COMPLETE $L_{\omega_1, \omega}$-SENTENCES WITH MAXIMAL MODELS IN MULTIPLE CARDINALITIES

JOHN BALDWIN AND IOANNIS SOULDATOS

Abstract. In [BKS14] examples of incomplete sentences are given with maximal models in more than one cardinality. The question was raised whether one can find similar examples of complete sentences. In this paper we give examples of complete $L_{\omega_1, \omega}$-sentences with maximal models in more than one cardinality. From (homogeneous) characterizability of κ we construct sentences with maximal models in κ and in one of $\kappa^+, \kappa^\omega, 2^\kappa$ and more. Indeed, consistently we find sentences with maximal models in uncountably many distinct cardinalities.

We unite ideas from [BFKL13, BKL14, Hjo02, Kni77] to find complete sentences of $L_{\omega_1, \omega}$ with maximal models in multiple cardinals. There have been a number of papers finding complete sentences characterizing cardinals beginning with Baumgartner, Malitz and Knight in the 70’s, refined by Laskowski and Shelah in the 90’s and crowned by Hjorth’s characterization of all cardinals below \aleph_ω in the 2002. These results have been refined since. But this is the first paper finding complete sentences with maximal models in two or more cardinals.

Our arguments combine and extend the techniques of building atomic models by Fraïssé constructions using disjoint amalgamation, pioneered by Laskowski-Shelah and Hjorth, with the notion of homogeneous characterization and tools from Baldwin-Koerwien-Laskowski ([BKL14]). This paper uses specific techniques from [BFKL13, BKL14, Sou14, Sou13] and many proofs are adapted from these sources. We thank the referee for a perceptive and helpful report.

Structure of the paper:

In Section 1 we explain the merger techniques for combining sentences that homogeneously characterize one cardinal (possibly in terms of another). We adapt the methods of [Sou14] to get a complete sentence with maximal models in κ and κ^+.

In Section 2 we present, for each homogeneously characterizable κ, an $L_{\omega_1, \omega}$-sentence with maximal models in κ and κ^ω and no larger models. The argument can be generalized to obtain maximal models in κ and κ^{\aleph_α}, for all countable α.

Finally in Section 3 we give various examples of complete sentences with maximal models in a number of cardinalities, modulo appropriate hypotheses on cardinal arithmetic. For example, Corollary 3.2 asserts that if κ is homogeneously characterizable and μ is minimal with $2^\mu \geq \kappa$ there is an $L_{\omega_1, \omega}$-sentence ϕ_κ with maximal models in cardinalities 2^λ for $\mu \leq \lambda \leq \kappa$ and no models larger than 2^κ.

1. The general construction

In this section, for a cardinal κ that admits a homogeneous characterization (Definition 1.1), we prove that there exists a complete sentence ϕ_κ of $L_{\omega_1, \omega}$ that has maximal models in κ and

Date: September 4, 2017.
2010 Mathematics Subject Classification. Primary 03C75, 03C35 Secondary 03C52, 03C30, 03C15.
Key words and phrases. Maximal models, Complete sentences, Infinitary logic, Homogeneously characterizable cardinals.
\(\kappa^+ \) and no larger models. The proof applies the notion of a receptive model from [BFKL13] and merges a sentence homogeneously characterizing \(\kappa \) with a complete sentence encoding uniformly the transfer from characterizing \(\kappa \) to characterizing \(\kappa^+ \) by a \(\kappa^+ \)-like linear order. This template is extended from successor to other cardinals functions in later sections.

We require a few preliminary definitions.

Definition 1.1. Assume \(\lambda \leq \kappa \) are infinite cardinals, \(\phi \) is a complete \(\mathcal{L}_{\omega_1, \omega} \)-sentence in a vocabulary that contains a unary predicate \(P \), and \(M \) is the (unique) countable model of \(\phi \). We say

1. a model \(N \) of \(\phi \) is of type \((\kappa, \lambda)\), if \(|N| = \kappa \) and \(|P^N| = \lambda \);
2. For a countable structure \(M \), \(P^M \) is a set of absolute indiscernibles for \(M \), if \(P^M \) is infinite and every permutation of \(P^M \) extends to an automorphism of \(M \).
3. \(\phi \) homogeneously characterizes \(\kappa \), if
 - (a) \(\phi \) has no model of size \(\kappa^+ \);
 - (b) \(P^M \) is a set of absolute indiscernibles for the countable \(M \), and
 - (c) there is a maximal model of \(\phi \) of type \((\kappa, \kappa)\).

