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Abstract. We introduce a uniform method of proof for the following results.
There are, for each of the following conditions, 2ℵ0 families of elementarily

equivalent Steiner sytems, satisfying: i) (extending [CGGW10]) each Steiner
triple system is ∞-sparse and has a uniform but not perfect path graph; ii)

(extending [CW12] each Steiner k-system (for k = pn) has a uniform path

graph (infinite cycles only) iii) extending [Fuj06a], each is anti-Pasch (anti-
mitre); iv) has an explicit quasi-group structure, v) every model is 2-transitive.

Each family has ℵ0 countable models and one model of each uncountable

cardinal.

In this paper we expound some applications of the Hrushovski construction of
strongly minimal sets to the combinatorics of infinite Steiner systems. We refor-
mulate (Section 2) the notion of sparse configurations [CGGW10, Fuj06a] in terms
of the δ-function fundamental to the Hrushovski construction and give uniform ac-
counts of the existence of anti-Pasch and anti-mitre Steiner triple systems (STS).
While the examples of strongly minimal pure Steiner systems (M,R) admit no
definable ‘truly binary’ operation with infinite domain [BV21], we construct (Sec-
tion 3) strongly minimal quasigroups which induce q-Steiner systems (line length
q) for q a prime power. We extend (Section 4) the notion of (a, b)-cycle graph
GM (a, b) of an infinite STS [CW12] to path-graphs of q-Steiner systems induced
by quasigroups. Rather than ad hoc examples, we provide a method to construct
first order theories and thus infinite families of countable models exhibiting various
combinatorial properties. In particular, the countable models of these theories are
arranged in a tower, a countable increasing sequence 〈Mi : i < ω〉. The structure
of GM0(a, b) depends heavily on whether aclM0(∅) = ∅. In various cases GM0(a, b)
may have only finite cycles, only infinite cycles or a mixture. In Section 5, we con-
struct 2-transitive models, which so have uniform path graphs. For this we must
alter different sets of the parameters for a Hrushovski discussion that we describe
in Notation 0.4. We construct in several ways theories of Steiner systems where
every model is 2-transitive.

A first order theory T is strongly minimal if every definable subset of every
model of T is finite or co-finite. Three prototypical examples are the theories of:
the integers with successor, rational addition, and the complex field. Each model of
T determines a combinatorial geometry (matroid) given by algebraic closure. Zilber
conjectured these examples were canonical; each such geometry was discrete, vector
space like, or field like. Hrushovski refuted this conjecture by an intricate extension
of Fräıssé’s construction of countable homogeneous universal models. Building on
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[BP20] we vary his construction to obtain the Steiner systems with the properties
noted.

A linear space is collection of points and lines such that two points determine a
line, a minimal condition to call a structure a geometry. A linear space is a Steiner
k-system if every line (block) has cardinality k. We showed in Section 2 of [BP20]
that linear spaces can be naturally formulated in a one-sorted logic with single
ternary ‘collinearity’ predicate and proved:

Fact 0.1 ([BP20]). For each k, with 3 6 k < ω, there are 2ℵ0 strongly minimal
theories Tµ (depending1 on an integer valued function µ) of infinite linear spaces in
the one-sorted vocabulary τ whose models are Steiner k-systems.

These theories are model complete and satisfy the usual properties of counterex-
amples to Zilber’s trichotomy conjecture. Their acl-geometries are non-trivial, not
locally modular, and the theory cannot interpret a group.

Finite Steiner systems were first defined in the 1840’s and developed by such
mathematicians as Steiner, Bose, Skolem, and Bruck. Much of the history of Steiner
systems interacts with the general study of non-associative algebraic systems such
as quasigroups. A quasigroup is a structure with a single binary operation whose
multiplication table is a Latin Square (each row or column is a permutation of
the universe) [Ste56]. This is the third paper in a series developing the properties
of strongly minimal Steiner systems. Existence is shown in [BP20]. Drawing on
universal algebra and combinatorics, we [Bal21] found that the restriction to prime
power cardinality of the universe that is essential to existence in the finite for
the existence of quasigroups coordinatizing q-Steiner systems is replaced by prime
power block length for strongly minimal Steiner systems.

Theorem 0.2. (Theorem 3.6) For each q and each of the Tµ in Theorem 0.1 with
line length k = q = pn and certain varieties of quasigroups V , there is a strongly
minimal theory of quasigroups Tµ′,V that interprets a strongly minimal q-Steiner
system.

The following theorem from [BV21] suggests a finer classification of flat strongly
minimal sets.

Theorem 0.3. ([BV21, Theorem 0.2]) Let Tµ be among the family of strongly min-
imal (Steiner systems) theories in [Hru93] ([BP20]). If µ is triplable2 Tµ does not
admit a ‘non-trivial’ definable binary function and so does not interpret a quasi-
group. Even without the triplable hypothesis, there is no definable commutative
binary function.

These counterexamples with Hrushovski’s ‘flat geometries’ [BP20, Definition 6.2]
have generally been regarded as an undifferentiated class of exotic structures. How-
ever, there are both Steiner systems and quasigroups are among them [BP20, Bal21]
and [BV21] shows that the structural distinctions arise by varying the function µ.
In fact, the family of ‘Hrushovski constructions of strongly minimal sets’ depend
on five parameters.

Notation 0.4. A Hrushovski sm-class is determined by a quintuple (σ,L∗,L0, ε,U).
L∗ is a collection of finite structures in a vocabulary σ, not necessarily closed under

1The theory of course depends on the line length k; but it is coded by µ so we suppress the k.
2µ(A/B) > 3 if δ(B) > 2
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substructure3. ε is a function from a specified collection of finite σ-structures to
natural numbers satisfying the conditions imposed on δ in Definition 1.2.3. L0 is
a subset of L∗ defined using ε. From such an ε, one defines notions of 6, primitive
and good pair. Hrushovski gave one technical condition on the function µ count-
ing the number of realizations of a good pair that ensured the theory is strongly
minimal rather than ω-stable of rank ω. We consider the class U as the collection
of functions µ satisfying a specific condition provides way to index a rich group of
distinct constructions. As explained in Definition 1.1.3, from L0, ε and µ ∈ U, one
defines Lµ and L̂µ. (For any collection L of finite structures, we write L̂ for the
collection of direct limits of structures in L.) Thus one obtains a strongly minimal
theory Tµ and a generic structure Gµ.

We rely heavily on [BP20, BV21, Bal21], sketching basic arguments and empha-
sizing how the parameters of the last paragraph are changed to get the specific
result.

For convenience, one usually specifies in L∗ that the relations are symmetric;
but to reach important cases such as quasigroups and Steiner systems one adds
the relevant axioms to this starting point. And L∗ is made ∀∃ axiomatizable to
create quasigroups. Working in linear spaces with a ‘geometric’ ε in [Pao20] is
vital to obtain Steiner systems. In this paper, to obtain Steiner systems which are
(e.g. anti-Pasch, ∞-sparse, 2-transitive) we both vary the class U of admissible
µ-functions and change the way that the class of finite structures L0 is determined
by the relevant δ playing the role of ε.

We acknowledge helpful discussions with Joel Berman, Omer Mermelstein, Gi-
anluca Paolini, and Viktor Verbovskiy.

1. Background

We show how modifications of the most basic Hrushovski construction provides
examples in Steiner systems. [BP20, 2.1, 2.2] summarises the role of strongly mini-
mal sets in model theory and the bi-interpretability of a one-sorted (used here) and
two-sorted approach to Steiner system. This paper elaborates the method for uses in
combinatorics. [Bal] provides a somewhat outdated survey of vastly wider study of
modifications of the construction to study e.g. fusions, ‘bad’ fields, Spencer-Shelah
random graphs and higher levels of stability classification. Section 1.1 outlines the
general setting emphasizing the parameters that can be varied to get specific be-
haviors. Remark 1.1.9 reminds us of the original context; Section 1.2 lays out the
notation for studying linear spaces.

