: for each ai ∈ A, any compatible
k + 1 tuple containing the k element set {ai, b0, . . . , bk−2} has to contain a k
element set of the form {aj , b0, . . . , bk−2} for some j 6= i. Since the value g−1 at
{aj , b0, . . . , bk−2} is not defined, there are simply no new compatible k + 1 tuples
to worry about.

Finally, we need to define g on the stalks of the form {ai, b0, . . . , bk−2}.
We do it by induction on i < n, building an increasing chain of functions gi,
i < n, with g0 extending g−1. Let {ws | s < k − 1} be an enumeration of all the
k − 2 element subsets of k − 1; let bws denote the sequence {bi | i ∈ ws} and let
cs,j = 〈a0, aj , bws〉.

For i = 0, pick an arbitrary element x ∈ G∗
a0,b0,...,bk−2

. Let γ0 ∈ G be
such that for j = 1, . . . , n− 1

γ0(aj , b0, . . . , bk−2) = 1 if and only if

M |= ¬Q(({a0, b0, . . . , bk−2}, x), g−1(c0,j), . . . , g−1(ck−1,j), h(aj , b0, . . . , bk−2)).

Now we can extend the function g−1 to the function g0 by letting
g0(a0, b0, . . . , bk−2) := ({a0, b0, . . . , bk−2}, x + γ0). It is clear that (g0, h) is a
solution from its definition.

For arbitrary i, suppose that the solution (gi−1, h) has been defined so that

dom(gi−1) = dom(g−1) ∪ [{a0, . . . , ai−1, b0, . . . , bk−2}]k.

We need to extend gi−1 to a function gi, with domain dom(g−1) ∪
[{a0, . . . , ai, b0, . . . , bk−2}]k, by defining gi(ai, b0 . . . , bk−2). The strategy will be
the same as before: we pick an arbitrary candidate and work to resolve all possible
conflicts with the predicate Q.
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Let ds,j denote 〈ai, aj , bws〉. Pick an arbitrary element x ∈ G∗
ai,b0,...,bk−2

.
Let γi ∈ G be such that for j ∈ {0, . . . , n− 1} \ {i}

γi(aj , b0, . . . , bk−2) = 1 if and only if M |=
¬Q(({ai, b0, . . . , bk−2}, x), g−1(d0,j), . . . , g−1(dk−1,j), h(aj , b0, . . . , bk−2))

and γi(u) = 0 if u ∈ dom(g−1)∪[{a0, . . . , ai, b0, . . . , bk−2}]k is not of this form.

For each k − 2 element set w of k − 1, let γw
i ∈ G be such that for j < i

γw
i (ai, aj , bw) = 1 if and only if M |=

¬Q(({ai, b0, . . . , bk−2}, x), gi−1(aj , b0, . . . , bk−2), .., g−1(ds,j), .., h(ai, aj , bw)),

and γw
i (u) = 0 if u ∈ dom(g−1)∪[{a0, . . . , ai, b0, . . . , bk−2}]k is not of this form,

where ds,j ranges over all sequences 〈ai, aj , bws〉 with ws a k − 2 element subset
of k − 1 except ws = w. The role of γw

i is to avoid the conflict with the values
already defined by gi−1. Notice that we have finitely many conditions to meet, so
γi as well as γw

i are all finite support functions in G.

Now we let

gi(ai, b0, . . . , bk−2) :=
(
{ai, b0, . . . , bk−2}, x+ γi +

∑
w∈[k−1]k−2

γw
i

)
.

From the definition, (gi, h) is a solution. �

Lemma 2.12. Let M |= φk for some k ≥ 2 and let n ≤ k − 2. If M has
(n + 1)-amalgamation for solutions over sets of size less than λ, then M has n-
amalgamation for solutions over sets of size λ.

Proof. Let A = {ai | i < λ} be a subset of I(M), let {b0, . . . , bn−1} be distinct
points in I(M) \A and let

{(gw, hw) | w ∈ [n]n−1,dom(gw) = dom(hw) = [A ∪ {bl | l ∈ w}]k}
be a system of compatible solutions. We need to simultaneously extend the system
of solutions.

By induction on i < λ, we are building an increasing continuous chain of
solutions (gi, hi) such that

(1) dom(gi) = dom(hi) = [{aj | j < i} ∪ {b0, . . . , bn−1}]k;
(2) (gi, hi) is a solution;
(3) (gi+1, hi+1) extends simultaneously (gi, hi) as well as for all w ∈ [n]n−1,

(gw, hw) � [{aj | j < i+ 1} ∪ {bl | l ∈ w}]k.

To define (g0, h0), consider for w ∈ [n]n−1 the system of solutions
(gw, hw) � [{bl | l ∈ w}]k. Since (n + 1)-amalgamation for solutions implies
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n-amalgamation for solutions and we have (n + 1)-amalgamation for solutions
over the empty set, we get a simultaneous extension (g0, h0).