The next notation is useful for defining mergers. We slightly broaden the notion of 'receptive' from [BFKL13] by requiring some sorts of the 'guest sentence' to restrict to \(U \) while others include new sorts in the final vocabulary.

Notation 1.2. Fix a vocabulary \(\tau \) containing unary predicates \(V, U \). The sentence \(\theta_0 \) says \(V \) and \(U \) partition the universe.

Let \(\tau_1 \) extend \(\tau \) and let \(\theta \) be a complete \(\tau_1 \)-sentence of \(\mathcal{L}_{\omega_1, \omega} \) that implies \(\theta_0 \). Fix a vocabulary \(\tau' \) disjoint from \(\tau_1 \) that contains a unary predicate \(Q \), and let \(\psi \) an arbitrary (possibly incomplete) \(\tau' \)-sentence of \(\mathcal{L}_{\omega_1, \omega} \). Let \(\tau_2 \) contain the symbols of \(\tau_1 \cup \tau' \), adding unary predicates \(R \) and \(S \).

The formula \(\theta_1 \) asserts that the \(\tau' \)-predicates hold only of tuples from \(R \) and the \(\tau_1 \)-predicates only of tuples from \(S \), that \((S(x) \land R(x)) \leftrightarrow U(x) \), and that \(U(x) \leftrightarrow Q(x) \).

- If \(U \) defines an infinite absolutely indiscernible set in the countable model of \(\theta \), we call the pair \((\theta, U)\) receptive. We call \(\theta \) receptive if there is a \(U \) such that \((\theta, U)\) is receptive and in that case we also call the countable model of \(\theta \) a receptive model.
- The merger \(\chi_{\theta, U, \psi, Q} \) of the pair \((\theta, U)\) and \((\psi, Q)\) is the conjunction of \(\theta_1 \) and \(\psi^U \land Q \), where \(\psi \) is the result of interpreting \(\psi \) on \(S \), substituting \(U \) for \(Q \) in \(\psi \) and interpreting \(\psi \) on \(R \). Thus \(\chi_{\theta, U, \psi, Q} \) is a \(\tau_2 \)-sentence.
- If in all models \(N \) of \(\psi \), \(Q^N \) is the domain of \(N \), then we will drop \(Q \) and write \(\chi_{\theta, U, \psi} \).
- If \(M \models \theta \) and \(N \models \psi \), the merger model \((M, N)\) denotes a model of \(\chi_{\theta, U, \psi, Q} \) where the elements of \(Q^N \) have been identified with the elements of \(U^M \), which is the intersection of \(M \) and \(N \).

\(M \) will be called the host model and \(N \) the guest model.

Note that if \(\phi \) and \(P \) homogeneously characterize some \(\kappa \), then the countable model of \(\phi \) is receptive. Fact 1.3 extends the argument for Theorem 1.10 in [BFKL13] to reflect our more general notion of merger.

Fact 1.3. Let \((\theta, U)\) be receptive and \(\psi \) a sentence of \(\mathcal{L}_{\omega_1, \omega} \).

1. The merger \(\chi_{\theta, U, \psi, Q} \) is a complete sentence if and only if \(\psi \) is complete.
2. There is a 1-1 isomorphism preserving function between isomorphism types of the countable models of \(\psi \) and the isomorphism types of countable models of the merger \(\chi_{\theta, U, \psi} \).
Let αN also depends on absolute indiscernability. Let Remark 1.4.

Let $s S \kappa$ which does not have any models of size κ. Let $\theta N \kappa$ size κ, which is a τ_1-isomorphism of $S(N) \mid \tau_1$ onto $S(N') \mid \tau'$. Push-through τ'-structure on $R(N)$ to $R(N')$ to give a structure N'' such that for $s R(N), p R', N'' P(\alpha(s))$ if and only if $N P(s)$; so $R(N'') \mid \tau' \models \psi$. Let γ be a permutation of $R(N'') = R(N')$ that is an isomorphism from the τ'-structure imposed on $R(N')$ by $\alpha to R(N') \mid \tau'$ (and so fixes U setwise). Now by absolute indiscernability, extend γU to an automorphism of N'. Then $\gamma C \alpha$ is a τ_2-isomorphism between N and N' as required.

Using this result we show if κ is homogeneously characterizable, we can construct a complete sentence of $\mathcal{L}_{\omega_1, \omega}$ that has maximal models in κ and κ^+ and no larger models. Before we proceed with the proof we introduce the tool by which we turn homogeneously characterizable cardinals into pairs of maximal models.

