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Mancosu writes

But explanations in mathematics do not only come in the form of proofs. In some cases expla-
nations are sought in a major recasting of an entire discipline. ([Mancosu, 2008], 142)

This paper takes up both halves of that statement. On the one hand we provide a case study of the
explanatory value of a particular milestone proof. In the process we examine how it began the recasting of a
discipline.

Hafner and Mancosu take a broad view towards the nature of mathematical explanation. They ar-
gue that before attempting to establish a model of explanation, one should develop a ‘taxonomy of re-
current types of mathematical explanation’ ([Hafner and Mancosu, 2005], 221) and preparatory to such a
taxonomy propose to examine in depth various examples of proofs. In [Hafner and Mancosu, 2005] and
[Hafner and Mancosu, 2008], they study deep arguments in real algebraic geometry and analysis to test the
models of explanation of Kitcher and Steiner. In their discussion of Steiner’s model they challenge1 the as-
sertion [Resnik and Kushner, 1987] that Henkin’s proof of the completeness theorem is explanatory, asking
‘what the explanatory features of this proof are supposed to consist of?’ As a model theorist the challenge
to ‘explain’ the explanatory value of this fundamental argument is irresistible. In contrasting the proofs of
Henkin and Gödel, we seek for the elements of Henkin’s proofs that permit its numerous generalizations. In
Section 2 we try to make this analysis more precise through Steiner’s notion of characterizing property. And
as we will see, when one identifies the characterizing property of the Henkin proof, rather than a characteris-
tic property of an object in the statement of the theorem then one can find a variant of Steiner’s model which
applies in this situation. Key to this argument is identifying the family in which to evaluate the proof. We
point out in Section 3 that this modification of Steiner depends on recognizing that ‘explanatory’ is not a de-
terminate concept until one fills in the X in ‘explanatory for X’. Thus, our goal is to establish that the Henkin
proof is explanatory (contra [Hafner and Mancosu, 2005]) and moreover one can adapt Steiner’s model to
justify this claim.

This paper developed from a one page treatment in [Baldwin, 2016a] and the discussion of Henkin’s role
in the transformation of model theory in [Baldwin, 2017]. I thank Juliette Kennedy and Michael Lieberman
for their comments on various drafts. And I thank Rami Grossberg and Jouko Väänänen for sources on the
consistency property and pressing the important contributions to understanding the completeness theorem
of Hintikka, Beth, and Smullyan.

1They write, ‘[In] (Resnik & Kushner 1987, p. 147), it is contended with some albeit rather vague reference to mathematical/logical
practice that Henkins proof ‘is generally regarded as really showing what goes on in the completeness theorem and the proof-idea has
been used again and again in obtaining results about other logical systems?’
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1 Comparing Gödel and Henkin on completeness
{compare}

There are two issues. In a comparative sense, how is Henkin’s proof more explanatory than Gödel’s? In an
absolute sense why would one say that Henkin’s proof is explanatory? We begin with the first. For this we
analyze the different though equivalent statements of the theorem. We will see that one source of the greater
explanatory value of Henkin’s argument is simply his statement of the result. Then we examine the actual
proofs and come to a similar conclusion. An historical issue affects the nomenclature in this paper. While
there are some minor variants on Gödel’s argument2, Henkin’s proof has become a motif in logic. Some of
the essential attributes of what I am calling Henkin’s proof were not explicit in the first publication; the most
important were enunciated a bit later by Henkin; others arise in the long derivative literature.

1.1 Comparing the statements
Gödel’s version of the completeness theorem for first order logic [Gödel, 1929] reads:

Theorem 1.1.1 (Gödel formulation). Every valid formula expressible in the restricted functional calculus3

can be derived from the axioms by a finite sequence of formal inferences.

But Henkin states his main theorem as

Theorem 1.1.2 (Henkin formulation). Let S0 be a particular system determined by some definite choice of
primitive symbols.

If Λ is a set of formulas of S0 in which no member has any occurrence of a free individual variable, and
if Λ is consistent then Λ is simultaneously satisfiable in a domain of individuals having the same cardinal
number as the set of primitive symbols of S0.

