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Abstract

We provide a new model theoretic technique for proving 0-1 and con-
vergence laws. As an application, we obtain a new (slightly less compu-
tational) proof of convergence laws due to Spencer and Thoma for the

probability functions: pl
n = ln(n)

n
+ l·ln(ln(n))

n
+ c

n
.

1 Introduction

Consider the class Kn of all graphs on the set of vertices {1, 2, ...n}. One can
define a probability space on Kn by assigning each graph in Kn equal probability,
to form a uniform probability space. Fagin [5] proved that the probability of
any property expressible in first order logic holding of a graph in Kn converges
to 0 or 1 as n goes to infinity. We say that first order logic has a 0-1 law for the
uniform probability space on finite graphs.

A probability space can be formed from the class Kn by assigning a proba-
bility pn to the existence of an edge between any two vertices. Given a sentence
φ, let pn(φ) be the probability that φ is satisfied by a graph in Kn. In the case
studied by Fagin, the uniform probability is induced by an edge probability of
1/2. A family of edge measures pn, {pn}, on graphs of size n obeys a 0-1 law
(for first order logic) if for each first order sentence φ, limn→∞ pn(φ) is either
0 or 1. More generally the family pn has a convergence law if each such limit
converges.
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Definition 1.1 Given a family of edge measures pn, the almost sure theory Th
is the set of sentences φ such that limn→∞ pn(φ) = 1. We refer to the models
of Th as the limit models.

Notice that the almost sure theory is complete if and only if first order logic
has a 0-1 law for {pn}. We are concerned with the various methods used to
prove 0-1 laws. Let L be the language of symmetric irreflexive graphs. One
method is to prove the 0-1 law by induction on the complexity of L-formulas.
Another method is to show that the almost sure theory Th is complete. In the
case of uniform probability, this can be accomplished by proving that Th is ℵ0-
categorical. More generally one can show that all countable models of Th are
elementarily equivalent. This can be done by the use of quantifier elimination
or Ehrenfeucht-games.

Shelah and Spencer [6] proved the 0-1 law for first order logic with edge prob-
ability pn = n−α for irrational α, 0 < α < 1. Baldwin and Shelah [4] provided
an alternative proof, without using Ehrehfreuht-games or quantifier elimination
arguments to show completeness. Baldwin [3] abstracted this argument into the
definition of a determined theory. In this paper, we generalize this method to
deal with convergence. We use it to give a new proof of convergence for the
edge probability pl

n studied by Thoma and Spencer in [7]:

pl
n =

ln(n)
n

+
l · ln(ln(n))

n
+

c

n
where l is an arbitrary fixed nonnegative integer, and c is a positive constant.

Our interest in these edge measures arose from the fact that the limit models
induced from the family {pl

n} are similar to the models of the first order theories
considered for purely model theoretic reasons in [1], [2]. In particular, these limit
models are rather simple from a model theoretic standpoint. They decompose
into components which are ‘almost’ trees; the completions of the almost sure
theory can be seen to be ω-stable. In this range of probabilities, the parameter
l determines the possibility of the limit model admitting an ‘r-isolated point’,
a vertex of degree r. There is none if r < l and infinitely many if r > l, but for
r = l, the number of vertices of degree r is not determined. In essence, fixing this
number determines a completion of the almost sure theory. Each completion
is finitely axiomatizable over Th, so the probability of each completion can
be computed, which in turn, allows one to compute the probability for each
sentence in L.

Spencer and Thoma proved:

Theorem 1.2 1. A graph G satisfies the almost sure theory Thl for pl
n iff:

(a) For all finite A in G, the number of vertices in A is strictly less than
the number of edges.

(b) For all t ≥ 1 and m ≥ 3, t copies of an m-cycle can be embedded in
G.
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(c) For all integers r, s, t ≥ 0, s ≥ r, there does not exist a pair of
vertices x, y ∈ G such that x has degree r and y has degree s and the
distance from x to y is equal to t.