At limit stages, we take unions, and at the successor step we simultane-
ously extend (gi, hi) and (gw, hw) � [{aj | j < i + 1} ∪ {bl | l ∈ w}]k, for
all w ∈ [n]n−1. Clearly, all the restrictions of (gw, hw) are pairwise compatible,
and for each w ∈ [n]n−1 the intersection dom(gi, hi) ∩ dom(gw, hw) is equal to
[{aj | j < i} ∪ {bl | l ∈ w}]k, where their definitions coincide. So by (n + 1)-
amalgamation property for solutions of size less than λ there is the required com-
mon extension (gi+1, hi+1). Finally,

⋃
i<λ(gi, hi) is the needed solution. �

Corollary 2.13. Every model of φk of cardinality at most ℵk−2 admits a solution.
Thus, the sentence φk is categorical in ℵ0, . . . , ℵk−2.

Proof. Let M |= φk. By Lemma 2.10, M has (k − 1)-amalgamation for solutions
over finite sets. So M has (k− 2)-amalgamation for solutions over countable sets,
(k − 3)-amalgamation for solutions over sets of size ℵ1, and so on until we reach
0-amalgamation for solutions over sets of size ℵk−2 (provided M is large enough).
Since form < n and any λ, the n-amalgamation property for solutions over sets of
cardinality λ impliesm-amalgamation solutions over sets of cardinality λ, we have
0-amalgamation, that is, existence of solutions for sets of size up to and including
ℵk−2.

Now Lemma 2.5 gives categoricity in ℵ0, . . . , ℵk−2. �

Corollary 2.14. For all k ≥ 2, the sentence φk is complete.

The following further corollary will be useful in applications.

Corollary 2.15. Let M |= φk for some k ≥ 2 and n ≤ k − 2. Suppose M has
2-amalgamation for solutions over sets of cardinality λ . If A0 ⊂ A1, A2 ⊂ M
have cardinality λ and (g1, h1), (g2, h2) are solutions of A1, A2 respectively that
agree on A, there is a solution (g, h) on A1 ∪A2 extending both of them.

Proof. It suffices to show that a one point extension can be amalgamated with
an extension of cardinality λ. For this, enumerate A1 − A0 as {a0, a1, a2, . . .}
and say A2 − A0 is b. Now successively apply 2-amalgamation to amalgamate
(g2, h2) � A ∪ {b} with (g1, h1) � A ∪ {a0} over A, with (g1, h1) � A ∪ {a0, a1}
over A ∪ {a0}, etc. �

3. DISJOINT AMALGAMATION FOR MODELS OF φk

In contrast to the previous section, where we studied amalgamation prop-
erties of solutions, this section is about (the usual) amalgamation property for the
class of models of φk. The amalgamation property is a significant assumption for
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the behavior and even the precise definition of Galois types, so it is important to
establish that the class of models of our φk has it.

We claim that the class has the disjoint amalgamation property in every
cardinality. Before doing so we clarify the strength of our notion of submodel. We
took L-substructure as the relation to define the abstract elementary class. In fact,
the relation is the Lω1,ω-submodel relation as K admits ‘elimination of quantifiers’
in an almost classical sense. We show this in two steps, making essential use of the
local-finiteness of K.

Claim 3.1. Let M |= φk, and let A be a finite structure inside M . Let ψA be
the quantifier-free first order formula describing the quantifier-free diagram of A.
Then ψA is a complete Lω1,ω-formula modulo φk.

Proof. It suffices to note that φk ∧ ψA[c0, . . . , cl−1] is a complete Lω1,ω sen-
tence. Indeed, the realizations of c0, . . . , cl−1 form a finite L-structure, which
must have a solution for any k. We also know that for any k ≥ 2 the models of
φk have extension property for solutions over finite sets. Thus, by Lemma 2.5,
φk ∧ ψA[c0, . . . , cl−1] is ω-categorical and hence complete. �

Claim 3.2. Let M |= φk, and let A be a finite subset of M , not necessarily
a substructure. Let ψA be the quantifier-free first order formula describing the
quantifier-free diagram of A. Then ψA is a complete Lω1,ω-formula modulo φk.

Proof. Let A be the finite substructure of M generated by A. Let ψA be the com-
plete formula from the previous claim, let x0, . . . , xl−1 be the list of variables that
correspond to the elements of A, and let y0, . . . , ym−1 be the remaining variables
of ψA. Now there are two easy steps that we leave to the reader: (1) the formula
∃y0 . . . ym−1ψA is complete modulo φk and (2) φk |= ψA → ∃y0 . . . ym−1ψA,
where ψA is the formula containing the quantifier-free diagram of A. �

Corollary 3.3. Suppose M ⊂ N , where M,N |= φk. Then M ≺Lω1,ω N .

Proof. Take a ∈ M . We show that N |= χ[a] implies M |= χ[a] for any formula
χ(x). Take the formula ψA as in the previous claim. Since M ⊂ N , we have
M,N |= ψA[a]. Since N |= φk ∧ χ[a] and ψA is complete modulo φk, we get
φk |= ψA → χ. Thus finally M |= χ[a]. �

We see immediately from the quantifier elimination that with respect to
syntactic types for each k, φk is stable in all cardinalities.

