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Abstract

We sketch the mathematical back ground and the main ideas in the proofs of
categoricity of theories of several examples of universal covers — reducing an analytic
to a model theoretic (discrete) description. We hope this discussion will be useful to
a wide spectrum of mathematicians ranging from those working in geometry to those
working in logic; specifically, model theory.
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1 Introduction

The goal of this paper is to sketch (hopefully for a wide spectrum of mathemati-
cians ranging from those working in geometry to those working in logic; specifically,
model theory) some recent interactions between model theory and a roughly 150-year
old study of analytic functions involving complex analysis, algebraic topology, and
number theory that explore the canonicity of universal covers. Towards this goal we
discuss and present several examples indicating the main ideas of the proofs and the
necessary changes in method for different situations.

Here is Zilber’s description of his own project (from his 2000 Logic Colloquium
talk in Paris [Zil034a]):

The initial hope of this author in [Zil84)] that any uncountably categori-
cal structure comes from a classical context (the trichotomy conjecture),



was based on the belief that logically perfect structures could not be over-
looked in the natural progression of mathematics. Allowing some philo-
sophical license here, this was also a belief in a strong logical predeter-
mination of basic mathematical structures. As a matter of fact, it turned
out to be true in many cases. ...Another situation where this principle
works is the context of o-minimal structures [[PS98].

A rather ambitious project aimed at finding categorical axiomatizations (Defini-
tion [3.0.1)) of various kinds of universal covers has been unfolding in the 21st century.
The simplest example of such universal covers is given by the short exact sequence:

0 — ker(exp) — (C, +,0) Z2(C, +,-,0,1) — 1. (1)

Zilber’s original project really aimed to understand the sequence
0 — ker(exp) — (C, +, -, exp) = (C, +,-,exp) — 1. )

The first diagram describes a two-sorted cover of the multiplicative group by the
additive group. The full field structure is studied on the range space although the
kernel is of the homomorphism from (C, +,0) to (C, -, 1).

The second [Zil04] corresponds to the theory of the complex exponential field.
The domain and range of the map are the same exponential field but the kernel is
again computed with respect to the homomorphism exp from (C, +) — (C*, x).

In both cases, first order axioms are supplemented by an L, .,-sentence asserting
the kernel is isomorphic to Z, i.e., is standard. Here, we focus on three main families
of generalizations (described in the chart below) of the first diagram. As this question
was extended to more general algebraic contexts, the fundamental cover diagram from
equation (1) changed to this more general situation:

¢ 5.5(0). 3)

Notice two things:

» The map p remains a projection, but it will significantly change as the family of
examples unfolds. Also,

* there is no longer a kernel when S(C) is not a group.

Therefore, in a rather Protean way, the infinitary description that in the particu-
lar case described a ‘standard kernel’ assumes various guises for different examples.
Usually, the descriptions are of ‘standard fibres’ rather than having a ‘standard ker-
nel’.



Crucially, in all cases except part of § [5]the target will be some kind of definable
set in an algebraically closed field. The necessary vocabulary for the domain will vary
among the situations considered. Shimura varieties require a more general domain:

Notation 1.0.1. (The general situation)
xt4sC) -1, 4)

Here, S(C) is a variety arising as the quotient of the action of a discrete group on
H (hyperbolic space) or more generally (Shimura varieties) on a hermitian symmetric
domain X *. The target is described by a first order theory 7' := Th(S(C)) in a large
enough (field) countable vocabulary with quantifier elimination (possible, as S is
definable in (C, +, x)). Notation thus instantiates the general schema, with ap-
propriate notations for specific cases to be given as we discuss them. Zilber describes
the value of his project in terms of ‘a complete formal invariant’ (Remark [5.3.2).

The geometric value of the project is perhaps in the fact that the formu-
lation of the categorical theory of the universal cover of a variety X ...1is
essentially a formulation of a complete formal invariant of X.