Theorem 1.5. Let θ homogeneously characterize κ. Then there exists an $\mathcal{L}_{\omega_1, \omega}$-sentence $\chi = \chi_\theta$ in a vocabulary with a new unary predicate symbol B, such that (χ, B) is receptive, χ homogeneously characterizes κ and χ has maximal models of type $(|M|, |B^M|) = (\kappa, \lambda)$, for all $\lambda \leq \kappa$.

Proof. Fix a receptive pair (θ, U) such that θ homogeneously characterizes κ. Define a new vocabulary $\tau = \{A, B, p\}$ where A, B are unary predicates and p is a binary predicate. Let ϕ_0 be the conjunction of: (a) A, B partition the universe and (b) p is a total function from A onto B such that each $p^{-1}(x)$ is infinite. By Theorem 1.10 of [BFKL13] there is a complete sentence ϕ that implies ϕ_0 and in the countable model of ϕ, B is a set of absolute indiscernibles.

Now merge θ and ϕ by identifying U and A. The merger $\chi = \chi_{\theta, U, \phi, A}$ is a complete sentence which does not have any models of size κ^+. Let M be a maximal model of θ with U^M of size κ, and N a model of ϕ of type (κ, λ), for some $\lambda \leq \kappa$. Then the merger model (M, N) is a maximal model of χ with $|(M, N)| = \kappa$ and $|B^{(|M, N)|} = \lambda$, which proves the result.

A word of caution: In the countable model of θ, the predicate U defines a set of absolute indiscernibles in the countable model, and the same is true for the countable model of ϕ and B. So, we started with two models and two sets of absolute indiscernibles. In the merger $\chi_{\theta, U, \phi, A}$, the absolute indiscernibles of the host model (model of θ) are used to bound the size of A from the guest model (model of ϕ). Moreover, the predicate B from the guest model defines a set of absolute indiscernibles in the merger model too.

The construction in the next theorem extends by the use of Theorem 1.5 the 50 year old argument that if κ is characterized then so is κ^+ to obtain maximal models in distinct cardinalities.

Theorem 1.6. Suppose θ is a complete sentence of $\mathcal{L}_{\omega_1, \omega}$ that homogeneously characterizes κ. Then there is a complete sentence $\psi = \psi_\theta$ of $\mathcal{L}_{\omega_1, \omega}$ such that ψ characterizes κ^+ and has maximal models in κ and κ^+.

Proof. We can replace the θ homogeneously characterizing κ by the $\tau = \tau_\chi^{\theta}$-sentence χ_θ from Theorem 1.5 that homogeneously characterizes κ with set of absolute indiscernibles B and which has maximal models of type (κ, λ) for each $\lambda \leq \kappa$.

(3) If there is a model M_0 of θ with $|M_0| = \lambda_0$ and $|U^{M_0}| = \rho$ and also a model M_1 of ψ with $|M_1| = \lambda_1$ and $|Q^M| = \rho$, then there is a model of $\chi_{\theta, U, \psi, Q}$ with cardinality $\max(\alpha_0, \alpha_1)$.
Let $\psi = \psi_\theta$ be the conjunction of the following sentences, in a vocabulary τ' that contains unary predicates Q_1, Q_2, binary predicates $<, P$, and for each k-ary $R \in \tau$ a $k + 1$-ary predicate \hat{R} in τ'. The axioms assert:

1. Q_1, Q_2 partition the universe.
2. $(Q_2, <)$ is a dense linear order without endpoints.
3. P is the graph of a function from Q_1 to Q_2.
4. For every predicate $R(\bar{x})$ in τ, if $\hat{R}(a, \bar{x})$ in τ' holds, then all members of \bar{x} belong to $D_a = P^{-1}(a) \cup \{ y \in Q_2 | y < a \}$.
5. For every a in Q_2, the set D_a with the τ'-structure obtained by interpreting $\hat{R}(a, \bar{x})$ as $R(\bar{x})$ and $\{ y \in Q_2 | y < a \}$ as B^{D_a} is isomorphic to a model of θ.

Note that for any a and \hat{R}, $\hat{R}(a, \bar{c})$ holds for a vector \bar{c} of distinct elements of $\{ y : y < a \}$ if and only if it holds for all such tuples (by the absolute indiscernability of B in models of χ_θ).