1.1. The Hrushovski framework

The basic ideas of the Hrushovski construction are i) to modify the Fräıssé con-
struction by replacing substructure by a notion of strong substructure, defined
using a predimension δ (Definition 1.2.3) so that independence with respect to the
dimension induced by δ is a combinatorial geometry4 and ii) to employ an algebriz-
ing function µ to bound the number 0-primitive extensions of each finite structure
so that closure in this geometry is algebraic closure.

3They were in [Hru93] but not here.
4The requirement that the range of this function is well-ordered is essential to get the ex-

change property in the geometry; using rational or real coefficients yields a stable theory and the

dependence relation of forking [BS96].
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A Steiner (t, k, v)-system is a pair (P,B) such that |P | = v, B is a collection of
k element subsets of P and every t element subset of P is contained in exactly one
block. Since we are primarily interested in infinite structures, we omit the v unless
it is crucial and so, by Steiner k-system I mean Steiner (2, k) system of arbitrary
cardinality. A groupoid (also called a magma) is a structure (A, ∗) with one binary
function ∗.

Unfortunately, while the extensive literature on Hrushovski constructions con-
tains the same fundamental notions related in a fairly standard way, the notation
is not standard. So we quickly list our terminology.

We give an abstract formulation of the construction of generic model due to
[KL92]. This provides a common framework for the Fräıssé and Hrushovski con-
structions which does not require the class L to be closed under substructure and is
essential in Section 3. For the general discussion in this section we work in a finite
relational vocabulary σ.

Notation 1.1.1. (1) For any class L of finite structures, L̂ denotes the col-
lection of structures of arbitrary cardinality that are direct limits5 of models
in L.

(2) Let σ be a finite relational vocabulary. A class (L0,6) of finite structures,
with a transitive relation 6 on L0 × L0 is called smooth if B 6 C implies
B ⊆ C and for all B ∈ L there is a collection pB(x) of universal formulas
with |x| = |B| and for any C ∈ L0 with B ⊆ C,

B 6 C ↔ C |= φ(b)

for every φ ∈ PB and b enumerates B.
We write B is strongly embedded in C if an isomorphic image B′ of C

satisfies B′ 6 C.
(3) A structure A is a (L0,6)-union if A =

⋃
n<ω Cn where each Cn ∈ L0 and

Cn 6 Cn+1 for all n < ω. If A is a (L0,6)-union, B ⊆ A, B ∈ L0, we say
B 6 A if B 6 Cn for all sufficiently large n.

(4) A structure A is an (L0,6)-generic if A is a (L0,6)-union and for any
B 6 C each in L0 and B 6 A there is a 6-embedding of C into A.

6 is read ‘strongly embedded’. The crucial fact is:

Fact 1.1.2 ([KL92]). If (L0,6) is a smooth class of finite structure with only count-
ably many elements that satisfies 6-amalgamation and 6-joint embedding there is
a unique countable generic GL0

for (L0,6)

Axiom 1.1.3. Let δ be a map from a collection finite σ-structures into N . Let L∗

be a collection of such structures closed under isomorphism. We write A 6 B if

for every C with A ⊆ C ⊆ B, δ(C/A) > 0. We require that L∗, L̂
∗
, δ satisfy the

following requirements. First, L0 is the collection of finite B such that:

(1) δ(∅) = 0
(2) If B ∈ L∗ and A ⊆ B then δ(A) > 0.
(3) If A, B, and C are disjoint then δ(C/A) > δ(C/AB).
(4) (L∗, δ) admits canonical amalgamations in the following sense.

5If L is closed under substructure so is L̂ and L̂ is axiomatized by a universal sentence in
Lω1,ω (Lω,ω if the vocabulary is relational.).
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Definition 1.1.4. Canonical Amalgamation For any class (L0, ε), if A∩B = C,
C 6 A and A,B,C ∈ L∗, G is a free (or canonical) amalgamation, G = B ⊕C A
if G ∈ L∗, ε(A/BC) = ε(A/C) and ε(B/AC) = ε(B/C) Moreover, ε(A ⊕C B) =
ε(A) + ε(B)− ε(C) and any D with C ⊆ D ⊆ A⊕C B is also free. Thus, B 6 G.

Disjoint union is the canonical amalgamation for the basic Hrushovski construc-
tion and Definition 1.2.4 gives the appropriate notion satisfying Axiom 1.1.3.5 for
linear spaces. Axiom 1.1.3.2 can be rephrased as: B ⊆ C and A ∩ C = ∅ implies
ε(A/B) > ε(A/C); so we can make the following definition.

Definition 1.1.5. Extend ε to d : L̂
∗
× L∗ → N by for each N ∈ L̂

∗
, d(N,A) =

inf{ε(B) : A ⊆ B ⊆ω N}, dN (A/B) = dM (A ∪ B) − dM (B). We usually write
d(N,A) as dN (A) and omit the subscript N when clear.

What Hrushovski called self-sufficient closure is in the background.

Definition 1.1.6. (1) For N ∈ L̂
∗

and A ∈ L∗, we say A ⊆ N is strong in N
and write A ≤ N if d(N/A) > 0.

(2) For any A ⊆ B ∈ L∗, the intrinisic (self-sufficient) closure of A, denoted
iclB(A) is the smallest superset of A that is strong in B.

Note that in the current situation icl(B) is finite if B is. The following definition
describes the pairs B ⊆ C such that eventually tp(C/B) will be an algebraic set
(realized only finitely often).

Definition 1.1.7. Let A,B ∈ L∗ with A ∩B = ∅ and A 6= ∅.
(1) B is a primitive extension of A if A 6 B and there is no A ( B0 ( B such

that A 6 B0 6 B.
B is a k-primitive extension if, in addition, ε(B/A) = k.
We stress that in this definition, while B may be empty, A cannot be.

(2) We say that the 0-primitive pair A/B is good if there is no B′ ( B such that
(A/B′) is 0-primitive. (This notion was originally called a minimal simply
algebraic or m.s.a. extension.)

(3) If A is 0-primitive over B and B′ ⊆ B is such that we have that A/B′ is good,
then we say that B′ is a base for A (or sometimes for AB).

(4) If the pair A/B is good, then we also write (B,A) is a good pair.

Definition 1.1.8. (1) Let U be the collection of functions µ assigning to every
isomorphism type β of a good pair C/B in L∗ a number µ(β) = µ(B,C) > ε(B).

(2) For any good pair (B,C) with B ⊆ M and M ∈ L̂
∗
, χM (B,C) denotes the

number of disjoint copies of C over B in M . A priori, χM (B,C) may be 0.
(3) Let Lµ be the class of structures M in L∗ such that if (B,C) is a good pair

χM (B,C) 6 µ((B,C)).

Up to this point, we have denoted the rank function by ε to indicate it is being
treated entirely axiomatically. We switch to δ to emphasize that (Hrushovski’s
definition or Paolini’s) may be used but trust to context for the reader to know
which.

Remark 1.1.9 (The basic Hrushovski construction). In the original context [Hru93],
σ consists a single ternary relation R and δ(A) = |A|−r(A) where r(A) is the num-
ber of triples a from A satisfying R(a). L∗ is all finite σ-structures and L0 is those
A ∈ L∗ with ∅ 6 A and U is as in Definition 1.1.8 with the relevant choice of δ.



6 JOHN T. BALDWIN UNIVERSITY OF ILLINOIS AT CHICAGO

1.2. Linear Spaces

In this section we outline the adaptation of Remark 1.1.9 that generates most of
the examples in this paper. For the remainder of the paper we will deal at various
times with two vocabularies τ , with a single ternary relation symbol, R, and τ ′

with a second ternary relation H, which will be the graph of a binary function ∗

Definition 1.2.1. A τ -structure (M,R) is

(1) a 3-hypergraph if R holds only of distinct triples and in any order.
(2) a linear space if it is a 3-hypergraph in which two points determine a unique

line. That is, each pair of distinct points in contained in unique maximal
R-clique (line). That is, all triples from the line satisfy R.

(3) A linear space is a k-Steiner system if all lines have the same length k.

Thus our finite structures will in general be partial k-Steiner systems (lines may
not have full length) for some k. We use the words ‘block’ and ‘line’ interchangeably
and often fail to distinguish when the line has full length. When this is important,
we may write clique to denote a subset of a line, i.e., a maximal clique.