Corollary 3.4. For every k and M |= φk, there are only |M | first order types over
M realized in a model of φk.

Now we turn to the amalgamation.
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Theorem 3.5. Fix k ≥ 2. The class of models of φk has the disjoint amalgamation
property.

Proof. Let Mi = Mi(Ii), i = 0, 1, 2, where of course I0 ⊂ I1, I2; K0,K1,K2 are
the associated sets of k-tuples. We may assume that I1 ∩ I2 = I0. Otherwise take
a copy I ′2 of I2 \ I0 disjoint from I1, and build a structure M ′

2 isomorphic to M2

on I0 ∪ I ′2.

We are building a model M |= φk on the set I1 ∪ I2 making sure that it is
a model of φk and that it embeds M1 and M2, where the embeddings agree over
M0. We start by building the L′-structure on I1 ∪ I2. So let I = I(M) := I0 ∪ I2;
the set K = [I]k can be thought of as K1 ∪K2 ∪ ∂K, where ∂K consists of the
new k-tuples.

Let G be the direct sum of K copies of Z2, notice that it embeds G(M1)
and G(M2) in the natural way over G(M0). We will assume that the embeddings
are identity embeddings.

Let G∗ be the set of K many affine copies of G, with the action by G and
projection to K defined in the natural way. Let H∗ be the set of K many affine
copies of Z2, again with the action by Z2 and the projection onto K naturally
defined.

For i = 1, 2, we now describe the embeddings fi of G∗(Mi) and H∗(Mi)
into G∗ and H∗. Later, we will define the predicate Q on M in such a way that fi

become embeddings of L-structures.

For each u ∈ K0, choose arbitrarily an element xu ∈ G∗
u(M0). Now for

each x′ ∈ G∗
u(M1), let γ be the unique element in G(M1) with x′ = xu + γ.

Let f1(x′) := (u, γ). Similarly, for each x′ ∈ G∗
u(M2), let δ ∈ G(M2) be the

element with x′ = xu + δ. Define f2(x′) := (u, δ). Note that the functions agree
over G∗

u(M0): if x′ ∈ G∗
u(M0), then the element γ = x′ − xu is in G(M0). In

particular, f1(xu) = f2(xu) = 0, the constantly zero function.

For each u ∈ Ki \ K0, i = 1, 2, choose an arbitrary xu ∈ G∗
u(Mi), and

for each x′ ∈ G∗
u(Mi) define fi(x′) := (u, y − xu). This defines the embeddings

fi : G∗(Mi) → G∗(M).

Embedding H∗(Mi) into H∗(M) is even easier: for each v ∈ K1, pick
an arbitrary yv ∈ H∗

v (M1), and let f1(yv) := (v, 0), f1(yv + 1) := (v, 1). For
each v ∈ K2, if v ∈ K1, define f2 to agree with f1. Otherwise choose an arbitrary
yv ∈ H∗

v (M2), and let f2(yv) := (v, 0), f2(yv + 1) := (v, 1).

This completes the construction of the disjoint amalgam for L′-structures.
Now we define Q on the structure M so that fi, i = 1, 2 become L-embeddings.
The expansion is described in terms of the function ` that we discussed in Fact 1.3.
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Let u1, . . . , uk, v be a compatible k+1 tuple of elements of K; u1 ∪ · · · ∪
uk ∪ v = {a} ∪ v for some a ∈ I .

Case 1. u1, . . . , uk, v ∈ K1 (or all inK2). This is the most restrictive case.
Each of the stalks G∗

ui
(M1) contains an element xui defined at the previous stage;

and the stalk H∗
v has the element yv ∈M1. Define

`(a, v) := 0 if M1 |= Q((u1, xu1), . . . , (uk, xuk
), (v, yv)),

and `(a, v) := 1 otherwise.

Case 2. At least one of the u1, . . . , uk, v is in ∂K. Then the predicate Q
has not been defined on these k + 1 stalks, and we have the freedom to define it in
any way. So choose `(a, v) := 0 for all such compatible k + 1 tuples.

Now define Q on M from the function ` as in Fact 1.3.

It is straightforward to check that f1 and f2 become L-embeddings into
the L-structure M that we have built. �

4. TAMENESS

Here we study the tameness properties for models of φk. We know that
φk is categorical up to ℵk−2; so without loss of generality we may deal with the
standard models of φk in powers ℵ0, . . . , ℵk−2.

In Section 5 we establish that φ2 has continuum Galois types over a count-
able model; and that φ3 is not (ℵ1,ℵ0)-tame. So in the light of Corollary 3.4, the
first index where some tameness appears is k = 4.

Notation 4.1. Let M0 ⊂M |= φk. If a ∈M −M0 by the submodel generated by
M0 ∪ a, denoted Ma

0 , we mean the structure constructed as follows. First take the
definable closure of M0∪a to obtain a set X . Then formX ′ by for any u ∈ K(X)
such thatG∗

u(M)∩X is empty adding a single element from the fiber. Finally, take
the definable closure of X ′.