We prove any two countable models, M, N of ψ are isomorphic. Fix an isomorphism α from $(Q_2^M, <^M)$ onto $(Q_2^N, <^N)$. As in Remark 1.4 we now extend the $\alpha \upharpoonright \{ y : y <^M a \}$ to a family of τ'-isomorphisms α_a between $M \upharpoonright D_a^M$ and $N \upharpoonright D_a^N$. By the categoricity of θ, there exists a τ'-isomorphism ρ between $M \upharpoonright D_a^M$ and $N \upharpoonright D_a^N$ (and ρ induces a τ'-isomorphism). But we don’t know a priori that $\rho \upharpoonright \{ y : y <^M a \} = \alpha \upharpoonright \{ y : y <^M a \}$. Let γ be a permutation of $\{ y : y <^N \alpha(a) \}$ that is an order isomorphism between the order given by ρ and the one imposed by α. Now extend γ by absolute indiscernibility to an automorphism of D_a^N. Then $\alpha_a = \gamma \circ \rho$ is a τ'-isomorphism between D_a^M and D_a^N that extends $\alpha \upharpoonright \{ y : y <^M a \}$. For $b < a$, α_b agree on their common domain, since their domains intersect only on Q_2.

Now we claim that $\bigcup_{a \in \mathbb{U}^M} \alpha_a$ is an isomorphism from M to N. It is well-defined since we noted that any α_a and α_b agree on their common domain which is a subset of Q_2 and the union maps all of M to all of N.

The $Q_1, Q_2, <, P$ are clearly preserved. Finally, this is a τ'-isomorphism because each atomic τ'-formula $\hat{R}(\cdot, \bar{c})$ holds on the domain of some α_a.

Moreover, note that if M is a model of ψ so that all the D_a^M are maximal (κ, λ)-models of χ_θ then $(Q_2^M, <^M)$ is λ^+-like. So $|M| \leq \max(\kappa, \lambda^+)$ and there is a model in which that maximum is attained. Now when $\lambda = \kappa$ there is a maximal τ'-model M of ψ with size κ^+ and when $\lambda < \kappa$, M is a maximal model of size κ; in both cases, Q_2^M has size λ^+. \hfill 1.6

Note that Theorem 1.6 is a trivial corollary of Theorem 1.5 if the answer to the following question is positive. But after considerable effort trying to modify the construction of Knïz77, the question seems to be harder than Theorem 1.6.

Open Question 1.7. Is there a complete sentence of $\mathcal{L}_{\omega_1, \omega}$ that has a (κ^+, κ)-model in every cardinality? More strongly, is there such a first order \aleph_0-categorical theory?

Particular examples of homogeneously characterizeable cardinals are given by Ban74, Hjo02, Sou12, Sou13, Sou14, BKL14.

Fact 1.8 (Theorem 4.29, Sou13). If \aleph_α is a characterizable cardinal, then $2^{\aleph_\alpha + \beta}$ is homogeneously characterizable, for all $0 < \beta < \omega_1$.

Fact 1.9. If κ is homogeneously characterizable, then so is each of the following.

1. 2^κ;
2. κ^ω;

1) Baumgartner; see also Theorem 3.4 of Sou13; 2) Theorem 3.6, Sou14; 3) Corollary 5.6, Sou12.
Finally a result of slightly different character; we note a direct proof for each of a sentence ϕ_n that homogeneously characterize \aleph_n ($n > 0$) and has (\aleph_n, \aleph_k) models for $k \leq n$.

Fact 1.10 ([BKL14]). For each $n \in \omega$, there is a complete $L_{\omega_1, \omega}$-sentence ϕ_n such that

- ϕ_n homogeneously characterizes \aleph_n with (ϕ_n, P) receptive; and
- for each $k \leq n$, there is a maximal model N_k of ϕ_n of type (\aleph_n, \aleph_k).

Since in this last example, the complete sentence has maximal models of type (\aleph_n, \aleph_k), for all $k \leq n$ there is no need to appeal to Theorem [1.5] for an intermediate sentence.

2. Maximal models in κ and κ^ω

Working similarly to Section 1, we construct a complete $L_{\omega_1, \omega}$-sentence that admits maximal models in κ and κ^ω, and has no larger models. But we must define a sentence that transfers from characterizing κ to characterizing κ^ω rather than to κ^π.

Although proved earlier ([Sou14]), the following result can be viewed as an extension of the argument for Theorem [1.6]. We first have to replace well-known fact that Th($Q, <$) is first order \aleph_0-categorical by a proof that the tree $\lambda^{< \omega}$ along with a set of dense paths can be axiomatized in $L_{\omega_1, \omega}$. Then we extend the trick illustrated in Theorem [1.6] to bound the number of successors of each node in the tree by κ and thus the number of paths by κ^ω. The detailed axiomatization of a structure with these properties, but in a different vocabulary, by a complete sentence of $L_{\omega_1, \omega}$ and the proof that it characterizes κ^ω appears in [Sou14].

The extension to show κ^ω is homogeneously characterized requires the further analysis of Hjorth construction in the same paper.