(d) For all integers r, t ≥ 0 and m ≥ 3 there does not exist a vertex
x ∈ G of degree r that is of distance t from an m-cycle.

(e) For all integers r, 0 ≤ r < l, there does not exist a vertex of degree
r ∈ G.

(f) For all integers t ≥ 1 and r > l, there exist t vertices of degree r ∈ G.

2. Moreover, for any integer s, if the sentence σl
s asserts“there exist precisely

s vertices of degree l”, limn→∞ pl
n(σl

s) exists.

3. For each l and s, Thl ∪ σl
s is complete.

From this analysis of graphs they established a convergence law for edge
probability pl

n.

Theorem 1.3 Let limn→∞pl
n(σl

s) = ql
s. For any L-sentence θ, there exists

a finite set I of nonnegative integers such that limn→∞pl
n(θ) = Σi∈Iq

l
i or

limn→∞pl
n(θ) = 1− Σi∈Iq

l
i.

This paper is a step in isolating the ‘model theoretic’ from the ‘probabilis-
tic’ components of proofs of limit laws on finite models. In Section 2 we give
a general definition of an indexed closure operator and a determined theory.
Relying on the probability arguments of Spencer and Thoma for parts 1 and 2
of Theorem 1.2, we give in Section 3 a different model theoretic proof of part 3
of Theorem 1.2 and of Theorem 1.3. In particular, the fact (and computation
showing it) that Σi<ωql

i = 1 which is a part of the Spencer-Thoma argument is
avoided here.

We write Mod(T ) for the class of models of a theory T . The collection of
finite subsets of a set X is denoted by Sω(X). For any model M , and for any
a ∈ Mr, θ(M, a) denotes the set of solutions of θ(x, a) in M . We denote the
length of a tuple a by lg(a).

2 Indexed closure and determined theories

The key to the method of determined theories is a way of breaking the algebraic
closure of a finite set into a (possibly infinite) sequence of finite sets by using an
indexed closure operator. We give here a general notion of such a closure oper-
ator and use it to provide a method to prove not only 0-1 but also convergence
laws. The closure operator of Definition 2.2 which is used in Section 3 to prove
Theorem 3.15 and Theorem 3.17 is a special case.

If cl is a function from ω × Sω(M) → Sω(M), we write cliM (a) for cl(i, a).
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Definition 2.1 An indexed closure operator cl for a theory T is a function,
which for each M |= T , maps ω × Sω(M) → Sω(M) and has the following
properties.

1. For any model M ∈ Mod(T ) and a ⊆ b ∈ M , for j < i < ω, cljM (a) ⊆
cliM (a) and cliM (a) ⊆ cliM (b).

2. For any M, N ∈ Mod(T ), if for some s, clsM (∅) ' clsN (∅) then for all
0 ≤ i ≤ s, cliN (∅) ' cliM (∅).

We extend the notation by writing clωM (a) for ∪i<ωcliM (a). In the example
considered in this paper, for all M ∈ Mod(T ), there exists a k < ω, such that
for all s > k, clkM (a) = clsM (a) so clωM (a) = clkM (a) = aclM (a), the algebraic
closure of a in M . Following is the indexed closure operator we will use in this
paper. While it provides a natural way to ‘layer’ the algebraic closure, there is
an unfortunate lack of monotonicity, described in Example 3.5, which requires
us to treat closure over the empty set with special care.

Definition 2.2 For k ≤ ω, let the k-closure of a in M , clkM (a), be the set of
solutions in M of all the formulas θ(x, a) where the quantifier rank of θ and
|θ(M, a)| are each less than k.

The following fact, shown by straightforward calculation [4], is fundamental
for the kind of argument used here.

Lemma 2.3 For any first order T in a finite relational language, there exists
a function f of |A|,m, n, such that for any M |= Thl and any embedding of A

into M , clmM (clnM (A)) ⊆ cl
f(|A|,m,n)
M (A).