(DZ22b, 1]

The following chart organizes the papers which are the major source for this study.
It also provides a keyword describing the main method or context used, and the sec-
tion of this paper where issues around the specific variant are explained.

topic paper method/context section

1 | Complex exponentiation | [Zil05Sb] | quasiminimality §1

2 cov mult group [Zil06] | quasiminimality §1

3 [BZ11] | quasiminimality -

4 j-function [Har14] | background §lﬂ|
5 | Modular/Shimura Curves | [DHI7] | quasiminimality 4

6 | Modular/Shimura Curves | [DZ22b] | quasiminimality

7 | finite Morley rank groups | [BGH14|] | fmr & notop §5.1
8 Abelian Varieties [BHP20] | fmr & notop /quasiminimality §5.3
9 Shimura varieties [Ete22] notop §6

’ 10 \ Smooth varieties \ [£1122] \ o-quasiminimality \ §8 ‘

In this chart, the first line [Zi1l04] (an axiomatization of the exponential map from
the complex field to itself) differs from the others in the role of the quantifier ‘there
exists uncountably many’. In that case it is essential to directly control the cardinality
of the algebraic closure of a countable set. Moreover, in line 1 the domain has a field
structure that disappears in the two-sorted approach of the rest. In the other lines of
the chart, the infinitary logic L, , is used to control the size of fibers of the cover
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or when the structure is a group the size of the kernel. This requirement suffices
to also control the cardinality of the algebraic closure. Lines 2-6 deal with curves
(1-dimensional objects) where categoricity is obtained by quasiminimality. The third
big horizontal block deals with higher dimensional varieties. Lines 7 and 9 stray from
formal categoricity towards more traditional descriptions of models; quasiminimality
is replaced by a different version of excellence arising in Shelah’s study of notop theo-
ries (an important notion in Classification Theory). Both quasiminimality and ‘notop’
apply to line 8. The last line considers families of covers of arbitrary smooth algebraic
varieties with an infinitary logic construction defined over o-minimal expansions of
the reals. There, the focus is on categoricity in Nj.

It is worth noting that we could have organized our chart under a totally different
scheme. The Abelian varieties and (C, +) are specific varieties. The j-function and
the Shimura varieties may be regarded as moduli spaces for (generalized) families of
Varietiesﬂ After preliminary discussions on the model theoretic framework, in Sec-
tion @] we sketch in some detail categoricity of universal covers of modular curves. In
the later sections we describe the modifications to this program necessary for higher
dimensions.

1.1 Mathematical Encounters
1.1.1 Some ancient history: In and out of the Zilber world

The first author turns to the first person singular for some memories:

Zilber and I both received our Ph.D.’s in the early 1970’s. An important result
appeared in both theses: the solution to Morley’s conjecture that an N;-categorical
theory has finite Morley rank. Such an overlap was not an issue during the Cold War.
(On the other hand, Baldwin’s advisor, Lachlan, had to write an entirely new thesis
when the result of the proposed one appeared in the west as he was about to submit.)

I first (given my zero knowledge of Russian) learned in any detail of Zilber’s work
during the 1980-81 model theory year in Jerusalem. Greg Cherlin had no such defi-
ciency and gave with Harrington and Lachlan an alternate proof of Zilber’s theorem
that there were no finitely axiomatizable totally categorical theories. They relied on
the classification of finite simple groups. A few years later Boris completed his model
theoretic proof of the key combinatorial lemma avoiding that reliance.

I first knew Boris in any depth during the model theory semester in Chicago 91-
92. Unfortunately, I had partially financed a semester by agreeing to be acting head
the Fall semester, thereby restricting my mathematical activity. In that busy fall, Boris
and Angus Macintyre lectured on Tuesday’s on Zariski geometries and o-minimality,

"Various types of Shimura varieties include Siegel, PEL-type, and Hodge-type; only some parameterize
algebraic avarieties.



respectively. The lively group include Macintyre, Zilber, Laskowski, Marker, Otero,
D’ Aquino and myself, with Pillay driving in weekly from Notre Dame. Lunch was at
a deli that Boris insisted on because of the soup followed by coffee at Jamoch’s, the
first modern coffee house in the UIC area.