We draw three distinctions between the two formulations. Gödel ([Gödel, 1929], 75) restates the result
to be proved as: ‘every valid logical expression is provable ’ and continues with the core statement, ‘Clearly
this can be expressed as every valid expression is satisfiable or refutable.’ This ‘clearly’ is as close as Gödel
comes to a definition of valid. More precisely, the effective meaning of ‘φ is valid’ in Godel’s paper is ‘¬φ is
not satisfiable’ and this double negation is essential. We discuss below the connections between his notion of
valid and Tarski’s. Henkin makes Godel’s core assertion the stated theorem; the transfer to Gödel’s original
formulation is a corollary. Thus Henkin’s proof gains explanatory value as the argument directly supports
the actual statement of the theorem.

The last paragraph of [Gödel, 1929] extends the argument to applied logic. Henkin’s ‘definite choice
of primitive symbols’ amounts to fixing an applied axiom system. But still the full list of possible relation
variables is present in Gödel’s context while the modern scheme introduces additional relations only when
needed and thus for Henkin, not at all; only constant symbols are added. Thus, he moves the focus to what
becomes the basic stuff of model theory, first order logic in fixed vocabulary.

Finally, as Gödel observes, his argument is restricted to countable vocabularies; Henkin proves the results
for uncountable languages.

As Franks [Franks, 2013] emphasizes, Gödel make a huge innovation in focusing on a duality between
proof and truth rather than defining completeness in terms of ‘descriptive completeness’ [Detlefsen, 2014],

2[Robinson, 1951, Kreisel and Krivine, 1967]
3The term ‘functional variables’ used by both Gödel and Henkin are what are now thought of as relational variables (or relation

symbols) and the functions that interpret them are relations on a set. They are not functions from the universe of a model to itself.
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or Post completeness4 , or ‘as all that can be proved5 (by any means)’. Henkin refines this insight of Gödel.
There is no objection below to the correctness of Godel’s proof. There is an objection (not original here)

to the casual reading that Gödel proved the theorem in the form (*) below. We draw two lessons from the
difference in formulation.

Lesson 1: What hath Tarski wrought? The modern form6 of the extended completeness theorem
reads: for every vocabulary τ and every sentence φ ∈ L(τ)

(∗) Σ ` φ if and only if Σ |= φ.

is possible only on the basis of [Tarski, 1935]. It requires a formal definition of logical consequence, |=. A
conundrum that is often raised but seldom seriously asked is, ‘Why did Tarski have to define truth if Gödel
proved the completeness theorem earlier?’ This query seems to rest on the thought that what Gödel meant
by a quantified sentence being true in a structure is just the informal notion generated by the intuition that
an existential quantification is true if there is a witness. That is not Gödel’s notion. Gödel describes what
in modern terms would be the definition of truth for atomic formulas in a structure. There is no explicit
definition of validity and satisfaction is defined by example for π2-formulas – that is, his argument invokes
the natural intuitive notion of satisfaction for such formulas.

Gödel [Gödel, 1929] writes, ‘Here, completeness is to mean that every valid formula expressible in the
restricted functional calculus . . . can be derived from the axioms by means of a finite sequence of formal
inferences.’ As we’ve seen ‘valid’ is taken as an understood notion. He rephrases the theorem as follows in
the published version ([Gödel, 1930]),

. . . the question at once arises whether the initially postulated system of axioms and principles
of inference is complete, that is, whether it actually suffices for the derivation of every logico-
mathematical proposition, or whether, perhaps it is conceivable that there are true propositions
(which may be even provable by means of other principles) that cannot be derived in the system
under consideration. [Gödel, 1930]

In contrast, Henkin gives a semi-formal definition of ‘satisfiable in a domain for an interpretation of
the relation symbols on I and assignment7 of variables to elements I (by an induction on quantifier com-
plexity). He extends to ‘valid in a domain’ (satisfied by every assignment), and then defines valid as valid
in all domains. He remarks in a footnote that this notion could be made more precise along the lines of
[Tarski, 1935]. That is, working in naive set theory, he uses Tarski’s inductive definition of truth.

Thus Gödel’s formulation of the completeness theorem varies from the post-Tarski version in two ways.

1. Gödel’s definition of ‘satisfiability in a structure’ depends on the ambient deductive system. Specif-
ically, the deductive system must support the existence of a π2-prenex normal form for each non-
refutable sentence. We will observe below various logics satisfying completeness theorems that fail
this condition.