Definition 2.4 1. We write ' for isomorphism. We say clkM (a) 's clkM ′(a′)
if clkM (a) ' clkM ′(a′) by an isomorphism taking a to a′ and clkM (∅) '
clkM ′(∅)

2. For an integer k and a theory T , a formula θ(x) is determined by its k-
closure in T if for any M,M ′ |= T and for any a ∈ Mr and a′ ∈ M ′r, if
clkM (a) 's clkM ′(a′), then M |= θ(a) if and only if M ′ |= θ(a′).

3. The theory T is determined if for any formula θ(x), there is an integer kθ

such that θ(x) is determined by its kθ-closure in T .

3 An Application

In this section we consider the almost sure theory studied by Spencer and Thoma
in [7], whose axioms are the theory Thl of the introduction. Let Thl,s denote
the theory which consists of Thl plus the axiom “there exists s isolated vertices
of degree l” and Th>0

l denote the theory which consists of Thl plus the axiom
“there exists an isolated vertex of degree l”.
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Notation 3.1 A tree in which every vertex has infinite degree is denoted by T
and called a complete tree. A hairy cycle is a cycle with a complete tree attached
to every vertex of the cycle. Let Hn denote a hairy cycle whose cycle is of size
n. An isolated component, denoted In is a tree which contains one point with
degree n and all others have infinite degree.

As was pointed out in [7] it is easy to check that each model of Thl is a
direct sum of the following components:

1. For every integer i greater than one, infinitely many components each
containing one cycle of size i and every vertex has infinite degree.

2. For every r > l, infinitely many components which do not contain a cycle
and every vertex has infinite degree except one, which has degree r.

3. Any (possibly finite) number of components which do not contain a cycle
and every vertex has infinite degree.

4. For some s > 0, s copies of components which do not contain a cycle and
every vertex has infinite degree except one vertex which has degree l.

More formally:

Lemma 3.2 Let M be a countable model of Thl, then there exists an s, 0 ≤
s < ω, and j, 0 ≤ j ≤ ω, such that M has the following form:

Σ1<i<ωH
(ω)
i ⊕ Σl<i<ωI

(ω)
i ⊕ T (j) ⊕ I

(s)
l

For 0 ≤ s ≤ ω, we denote the model with the form above and s copies of Il

by Ms.

Remark 3.3 From Lemma 3.2 we observe the following facts about algebraic
closure. For any model M of Thl,s with s < ω:

1. aclM (∅) consists of the isolated vertices of degree l, and their neighbors.

2. aclM (a) = aclM (∅) unless a is on component which contains a cycle or an
isolated point.

(a) In the first case aclM (a) is the union of aclM (∅) with all points on
the path from a to the cycle.

(b) In the second case aclM (a) is the union of aclM (∅) with all points on
the path from a to the isolated point.

3. aclM (a, b) = aclM (a)∪aclM (b) unless a and b are on the same component;
in that case it also includes all points on the path from a to b.
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4. For any set A, aclM (A) =
⋃

a,b∈A aclM (a, b).

Definition 3.4 Let Gl
n, for n > 0, be the direct sum of n components, each

consisting of one vertex with l neighbors. To ease notation, define Gl
ω to be

equal to the empty set.

It is easy to see that for any M |= Th>0
l , there exists an s, 0 < s ≤ ω such

that clωM (∅) ' Gl
s ' cltM (∅) for t ≥ s. The following property of k-closure in

models of Thl is crucial. Let M be a model of Thl, and let n = |aclM (∅)|; if
k < n, clkM (∅) ' ∅. So, if M0 models Thl,0, clkM (∅) ' ∅ ' clkM0

(∅). In particular,
for any k < ω we have clkMω

(∅) ' ∅ ' clkM0
(∅) and Mω 6≡ M0. Thus the theory

Thl is not determined. However, we will show that Thl,0 and Th>0
l are each

determined with respect to our notion of closure.
The following example shows why we had to treat the closure of the empty

set in a special way in Definition 2.4. It could easily be modified to show the
theories in question were not determined if we omitted this special case.