Definition 1.2.2. (1) For ` ⊆ A, we denote the cardinality of a clique ` by |`|,
and, for B ⊆ A, we denote by |`|B the cardinality of ` ∩B.

(2) We say that a non-trivial line ` contained in A is based in B ⊆ A if
|` ∩B| > 2, in this case we write ` ∈ L(B).

(3) The nullity of a line ` contained in a structure A ∈ K∗ is:

nA(`) = |`| − 2.

Now we define our geometrically based pre-dimension function [Pao20].

Definition 1.2.3. We define the appropriate K∗ and K0.

(1) Every (A,R) ∈K∗ is a finite linear spaces.
(2) For (A,R) ∈K∗ let:

δ(A) = |A| −
∑

`∈L(A)

nA(`).

(3) Moreover (A,R) ∈K0 if for any A′ ⊆ A, δ(A′) > 0}.
(4) (K0, δ) satisfies the conditions on ε given in Section 1.1

The explicit definition of the free amalgamation in this context is:

Definition 1.2.4. [BP20, Lemma 3.14] Let A ∩ B = C with A,B,C ∈ K0. We
define D := A⊕C B as follows:

(1) the domain of D is A ∪B;
(2) a pair of points a ∈ A − C and b ∈ B − C are on a non-trivial line `′ in D if

and only if there is line ` based in C such that a ∈ ` (in A) and b ∈ ` (in B).
Thus `′ = ` (in D).

We single out a type of good pair that provides the line-length invariant for the
Steiner systems.

Notation 1.2.5 (Line length). We write α for the isomorphism type of the good
pair ({b1, b2}, a) with R(b1, b2, a). Note (Lemma 5.18 of [BP20]) lines in models of
Tµ have length k if and only if µ(α) = k − 2.
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If one restricts the counting functions to U (Definition 1.1.8), Steiner triple sys-
tems are excluded. Since they are a key topic, the U is slightly altered from Defi-
nition 1.1.8 to admit them.

Definition 1.2.6 (U ls). Let U ls be the collection of functions µ assigning to every
isomorphism type β of a good pair C/B in K0 a number µ(β) = µ(B,C) > δ(B).

(i) a number µ(β) = µ(B,C) > δ(B), if |C −B| > 2;
(ii) a number µ(β) > 1, if β = α.

We will omit the superscript ls, when it is clear we working with linear spaces.

2. Omitting configurations in Steiner triple systems

There is a long history of studying finite Steiner triple systems that omit specific
configurations, e.g. Pasch. We derive such results for infinite Steiner triple systems
by variants on our general construction. We begin by examining the connection
between the Pasch configuration [Fuj06b] and the group configuration from model
theory. The notion of an ∞-sparse system uniformizes these anti-x constructions
[CGGW10]. We first find specific amalgamation constructions that give the strongly
minimal Steiner systems omitting certain configurations by varying the class U of
acceptable bounds on algebraicity. We next obtain ∞-sparseness, by enforcing the
uniformity with δ, and finally with more drastic restrictions on the class K0.

2.1. Anti-Pasch and Anti Mitre

Figure 1. Pasch configuration

Diagram 2.1 is known in the study of Steiner triple systems as the Pasch configu-
ration. This same diagram, interpreting the lines as representing algebraic closure,
is known to model theorists as the group configuration: here the acl-dimension of
the set of 6 points is 3; any triple of non-collinear points are independent; each
point has acl-dimension 1, and each line has acl-dimension 2. Hrushovski’s proof,
described for the Steiner system case in [BP20, Corollary 6.3], that no Tµ interprets
an infinite group originated the model theoretic argument that the group configu-
ration in the algebraic closure geometry implies the existence of a definable infinite
group. We give a more direct argument for:
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Fact 2.1.1. The strongly minimal quasigroups whose existence is proven in Sec-
tion 3 have no infinite definable associative subquasigroup.

Proof. Let G be a definable infinite subquasigroup of Gµ with associative multi-
plication that is generated by three algebraically independent elements, say D,G,H
as in Figure 2.1. Now DG = E so, by associativity, F (DG) = FE = X. Similarly,
H = FD implies (FD)G = HG = X so the lines HG and FE intersect in X. In
any Tµ the algebraic closure dimension of a closed subset A is d(A) = δ(A). So if
A is the six points of the configuration we should have δ(A) > d(A) = 3. But the
actual calculation6 gives δ(A) = 2. So the Pasch configuration is omitted. 2.1.1

In particular, a strongly minimal quasigroup constructed in this way can never
be a group. Nevertheless, in general there will be many realizations of a Pasch
configuration P in a strongly minimal Steiner triple system, since δ(P ) = 2 > 0.
Indeed any pair of points extends to a Pasch configuration in the generic model.
Fact 2.1.1 shows in general it cannot extend to an infinite subquasigroup. But
we prove more; by specializing the construction, we can guarantee there is no
occurrence of the Pasch-configuration. That is, the quasigroup is anti-Paschian.

We extend the considerable investigation (e.g. [Fuj06a]) of finite anti-Pasch
quasigroups by providing infinite examples. We need the following notion.

Definition 2.1.2 (R-closure). Let (M,R) be a τ -structure. We define the R-
closure, clR(X), for X ⊂M . Define inductively X = X0 and for each n, c ∈ Xn+1

if a, b ∈ Xn and R(a, b, c). Now clR(X) = XN, where N (possibly ω) is where the
inductively defined sequence Xn terminates. A set X is R independent if no element
is in the R-closure of the others.

Lemma 2.1.3. The subclass of KP
0 of those finite structures with 3-element lines

that omit the Pasch configuration satisfies amalgamation.

Proof. We can reformulate the problem by setting ρ as the isomorphism type of the
good pair (A/B) in Figure 2.1, taking {F,H} as the base B and A = {X,D,E,G}
as a good extension. We use the standard K0 for linear space. But we modify a
µ ∈ U by setting µ(A/B) = 0. We must show Kµ has amalgamation.

Fixing notation as in the proof of amalgamation in [BP20, 5.11], consider struc-
tures with (E/D) a good pair, D ⊆ F and all in K0; we want to amalgamate F
and E over D. Note that every non-trivial line that intersects E −D is contained
in E and has two elements in E − D. This holds, as if the line intersects F − D
then it has 4 points by Definition 1.2.4. But, if it intersects D in 2 points E is
not primitive over D. Thus F is R-closed in G. The key property of the Pasch
configuration is that each point not in the base is on a 3-element line that intersects
the base. This implies that if there is an embedding of the Pasch configuration P
in G, the image of the base EH is contained in D. (Otherwise there would be a
line from F −D to E −D.) But since the Pasch configuration is R-generated by
the base along with any other point, we have A ⊆ F if A ∩ F 6= ∅ and A ⊆ E if
not. Either violates the hypothesis that F and E omit the Pasch configuration.

Applying Lemma 2.1.3 any model of Tµ satisfies:

Corollary 2.1.4. There is a strongly minimal anti-Pasch Steiner triple system.

6Hrushovski isolates geoemtries supporting this calculation as ‘flat’.
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Similar arguments construct anti-mitre and anti-mia configurations. The mitre
configuration is shown in Figure 2.1. Letting abc be the bottom line, c′b′a′ the
middle, and x the vertex, the diagram represents the left self-distributive law:

x(ab) = (xa)(xb).

Namely the self distributive law implies naming a′ as xc and c′ as xa the lines
ac′, bb′, ca′ intersect at x. This (5, 7)-configuration [Fuj06b] is called a mitre7; The
only other (5, 7)-configuration, (mia), is obtained by adding a point between the
two points on the base of the Pasch configuration and creating a new line. By con-
structing ∞-sparse configurations below we simultaneously omit the Pasch, mitre,
and mia configurations.

Figure 2. Mitre and mia configurations

Lemma 2.1.5. The subclass KM
0 of K0 consisting of those finite structures with 3-

element lines that omit the mitre (or those omitting the mia) configuration satisfies
amalgamation.