4A set of sentences Σ is Post complete if for every sentence φ either Σ ∪ {φ} or Σ ∪ {¬φ} is inconsistent.
5Franks [Franks, 2010] quotes Gentzen’s goal as follows, ‘Our formal definition of provability, and, more generally, our choice of

the forms of inference will seem appropriate only if it is certain that a sentence q is ‘provable’ from the sentences p1, . . . pv if and only
if it represents informally a consequence of the p’s. ([Gentzen, 1932],p. 33). This is an entirely syntactic conception of completeness
and so distinct from Gödel.

6 Apparently the first statement of the ‘extended completeness theorem’ in this form is in [Robinson, 1951] (Compare {dawrob}
[Dawson, 1993], page 24). When |= was introduced is unclear. A clear statement recommending its use appears in the preface to
[Addison et al., 1965] but earlier published uses are hard to find.

7(∀x)A(x) is satisfiable just if A(a) is true for each a ∈ I .
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2. Gödel does not assert the modern form of the extended completeness theorem (he hasn’t defined se-
mantic consequence). Rather he says (Theorem IX), ‘Every denumerably infinite set of formulas of the
restricted predicate calculus either is satisfiable (that is, all formulas of the system are simultaneously
satisfied) or some finite subset is refutable.’

He proves it by using the compactness theorem for countable sets of formulas (implicitly in
[Gödel, 1929] and explicitly8 in [Gödel, 1930]).

Lesson 2: The modern concept of vocabulary. Gödel’s emphasis is on the provability of every valid
formula in the restricted predicate calculus. This calculus has infinitely many relation symbols of each finite
arity. In contrast, modern model theory specifies a vocabulary using primitive symbols directly connected to
the specific subject. Many mathematicians had adopted this practice (e.g., Pasch, Hilbert, Noether, van der
Warden) as geometry became more carefully formalized and notions of groups, rings, and fields developed
in the first third of the twentieth century. But the incorporation of this requirement into logic took place
later9.

Henkin’s proof of the completeness theorem was a crucial step towards the modern conception of vo-
cabulary10. In general he specifies that a system contains ‘for each number n = 1, 2, . . . a set of functional
symbols (relation symbols11) of degree n which may be separated into variables and constants’. Henkin
makes the modern convention of a fixed vocabulary (e.g. symbols +,×, 0, 1 for rings) completely explicit in
[Henkin, 1953], which is the published version of the ‘algebra’ portion of his 1947 thesis, where he used the
old notation. In contrast to modern practice, both authors treat the extensional treatment of equality as an
‘add-on’; since they are dealing with a purely relational language they avoid the complication of including
in the axioms the requirement that equality is a congruence for each function symbol in the language. In
[Henkin, 1953], he applies the completeness theorem to theories with function symbols and equality with
no explanation of the shift from a relational language. Modern versions of Henkin’s proof require that the
equivalence relation of equality is a congruence (preserved by operations of the vocabulary). If fact, this
extension turns out to be central, for example, in the discussion of the omitting types theorem below.

A key distinction12 between Gödel and Henkin is that Henkin’s proof adds only constants to the vocabu-
lary while to settle the question for a particular sentence Gödel draws on finitely many relation symbols that
do not appear in the given sentence.

Before stating the theorem, Henkin restricts the context on page 161 of [Henkin, 1949] with ‘Let S0

be a particular system determined by some definite choice of primitive symbols.’ This apparently minor
remark is central to changing the viewpoint from logic as an analysis of reasoning to model theory as a
mathematical tool. Henkin emphasizes this aspect of a second difference between his description of the
setting from Gödel’s.

In the first place an important property of formal systems which is associated with completeness
can now be generalized to systems containing a non-denumerable infinity of primitive symbols.
While this is not of especial interest when formal systems are considered as logics–i.e., as
means for analyzing the structure of languages– it leads to interesting applications in the field
of abstract algebra. [Henkin, 1949]

8This historical distinction has been emphasized by Franks in [Franks, 2013].
9The abstract notion of ‘structure’ (for a given vocabulary) was first formalized in 1935 by Birkhoff [Birkhoff, 1935]; both Tarski

[Tarski, 1946] and Robinson [Robinson, 1952] refer to that paper Robinson specifies a vocabulary for the particular topic. Tarski
certainly has arrived at the modern formulation by [Tarski, 1954] and [Tarski and Vaught, 1956].