Example 3.5 Consider the models M1 and M2 with the notation set after
Lemma 3.2. Let a and a′ be neighbors of neighbors of isolated vertices in M1

and M2 respectively. Then the l + 2 closure of a and the l + 2 closure of a′

are isomorphic. Both consist of the neighbors of the isolated point near a, (a′)
respectively. But the l + 2 closure of the empty set is empty in M2 and contains
the neighbors of the isolated point in M1.

Notation 3.6 We adopt the following notation. For any a in M , let CM (a) be
the union of the components in M which intersect a. Denote the number of free
variables plus the quantifier rank of a formula θ by qr∗(θ).

Definition 3.7 If θ(y) is quantifier free, kθ = (l + 1) · lg(y). If θ(y) is the
formula (∃x)φ(x, y) let kθ be the least integer k > max(3kφ, (l + 1)qr∗(φ)) and
such that for any element b in clkφ(a), clkφ(b, a) ⊆ clkθ (a).

Our main induction concerns a formula φ(x, y); we denote ∃xφ(x, y) by θ(y).

The condition kθ > (l + 1)qr∗(φ) guarantees that if clkθ

M (∅) ' clkθ

M ′(∅) and
they each contain an isolated point, then they contain the same number of
isolated points.

The main result is to show in Theorem 3.9 that the theories Th>0
l and Thl,0

are determined. This argument is simply a different way to organize the back-
and-forth argument showing each Thl,s is complete. We require one technical
definition.

Definition 3.8 For any M and a, b ∈ M , let d(b, clkφ

M (a)) be the shortest dis-
tance from b to clkM (a). For any M and a ∈ M , let

Dφ
M,a = max{d(b, clkθ

M (a)) : b ∈ φ(M, a)}

5



.

Theorem 3.9 Suppose both M and M ′ are models of Th>0
l or both are models

of Thl,0. For any θ(x) in L (with arity r), and any a, a in Mr and M ′r

respectively, there exists kθ such that if clkθ

M (a) 's clkθ

M ′(a′) then M |= θ(a) if
and only if M ′ |= θ(a′).

Proof: The lemma follows by induction on the complexity of formulas. Let
θ(y) = ∃xφ(x; y). Choose kθ as in Definition 3.7. Let a, a′ be in M and M ′

respectively. We need to show, if clkθ

M (a) 's clkθ

M ′(a′) and θ(a) holds in M ,
then we can choose b, satisfying φ(x, a), such that there exists b′ for which
clkφ

M (a, b) 's cl
kφ

M ′(a′, b′) (equivalently, since clkθ

M (a) 's clkθ

M ′(a′), clkφ

M (a, b) '
cl

kφ

M ′(a′, b′)) whence by induction M |= φ(b, a) if and only if M ′ |= φ(b′, a′).
Now, all possible cases are handled by the next 4 lemmas. The major division

depends on whether Dφ
M,a > kφ. Within each side of this dichotomy, there are

several cases depending on the disjoint cases: clkφ(b) is {b}, or contains a cycle,
or contains an isolated point.

First we consider the case where Dφ
M,a is large and clkφ(b) is either {b} or

contains a cycle.

Lemma 3.10 Let M, M ′ |= Thl and a ∈ Mr. Suppose Dφ
M,a > kφ. Fix b ∈ M

for which d(b, clkθ

M (a)) = Dφ
M,a. Suppose clkφ

M (b) = {b} or clkφ

M (b) contains a

cycle. If clkθ

M (a) 's clkθ

M ′(a′), there exists a b′ ∈ M ′ such that clkφ

M (a, b) 's

clkφ

M ′(a′, b′).