Proof. We use the first paragraph of the proof of Lemma 2.1.3. The argument there
that the base is contained in D, here yields only that two points of the base are in
E −D. Say a ∈ F and b, c ∈ E −D. We violate F closure unless the point F − E
is c′. Now if the pivot x is in E −D, we violate the R-closure of F . But if x ∈ F
and a′ or b′ is in F , a′xa or b′xb violates that E is primitive over D. While if either
is in E−D, a′b′c′ violates R-closure of F . The proof of the mia case offers nothing
new.

Thus we construct structures which have no instances of associativity or self-
distributivity anywhere and every left multiplication by an element not on a line
fails to preserve lines.

7In the diagram, x is the top point. Label the middle line a, b, c and the bottom line c′, b′, a′.
Diagram taken from [CFMP17].
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2.2. Sparse Configurations in 3-Steiner systems

In, for example [CGGW10, page 116], an (n, n + 2) configuration in a Steiner
triple system (STS) is a substructure (A,R) of n+ 2 points with n lines. That is,
δ(A) = 2. They say a system is ∞-sparse if there are no (n, n + 2) configurations
with n > 4. We reformulate ‘sparse’ in terms of δ.

Definition 2.2.1. A Steiner triple system (M,R) is∞-sparse if there is no A ⊆M
with |A| > 6 and δ(A) = 2.

Note that the Pasch, mitre, and mia configurations are all forbidden in an ∞-
sparse STS. [CGGW10] construct by a four page inductive construction of finite
approximations, 2ℵ0 non-isomorphic countable ∞-sparse systems. we modify the
construction in [BP20] by restricting K0 to get ∞-sparse STS of every infinite
cardinality.

Definition 2.2.2. Let Ksp
0 be the subclass of K∗ (linear spaces) such that for every

B ⊆ A:

(#) |B| > 1 → δ(B) > 1 & |B| > 3→ δ(B) > 2.

and, as in [BP20] take U as Usp, those µ ∈ U which can be achieved in Ksp
0 .

Condition # implies there are no 4 element lines in a member ofKsp
0 so µ(α) = 1

and the generic model will be a Steiner triple system.

Theorem 2.2.3. The system (Ksp
0 ,6) has 6-amalgamation. And so for any µ ∈

U , Ksp
µ has 6-amalgamation.

Proof. Let C 6sp A and C 6sp B. Linear space amalgamation (Definition 1.2.4)
cannot introduce any relation between A− C and B − C, as this would produce a
4-element line. But then it is clear that # is preserved in the amalgam. We use
the first clause of # to avoid B with δ(B) = 1. Now the proof from [BP20] applies
to give amalgamation for Kµ if µ ∈ Usp. 2.2.3

Theorem 2.2.4. There are continuum many µ such that

(1) Tµ is strongly minimal (so ℵ1-categorical);
(2) Every model of Tµ is an ∞-sparse Steiner triple system;
(3) Tµ has countably many countable models.

Proof. As in [BP20], for any µ satisfying Definition 2.2.2, the associated Tµ is a
Steiner triple system. But by omitting A with δ(A) = 2 and |A| > 6, the structure
is ∞-sparse. 2.2.4

Lemma 4.4 shows that the associated (a, b)-graphs are not perfect.

3. Constructing strongly minimal quasigroups

While Fact 0.1 shows there are strongly minimal k-Steiner systems for every
k, [GW75, Bal21] imply that there can be quasigroups only when k is a prime
power. Our strongly minimal k-Steiner systems (M,R) can admit a definable bi-
nary function [BV21] only under very strong additional hypotheses (Theorem 0.3).
Nevertheless, there are strongly minimal quasigroups which induce k-Steiner sys-
tems when k is a prime power. For this result we need the generality of Fact 1.1.2,
as we will axiomatize L∗ (K∗ here) with ∀∃-sentences. We sketch a different proof
than that detailed in [Bal21] of the existence of strongly minimal quasigroups.
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The coordinatizing result rests primarily on work of [GW75, Ste56, Ś61] and
others who achieved a ‘coordinatization’ of such Steiner systems by quasigroups.
The contribution here is that although, for k > 3, this coordinatization is not a
bi-interpretation, the Steiner system never interprets a quasigroup, we can in fact
demand for k = q = pn the existence of a Steiner k-system that is interpreted in a
strongly minimal quasigroup. The key to this is the relationship of so-called (2, k)
varieties [Pad72, GW75] to a two-transitive finite structure and thus eventually to
the reconstruction of a finite field. Following [GW80] we call the quasigroups which
arise when k is a prime power q, block algebras.

A variety is a collection of algebras (structures in a vocabulary with only func-
tion/constant symbols and no relation symbols) that is defined by a family of equa-
tions. The essential characteristic of the equational theories below is that each
defining equation involves only two variables. In particular, none of the varieties
are associative.

Definition 3.1. [Smi07] A quasigroup (Q, ∗) is a groupoid8 (A, ∗) such that for
a, b ∈ Q, there exist unique elements x, y ∈ Q such that both

ax = b, ya = b.

The general notion is a universal Horn class, not a variety. But an (r, k) variety
of groupoids is a quasigroup [Qua92].

Definition 3.2. [Pad72] The variety V is an (r, k) variety if every r-generated
subalgebra of any A ∈ V is isomorphic to the free V -algebra on r elements and has
cardinality k

Fact 3.3. [GW75] Given a (near)-field9 (F,+, ·,−, 0, 1) of cardinality q and a prim-
itive element a ∈ F , define a multiplication ∗ on F by x ∗ y = y + (x − y)a. An
algebra (A, ∗) satisfying the 2-variable identities of (F, ∗) is in a (2, q)-variety of
block algebras over (F, ∗).

This is one of 5 equivalent characterizations of such a variety in [Pad72]. Obvi-
ously, the collection of r-generated subalgebras A ∈ V form an Steiner (r, k)-system;
we need a third: the automorphism group of any r generated algebra is strictly (i.e.
sharply) r-transitive.

Fix two vocabularies τ = {R} and τ ′ with two ternary relations symbols R,H.
For each (2, q)-variety V quasigroups, we construct a strongly minimal theory of
quasigroups (in V ) that induce q-Steiner systems. We use H as the graph of the
quasigroup operation in V , ∗, to make our amalgamation class contain only finite
structures (as in [BC19]). We define the base class of finite structures as follows.

Definition 3.4. [K∗] Fix a prime power q and a (2, q)-variety V of quasigroups
(e.g. a block algebra from Fact 3.3). Let F2 denote the free algebra in V on 2
generators. Let K∗ = K∗V be the collection of finite (H,R)-structures A such that

(1) (A,R) is a linear space;
(2) (∀a1, a2, a3)(∃b1, . . . bq−3)[R(a1, a2, a3)→

∧
i6q−3R(a1, a2, bi);

8In the background literature on quasigroups, a groupoid is simply a set with a binary operation.

So, I use this notation although it is no longer common.
9A near-field is an algebraic structure satisfying the axioms for a division ring, except that it

has only one of the two distributive laws.
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(3)

(∀a1, a2, a3, b1, . . . bq−2)[(R(a1, a2, a3) ∧
∧

i6q−3

R(a1, a2, bi))→
∨

i,j6q2

bi = bj ].

(4) If A′�R is a maximal clique (line) with respect to R (necessarily |A′| = q),
A′�H is the graph of the free algebra F2 ∈ V .

Note that the definition of linear space implies that any triple satisfying R in

A′ ∈ Kτ ′

µ,V extends to a line in A′ of exactly length q. Since V is axiomatized by

2-variable equations, if A′ ∈Kτ ′

µ,V , A′�H is the graph of an algebra in V .

Definition 3.5. (1) For a τ -structure (A,R) δτ (A) is defined as for linear
spaces in Definition 1.2.3. Now for each A′ ∈ K∗ = K∗V , let A = A′�R
and δτ ′(A′) = δτ (A) and induce 6′ from δ′.

(2) Kτ ′

0,V = {A′ ∈Kτ ′

µ,V : δτ ′(A′) > 0}
(3) A µ′ mapping Kτ ′

0,V into Z is in Uτ ′ if it satisfies µ(A/B) > δτ ′(B)¿ Let

D ∈ (Kτ ′

µ,V ,6
′) if and only if χD(A/B) 6 µ(A/B).