10I use the word vocabulary; similarity type or one use of ‘language’ are synomyms.
11The article is part of his five year project of revising and publishing his thesis on both second order logic and the theory of types;

the function variables appear to accommodate these extensions.
12Henkin’s procedure preserves for example ω-stability of the initial theory and that must fail for some theories using Gödel’s proof.
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Henkin (Corollary 2) uses the uncountable vocabulary to deduce the full force of the Löwenheim-
Skolem-Tarski theorem: a consistent first order theory has models in every infinite cardinality13

1.2 Contrasting the proofs
Hafner and Mancosu [Hafner and Mancosu, 2005] list a number of mottos for explanation that they found
in the mathematical literature. Simplifying a bit, they center around the notion of ‘deep reason’. In this
section we try to identify the ‘deep reason’ behind Henkin’s proof; in the next we fill this out with further
explication of its generalizability. Here are outlines of the two proofs.

Gödel:

G1. Citing the 1928 edition of [Hilbert and Ackermann, 1938], Gödel notes that an arbitrary formula may
be assumed to be in prenex normal form, πn. That is, n alternating blocks of universal and existential
quantifiers followed by a quantifier-free matrix.

G2. By adding additional relation symbols, Gödel Skolemizes14 the entire logic and makes every formula
equivalent to a π2-formula15.

G3. Then he shows that every π2-formula is either refutable or satisfiable in a countably infinite structure16.

Note that steps 1) and 2) are entirely syntactic and are in fact are theorem schemas - patterns for proofs
within the system.

Henkin:
I describe Henkin’s proof in more detail using some of the expository enhancements (e.g. the term

‘Henkin theory’) that have been made in the more than half century the argument has been the standard. T
is a Henkin theory if17 for every formula φ(x), there is a witness constant cφ such that

T ` (∃x)φ(x)→ φ(cφ).

H1. Every syntactically consistent theory can be extended to a Post-complete Henkin theory.

H2. Every Post-complete syntactically consistent theory with the witness property has a canonical term
model.

Henkin’s vital insight is the separation of the problem into two parts, 1) extend the given theory to one
that is complete and satisfies certain additional syntactic properties such that 2) there is a functor from the
theories in H1 to structures that realize the original theory. Both of these steps are metamathematical. We
report below Henkin’s account of his roundabout way of arriving at the necessity of this extension of a theory
to a larger one.

13Note that the proof of completeness for countable vocabularies uses only König’s infinity lemma [Smullyan, 1966], while the
existence of arbitrarily large models via Henkin’s argument uses the Boolean prime ideal theorem and the full Löwenheim-Skolem-
Tarski theorem requires the axiom of choice.

14See http://mathoverflow.net/questions/45487/compactness-theorem-for-first-order-logic for
Blass’s outline of a proof using Skolem functions and reduction to propositional logic (nominally for compactness).

15Contrary to contemporary terminology where Skolem implies Skolem function, each formula φ(x,y) is replaced by a relation
symbol Fφ(x,y)(x,y) such that (∃x,y)Fφ(x,y)(x,y) ∧ ∀x[(∃x,y)φ(x,y) → (∃y)Fφ(x,y)(x,y) ∧ φ(x,y). This difference is
why he can reduce only to π2 and not universal formulas.

16In fact, he constructs the model as a subset of the natural numbers using the arithmetic of the natural numbers for the construction.
17[Chang and Keisler, 1973] say ‘has the witness property’.
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Henkin’s proof explains the actual argument: finding a model of an irrefutable sentence. The two steps
each contribute to that goal.

H1. The extension of an arbitrary consistent T to one satisfying the witnessing property depends pre-
cisely on the axioms and rules of inference of the logic.

The Post-completeness is obtained by an inductive construction: add φα or ¬φα at stage α to ensure that
each sentence is decided.

H2 To construct the model, consider the set of witnesses, M and show that after modding out by the
equivalence relation cEd if and only T ` c = d, the structure M ′ = M/E satisfies T . More precisely, show
by induction on formulas that for any formula φ(c),

T ` φ(c) if and only if M ′ |= φ(c).

For this he uses both the Post-completeness and the witness property from H1.
Karp [Karp, 1959] generalized the completeness result to the infinitary logic18 Lω1,ω . This argument

has been the source of many generalizations of the result with names that emphasize the goal of step H2
while modifying the argument in H1 to obtain an appropriate ‘Henkin theory’, such as the consistency
property19 [Smullyan, 1963, Makkai, 1969] and with the theorem renamed as the model existence theorem
in [Keisler, 1971].