About that time, I began work on the Hrushovski construction, but in a quite
different direction from Boris: predimension with irrational . This led to my work
with Shelah giving the first full proof of the 0 — 1 law with edge probability n~“ and
that the theory of the Shelah-Spencer graph was stable, building on the 1992 Ph.D.
thesis of my student Shi. And this led to work with Kitty Holland on fusions, giving
the first construction of a rank 2 field with a definable infinite predicate. And then
back to Boris and his work on complex exponentiation. Understanding his notion
of quasiminimal excellence inspired the desire to understand Shelah’s more general
notion of excellence. Thence came my monograph on abstract elementary classes
and subsequent work on infinitary logic. In any case, visits several times a decade to
Oxford always were exciting sources of ideas and pleasant times.

1.1.2 An unlikely encounter of two areas: MAMLS at Rutgers, 2001

The second author of this paper witnessed and participated in one of those momen-
tous encounters of two areas that only seldom happen: during the MAMLS Meeting at
Rutgers in February 2001, a group of people working in Abstract Elementary Classes
(including Rami Grossberg, Monica VanDieren, Olivier Lessmann and the second au-
thor of this paper) was very busy discussing Shelah’s notion of excellence, originally
linked to his work in the model theory of L, ,,. The n-amalgamation diagram was
very much part of that discussion. There was a lecture by Boris Zilber at the end of
the day, and we all attended, not expecting to understand much, but eager to see him
speak. To our great surprise, at the end of Zilber’s lecture (dealing with exponen-
tial covers, mentioning many analytic number theoretic methods that were arcane to
us, and mixing in areas such as “Nevanlinna Theory”, etc.), he asked a final ques-
tion and drew a picture underscoring his question. Boris’s picture was exactly the
n-amalgamation diagram we had been discussing thoroughly with the AEC people
those very same days; Boris’s question was exactly about the behaviour of types in
the amalgam and how it could be controlled by small pieces in the components. We
jumped to talk to him at the end of his lecture, with the excitement of seeing a po-
tential connection. Boris said he didn’t know the model theory of L, but he would
look into excellence. ..

The rest is history: after a few weeks, a first draft of a proof of properties of pseu-
doexponentiation drawing on a version of excellence and quasiminimality in L,
was circulated, and Zilber started using many methods from excellent classes and
infinitary logic. The richness of this approach has provided many interesting connec-
tions; we explore some of them in our paper.



1.2 A word of thanks from the second author

Here, the second author turns to the first person singular, for this excerpt:

I would like to thank Boris Zilber, at a very personal level, for a life-
changing conversation we had in 2007 in Utrecht, during a meeting orga-
nized by Juliette Kennedy, on connections between Mathematics, Philos-
ophy and Art. One evening, after dinner, Boris said “let’s go for a walk
and speak a bit about mathematics.” In the cold night along the canals,
he described, for about an hour, some of what he had been doing—I kept
asking and asking questions. At some point, on a bridge, he turned to me
and said: “But you, in what have you been working?” I tried to gather
my thoughts on the spot while walking, and started describing a project
we had back then, with Berenstein and Hyttinen [BHV18|], of understand-
ing independence notions in continuous logic, trying to extend the work
of Chatzidakis and Hrushovski to the continuous case, and encountering
difficulties. Boris asked me to describe briefly continuous model theory
and continuous abstract elementary classes. At some point, he said I ob-
viously had tools for dealing with model theoretical approaches to quan-
tum mechanics. I asked how so. He said “look at Gelfand triples, ... "
I returned to Helsinki where I was spending a sabbatical, and Boris’s re-
marks made a deep change in my own approach to model theory, in the
possibilities I started slowly unfolding. I am deeply grateful for that mo-
mentous conversation, and for all the lines of work that have derived from
that evening!

Andrés Villaveces

The authors want to thank many people who helped this project go through.
Among them, hoping not to forget important people, are, most notably Sebastidn
Eterovi¢, Jim Freitag, Jonathan Kirby, Anatoli Libgober, Ronnie Nagloo, and Boris
Zilber. Without their attention to our discussions, online, at conferences, and on cam-
pus, this project would have been much harder to complete. The first author especially
wants to thank Ronnie and Sebastidn for hours of conversation. The second author
especially thanks Alex Cruz and Leonardo Cano for many helpful discussions related
to these subjects in the Bogota seminar before this project started. Finally, discus-
sions with Thomas Kucera and Martin Bays were very important at earlier stages of
the construction of this paper. Finally, the referee reports were invaluable.