Note that B/A is a good pair, just when B′/A′ is a good pair. Since both the
restriction δ(A) > 0 and the bound imposed by µ are universally axiomatized it is

easy to check that (Kτ ′

µ,V ,6
′) is smooth. However it is AE-axiomatized because

of clause 3.4.2. Thus the main difficulty in proving the following is establishing
amalgamation.

In [Bal21], we give a different construction which involves a µ which counts good
pairs in τ and µ′ which counts good pairs in τ ′. We write µ′ here to emphasize that
µ′ counts good pairs of τ ′ structures and for compatibility with the earlier notation.

Theorem 3.6. For each q = pn and each µ ∈ U and each (2, q) variety of quasi-
groups V there is a strongly minimal theory of quasigroups Tµ,V that interprets a
strongly minimal q-Steiner system.

Proof. We now show the amalgamation for (Kτ ′

µ,V ,6
′), as in Lemma 5.11 and

Lemma 5.15 of [BP20]. Consider a triple D,E, F in Kτ ′

µ,V as in Lemma 2.1.3. That
is, D ⊆ F and E is 0-primitive over D′. Since E is primitive over D, although
there may be a line contained in the disjoint amalgam G with two points in each
of D and F −D, each line that contains 2 points in E−D can contain at most one
from D. If a line contains three points from D, since D satisfies Definition 3.4.2
it is contained in D. Thus, there is no issue with defining the relation H on the
disjoint amalgamation. If µ′ requires some identification for some (B,C), just as in
[BP20], it is because the (relational) τ ′-structure BC is DE and (Note the ‘further’
in [BP20, Lemma 5.10].) there is a copy of C over B in F .

The blocks of the Steiner system are the 2-generated ∗-subalgebras. Now the
strong minimality of the generic follows exactly as in Lemmas 5.21 and 5.23 of
[BP20] and we have proved Theorem 3.6.

4. Strongly minimal block algebras, towers, and path graphs

The notion of an (a,b)-cycle graph is widely studied for finite Steiner triple sys-
tems. [CW12, CGGW10] consider the notion for infinite Steiner triple systems and
prove the existence of infinite perfect and uniform Steiner triple systems.
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We generalize this notion to consider infinite q-Steiner systems that are induced
from strongly minimal (2, q)-quasigroups with q a prime power [BV21, Bal21]. They
could be given either as quasigroups (only symbol *) or built from (2, q)-varieties in
τ ′ = 〈∗, R〉 as in Section 3. In either case we write ∗ for the quasigroup multiplication
operation in the infinite models, H for the graph of ∗, and R(a, b, c) for collinearity,
each of a, b, c is in the q-element quasigroup generated by the other two, which is a
definable relation in (Q, ∗). We use the ∗ operation to inductively construct a path
on points.

QUESTION 4.0.1. We use our special situation heavily below. What can be said
about the path graphs of arbitrary q-Steiner systems induced by quasigroups?

4.1. Path Graphs

Finite Steiner systems Q are often studied via the cycle graph over various ab;
the pairs (c, d) from Q−ab are colored red or blue depending on whether a or b lies
on the line cd. Then a path is generated by choosing a point d off ab and starting
with ad and inductively choosing the line of a different color through the third point
on the current line. We extend this idea to q-Steiner systems. It is immediate that
3-paths do not intersect; so for strongly minimal 3-Steiner systems the definitions
reduce to those in [CW12]. However, such disjointness is no longer immediate when
q > 3 leading to the more complicated description of paths in Definitions 4.1.3 and
4.1.4. In order to carry out the analysis10, we exclude from the graph, not just ab
but the larger finite set icl(a,b), the smallest subset containing a, b that is strong
in M .

Definition 4.1.1. Consider a Steiner system (M, ∗, R) determined by a q-block
algebra (M, ∗) (Definition 3.2). For any a, b ∈ M , we will write GM (a, b) for the
graph determined by the pair a, b ∈M .

(1) The domain of GM (a, b) is M − icl(ab).
(2) For x, y 6∈ acl(a,b), there is an edge colored a (resp., b) joining x to y if

and only if R(a, x, y) (resp., R(b, x, y)).

Remark 4.1.2. There is an edge coloured11 a (resp., b) joining x to y if and only
if a ∗ x = y (resp., b ∗ x = y).

We have partitioned the lines (R-cliques) that intersect {a, b} into a and b lines.
Two lines with distinct colors can intersect in at most one point.

We introduce certain paths and then in Section 4.3 fans in the graph that under
appropriate hypotheses cover (most of) the domain of the graph.

Definition 4.1.3. Let M |= Tµ′,V with µ ∈ U ls (Definition 1.2.6). Consider a
q-block algebra (M, ∗) with associated path graph GM (a, b).

(1) For any a, b, we write ab to denote the line of length q generated by {a, b}.
(2) For d0 6∈ ab we define a sequence, denoted Pabd generated by d1 ∈ M −

acl(ab) over {a, b} as follows.
The path Pabd is the sequence d = d1, . . . dm such that a ∗ d2i+1 = d2i+2

and b ∗ d2i+2 = d2i+3 for 0 6 i 6 m.

10This guarantees that the generator d0 satisfies d(d0/icl(ab)) > 0.
11Note that if q = 3, this is the same as collinearity and we return to the framework of [CW12].
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(3) The envelope, P eabd, of the path, Pabd, with d = d1 . . . dm,is the union of

the lines12 di, di+1 for 1 6 i < m. Note that if i is odd (even), a (b) is on
di, di+1.

Note that for e is on an a-edge, a ∗ e is on the same line (and similarly for b).
Thus, the lines of the Steiner system are cliques of the path graph. But, if e with
e 6= a and e 6∈ acl(ab) is on an a-edge multiplying e by b begins the generation of
a distinct path, Pbae in the graph. We will show such a path is either an infinite
chain or ‘cycles’ by generating a 0-primitive extension of ab.

Definition 4.1.4. (1) There are two possibilities when this process is iterated
forward m times.
(a) An (a, b)-chain of length m is a path Pabd with d = d0d1, . . . dm such

that a ∗ d2i+1 = d2i+2 and b ∗ d2i+2 = d2i+3 for 0 6 i 6 m
and: for j > i + 1 the lines didi+1, djdj+1 do not intersect. Thus
δ(Pabd) = δ(P eabd). Note that m counts the number of lines in the
path. We write σm for the isomorphism type of an m-chain. Note
that, as in the 3-Steiner system case, the length of an m-chain must
be divisible by 4.

(b) At some stage the new line generated by a, d2i+1 or b, d2i+2 intersects
one of the earlier lines in the envelope of the path. In this case, we stop
the construction with the new line. The result is an m-pseudo-cycle,
an envelope Pabd, such that for exactly one pair (i, j) with 0 6 i 6 m
and j > i+ 1 the lines didi+1, djdj+1 intersect.
We write γs for an isomorphism type of an s-pseudo-cycle Pabd and
P eabd for the isomorphism type of its

(c) If the process continues infinitely we call the result an infinite chain.
(2) Note that the construction of path through d0 could equally well begin with

the first line a b-line. In this case, we introduce a finicky notation. The
Pbad0 path through d0 starts with a b-line.

Recall the construction stops as soon as there is a loop but may be infinite. In
the pseudo-cycle case P eabd contains a minimal pseudo-cycle, which is 0-primitive
over ab. Thus, each triple a, b and d 6∈ icl(ab), determine a unique maximal path
Pabd beginning with an a-edge; it may be a pseudocycle (perhaps starting with a
different d′) or an infinite chain. While formally we have defined pseudo-cycles to
emphasize the return need be back to the initial point, we will often write cycle for
short.

Within the algebraic closure of ab analysis by the graph structure is more compli-
cated. As, since any two points determine a line implies there are c ∈ acl(ab) such
that d(c/ab) remains 0 even when c is an intersection point of many lines. Thus, in
Section 4.2 we study inside acl(ab) the graph over icl(ab) and in Section 4.3 work
over acl(ab).

4.2. Inside acl(ab): Many Finite paths

This subsection analyzes the structure of GM (a, b) when M is a prime model
that is algebraic over the empty set and for arbitrary M the stucture of aclM(ab)−
iclM(ab). Section 4.3 describes the properties of (a, b)-path graph off acl(ab).