My original impetus [Baldwin, 2016a] for discussing Henkin’s proof was to give a serious example of
how mathematical induction is used in abstract mathematics. There are too many investigations of ‘expla-
nation’ to list that center around the extremely elementary uses of mathematical induction. But in more
advanced mathematics the main use of induction is as proof tool to study objects defined by generalized
inductive definition. This includes not only such algebraic constructions as the closure of a set to a subgroup
or in a logic, the set of formulas in logic or theorems of a theory, but constructions as in the Henkin proof:
truth in a structure, completing a theory and fulfilling the witness property. These constructions are followed
by the complementary proof by induction that the canonical structure is in fact a model. A similar pattern of
inductive definition is central in Gödel’s proof. But, more is on the syntactic side taking place as metatheo-
rems on prenex normal form and equivalences between formulas. However, still another inductive definition
is a piece of his proof that a π2-sentence is satisfiable.

There are several fundamental distinctions between the foundational outlooks of Gödel and Henkin.
Gödel works in a background theory of naive set theory and studies a single system of logic with predi-

cates of arbitrary order; this is essential to the proof. He has a definition of truth for atomic formulas, which
is extended by deductive rules to determine truth in a structure for arbitrary sentences.

Henkin (by 1951) works in a background theory of naive set theory and studies the first order logic of
each vocabulary. The proof for each vocabulary adds only constant symbols. He has a uniform definition of
truth in a structure for each vocabulary that has no dependence on the deductive rules of the logic.

This second view underlies modern model theory. While technically, one could incorporate Gödel’s ar-
gument into the modern framework (by adding the additional predicates ad hoc) this is not only cumbersome
but raises the question of what these new predicates have to do with the original topic – something more to
explain.

18The logic allows countable conjunctions but quantifies over only finite sequences of variable. Proofs can have infinitely many
hypotheses.

19The name ‘consistency property’ is apparently introduced in [Smullyan, 1963]. Smullyan remarks that his method takes from
Henkin that only constants need to be added to the original vocabulary; Makkai, who is proving preservation and interpolation theorems,
carefully lays out the connection of his proof with [Smullyan, 1963].
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2 Generalization and Steiner
{Steiner}

In Steiner’s seminal [Steiner, 1978], he first rejects the view that ‘a proof is more explanatory than another
because more general’ by specifying more carefully what is involved in an explanatory generalization.

Steiner proposed the notion of characterizing property to clarify ‘explanatory’.

We have, then, this result: an explanatory proof depends on a characterizing property of some-
thing mentioned in the theorem: if we ’deform’ the proof, substituting the characterizing prop-
erty of a related entity, we get a related theorem. A characterizing property picks out one from
a family [’family’ is undefined in the essay]; an object might be characterized variously if it
belongs to distinct families. ([Steiner, 1978], 147)

Resnik and Kushner assess Henkin’s proof as follows”

The proof is generally regarded as really showing what goes on in the completeness theorem
and the proof-idea has been used again and again in obtaining results about other logical sys-
tems. Yet again, it is not easy to identify the characterizing property on which it depends.
[Resnik and Kushner, 1987]

We elaborate below what we think is the source of the ‘generally regarded’. To do this, we modify
Steiner’s notion. He notes on page 143 that the characteristic property refers to a property of the theorem,
not the proof, and thus is an absolute rather than relative evaluation of the explanatory value of the proof.
This requirement seems not to fit the statement of the completeness theorem where both Godel’s statement
and the modern statement (*) obscure the crucial point: the construction of a countermodel . Thus, we
require that the characterizing property should not be required to be something ‘mentioned in the theorem20’
but of something mentioned in the proof or the theorem. Thus we modify Steiner’s model to require the
existence of a characterizing property of a proof that appears in a family of arguments to qualify a proof as
‘explanatory’. The characterizing property should distinguish this argument from others.