For any vocabulary τ and τ-predicate R and τ structure N we write R^N for the interpretation of R in N.

Theorem 2.1. Let ϕ be a complete $L_{\omega_1, \omega}(\tau)$-sentence (in vocabulary τ) with a set of absolute indiscernibles U that homogeneously characterizes κ. Then there is a complete $L_{\omega_1, \omega}(\tau_2)$-sentence ϕ^* (in vocabulary $\tau_2 \supset \tau$) such that ϕ^* characterizes κ^ω.

Moreover, let μ be the least infinite cardinal such that $\kappa \leq \mu^\omega$. If $\mu > \aleph_0$, then ϕ^* has maximal models in κ and κ^ω, and no models larger than κ^ω. If $\mu = \aleph_0$, ϕ^* has maximal models only in 2^\aleph_0.

Proof. We first show the structure with universe $M = \omega^{< \omega} \cup \{f \in \omega^\omega : f$ is eventually constant} with the following relations has a Scott sentence. Fix a vocabulary τ_1 with unary predicates T, P, L_n for finite n, binary predicate \leq, and constant 0 (none of which are in τ). The sentence ϕ_1 in $L_{\omega_1, \omega}(\tau_1)$ describes the following structure on M: T (tree) and P (paths) partition the universe; T denotes $\omega^{< \omega}$ and P denotes the eventually constant sequences. (M, \leq) is a tree of height $\omega + 1$ (\leq is a partial order, with initial element 0, such that the set of predecessors of any element v of M is linearly ordered and includes 0). An element has finitely many predecessors if $v \in T$, while P contains the elements of infinite height. But $v \in P$ implies every $u \leq d$ has finite height. That is, $T^M = \bigcup_{n<\omega} L_n$, where L_n picks out the elements of ‘height’ n. One easily defines an ‘immediate extension’ predicate $E(u, v)$ on M^2 (when $v \notin P$), which holds just if $u \leq v$ and $L_n(u) \leftrightarrow L_{n+1}(v)$. Note that for any $v \in M$, there is a unique definable restriction $v \upharpoonright n$ (for any n not greater than the height of v).

2The proof that these (\aleph_n, \aleph_k) models exist requires the use of both frugal amalgamation and an amalgamation which allows identification. We say a class has frugal amalgamation if for every amalgamation triple A, B, C there is an amalgam on the union of the domains with no identifications. See [BKS09].

3 ϕ^* does not homogeneously characterize κ^ω.

Include in ϕ_1 the crucial axioms for τ_1-categoricity:

1. Each v with finite height has infinitely many immediate extensions.
2. Each v with finite height has infinitely many extensions in P.

We first prove ϕ_1 is a Scott sentence for the τ_1-structure $(M, \leq, T, P, (L_n)_{n \in \omega}, 0)$. We construct a back-and-forth system between arbitrary models M and N of ϕ_1. Suppose A and B are finite subsets of M and N respectively, and $\alpha: A \approx B$. Take any $c \in M \setminus A$.

If $c \leq a$ for some $a \in A$, the extension is easy. If not, there exists a unique $a_c \in A$, maximal with $a_c \leq c$ and apply axiom 1 or 2 depending whether $c \in T$ or P.

This completes the first step in the argument. Without loss of generality we may replace ϕ by the χ_ϕ from Theorem 1.5 that has maximal (κ, λ) models for each $\lambda \leq \kappa$.

Now we use a slightly more complicated version of the strategy for Theorem 1.6. Form τ_2 by adding a binary symbol $D(\cdot, \cdot)$ to τ_1 and an $n + 1$-ary predicate $Q(x, \cdot)$ for each n-ary τ-predicate $Q(\cdot)$.

Let ϕ^* be the conjunction of ϕ_1 with the assertions that for $u \neq v \in T$ the sets $D(u, \cdot)$ and $D(v, \cdot)$ are disjoint and they are also disjoint from T and P.

Require further that for each $u \in V$, the set $D(u, \cdot)$ (under the relations $Q(u, \cdot)$) is a model of ϕ and that the set $R(u, \cdot)$ of the immediate successors of u is also the set $U(u, \cdot)$ of absolute indiscernibles of the model $D(u, \cdot)$ of ϕ. Since ϕ homogeneously characterizes κ, if $N \models \phi^*$, $|R^N(u, \cdot)| \leq \kappa$.

To see that any countable models of M, N of ϕ^* are isomorphic, note first that we already showed their τ_1-reducts are isomorphic. The extension to a τ_2-isomorphism uses the absolute indiscernibility of $\{u : u \leq v\}$ in $D(v, \cdot)$ as in Theorem 1.5.