12We may sometimes write Pabd when Pabd−{a, b} is more precise; this is the usual ambiguity
in describing good pairs C/B; technically B and C are disjoint.
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We now use the model theoretic machinery about strongly minimal sets.

Remark 4.2.1 (Towers). Two prototypical properties of a strongly minimal theory
T are: a) the existence of a unique generic type over the model whose restriction
to any set has infinitely many solutions and, as a result, if T has at least two non-
isomorphic countable models, b) the arrangement of the countable models into a
tower. Let 〈Mj : 0 6 j < ω + 1〉 be the tower (elementary chain) of countable
models of Tµ′,V , with M0 the prime model13; then Mω is isomorphic to the generic
structure Gµ,V [BP20, Lemma 5.29]. One might think each Mn is prime with an acl-
basis of cardinality n. We show in Lemma 4.2.3) for any strongly minimal Steiner
system M |= Tµ′,V with µ ∈ U , acl(∅) 6= ∅ if and only acl(∅) is infinite. However,
in Section 5 we provide choices of Tµ′,V where M0 has dimension 2 and so Mn has
dimension n+ 2.

The cycles (using only partial lines of length three) played an important role in
[BP20]. We constructed the 2ℵ0 distinct theories Tµ in [BP20, Lemma 4.11], by
showing (in the vocabulary τ = {R}) there were a countable family of 4n-cycles (ac-
tually back to the same element) that are mutually non-embeddible and 0-primitive
over 2-element sets. Varying the argument slightly shows as s increases the γs (Defi-
nition 4.1.3.(1b)) induce infinitely many mutually non-imbeddible primitives in Kµ

over a two element set that is strongly embedded. We also noted in [BP20, Lemma
4.11] that there are infinitely many mutually non-embeddible primitives in Kµ over
the empty set and similarly over a 1-element set.
U ls allows µ that forbid the realization of specific good pairs B/∅. In [BP20], we

showed the algebraic closure of the empty set was infinite if the generic contained
a copy of the Fano plane, – the unique 7-element projective plane, F . So setting
F as the collection of µ ∈ U with µ(F/∅) > 0 guarantees aclM(∅) is infinite for any
M |= Tµ. We retain the name F but make it a much larger subset of U ls.

Notation 4.2.2. Let F be the set of µ′ ∈ U ls such that µ(C/∅) > 0 for some good
pair C/∅.

Lemma 4.2.3. If µ′ ∈ F and M |= Tµ′,V then aclM(∅) is infinite.

Proof. It is easy to see that any C that is 0-primitive over ∅ must contain two
intersecting lines so three non-collinear points exist. Noting that the only use in
Lemma 5.27 of [BP20] of the assumption that the Fano plane is imbedded in M
is to guarantee that there are three non-collinear point in a subset of M that is
0-primitive over ∅, we get an infinite algebraic closure here. The construction of an
infinite tower of 0-primitive extensions uses only that µ ∈ U ls.

In Section 5.1, we give several examples of strongly minimal quasigroups where
the dimension of the prime model is 2.

Lemma 4.2.4. If µ ∈ U , for any a, b ∈ M |= Tµ with aclM0
6= (∅) there are

infinitely many disjoint (over the finite iclN(ab)) finite cycles in GN (a, b), where N
is a copy of the prime model of Tµ with N ⊇ {a, b}.

Proof. Such an N exists by Lemma 4.2.3. Fix D as iclM(a,b). For each i there is
a pseudocycle Ci that is a primitive extension over icl(ab) based on ab with length
4i. The structure with domain D ∪ Ci is denoted Ai. Since µ(Ci/ab) > δ(ab) = 2,

13The prime model of T is the unique model that can be elementarily embedded in each model.
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there is an embedding of Ai into the saturated (also generic) model Mω. But
N ≺ Mω and is algebraically closed so the image of Ci is in N . Now, since the Ci
are 0-primitive over iclN(ab), the Ai are disjoint over D.

QUESTION 4.2.5. Can the prime model contain an infinite chain? Is there any
decomposition by chains of the prime model? Compare these questions with the
alternative decomposition of the prime model by taking the union of tree decompo-
sition by normal subsets in [BV21].

4.3. Over acl(ab) all paths are infinite

We study those paths in GM (a, b) that are generated by d0 6∈ aclM(a,b). We
justify in Lemma 4.3.2 the following notation:

Notation 4.3.1. For d0 6∈ aclM(a,b), Pabd0 (P eabd0) denotes the (envelope of) the
longest path generated by beginning with ad0. This path may be infinite.

Lemma 4.3.2. Suppose d0 6∈ acl(a,b).

(1) d(d0/ab) = 1; the path generated by d0 is infinite.
(2) Distinct a-edges in the path Pabd cannot intersect; but each a-edge intersects

q − 1 b-edges.
(3) If Pabd is an infinite path then for every X ⊆ P eabd, d(X/ab) = 1.
(4) If Pabd an infinite path there is exactly one e on P eabd that is on an a-line

and Pbae is an infinite path (Recall Definition 4.1.4.2).

Proof. 1) If d0 ∈ M − acl(a,b), d(d0/ab) = 1; otherwise d0 ∈ acl(ab). If Pabd is
finite, it is because some C ⊆ Pabd is a pseudocycle. But the δ(C/ab) = 0 and
d0 ∈ acl(ab).

2) If ad2i is a line in Pabd then for any element x ∈ ad2i, a ∗ x ∈ ad2i. But for
each of the q − 1 non-trivial star terms, t(x, y), b ∗ (t(a, d0) generates a new line.

3) Suppose (without loss) that d0 ⊆ X ⊆ P eabd and d(X/acl(ab)) = 0. Then
d0 ∈ acl(ab). Two paths generated by distinct di 6∈ acl(ab) can intersect in one
point; d(Pabd0 ∪Pabd′0) = 1. But if there are two points of intersection d0 ∈ acl(ab).

4) For any such e there is a line determined by b, b ∗ e. But this line generates
an infinite path only if d(e/ab) = 1. Now apply 2).

With these results in hand we see that actually a, b, d0 generate a fan of lines.

Definition 4.3.3. The fan generated by abd0 is defined by induction.

(1) F 0
abd0

consists of all points on envelopes of paths generated by a line ae
where e is on a b edge of Pabd0 or by a line be with e on an a-edge of P ebad0 ;

(2) Fn+1
abd0

consists of all points on envelopes of paths generated by lines ae where
e is on a b edge of Pnabd0 or by a line be with e on an a-edge of P enbad0 ;

(3) The fan Fabd0 =
⋃
n<ω F

n
abd0

.

Note that Fabe = Fbaf if e and f are both on the same line in M − acl(a,b)
through a (or through b).

As in Lemma 4.3.2, we see immediately that if two fans intersect in a single point
their union is a larger (not definable) subset of rank 1:

Lemma 4.3.4. Two fans can intersect in at most one point.
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Theorem 4.3.5. If M is countable and dim(M/N) = 1, then for any a, b ∈ M ,
M is a union of fans over N . Inductively, the conclusion applies to any M ′ �M .

Proof. Let 〈ei : i < ω〉 enumerate N−M . Fix any a, b ∈ N , choose e0 = d0 ∈M−N
and let F0 be the fan Fabd0 . Now for each n, let dn+1 be ej for the least j such that
ej 6∈ N ∪Fn. Clearly

⋃
n<ω Fn ∪N = M . Since the dimension N/M is 1, there will

be algebraic relations among the fans. However, any two can intersect in at most
one point and by construction there graph edges (a or b lines) that are not in one
of the listed fans. However, many instance of R are not in the graph.

4.4. No Perfect Path graphs

Cameron and Webb [CW12] extend to infinite structures the notion of a perfect
Steiner triple system as one in which each cycle graph G(a, b) is a single cycle.
They find 2ℵ0 countable such Steiner triple systems. In line with Definition 4.1.1,
we can extend this definition to any q-block algebra. However, we show none of the
q-Steiner systems constructed here are perfect. Clearly there can be no uncountable
perfect Steiner k system in any reasonable sense since whatever replaces cycle will
be countable. We will take the weakest plausible notion, which includes a single
path or a fan; we show no such complex covers M − acl(ab), when M |= Tµ′′,V . In
Theorem 4.3.5, we covered M −N by at most |M −N | fans, but not finitely many.