Lemma 4.2. Suppose M0 ⊂ M |= φk and |M0| ≤ ℵk−3. If a, b ∈ M − M0

realize the same first order syntactic type over M0 then there is an isomorphism f
between Ma

0 and M b
0 , fixing M0 and mapping a to b.

Proof. Since a and b realize the same syntactic type the L-structures with universe
dcl(M0a) and dcl(M0b) are isomorphic over M0. Since |M0| ≤ ℵk−3, exten-
sion of solutions holds for models of cardinality |M0|. We finish by applying the
moreover clause of Lemma 2.5 to M0, Ma

0 and M b
0 . �

It follows immediately that we can strengthen the hypothesis of the last
lemma to a and b realize the same Galois type.
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We cannot go higher than ℵk−3 in Lemmas 4.4 and 4.6 because we need
the extension property for solutions, which we can only establish for models of
size up to ℵk−3, to prove Lemma 4.2.

Lemma 4.3. Let k ≥ 4 and ℵ0 ≤ λ ≤ ℵk−4. Then the class of models of φk is
(λ, λ+)-tame.

Proof. LetM be a model of cardinality λ+; and let a, b have the same Galois types
over all submodels of M of cardinality λ. By the disjoint amalgamation property,
we may assume that M , a, and b are inside some model N . Let M0 ≺ M be
of power λ; and let {Mi | i < λ+} be an increasing continuous chain of models
beginning with M0 and with union M . By Lemma 4.2 there is an isomorphism f0

between Ma
0 and M b

0 , fixing M0 and mapping a to b.

Let 〈g0, h0〉 be a solution for M0, and let 〈ga
0 , h

a
0〉 be a solution extending

〈g0, h0〉 to the modelMa
0 . As noted in the finally clause of Lemma 2.5, the induced

solution 〈gb
0, h

b
0〉 := 〈ga

0 , h
a
0〉f0 for M b

0 extends the solution 〈g0, h0〉 as well.

Now using extension property for solutions, we get a chain {〈gi, hi〉 | i <
λ+} of solutions for the models Mi, with 〈gi, hi〉 ⊂ 〈gj , hj〉 for i < j. Using
2-amalgamation for solutions (which holds for λ ≤ ℵk−4) and Corollary 2.15, we
get increasing chains of solutions 〈ga

i , h
a
i 〉 and 〈gb

i , h
b
i〉, i < λ+, where 〈ga

i+1, h
a
i+1〉

has domain Ma
i+1 and is gotten by extension of solutions from the 2-amalgam of

solutions 〈ga
i , h

a
i 〉 and 〈gi+1, hi+1〉 that has domain Ma

i ∪Mi+1. Further by re-
peated application of the strong form of Lemma 2.5 we get an increasing sequence
isomorphisms fi from Ma

i onto M b
i which fix Mi and map a to b and preserve the

solutions. The union of the fi is the needed isomorphism betweenMa andM b that
fixes M and sends a to b.

�

We can establish an even better behavior for Galois types.

Corollary 4.4. Let k ≥ 3. Then the class of models of φk is (ℵ0,ℵk−3)-tame.
Moreover, the Galois types of finite tuples over a model of size up to ℵk−3 are
determined by the syntactic types over that model.

Proof. The first statement is an easy consequence of the last lemma. We concen-
trate on the second, where it is enough to prove the claim for models of size ℵ0.
The proof will mimic the construction in the last lemma.

Fix k ≥ 3 and suppose that M |= φk is a countable model and a, b are
finite tuples that have the same quantifier-free type over M . Find minimal (finite)
X and Y such that a belongs to the L-structure generated by X , b to the structure
generated by Y . Again, we let X0 := X ∩ I(M). Let M0 ⊂ M be a finite L-
substructure X0; and let {Mi | i < ω} be an increasing chain of substructures
converging to M .
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Since a and b realize the same syntactic type overM0 by Lemma 4.2, there
is an isomorphism f between Ma

0 and M b
0 over M0.

The rest is a familiar argument: conjugate a solution on Ma
0 by f to a

solution on M b
0 ; and use 2-amalgamation property on solutions (holds over finite

sets for all k ≤ 3 to extend the solutions to Ma and M b. This gives the needed
isomorphism fixing M and mapping a to b. �

Our earlier argument for tameness used the notion of superhomegenity.
Although, no longer needed for the main argument we include the following results
since superhomogeneity is an intriguing property in its own right. For now, let
k ≥ 3. We claim that the model of φk with power ℵk−3 is superhomogeneous in
the following sense (note M0 may have cardinality ℵk−3.)

Definition 4.5. The structureM is superhomogeneous if for anyM0 ≺K M ∈ K
and a, b ∈ M which realize the same Galois type over M0, there is an automor-
phism of M which takes a to b and fixes M0.

It is important that a, b are finite tuples here. The lemma below fails
otherwise. Forgetting the finiteness condition is also possible; the price to pay is
the additional demand that M is weakly full over M0.

Lemma 4.6. Let M be the model of φk with power ≤ ℵk−3. Then M is superho-
mogeneous.