If for every $u \in V$, the set $D(u, \cdot)$ is a maximal model of ϕ^* of type (κ, λ), then the resulting tree is λ-splitting and there is an associated maximal model of ϕ^* of size $\max\{\kappa, \lambda\}$.

Take μ to be the least infinite cardinal such that $\kappa \leq \mu^\omega$. Thus, ϕ_0^* has a maximal model of size μ^ω. Moreover, for any λ with $\mu \leq \lambda \leq \kappa$ by cardinal arithmetic $\mu^\omega \leq \lambda^\omega \leq \kappa^\omega \leq (\mu^\omega)^\omega = \mu^{\omega^2}$. Also for any $\lambda < \mu$, $\mu < \lambda$ and ϕ^* has a maximal model of size $\max\{\kappa, \lambda^\omega\} = \kappa$. Note that the model is maximal if each $D(\cdot, \cdot)$ is a maximal (κ, λ)-model and each path through resulting tree on $\lambda^{<\omega}$ is realized.

For the last claim, if $\mu = \aleph_0$, then the only possible trees are on $\aleph_0^{<\omega}$ and they must be \aleph_0-splitting. So there is a maximal model of ϕ^* of size $\max\{\kappa, \aleph_0^{\omega\omega}\} = 2^\aleph_0$, and every model of size less than 2^\aleph_0 is not maximal.

An easy application of Shoenfield’s absoluteness theorem proves that for a countable vocabulary and for a sentence $\phi \in L_{\omega_1, \omega}$ the existence of a countable maximal model is absolute. While the existence of a model in \aleph_1 is also absolute (For instance, apply Keisler’s completeness theorem for $L(Q)$.), absoluteness fails for the existence of a maximal model of size \aleph_1.

Corollary 2.2. “Existence of a maximal model in \aleph_1” is not an absolute notion for models of ZFC. More precisely, there exist two transitive models of ZFC, $V \subseteq W$, $\phi \in L^V_{\omega_1, \omega}$, both V and W satisfy that “ϕ has models in \aleph_1”, where \aleph_1 is interpreted in the corresponding model, and $V \models \text{“}\phi$ has a maximal model in $\aleph_1$$\text{”}$, while $W \models \text{“}\phi$ does not have a maximal model in $\aleph_1$$\text{”}$.

Proof. Let κ equal \aleph_1. By 1.10 κ is homogeneously characterizable. Let ϕ^* be the complete sentence given by Theorem 1.5. Let V be a model of CH and W an extension of V in which
CH fails. In V, ϕ^* has maximal models only in $(2^{\aleph_0})^V = \mathbb{N}_1^V$. In W, ϕ^* has maximal models only in $(2^{\aleph_0})^W > \mathbb{N}_1^W$.

Replacing the construction that characterizes κ^ω from Sou14 with the construction that characterized κ^{\aleph_ω}, $\alpha < \omega_1$, from Sou12 (cf. Theorem 3) one can prove the following theorem.

Theorem 2.3. Assume $\alpha < \omega_1$, $2^{\aleph_\alpha} < \kappa < \kappa^{\aleph_\alpha}$ and there is a sentence ϕ_κ that homogeneously characterizes κ. Then there is a complete sentence ϕ_κ^* that has maximal models in κ and κ^{\aleph_α}, and no models larger than κ^{\aleph_α}.

3. Consistency of Maximal models in many cardinalities

In this section we construct a complete $L_{\omega_1,\omega}$-sentence that consistently admits maximal models in many cardinalities. We first give an easy argument to find maximal models in κ and 2^κ when κ is homogeneously characterized.

In [Bau74], Baumgartner used independent families of sets to prove that if κ is homogeneously characterizeable, then the same is true for 2^κ. A similar result is Theorem 4.29 of Sou13 where the assumption of homogeneously characterizability of κ is relaxed to a κ being characterized by a linear order. Given the machinery of homogeneously characterizeable cardinals and mergers, our transfer theorem 3.1 has a rather elementary proof.

Theorem 3.1. Suppose that ϕ is a complete $L_{\omega_1,\omega}$-sentence that homogeneously characterizes κ with absolute indiscernibles in the predicate P and ϕ has no maximal models below κ. Then there is a complete $L_{\omega_1,\omega}$-sentence ϕ_κ that characterizes 2^κ.

Furthermore for every $\lambda \leq \kappa$, there exists a maximal model of ϕ_κ of size $\text{max}\{\kappa,2^\lambda\}$ and every maximal model has one of these cardinalities.