Proof: By assumption, clkφ

M (b) is either just b or the vertex b and a cycle
of cardinality less than kφ and the vertices on a path, of length less than kφ,
from b to this cycle. In the first case, choose b′ to be a vertex of infinite degree,
on a component which does not intersect a′. In the second case, choose one of
the infinitely many components in M ′ which contains an n-cycle and does not
intersect a′, and choose b′ on this component with the same distance from the
n-cycle as b is from the n-cycle on the component where b resides. In both cases,
the result follows since clkφ(a, b) = clkφ(a) ∪ clkφ(b) and similarly for a′, b′. 2

Now we consider the case where Dφ
M,a is large and clkφ(b) contains an isolated

point. There are two traps which must be avoided in the following proof: M =
Mω and M ′ = M0, M = Mi and M ′ = Mj where j is much greater than
kθ is much greater than i. We avoid the first by restricting to Th>0

l ; this is
permissible since there are no isolated points in models of Thl,0 and so the case
can occur only for Th>0

l . The second is dealt with by using 's.

Lemma 3.11 Let M, M ′ |= Th>0
l and a ∈ Mr. Suppose Dφ

M,a > kφ. Fix
b ∈ M for which d(b, clkθ

M (a)) = Dφ
M,a. Suppose there is an isolated vertex
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contained in clkφ

M (b). If clkθ

M (a) 's clkθ

M ′(a′), there exists a b′ ∈ M ′ such that
clkφ

M (a, b) 's clkφ

M ′(a′, b′).

Proof. Since Dφ
M,a > kφ, clkφ

M (a, b) = clkφ

M (a, b) ∪ c
kφ

M (b). If there is an
isolated point c′ in M ′ − clkθ

M ′(a′), this is easy, we can map b to a point near
c′. Specifically, since kθ > l + 1, none of the neighbors of c′ can be in clθM ′(a′)
either. Therefore, there exists a b′ such that clkφ

M ′(a′, b′) = clkφ

M (a′, b′) ∪ clkφ

M (b′)
and clkφ

M ′(b′) ' clkφ

M (b). So clkφ

M ′(a′, b′) ' clkφ

M ′(a′, b′).
We are left with the case that all isolated points of M ′ are in clkθ

M ′(a′).
But then all isolated points of M ′ are in clkθ

M ′(∅). Since clkθ

M (a) 's clkθ

M ′(a′),
clkθ

M (∅) ' clkθ

M ′(∅): this is the essential use of 's instead of '. Since clkθ

M ′(∅)
contains all the t > 0 isolated points in M ′, clkθ

M (∅) and therefore clkθ

M (a) contains
all the t > 0 isolated points in M . So b ∈ CM (a). Let a0 = CM (b) ∩ a. Since
d(b, clkθ

M (a)) = Dφ
M,a > kφ, the isolated point c of CM (b) is not in clkθ

M (a0). So

we can map b to a b′ on the component of a′0 so that clkφ

M ′(a′, b′) ' clkφ

M ′(a′, b′).
Now we turn to the cases where Dφ

M,a is small; first, suppose clkφ(b) = {b}.

Lemma 3.12 Let M, M ′ |= Thl and a ∈ Mr. Suppose Dφ
M,a ≤ kφ. Fix b ∈ M

for which d(b, clkθ

M (a)) = Dφ
M,a. For any a′ ∈ M ′r, b ∈ M if clkφ

M (b) = {b} and

clkθ

M (a) 's clkθ

M ′(a′), there exists a b′ ∈ M ′ such that clkφ

M (a, b) 's clkφ

M ′(a′, b′).

Proof: We may assume that b 6∈ clkθ

M (a), otherwise the result follows imme-
diately from the second requirement in defining kθ. First we claim there is at
most one path whose vertices are in clkφ

M (b, a)− clkθ

M (a) from b to the kθ-closure
of a in M . Suppose not, then we claim that any vertex c which lies on a fork of
the path from b to the clkθ

M (a) is in fact in clkθ

M (a), which is a contradiction.
So assume there are two paths in clkφ

M (b, a) from c to clkθ

M (a), one going to
say, a1 in a, and the other going to say, a2 in a, (a1 could be equal to a2) with
lengths k1 and k2 respectively. Note, since both paths are in clkφ(b, a), then
we may assume both k1 and k2 are less than kφ which is less than kθ. Thus
there is at most one other vertex with distance k1 to a1 and distance k2 to a2

(if a1 = a2, c is the only vertex, since a component of a model of Thl can have
at most one cycle). Thus c satisfies a formula with only two solutions (or one
solution if a1 = a2) and quantifier rank less than kφ. So c ∈ clkθ

M (a). This proves
the claim.