Proof. In fact, we show that ifM has extension of solutions over subsets of smaller
cardinality then M is superhomogeneous; the precise statement then follows from
the proof of Corollary 2.13. Let a, b ∈ M = M(I) have the same Galois type
over M0. By Lemma 4.2 there is an isomorphism f between Ma

0 and M b
0 mapping

a to b.

Let 〈g0, h0〉 be a solution for M0, and let 〈g1, h1〉 be a solution extending
〈g0, h0〉 to the model Ma

0 . Then

〈g1, h1〉f : 〈f ◦ g1 ◦ f−1, f ◦ h1 ◦ f−1〉

is a solution for M b
0 that extends 〈g0, h0〉.

From our hypotheses, |I(M) \ I(Ma)| = |I(M) \ I(Mb)|. So we can
extend the solutions 〈g1, h1〉 and 〈g1, h1〉f , in the same number of steps, to full
solutions over M . This gives the desired automorphism of M . �

5. INSTABILITY AND NON-TAMENESS

In this section we show that φk is not Galois stable in ℵk−2. We warm
up by treating the case: k = 2, showing there are continuum Galois types over a
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countable model of φ2. The argument for larger k involves a family of equivalence
relations instead of just one.

Since for any u, the stalk Gu is affine (L′)-isomorphic to the finite support
functions from K to Z2, without loss of generality we may assume each stalk
has this form. We are working with models of cardinality ≤ ℵk−2 so they admit
solutions; thus, if we establish L′-isomorphisms they extend to L-isomorphisms.
For any G∗-stalk Gu, the 0 in (u, 0) denotes the identically 0-function in that stalk.
But for a stalk in H∗, the 0 in (u, 0) denotes the constant 0.

Claim 5.1. Let M be the standard countable model of φ2. There are 2ℵ0 Galois
types over M .

Proof. Let E0 be the equivalence relation of eventual equality on ω2; there are of
course 2ℵ0 equivalence classes.

Let I(M) = {a0, . . . , ai, . . . }. Pick a function s ∈ ω2, and define a
model Ms � M as follows. The L′-structure is determined by the set I(Ms) =
I(M)∪{bs}. For the new compatible triples of the form {a0, ai}, {a0, bs}, {ai, bs},
define

Ms |= Q(({a0, ai}, 0), ({a0, bs}, 0), ({ai, bs}, 0))
if and only if s(i) = 0. The values of Q for any u1, u2, u3 among the remaining
new compatible triples is defined as:

Ms |= Q((u0, 0), (u1, 0), (u2, 0)).

Note that 0 in the first two components of the predicate Q refer to the
constantly zero functions in the appropriate G∗-stalks, and in the third component,
0 is a member of Z2. A compact way of defining the predicate Q is:

(∗) Ms |= Q(({a0, ai}, 0), ({a0, bs}, 0), ({ai, bs}, s(i))).

Note that by Notation 1.2, the definition of Q is determined on all of M .

Now we show that the E0-class of s can be recovered from the structure
of Ms over M . Take two models Ms and Mt and suppose that the Galois types
ga-tp(bs/M) and ga-tp(bt/M) are equal. Then there is an extension N of the
model Mt and an embedding f : Ms → N that sends bs to bt. We work to show
that in this case s and t are E0-equivalent.

First, let us look at the stalks G∗
a1,ai

, G∗
a1,bt

, H∗
ai,bt

for i > 1. Since f fixes
M , the constantly zero function 0 ∈ G∗

a0,ai
is fixed by f . Let x ∈ G∗

a1,bt
be the

image of 0 ∈ G∗
a1,bs

under f . Then we have

Mt |= Q(({a1, ai}, 0), ({a1, bt}, x), ({ai, bt}, f(0))).

Since x is a finite support function, and we have defined

Mt |= Q(({a1, ai}, 0), ({a1, bt}, 0), ({ai, bt}, 0)),
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for co-finitely many i > 1 we must have f(0) = 0 in the stalks H∗
ai,bt

. In other
words, f preserves all but finitely many zeros in H∗

ai,bt
. In particular, by (∗) for

any s : ω → 2 the functions s and f(s) are E0-equivalent.

We focus now on the stalks of the form G∗
a0,ai

, G∗
a0,bt

, H∗
ai,bt

, i ≥ 1.
Again, since f fixes M , the constantly zero function 0 ∈ G∗

a0,ai
is fixed by f .

Letting y ∈ G∗
a0,bt

be the image of 0 ∈ G∗
a0,bs

under f , we get

Mt |= Q(({a0, ai}, 0), ({a0, bt}, y), ({ai, bt}, f [s(i)])).

Since y is a finite support function, there is a natural number n such that y(ai, bt) =
0 for all i > n. Since we have defined

Mt |= Q(({a0, ai}, 0), ({a0, bt}, 0), ({ai, bt}, t(i))),
we get t(i) = f(s(i)) for all i > n, or f(s) and t are E0-equivalent. Combining
this with the previous paragraph, we get that s is E0-equivalent to t, as desired.