Definition 4.4.1 (Perfect). If (M, ∗, R) |= Tµ′,V for some µ ∈ U and (2, q)-variety
V , we say (M, ∗, R) is a perfect q-Steiner system if for some finitely generated
R-closed set (Definition 2.1.2) X = M − acl(ab).

Since every line in a Steiner system associated with a q-Steiner system is two-
generated as a quasigroup, we can think of R-closure as finding the generated
sub-quasigroup. Omer Mermelstein suggested the key idea for the proof for the
following result. We write Tµ for the theory here since this argument works for any
of the variants.

Lemma 4.4.2. If M is a model of Tµ with µ ∈ U , A 6M , and |M −A| is infinite,
then M has infinite R-dimension.

Proof. We first show that if C is 0-primitive over A and a 6∈ C ∪ A, A∗, the R-
closure of Aa, does not intersect C. Note by induction that every finite E ⊆ (A∗−A)
satisfies δ(E/A) = 0. Now, fix an enumeration A∗ such that ej ∈ clR({ei : i < j} =
Ej. Suppose for contradiction A∗ ∩C 6= ∅ and choose the least k with ek ∈ C ∩A∗.
But then ek witnesses an edge between C and Ej+1; this implies δ((Ej∪C)/A) < 0,
contrary to hypothesis.

There are infinitely many incomparable 0-primitives Cj over A ([BP20, Lemma
4.11]; choose successively, a seed aj in Cj . Applying the first paragraph, we see the
clR(Aaj) are mutually disjoint. By constructing 〈Aj , A∗j 〉 by the procedure of the
last paragraph, we witness infinite R-dimension.

Since a perfect Steiner system is the R-closure of finitely many elements, we have
immediately from Lemma 4.4.2:

Corollary 4.4.3. If (M, ∗, R) |= Tµ′,V for some µ ∈ U and (2, q)-variety V ,
(M, ∗, R) is not a Steiner perfect system.

QUESTION 4.4.4. In [BV21], we show the definable closure of a strongly minimal
system (M,R) is essentially unary if Tµ is triplable (Footnote 2). Models of Tµ′,V
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have ∗ as a non-trivial binary function. But, assuming µ′ is triplable, are there any
binary functions that are not polynomials in ∗?

5. Varying the construction for combinatorial motives

In Section 4, we studied theories Tµ′,V of quasigroups built by a Hrushovski style
construction as in Section 3 where µ′ ∈ U and for any M |= Tµ′,V , aclM(∅) 6= ∅. In
this section, we make major modifications to the construction to consider subsets
where algebraic closure has few pseudo-cycles and to find 2-transitive structures.

In Section 4.3 we found examples where all cycles were infinite when we took
the domain of the path graph as M − acl(ab). But in Section 4.2 with domain
M0 − icl(ab) we always had finite cycles and the existence of infinite cycles in
the prime model is an open problem. In this section we restrict to the domain,
M − iclab. We first (Section 5.1) modify the construction to be able to specify
which, if any, finite cycles occur. In Section 5.2 we introduce the notion of a
uniform (The isomorphism type of GM (a, b) does not depend on the choice of a, b.)
q-Steiner system (generalizing [CW12, CGGW10]). Then by different methods in
Sections 5.3 and 5.4 construct families of 2-transitive and hence uniform q-Steiner
systems.

We use two model theoretic methods to solve some problems suggested from the
study of cycle graphs in [CW12]. These methods modify the theory Tµ′,V either by
changing µ or, more drastically, restricting the class K0 of finite structures. And
then we combine the two in Section 5.4.

5.1. All paths are infinite

In this section, we find Tµ′′,V whose models have no finite cycles. It is then easy
to allow certain specified lengths. The key point here is to vary the class U ls from
Definition 1.2.6 maintaining the amalgamation so the resulting generic model is
strongly minimal but preventing finite cycles. As before we work in a vocabulary
{H,R}, where R is collinearity in a linear space and in the generic model H is
the graph of a quasigroup operation ∗. We introduce a set B of µ′′ obtained by
modifying µ′ ∈ U ′ to µ′′ by changing the value only on the isomorphism types good
pairs C/{a, b} which are pseudo-cycles. As B ∩ U ls = ∅, apparent contradictions
between here and Section 4 are resolved.

Definition 5.1.1. Recall from Definition 3.4 that γn denotes an isomorphism type
of a pseudo-cycle over a two element set. Let B denote the set of µ′′ obtained by
for every n, redefining each µ′ ∈ Uτ to µ′′ by setting µ′′(γn) = 0 for each n.

We define a class K ′µ′′,V whose generic has only infinite cycles. Thus there are
no finite cycles in any model of Tµ′′,V .

Lemma 5.1.2. If µ′′ ∈ B, the class of τ ′ = {∗, R}-structures Kτ ′

µ′′,V from Defi-
nition 3.4 has the 6-amalgamation property. If µ′′ ∈ B, every model of Tµ′′,V has
only infinite cycles.

Proof. We must check that we can complete the amalgamation while insisting that
for each n, γn is omitted. For this we must slightly vary the proof of Lemma 5.10 in
[BP20], whose notation we follow. Let F,E ∈KB,µ. Now, let G = E ⊕D F , where
(D,E) is a good pair (with |E −D| > 1) and ((a, b), Ck) is a good pair witnessing
γk (So Ck is a pseudo-cycle.). The difficulty is that the good pair (Ck/B) does not
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satisfy the requirement µ(Ck/B) > δτ ′(B). We gave a separate argument to show
no γk blocks amalgamation; the result then follows without change. There are no
realizations of the good pair γ in any of D,E, F ; we must show it is not realized in
G. The crux is that, by definition of ((a, b), Ck), for any k, i, each ci ∈ Ck is on a
separate triple in R with each of a and b. Now if (a, b) ⊆ F (compare Case B.1 of
[BP20]), each Ci must be contained in F or else there is a clique (acici+1), modulo
renaming, with two elements in F and one in E − F contradicting the primitivity
of E over D. If one of a, b, say a is in E − F then for each i, Ci ⊆ E or the
line between a and ci is based in D (Definition 3.11 of [BP20]) and that is clearly
impossible, since it contradicts that E is primitive over D; so each Ci ⊆ E. But
now, since E doesn’t realize γn, b must be in F − D and Ci ∩ (E − D) 6= ∅; we
get the same contradiction. So Ci ⊆ D. But now a ∈ E − D is on a line based
on Ci ⊆ D, contradicting the primitivity of E over D. Thus for any M |= Tµ′′,V ,
a, b ∈M and d0 6∈ icl(ab), Pabd0 is infinite. So we finish.

A simple variant on the argument for Corollary 5.3 of [BP20] (Replace ‘for every
n’ in Definition 5.1.1 by ‘for n ∈ Xc’.) shows we can omit arbitrary sets of γn:

Theorem 5.1.3. For any X ⊆ ω of numbers divisible by 4 and µ ∈ U , we can
construct still another variant µX of µ such that models of TµX ,V realize an n-
pseudo-cycle if and only if n ∈ X.

One cannot simply modify U to say all points have trivial algebraic closure and
carry out the amalgamation argument. Omer Mermelstein provided the follow-
ing counterexample, showing some restriction, such as to the γn, is necessary for
Lemma 5.1.2. We provide an amalgamation diagram where the good pair C/B
does not appear in any of the components but is in the amalgam. Nevertheless, we
give several examples in later sections where aclM0

(∅) = ∅.

Example 5.1.4. Let B consist of five points a, b1, . . . b4 and C consist of four points
c1, . . . c4, where R(ci, bi, ci+1) for i = 1, . . . , 3, R(a, b2, b3), and R(c4, c1, b4). Then
C is 0-primitive over B. But now if we let D0 = {a, c2, c4}, D1 = {b1, c1, b4} and
D2 = {b2, c3, b3} we have D0 6 D1 and D0 6 D2, but BC appears in the amalgam.