Thus, there is an immediate division into two families of proofs of the completeness theorem. In the
Gödel-Henkin style the main lemma is a proof that ¬φ is not refutable then φ has a model. In contrast
the main lemma of the Herbrand style asserts that if ¬φ is not satisfiable then φ is provable. Smullyan
[Smullyan, 1963] introduces the notion of a consistency property, from which he can construct proofs in
each style of the completeness theorem21 A consistency property Γ is for him a collection of finite sets of
sentences such that Γ is closed under a set of operations (e.g. adding a Henkin witness). He shows any
consistency property a model and distinguishes his argument from Henkin (footnote 13) because there is
no requirement that every sentence is decided. The Herbrand style was developed independently by Beth
and Hintikka as the method of semantic tableaux or model sets. Smullyan [Smullyan, 1966] introduces
his method of analytic tableaux, which generalizes both [Hintikka, 1955] and [Beth, 1959]. In this line a
(natural deduction) proof system is developed such that a proof of φ is proved to terminate if φ is valid
because if the proof does not terminate a model of ¬φ is constructed. We discuss the Herbrand style no
further although further work on this topic would be valuable; our goal here is to distinguish within the
Gödel-Henkin style.

Gödel’s proof certainly did not arise as a generalization. But, it was clear from the first that first order
logic (the restricted functional calculus) admitted of many variants in the formulation of a deductive system:

20One might argue that the deformable objects are the proof systems and the notion of model. But this still seems to miss the crux of
Henkin’s argument.

21They are applications B for Gödel-Henkin and C for Herbrand on page 829 of [?].
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one feature of the theorem is as a precise statement of the equivalence of these variants. The very proof of
Gödel was built on Bernay’s proof of completeness of propositional calculus. So the idea that distinct logics
could be complete was there. Unlike Gödel, Henkin, as he completed the work, already made generalizations
to other logics; he proves completeness for three logics: first order, the interpretation of 2nd order with the
Henkin semantics, and a theory of types of infinite order, again with respect to the Henkin semantics. In
the insightful [Henkin, 1996], published nine years after [Resnik and Kushner, 1987], Henkin explains the
relationship between the three results. He reports that he worked for more than a year on a related issue:
trying to show (roughly speaking22 ) that in Church’s theory of types there was no uniform way to assign
a choice function for non-empty sets of reals. After he had almost given up, he realized the key idea of
inductively extending both the axioms as well as the collection of functions named. His insight that both
the axioms and the names must be extended led to the proof of the three completeness theorems. While
in the unsolved23 target problem, functions were to be named, when writing up the completeness results
([Henkin, 1996],155) he discovered that in both the first order and the finite type case, he could add only
constants – a crucial point for later model theory. Still later, he realized, as is now standard, that the constants
can be added first and only their properties defined in the induction.

We observed above that Henkin’s vital insight is the separation of the problem into two parts: i) extend
the given theory to one satisfying conditions that ii) permit the construction of a canonical model. Both
the sufficient conditions on the base theory and the conditions on the complete theory that supports the
construction are quite general and adaptable. In this generality we see that it applies not only to proving
completeness for a family of logics but to the other uses of the model construction technique.

Here are the first order conditions. Henkin and later adapters can quickly state rules and axioms for a
logic; the key for H1 is to isolate rules that prove that if T is consistent then for any formula φ(x) and any
constant c that does not appear in T , T ∪ {(∃x)φ(x) → φ(c)} is consistent. For H2 the logic must satisfy
equality axioms guaranteeing that the equality relation is a congruence in the sense of universal algebra.

In fact, later authors reverted to Skolem’s standpoint24 and give completely semantic versions of the
Henkin construction, solely for convenience in [Marker, 2002] and as a step towards a completeness theorem
for infinitary logic in [Keisler, 1971].

Resnik and Kushner [Resnik and Kushner, 1987] ‘think (though in correspondence Steiner disagrees)
that the proof does not make clear that when we apply the proof-idea to second order logic, we must change
the sense of model to allow for non-standard models nor that when we apply it to modal logics, we must
use many maximally consistent sets, etc.’ This seems to misunderstand the effect of Henkin semantics for
second order logic. The Henkin semantics interpret second order as a many-sorted first order system and
then a similar proof applies. Clearly, there is no completeness theorem for second order logic with the full
semantics.

From the view point of a mathematician-model theorist, the witness property appears to be key. But
from the standpoint of modal and intuitionistic logic there are a different set of properties of ‘propositional
logics’ which are key. For example, De Jongh25 identifies the crucial syntactic property to a get canonical
model for intuitionistic propositional logics as the disjunction property. As [Resnik and Kushner, 1987]
noted, the concept of model has widened from a first order structure to a Kripke frame; this only emphasizes
the depth of Henkin’s innovation.- Similarly in [Cintual and Noguera, 2015] the authors stress the role of
the term model in extending the Henkin proof to many-valued logics and in general to algebraizable logics.