�

Now we turn to the proof that many Galois types exist for a general k. We
will reduce equality on Galois types indexed by elements of ωk2 to the equivalence
relation of eventual equality on ωk2. This requires some more technical notions.

Remark 5.2. In fact, for any µ ≥ ℵk the relation of equality on Galois types
indexed by elements of µ2 reduces to the equivalence relation Eµ on µ2, where
Eµ(s, t) if and only if |{s(i) = t(i) | i < µ}| = µ.

We do our analysis on ℵk as that is the most important application; but the
argument can be used on any µ ≥ ℵk.

Definition 5.3. Fix a natural number n. Let En be the equivalence relation of
eventual equality on the set of sequences ωn2.

Let Pn := ω × · · · × ωn. Define the family of equivalence relations Fn on
the sets of sequences Pn2 by induction. Let F0 := E0. Having defined the relation
Fn−1 on Pn−12, define Fn as follows. Two sequences s, t ∈ Pn2 are Fn-equivalent
if and only if there is a set Bn ∈ ωn such that

(1) the complement of Bn has cardinality less than ℵn;
(2) for all i∗ ∈ Bn the sequences s(i0, . . . , in−1, i

∗) and t(i0, . . . , in−1, i
∗)

are Fn−1-equivalent.

Claim 5.4. The equivalence relation En is reducible to Fn. In particular, Fn has
2ℵn equivalence classes.

Proof. Given a sequence s ∈ ωn2, define s ∈ Pn by

s : (i0, . . . , in) ∈ Pn 7→ s(in).

Clearly, En(s, t) if and only if Fn(s, t). �
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We will identify a sequence s ∈ ωn2 with its image s in Pn2.

Proposition 5.5. Let M be the standard model of φk+2 of size ℵk. There are 2ℵk

Galois types over M .

Proof. Without loss of generality, we may assume that

I = I(M) = {a0, a1} ∪ I0 ∪ · · · ∪ Ik,

where Il is a well-ordered set of order-type ωl, l = 0, . . . , k. We denote the ele-
ments of Il by al

i, for i < ωl, l < k.

The Galois types over the model M will be coded essentially by Ek, but
we will need the finer relation Fk to describe the situation. Pick a function s ∈ ωk2,
and define a model Ms �M as follows. The L′-structure is determined by the set
I(Ms) = I(M)∪{bs}. The L-structure onMs is given as in the original definition
of Q in Section 1 from the function `, where:

`(a0, {a0
i0 , . . . , a

k
ik
, bs}) = s(ik) for all (i0, . . . , ik) ∈ Pk,

and the rest of the values of ` are all zero. In particular,

`(a1, {a0
i0 , . . . , a

k
ik
, bs}) = 0 for all (i0, . . . , ik) ∈ Pk.

Let us note explicitly the most relevant relations. For (i0, . . . , ik) ∈ Pk, we
introduce some special notation for k+2 element subsets of {a0, a

0
i0
, . . . , ak

ik
, bs}.

Let
vi0...ik,s := {a0

i0 , . . . , a
k
ik
, bs}.

List the remaining k + 2 element subsets of {a0, a
0
i0
, . . . , ak

ik
, bs} as ui0...ik (the

subset not containing bs), and ui0..̂ij ..ik,s for j ≤ k (omitting aj
ij

).

Similarly, let wi0...ik , wi0..̂ij ..ik,s list the k + 2 element subsets of

{a1, a
0
i0
, . . . , ak

ik
, bs} that do not contain respectively bs and aj

ij
for j ≤ k. Then

we have

Ms |= Q((ui0...ik , 0), (uî0,i1...ik,s, 0), . . . , (ui0...ik−1 ,̂ik,s, 0), (vi0...ik,s, s(j)))

and

Ms |= Q((wi0...ik , 0), (wî0,i1...ik,s, 0), . . . , (wi0...ik−1 ,̂ik,s, 0), (vi0...ik,s, 0)).

Now we show that the Fk-class of s can be recovered from the structure
of Ms over M . Take two models Ms and Mt and suppose that the Galois types
ga-tp(bs/M) and ga-tp(bt/M) are equal. Then there is an extension N of the
model Mt and an embedding f : Ms → N that sends bs to bt. We work to show
that in this case s and t are Fk-equivalent and hence Ek-equivalent.
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First, let us look at the stalks G∗
wi0..̂ij ..ik,t

, j ≤ k and H∗
vi0...ik,t

in Mt.

Since f fixes M , the constantly zero function 0 ∈ G∗
wi0...ik

is fixed by f .

For j ≤ k and ij < ωj let xi0..̂ij ..ik
∈ G∗

wi0..̂ij ..ik,t
be the image of 0 ∈

G∗
wi0..̂ij ..ik,s

under f . Let yi0...ik ∈ H∗
vi0...ik,t

be the image of 0 ∈ H∗
vi0...ik,s

. We

will analyze the value of yi0...ik in two ways. We write i for 〈i0 . . . ik〉 and i− for
the first k-elements: 〈i0 . . . ik−1〉.