5.2. Uniform G(a, b)

[CW12] call a Steiner system uniform if all the cycle graphs GM (a, b) are iso-
morphic. [CGGW10] construct 2ℵ0 countable uniform sparse infinite Steiner triple
systems. We obtain 2ℵ0 families of countable uniform infinite Steiner systems for
each prime power q; we have not considered the extension of ‘sparse’ to q-Steiner
systems.

We adapt the notions of uniform [CW12] to accommodate q-Steiner systems.
Recall (Definition 4.1.1) that the domain of GM (a, b) is M − icl(a,b). We will
consider cases where acl(a,b) is both finite and infinite.

Definition 5.2.1 (Uniform). We say a model (M, ∗, R) of Tµ′,V is uniform, if for
any (a, b), (a′, b′), GM (a, b) ' GM (a′, b′).

Here is a sufficient condition for uniformity.

Lemma 5.2.2. (1) If (M, ∗, R) is a model of a theory T generated by a Hrushovski
class (Definition 0.4) of linear spaces such that every two element set A sat-
isfies A 6 M , the automorphism group of (M, ∗, R) acts 2-transitively on
(M,R).
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(2) Clearly, if the automorphism group of (M, ∗, R) acts 2-transitively on (M, ∗, R),
(M, ∗, R) is uniform.

Proof. Since all pairs (a, b) are isomorphic and each is embedded strongly in the
generic G, the result is immediate for G. But this transitivity extends to all models
since if one model of a complete theory has a single 2-type, all models do. And, each
model of a strongly minimal theory is finitely homogeneous (e.g. [BL71, Theorem
5]).

5.3. 2-transitive M , 3-Steiner systems, Changing K

In Section 5.1 we showed that, by modifying the set of possible µ, we could ensure
that there were no finite pseudo-cycles. The Steiner system in Section 5.1 was far
from uniform as there were many 2-types, e.g. pairs with non-isomorphic algebraic
closures. (We only restricted those primitive extensions that were pseudo-cycles.)

We have dealt with two variants of the Hrushovski construction. We constructed
generics in both τ and τ ′, with the same basic construction. But in the more general
context of Definition 0.4 we can restrict K0 before beginning the construction and
realize the hypothesis of the general statement of Lemma 5.2.2.1.

In Section 5.2 of [Hru93], Hrushovski proves there are 2ℵ0 strongly minimal τ -
structures with pairwise non-isomorphic associated combinatorial geometries. He
achieves this by ensuring that algebraic dependence of a triple a, b, c is equivalent to
R(a, b, c). Mermelstein pointed out to me that these structures are in fact Steiner
triple systems. We will see that they are 2-transitive and every cycle is infinite.
Example 5.3.1 is considerably more restrictive than the linear space examples; it
not only forces that two points determine a line but also that every full line has 3
points. In Theorem 5.4.2 we show less drastic surgery on the [BP20] construction
still allows us to find uniform G(A,B)-graphs when q > 3.

Example 5.3.1. [Hru93, Example 5.2] We denote the theories described in this
example by TH,µ. The dimension function δH is the usual: δH(A) = |A|−|R|, where
|R| is the number of 3-element subsets of A satisfying R and strong submodel is

defined in usual way. The novelty is in use of the δ-condition to defineKH
0 . Namely,

the collection of finite structures C such that every subset B of C ∈KH
0 with power

at most 3 is strong in C:

(∗) KH
0 = {A : B ⊆ A ∧ |B| 6 3→ B 6 A}.

Since the amalgamation of Hrushovski’s basic example added no edges, this
subclass also has amalgamation by the same amalgam. For each µ, KH,µ is to KH

0

as Kµ is to K0 (Definition 1.2.3).
Now to define a linear space say that a line is a triple satisfying R. Two points

determine a line as R(a, b, c) ∧ R(a, b, c) ∧ ¬R(a, b, d) makes δ({a, b, c, d}) = 2 <
δ({b, c, d}). Since any non-trivial 0-primitive over a two element set contains 3 non-
collinear points, (*) implies the algebraic closure of two points is the third point on
the line they determine. Thus there are two quantifier-free configuration of three
points: dependent, independent. Since, by (∗), both configurations are strong in
the generic, they determine as in Lemma 5.2.2 the two possible 3-types. Similarly
property (∗) of this Hrushovski example makes it a Steiner triple system14.

14This example will not permit lines with longer length by modifying µ. As, there can be no
4-clique, `, since with the Hrushovki definition δ(`) = 0 while δ of two points is 2.
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Here we write cycle since we are dealing with a Steiner-triple cycle and no path
can be a proper pseudo-cycle as opposed to a cycle.

Fact 5.3.2. For any µ and any (M,R) |= TH,µ, (M,R) is a strongly minimal
uniform Steiner triple system. In fact, the algebraic closure of any pair is the third
point on the line through a, b and so each cycle is infinite.

Proof. As noted in the description of Example 5.3.1, in (M,R) the algebraic closure
of a pair is the line through them. Since there are only two 3-types of tuples
extending (a, b), any two di that are not on the line ab are isomorphic over a, b
and thus the cycles they generate are isomorphic. The last claim is immediate
since all points not on the line are automorphic over ab. Since any potential finite
pseudo-cycle over a, b is in acl(ab) = {a,b, c}, where R(a, b, c), there are no finite
pseudo-cycles.

5.4. 2-transitive q-Steiner systems; Changing K0 and U

We turn to a different method15 obtain uniformity results for Steiner q-systems
for any prime power q > 3 and to restrict the number of finite cycles. We combine
a variant of the Hrushovki’s Example 5.3.1 with varying µ to control a second
fundamental invariant: number of cycles.

Definition 5.4.1. We write K2
0 for the class of linear spaces such that

(∗∗) |B| 6 2 implies B 6 A

for every finite linear space A ∈ K2
0 containing B. We write K2

µ′′ for the class
determined by ∗∗ and B and for any variety of quasigroups T with strongly minimal
theory T 2

µ′′,V associated by Theorem 3.6.

As in Example 5.3.1, (∗∗) and Lemma 5.2.2 imply every two element set is strong,
so each model is 2-transitive. There are two differences from Example 5.3.1: i) the
strong substructure notion is with respect to the δ in [BP20] and so we can vary
the line length; ii) we don’t kill the entire (non-trivial) algebraic closure of each
2-element set but explicitly forbid only the finite cycles. We note below that we
can allow finitely many cycles over each pair (a, b).

Theorem 5.4.2. If µ ∈ B (Definition 5.1.1), K2
µ has amalgamation, the generic

(and hence every countable model) is uniform and has no finite paths.

Proof. The amalgamation follows mutatis mutandis from Lemma 5.1.2. Note that
(∗∗) implies every two element set is strong, so each model is 2-transitive. This
holds in every model by Lemma 5.2.2; hence GM (a, b) is uniform. Finite paths are
blocked, since µ ∈ B.

As we modified Lemma 5.1.3, we modify the proof of Theorem 5.4.2 to get:

Theorem 5.4.3. If µ′′ ∈ B then for any variety V and for any model (M, ∗, R) of
T 2
µ′′,V and any (a, b), both aclM(∅) = ∅ and (M, ∗, R) is uniform.

Further, for any finite set X of pairs, (ni,mi) with ni divisible by 4, we can
construct a theory T 2

X such that if (M, ∗, R) |= TX and (a, b) ∈ M , Gm(a, b) has
mi cycles of length ni.

15This approach of restricting primitives over very small sets to establish various amounts of
transitivity of the non-Desguaresian plane appears in [Hru93, Bal95].
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QUESTION 5.4.4. Can we have all cycles in the prime model finite by insisting
exactly one isomorphism type of a pseudocycle is consistent, say, a 4-pseudocycle?

QUESTION 5.4.5. In [Bal94] (using the methods of this section) a rank 2 ℵ1-
categorical non-desarguesian projective planes is coordinatized by a ternary ring
that is not linear. The non-linearity means that while the quasi-groups for both
addition and multiplication are definable, they cannot be composed to give the
ternary t(x, y, z) = xy + z that arises in a division ring. That is, the plane is
at the lowest level in the Lenz-Barlotti hierarchy. Could similar but less radical
surgery yield ℵ1-categorical non-desarguesian projective planes that are higher in
that hierarchy?
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