22A more detailed description is given on page 148 of [Henkin, 1996].
23It developed that by work of Gödel and Feferman that the conjecture Henkin had been attacking was independent.
24Gödel refers to the great similarity between his argument and [Skolem, 1967]; the distinction is that Skolem ignores the deductive

standpoint. See the notes to [Gödel, 1929].
25Slide 27 of his tutorial in the 2008 Logic Days in Lisbon https://staff.fnwi.uva.nl/d.h.j.dejongh/teaching/

il/lisbonslides.pdf.
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Intuitionistic logics do not have a prenex normal form theorem so Gödel’s proof could not adapted to this
case.

The characterizing property of the Henkin proof is the systematic extension of the given theory to a
complete theory whose canonical model satisfies the original theory. In order to apply Steiner’s test, one
must step far enough back to recognize the characteristic property. As we will see below as we reformulate
this property to accomodate the wider applicability of the key notion, ‘satisfy’ can be replaced by a wide
variety of stronger conditions (which always include ‘satisfy’).

An abstract formulation of the completeness theorem was popular in the late 70’s: the set of first order
validities is recursively enumerable. This formulation was discussed by the authors but did not make it into
[Barwise and Feferman, 1985]. A reason is that it does not persist so nicely to infinitary logics. There are
(infinitary) proof systems for the logics Lκ,ω and their completeness is proved by adaptations of the Henkin
method. This extends to logics that add the Q-quantifier26. But these systems do not demonstrate that the
validities are recursively enumerable or even Borel27. This weakness in the proof system also prevents these
infinitary logics from satisfying the full compactness theorem and thus they fail the upward-Löwenheim
Skolem theorem. This notion of completeness of course is foreign to Gödel who requires finite proofs and
naturally his proof could not be adapted to these contexts.

Henkin already points out that his proof (unlike Gödel’s) generalizes easily to uncountable vocabularies.
So the first order theory of R-modules can be developed uniformly regardless of the cardinality of the ring
R.

The functorial aspect of the Henkin construction is best illustrated by generalizations that require more
than mere existence of the canonical model. The omitting types theorem is the most basic: add to the
requirements in the construction of the Henkin theory that for each φ(a, x), for each non-principal p there
is a p-omitting witness (i.e. the consistency of ∃xφ(a, x) ∧ ¬σ(x) for some σ(x) ∈ p). This requirement
is easily established as one just has to arrange that each term (in the vocabulary with new constants) omits
the type. Somewhat more exotic is the use of Henkin’s method in [Baldwin and Lachlan, 1971] to prove
that an ℵ1-categorical but not ℵ0-categorical theory cannot have finitely many countable models. Still more
exotic is the modification of the method by [Baldwin and Laskowski, 2017] to construct atomic models in
the continuum by an ω-step Henkin construction. Hodges [Hodges, 1985] provides a plethora of examples in
algebra, in exploring the quantifier complexity of definable sets in first order theories, and in various logics.

Earlier than any of these examples, the fundamental idea of the Henkin construction, systematically
extend the given theory to a complete theory whose canonical model satisfies a desired property, was reg-
imented by Abraham Robinson’s concepts of finite and infinite forcing [Robinson, 1970] and expounded
for students in [Hodges, 1985]. Very recently, the method is extended to construct counterexamples in
functional analysis, e.g. of specific types of C∗-algebras. The authors (model theorists and analysts) of
[Farah et al., 2016] write, ‘We describe a way of constructing C∗-algebras (and metric structures in general)
by Robinson forcing (also known as the Henkin construction).’

We have given a myriad of examples where the key idea of Henkin’s proof is applied, by deforming (i.e.
finding the appropriate) notions of derivation and canonical model but in each case following the Henkin
template of extending a given theory to a complete theory admitting a canonical model which satisfies
the original theory and perhaps further requirements (e.g. omitting types). In a fundamental sense Henkin’s
argument is explanatory because he has identified the key features connecting the hypothesis and conclusion,
modifying both the syntactic and the semantic component. Moreover, the proof is explanatory by the variant
of Steiner’s criterion obtained by looking for a characterizing property within the proof.