Since f is an embedding we have:

Mt |= Q((wi, 0), (wî0,i1...ik,t, xî0,ii...ik
), . . . , (wi−,t

, xi−), (vi,t, yi)). (∗∗)

For each (i0, . . . , ik) ∈ Pk, let f(i0, . . . , ik) := yi0...ik . Since each yi0...ik

is either 0 or 1, f is a function in Pk2. Since f is an isomorphism, the image of any
δ ∈ H∗

i0...ik,s is the element δ + yi0...ik mod 2 in the stalk H∗
i0...ik,t. The following

claim thus implies Fk(s, t), which in turn implies Ek(s, t), as required. �

Claim 5.6. The function f is Fk-equivalent to the constantly zero function on Pk.

Proof. Since each xi0..̂ij ..ik
is a finite support function, there is a subset Bk ⊂ ωk

such that the complement of Bk has cardinality smaller than ℵk and for each ik ∈
Bk, for all i0, . . . , ik−1 ∈ Pk−1 none of the functions xi0...ik−1

contain ik in any of
the subsets in their support.

Fix an arbitrary i∗k ∈ Bk. There are ωk−2 many functions of the form
xi0...ik−2,i∗k

, each with a finite support. Therefore, there is a subset Bk−1,i∗k
of

ωk−1 such that its complement has cardinality smaller than ℵk−1 and for each
ik−1 ∈ Bk−1,i∗k

for all i0, . . . , ik−2 none of the functions xi0...ik−2,i∗k
contain ik−1

in any of the subsets in their support.

Iterating, we build a family of sets Br,i∗r+1,...,i∗k
, r ≤ k, such that for

each ir ∈ Br,i∗r+1,...,i∗k
and for all i0, . . . , ir−1 ∈ Pr−1, none of the func-

tions xi0..ir−1,i∗r+1..i∗k
contain ir in any of the subsets in their support and so that

Br,i∗r+1,...,i∗k
has complement of size less than ℵr. Take i∗k ∈ Bk, i∗k−1 ∈ Bk−1,i∗k

,
. . . , i∗0 ∈ B0,i∗1,..,i∗k

. If we can show that yi∗0...i∗k
= 0 for each such i∗0 . . . i

∗
k, we show

f is Fn-equivalent to the constantly zero function on Pk and finish. We write i∗ for
〈i∗0 . . . i∗k〉 and i−∗ for the first k-elements: 〈i∗0 . . . i∗k−1〉. By definition,

Mt |= Q((wi∗ , 0), (wî∗0,i∗1...i∗k,t, 0), . . . , (wi−∗ ,t
, 0), (vi−∗ ,t

, 0)).

We also have xi∗0...i∗k−1 ,̂ik
[i∗0 . . . i

∗
k, t] = 0, . . . , xî0,i∗1...i∗k

[i∗0 . . . i
∗
k, t] = 0, since for

all 0 ≤ r ≤ k the support of the function xi∗0..î∗r ..i∗k
does not include any k+1 tuple

containing i∗r .
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Thus we have

Mt |= Q((wi∗ , 0), (wî0,i∗1...i∗k,t, xî0,i∗1...i∗k
), . . . , (wi−∗ ,t

, xi−∗
), (vi∗,t, 0)).

Comparing this display with (**), which holds for all i0 . . . ik, we conclude that
yi∗0...i∗k

= 0. �

Continuing the notation of the last lemma, we focus on a specific conclus-
tion.

Corollary 5.7. Let M be the standard model of φk+2 of size ℵk. If ¬Ek(s, t), the
Galois types (bs/M ;Ms) and (bt/M ;Mt) are distinct. That is, bs and bt are in
distinct orbits.

We can now conclude, working with φk rather φk+2:

Proposition 5.8. The class of models of φk is not (ℵk−3,ℵk−2)-tame.

Proof. Let s, t be sequences in ωk−22 with ¬Ek−2(s, t). By Corollary 5.7, the
Galois types of bs, bt over the standard model M of size ℵk−2 are different. But,
by Corollary 4.4, the Galois type of bs is the same as the Galois type of bt over
any submodel N ≺ M , ‖N‖ ≤ ℵk−3, as bs and bt have the same syntactic type
over N . �

This analysis shows the exact point that tameness fails. Grossberg pointed
out that after establishing amalgamation in Section 3, non-tameness at some (µ, κ)
could have been deduced from eventual failure of categoricity of the example and
the known upward categoricity results [GV, Les05]. However, one could not ac-
tually compute the value of κ without the same technical work we used to show
tameness directly. In addition, failure of categoricity itself is established using the
Galois types constructed in Proposition 5.5.

By analyzing the proof of Proposition 5.5, one sees the following.

Corollary 5.9. Let χ0, . . . χk be a strictly increasing sequence of infinite cardinals.
Then there is a model of φk+2 of cardinality χk over which there are 2χk Galois
types. In particular, φk+2 is unstable in every cardinal greater than ℵk.