Proof. By Theorem 1.5 we can assume ϕ has maximal models of type (κ, λ) with absolute indiscernibles B, for all $\lambda \leq \kappa$.

Let T be the \aleph_0-categorical first order theory saying U and V are disjoint infinite sets and E is extensional so that $E(v,\cdot)$ defines a family of subsets X_v of U. Requiring that every finite Boolean combination of the X_v is non-empty (and dually for the $Y_u = \{v:v \in u\}$) gives an \aleph_0-categorical theory such that for every model M, $|V^M| \leq 2^{|U|}$.

Merge $\mu = \bigwedge T$ with the complete sentence ϕ from Theorem 1.5 identifying U with B. Let $\phi_\kappa = \chi_{\phi,\mu,U}$. By Fact 1.3 (1), ϕ_κ is a complete sentence of $\tau = \tau_\phi \cup \{U,V,E\}$.

Now M, a maximal model of ϕ with type (κ, λ), yields a maximal model of ϕ_κ with cardinality $\text{max}\{\kappa,2^\lambda\}$. There can be no other maximal models as if (M,N) is a maximal model of the merger ϕ_κ then M is maximal and if $|U^M| = |B^N| = \lambda$, then $|V^N|$ must be 2^λ.

Exactly what this says about the cardinality of maximal models depends on the cardinal arithmetic. We just give some sample applications of Theorem 3.1 with various choices of the λ and of the set theoretic hypotheses.

We describe below some ways to arrange the values the powerset function assumes on the interval $[\mu,\kappa]$ to illustrate the effect of the next theorem.

Corollary 3.2. Assume κ is a homogeneously characterizeable cardinal and the characterizing sentence has no maximal models below κ. Let μ be the least cardinal such that $2^\mu \geq \kappa$. Then there is a complete $L_{\omega_1,\omega}$-sentence ϕ_κ with maximal models in exactly the cardinalities κ and 2^λ, for all $\mu \leq \lambda \leq \kappa$.
The difficulty is that it is impossible to specify in ZFC the equalities/inequalities among the 2^λ's. In ZFC we cannot specify them as \aleph's. But, using Easton’s theorem we can establish a number of possibilities.

Corollary 3.3. Let $\mu = \aleph_1$, $\kappa = 2^{\aleph_1}$ and ϕ_κ be from Corollary 3.2. If $\Gamma = (\alpha_i|i < \alpha_0)$ is an increasing sequence of ordinals and $\text{cf}(\aleph_{\alpha_i}) > \aleph_{i+1}$, then there is a $V^\Gamma = ZFC$ such that ϕ_κ has maximal models in exactly the cardinalities $(\aleph_{\alpha_i}|i < \alpha_0)$ along with the values of the 2^{\aleph_γ} where $\gamma < \alpha_0$ and γ is a limit ordinal.

Proof. First we apply Corollary 3.2 with $\mu = \aleph_1$ and $\kappa = 2^{\aleph_1}$. We need the fact that \aleph_1 is homogeneously characterizable, but this follows from 1.10, and clearly a complete sentence characterizing \aleph_1 can have no maximal countable model. Then apply 3.2. The resulting sentence ϕ_κ from Corollary 3.2 has maximal models in all cardinalities 2^λ, for all $\aleph_1 \leq \lambda \leq 2^{\aleph_1}$. Notice that ϕ_κ depends only on κ and not on the choice of Γ.

Next, we create a model V^Γ of ZFC where the set $\{2^\lambda|\aleph_1 \leq \lambda \leq 2^{\aleph_1}; \lambda \text{ a successor}\}$ equals the set $\{\aleph_{\alpha_i}|\alpha_i \in \Gamma\}$, which proves the statement. We describe the cardinal arithmetic requirements on V^Γ carefully. Using Easton forcing, we ensure first that 2^{\aleph_1} equals \aleph_{α_0}. So, $\{2^\lambda|\aleph_1 \leq \lambda \leq 2^{\aleph_1}; \lambda \text{ a successor}\} = \{2^{\aleph_{\alpha_i}}|i < \alpha_0\}$. Then using the assumption on $\text{cf}(\aleph_{\alpha_i})$, Easton guarantees as well that in V^Γ, $2^{\aleph_{\alpha_i}} = \aleph_{\alpha_i}$, for all $i < \alpha_0$. So Γ indexes a part of the range of the function giving the cardinality of power sets.

We know a bit more.

1. If $\alpha_0 > \omega$, the complete sentence given by Corollary 3.3 will have maximal models in other cardinalities than $(\aleph_{\alpha_i}|i < \alpha_0)$. For instance, for those i where $\lambda = \aleph_i$ is singular, Easton’s theorem does not control the \aleph-index of 2^λ, although we know there is a maximal model in that cardinality.