Assume the shortest path from b to clkφ

M (a) is of length k0 and the nearest
vertex in clkφ

M (a) to b is a0. Let a′0 be in clkφ

M ′(a′) such that a′0 corresponds to
a0 in the isomorphism from clkθ

M (a) to clkθ

M ′(a′).
We need to choose a vertex b′ ∈ M ′ a vertex and a path in M ′ of size k0

none of whose vertices are in clkφ

M ′(a′) except for a′0. This is immediate if a′0
has infinite degree; a0 and a′0 have the same degree. If a0 has finite degree then
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all the neighbors of a0 are in clkφ

M (a) since kφ > l. But then k0 was not chosen
minimal. So a0 and thus a′0 has infinite degree and we can choose b′.

Finally by the first claim, clkφ

M (b, a) is contained in clkφ

M (a) along with b and a
path of length at most k from b to clkθ

M (a) and clkφ

M ′(b′, a′)is contained in clkθ

M ′(a′)
along with b′ and a path from b′ to clkθ

M ′(a′) of the same length. Therefore we
have clkφ

M (b, a) 's clkφ

M ′(b′, a′) 2

Finally, we consider the case where Dφ
M,a is small and clkφ(b) = {b} contains

a cycle or an isolated point.

Lemma 3.13 Let M,M ′ |= Thl. Fix a ∈ Mr, a′ ∈ M ′r, b ∈ M with Dφ
M,a ≤

kφ. If there is an isolated vertex or a cycle contained in clkφ

M (b) then the isolated
vertex or the cycle is contained in clkθ

M (a). In particular, if clkθ

M (a) 's clkθ

M ′(a′),
there exists a b′ ∈ M ′ such that clkφ

M (a, b) 's clkφ

M ′(a′, b′).

Proof: Note that a satisfies the formula which asserts: there is a path of
length at most kφ to a point x and there is a path of length at most kφ from x
to a cycle of length at most kφ (or to an l-isolated point). Since kθ > 3kφ and
l < kφ the result follows.

This completes the proof of Theorem 3.9. We now apply this result to
computing the probabilities of sentences with respect to pl

n.

Definition 3.14 Let σl
s be the sentence: “there exists exactly s vertices of de-

gree l”. Define ql
s to be the limit probability of σl

s (the existence of the limit is
shown in [7].) Note this limit also depends on the constant c in the definition
of pl

n.

Theorem 3.15 For every non-negative integer s and for s = ω, Thl,s is a
complete theory. Furthermore these are all possible completions of the almost
sure theory Thl.

Proof: First we show {Thl,s : 0 < s ≤ ω}, is the set of all possible comple-
tions of the theory Th>0

l . Fix an integer s or let s = ω. It is clear that if M
and M ′ model Thl,s, then clωM (∅) ' clωM ′(∅) ' Gl

s. (Remember, by convention,
Gl

ω = ∅.) Furthermore, for all t ≥ s, cltM (∅) ' cltM ′(∅) ' Gl
s, since t is large

enough to capture the algebraic closure of M and M ′. Finally, for all q < s
clqM (∅) ' clqM ′(∅) ' ∅. Thus, since for all t, 0 < t ≤ ω, cltM (∅) ' cltM ′(∅),
Theorem 3.9 implies M ≡ M ′. Therefore Thl,s is complete. Since Th>0

l is
determined, {Thl,s : 0 < s ≤ ω} is the set of all completions of Th>0

l .
We note now that Thl,0 is the theory Thl plus the negation of the axiom

“there exists an isolated vertex”(recall, this axiom plus Thl is Th>0
l ). Since

Thl,0 is determined, and the algebraic closure of the empty set of any model of
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Thl,0 is empty, Thl,0 is complete. Thus we have now all possible completions of
Thl. 2

The existence of k∗ below follows from our characterization of the closure of
the empty set in models of Thl.