6. NUMBER OF MODELS

We showed in Section 5 that φk is not Galois-stable in ℵk−2 and above. We
have shown that the models of φk have disjoint amalgamation and it easy to see that
φk has arbitrarily large models. For any Abstract Elementary class satisfying these
conditions, categoricity in λ implies Galois stability in µ for LS(K) ≤ µ < λ
[She99, Bal00]. Thus we can immediately deduce:

Theorem 6.1. Let k ≥ 2; φk is not ℵk−1-categorical.
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We will apply the instability directly to refine this result by showing that if
µ ≥ ℵk−2 and λ is the least cardinal with λµ < 2λ, then φk has 2λ non-isomorphic
models of cardinality λ. Under a set-theoretic assumption, we get that φk has
maximal number of models in every cardinal beginning with ℵk−1. Without the
assumption, we obtain that φk is not categorical everywhere from ℵk−1, with the
maximal number of models in arbitrarily large cardinalities.

Remark 6.2. Our φk is not the same one as in Hart-Shelah. We have simplified
the construction by using only one level. However, our models are definable in
theirs. So the assertion [HS90] that the Hart-Shelah φ is ℵk−1-categorical is in-
correct; the correct statement is for ℵk−2-categoricity. We discussed the source of
the miscalculation in Section 2.

We start with a link between many Galois types in our example and failure
of categoricity.

Lemma 6.3. Let k ≥ 2. Let M |= φk be of size µ, and suppose that there is a set
X = {bs | s < 2µ} such that the Galois types (bs/M ;Ms) are pairwise distinct,
where Ms = M(I ∪ {bs}). Let λ be the least cardinal with λµ < 2λ. Then φk has
2λ non-isomorphic models of size λ.

Proof. We start by noting that there are 2λ subsets of size λ of the set X . For
a subset S of the set X of size λ, let MS be a model of size λ with the spine
I(M) ∪ {bs | s ∈ S}. Namely, MS is a minimal disjoint amalgam of the models
Ms, s ∈ S.

It is now easy to see that the models MS , MS′ are not isomorphic over
M for S 6= S′: any isomorphism preserves the Galois type of all the elements
bs over M ; so MS , MS′ realize distinct sets of Galois types over M . Thus, we
get 2λ models over M . It remains to note that since λµ < 2λ, we must have 2λ

non-isomorphic L-structures. �

In conjunction with Proposition 5.5 we get

Corollary 6.4. Let k ≥ 2, µ ≥ ℵk−2, and let λ be the least cardinal with λµ < 2λ.
Then φk has 2λ non-isomorphic models of cardinality λ.

While we know from Theorem 6.1 that categoricity fails everywhere above
ℵk−2, we can avoid the heavy machinery quoted in that theorem and prove directly
that categoricity fails everywhere above a cardinal λ satisfying the conditions in
Lemma 6.4.

Claim 6.5. Suppose that φk is categorical in λ. Then φk is categorical in every
µ < λ.

Proof. We know that every model of size λ has a solution by categoricity. We also
have that every model of size µ can be extended to a model of size λ.
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So the proof boils down to showing the following: if M , with ‖M‖ = µ,
is a submodel of N , with ‖N‖ = λ, and N has a solution, then M has a solution.
Let (g, h) be a solution for N . It is tempting to take the restriction of g and h to the
modelM , but g(u) does not have to be inM for u ∈ K(M). Indeed, it may happen
that g(u) = (u, x), where the support of the function x is not contained in K(M).
Let us denote by g(u) � K(M) the pair (u, x′) ∈ G∗(M), where x′(v) = x(v) for
all v ∈ K(M) and x′(v) = 0 otherwise.

Now we make the natural definition: let h := h � K(M); and for u ∈
K(M) let g(u) := g(u) � K(M). It is easy to check that (g, h) is a solution for
M . �

If λ is the least cardinal with λℵk−2 < 2λ, then λ ≤ 2ℵk−2 , so without
quoting Theorem 6.1, the constructions in this paper show that φk is not categorical
in any κ with κ ≥ 2ℵk−2 .

We close by formally stating our most complete results on the spectra
of φk.

Corollary 6.6. Let k ≥ 2. The sentence φk is categorical in ℵ0, . . . ,ℵk−2, is not
categorical in every cardinality greater than or equal to ℵk−1, and has 2λ models
in some λ with ℵk−2 < λ ≤ 2ℵk−2 . Moreover, for any µ ≥ ℵk−1 there is λ > µ
such that φk has 2λ models of cardinality λ.

If in addition 2µ < 2µ+
for all µ ≥ ℵk−2, then φk has 2µ+

isomorphism
classes in every µ+ ≥ ℵk−2.

Proof. We have already established the claims in the first paragraph.

To prove the second, suppose 2µ < 2µ+
for all µ ≥ ℵk−2. Let µ be greater

than or equal ℵk−2. For all λ ≤ µ we have λµ = 2µ ≥ 2λ. So µ+ is the least
candidate for λ with λµ < 2λ. By our assumption, we have

(µ+)µ = 2µ < 2µ+
.

By Corollary 6.4 we get the maximal number of non-isomorphic models in µ+,
and by Claim 6.5 φk is not categorical everywhere above ℵk−1. �
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