26M |= (Qx)φ(x) means there are uncountably many solutions for φ in M .
27In fact, the validities of Lω1,ω are Σ1-definable on the hereditarily countable sets (〈H(ω1), ε�H(ω1)〉 and Σ2 on

〈H(κ), ε�H(κ)〉 for Lω1,ω when κ is uncountable (page 328 of [Dickmann, 1985]).
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3 Explanation for who?
{who}

The explanatory value of a proof, concept, theory can only be evaluated in terms of the intended audience.
We give three accounts of the explanatory value of Henkin’s proof, first for undergraduates taking a first
course in logic, the second for contemporary research logicians, and the third for research logicians in the
early 1950’s.

We would motivate the argument for undergraduates by asking, since the goal is to construct a model of a
theory T , what properties of an extension of T would allow the equivalence relation (guaranteed by equality
axioms) of provable equality on the constants to quotient to a model. The first goal is that the quotient is
actually a structure. For this we need the equality axioms for preserving functions. To ensure the structure
is a model of T , do an induction on quantifiers, noting the hard case is solved by the witness property. Of
course, this will be somewhat more convincing for students with a background in algebra.

The undergraduate argument is reinforced for cognoscenti by observing the various applications that
follow the same pattern. See what conditions are needed on a theory T for the logic in question to guarantee
that the quotient is a model. ForLω1,ω (logic allowing countable conjunctions) an additional rule of inference
is needed; if ψ → φ for each φ in a countable set Φ, infer ψ →

∧
Φ. To build a theory whose ‘Henkin’ model

would satisfy an infinitary sentence, Makkai [Makkai, 1969] extended Smullyan’s notion of a consistency
property to guarantee the theory was closed under infinite conjunction.

The reader will have noticed that our argument for the identity of the characterizing property depended
on this second account and invoked an even wider family of generalized arguments. None of this was known
in 1949. Indeed, there is no immediate recognition in the reviews of Henkin’s paper of the significance
of the change in vocabulary. Only the concrete example of the uncountable Löwenheim-Skolem theorem
is even noticed. While the fixed vocabulary approach to first order logic appears in [Robinson, 1951] and
[Henkin, 1953], it seems to be fully established in [Tarski and Vaught, 1956] as the fundamental notion of
elementary extension requires such a stipulation.

In particular, Goodstein’s [Goodstein, 1953] review of Robinson’s paper, which provides the first known
publication of the completeness theorem28 in the modern (*) form, does not regard this reformulation of the
theorem as a foundational issue.

. . . the Metamathematics of algebra is a book for algebraists not logicians; its claim to a place in
the new series of studies in logic and the foundations of mathematics is very slender.

Only the first fifth of the book, which is devoted to an extension of G6del’s completeness theo-
rem to non- denumerable systems of statements, has any bearing on the foundations of mathe-
matics, and the remaining four-fifths may be read without reference to this first part which could
with advantage have been omitted.

McKinsey (also noting the uncountable application) and Heyting give straightforward accounts in Math-
ematical Reviews of the result of Henkin’s papers on first order and theory of types respectively with no
comments on the significance of the result. Still more striking, Ackermann’s review [Ackerman, 1950] of
Henkin’s proof gives a routine summary of the new argument and concludes29. with, ‘The reviewer can not
follow the author when he speaks of an extension to an uncountable set of relation symbols, since such a
system of notations can not exist.’

As we promised in the introduction, we see that the significance of an explanation depends on the audi-
ence; the depth of an argument is often not apparent to the author. Thus, we return to the original remark

28See footnote 6.
29This is my very rough translation. The sentence reads, ‘Ref. kann dem Verf. aber nicht folgen, wenn er von der Möglichkeit einer

mehr als abzählbaren Menge von primitiven Symbolen spricht, da es ein derartiges Bezeichnungssystem doch nicht geben kann.
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of Mancosu, explanations that lead to a major recasting of an entire discipline. Henkin’s argument was a
major component in the turn from model theory as a (mathematical) attempt to understand mathematical
reasoning to model theory as tool in many areas of mathematics. This change in paradigm bloomed with
Shelah’s classification theory [Baldwin, 2017]. An essential step was to move from studying a logic which
encompassed relations of all orders to the study of theories about particular areas of mathematics in their
native vocabularies. Henkin’s proof enabled this view and he was one of the pioneers.

However, these ultimately revolutionary features were invisible at the time. This slow reinterpretation of
basic notions is a fundamental feature of mathematical development30
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