Definition 3.16 For any k, let k∗ be the least integer s greater than or equal
to k such that for any t ≥ s, clkMt

(∅) = ∅.

We write pl(θ) for limn→∞pl
n(θ) if it exists. We use the standard notation

pl(θ|σl
i) for pl(θ∧σl

i)

pl(σl
i
)

. In probabilistic terms, pl(θ|σl
i) is the probability of θ

conditioned by σl
i. Stated informally in terms of this particular application,

pl(θ|σl
i) is the probability of θ holding in a model of the theory Thl,i. In the

proof of the following theorem, we emphasize the special role that σl
0 plays.

Theorem 3.17 For any L-sentence θ, there exists a finite set I of positive
integers such that pl(θ) is Σi∈Iq

l
i or 1− Σi∈Iq

l
i.

Proof: Since for all i 6= j and for all n, pl
n(σl

i∧σl
j) = 0 and since Theorem 3.15

states that every completion of Thl is of the form Thi,l, we can write pl
n(θ) =

Σi∈ω[pl
n(θ|σl

i)× pl
n(σl

i)] or pl
n(θ) = 1− Σi∈ω[pl

n(¬θ|σl
i)× pl

n(σl
i)]. Furthermore,

since by Theorem 3.15, Thl,i is complete, the terms pl(θ|σl
i) and pl(¬θ|σl

i) are
either 1 or 0. Hence the limit of any addend in the above sums is either ql

i, 1−ql
i

or 0. To ensure that the limit probability pl(θ) exists, we need to show that in
one of the two sums all but a finite number of addends can be ignored. That is,
we will show that there exists a finite set I such that for all i ∈ I, Thl,i |= θ or
there exists a finite set I such that for all i ∈ I, Thl,i |= ¬θ.

We now consider only the limits of each of the above addends. We need
to treat the term the case of σ(σl

0) separately from the σ(σl
i) for i > 0. By

Theorem 3.9, there exists a finite kθ such that the kθ-closure of the empty set
determines θ in Th>0

l . Without loss of generality, assume that Mk∗
θ
|= θ (an

analogous argument works if Mk∗
θ
|= ¬θ). We observe that for all j ≥ k∗θ ,

Mj |= θ. Consider the set I ′ (possibly empty) of positive integers bounded by
k∗θ such that for all i ∈ I ′, Thl,i |= ¬θ. If this set is empty we conclude by
Lemma 2.2 and Theorem 3.15, that Th>0

l proves θ. In this case, it is clear that
limn→∞pl(θ) = 1 − ql

0 or 1, depending on whether Thl,0 |= θ. If, however, the
set I ′ is not empty Th>0

l proves ∨i∈I′σ
l
s ↔ ¬θ. Thus pl(¬θ) is Σi∈I′q

l
i, plus the

contribution from Thl,0, which is ql
0 if σl

0 → ¬θ and 0 if σl
0 → θ. So, if we let

I = I ′ ∪{0}, pl(θ) is either 1−Σi∈I′q
l
i or 1−Σi∈Iq

l
i and both are in the correct

form. Finally we note that this limit exists since the limit of every addend exists
and I is finite. 2
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4 Conclusion and Questions

We have provided another proof of the convergence law for the edge probability
pl

n considered in [7]. Our analysis allows for one less probability calculation.
But the argument depends very heavily on Lemma 3.9 which seems to be an
unusual and overly strong condition. In particular, it implies that in every model
the algebraic closure of the empty set is finite. This seems to be a necessary
condition for this type of argument to work. Basically, the key is to be able
to compute the probability of assertions, ‘aclM (∅) has form X’. Can a general
method of showing convergence be developed by adding this hypothesis?

A natural way to continue these investigations would be to see whether this
method extends to show the more general result proved in [7]. Namely to extend
to the probability:

pl,k
n =

ln(n) + l · ln(ln(n)) + c

kn
.

In particular, can convergence be proved using exactly the indexed closure
operator of this paper?
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