2. Although the sentence ϕ_κ given by Corollary 3.3 has maximal models in cardinalities that are bounded by 2^{\aleph_1}, the same idea can be applied to other characterizable cardinals. However, since characterizable cardinals are bounded by \beth_ω, the cardinalities where the maximal models occur are also bounded by \beth_ω.

3. The complete sentences given by Corollaries 3.2 and 3.3 do not have arbitrarily large models.

Corollary 3.4. For complete $\mathcal{L}_{\omega_1, \omega}$-sentences the number of cardinalities where maximal models occur is not absolute.

4. Conclusion

The existence of maximal models in several cardinalities suggests the following strengthening of earlier question concerning the number of models in a cardinal that is characterized.

Open Question 4.1. Is there a complete $\mathcal{L}_{\omega_1, \omega}$-sentence ϕ which has at least one maximal model in an uncountable cardinal κ, but less than 2^κ many models of cardinality κ?

In particular, a negative answer to Open Question 4.1 implies a negative answer to the following Open Question 4.2 which was asked in [BKL14] and which in return relates to old conjectures of S. Shelah.

Open Question 4.2 ([BKL14]). Is there a complete $\mathcal{L}_{\omega_1, \omega}$-sentence which characterizes an uncountable cardinal κ and it has less than 2^κ many models in cardinality κ?

I IS I moved the absoluteness question from the end of section 3 here.
All the examples in this paper have maximal models in some cardinalities and using set-theory we can identify the maximality cardinals in the \(\aleph \)-hierarchy. Our examples can not be used to settle whether the statement “\(\phi \) has a maximal model” is absolute. We noticed already in the comments preceding Corollary 2.2 that existence of a countable maximal model and existence of an uncountable model are absolute notions. So, it is necessary that a proposed counterexample will consistently have a maximal model in an uncountable cardinality. By Lemma 5.8 of [Bal12], the property that an \(L_{\omega_1, \omega} \)-sentence has arbitrarily large models is absolute. This further implies that the proposed counterexample will have arbitrarily large models in all models of ZFC.

Open Question 4.3. Given an \(L_{\omega_1, \omega} \)-sentence \(\phi \), is the following statement absolute for transitive models of ZFC? “\(\phi \) has a maximal model in an uncountable cardinality”.

More precisely, do they exist two transitive models of ZFC, \(V \subset W \), \(\phi \in L^V_{\omega_1, \omega} \), both \(V \) and \(W \) satisfy that “\(\phi \) has arbitrarily large models”, and \(V, W \) disagree on the statement “\(\phi \) has a maximal model in an uncountable cardinality”?

Finally, we want to stress the differences in techniques of this paper from [BKS14]. The main idea behind [BKS14] is certain combinatorial properties of bipartite graphs. Here the main construction is a refinement of old ideas, e.g. the characterization of \(\kappa^+ \) by a \(\kappa^+ \)-like linear order in Section 1 and the characterization of \(\kappa^\omega \) using results from [Sou14] in Section 2 combined with repeated use of sets of absolute indiscernibles. All the examples presented here are complete sentences with maximal models in more than one cardinality, which do not have arbitrarily large models. In [BKS14] the examples are incomplete sentences with maximal models in more than one cardinality, which do have arbitrary large models.

Note: After this paper was submitted, Baldwin and Shelah began the paper ‘The Hanf number for extendability and related phenomena’. They construct (under mild set theoretic hypotheses which are expected to be eliminated) a complete sentence of \(L_{\omega_1, \omega} \) with maximal models arbitrarily high below the first measurable. Note that every model above the first measurable has a proper \(L_{\omega_1, \omega} \)-elementary extension. In contrast to this result the method discussed in the last paragraph seem to be limited to counterexamples below \(\beth_1 \). Can one find a sentence \(\phi \) with maximal models bounded somewhere between these bounds? If not, can one explain why there is such an immense gap? Under ZFC + “there exists a measurable cardinal”, no complete sentence of \(L_{\omega_1, \omega} \) has arbitrarily large maximal models. Under ZFC + “no measurable cardinals”, our only example with a maximal model of cardinality beyond \(\beth_1 \) has arbitrarily large maximal models. Is it always true that under ZFC + “there are no measurable cardinals”, if there is a maximal model of cardinality at least \(\beth_1 \), then there are arbitrarily large maximal models. Does this make the Hanf number for the existence of a minimal model (with no measurable) \(\beth_1 \), or can more counterexamples be constructed?

References