2 Model theory in Mathematics

We first deal with some variations in model theoretic and geometric terminology.



2.1 Model theoretic background

Mathematical logic makes a central distinction between a vocabulary and a collection
of sentences in a logic. For this reason, we use ‘language’ only for the second and
reserve ‘vocabulary’ for what is sometimes called similarity type.

Definition 2.1.1 (Vocabulary and Structure). 1. A vocabulary T is a collection of
constant, relation, and function symbols (with finitely many arguments).

2. A T -structure is a set in which each T-symbol is interpreted, e.g., an n-ary
relation symbol as an n-ary relation.

Definition 2.1.2. Full formalization involves the following components.

1. A vocabulary with associated notion of structure as in Definition|(2.1.1
2. Alogic L has:

a A class L(7) of ‘well formed’ formulas.

b A notion of ‘truth of a formula’ from the class L (T) in a T-structure, usually
denoted A = .

¢ A notion of a “formal deduction” for this logic.

3. Axioms: Specific sentences of the logic that specify the basic properties of the
situation in question.

Example 2.1.3. (Three important logics.)

1. The first order language L, .,(T) associated with T is the least set of formulas
containing the atomic T -formulas and closed under finite Boolean operations
and quantification over finitely many individuals.

2. The Ly, «,(7) language associated with T is the least set of formulas containing
the atomic T -formulas and closed under countable Boolean operations and
quantification over finitely many individuals.

3. The second order language associated with T, denoted L?(T), is the least set of
formulas extending L, .,(T) by allowing quantification over sets and relations.
L2({=}) is symbiotic (‘morally equivalent’, roughly speaking) with set theory.

Morley rank (corresponding to the Krull/Weil dimension in the particular case
of fields) was introduced in [Mor65|] to study theories categorical in uncount-
able power. Section [5] explores the role of finite Morley rank groups in studying
covers. Three good sources for the more advanced model theory used here are
[Mar02, TZ12, [Po185].



2.2 Various Viewpoints

We now discuss two quite different uses of the three words automorphism, model and
definable, coming from areas of mathematics relevant to this paper. (The difference
in use depending on the area of mathematics has been at times a source of confusion.)

Remark 2.2.1. (Automorphism: two notions)

In Model Theory: An automorphism of a T-structure A is a permutation of its uni-
verse A that preserves (in both directions) each relation or function symbol for
7. For instance, the automorphisms of a geometry (when given in terms of lines
and points together with an incidence relation) are the collineations.

In Algebraic Geometry: An automorphism of a variety is an invertible morphis

Remark 2.2.2. (Model: two notions)

In Model Theory: The word model also sees different uses depending on the area.
In logic, a model is sometimes just a 7-structure but often signifies that the
structure satisfies a theory (as in ‘(C, +, -, 0, 1) is a model of the theory AC'Fy’).
Minimal model might mean ‘no proper elementary submodel’ or, very differ-
ently, ‘every definable subset is finite or cofinite’.

In Algebraic Geometry: A model is a specific biregularity class within a birational

equivalence class. In Weil/Zariski style, a variety is determined by a coordi-
nate ring, but only up to isomorphism of this coordinate ring. A ‘model’ of
the variety might be a specific affine variety with that coordinate ring, but any
biregularly isomorphic variety would also be a model.
Thus, unlike model theory, algebraic geometry does not identify ‘models’ up to
isomorphism. Rather, it looks for a specific ‘canonical representation’ among
‘isomorphic solution sets’. A minimal model is a smooth variety X with func-
tion field K such that if Y is another smooth variety with function field K and
f: X — Y is birational, then f is an isomorphism.

Remark 2.2.3. (Definable/defined: two notions)

In Model Theory: A subset X of a model M™ is defined over a set A if there is a
formula ¢(x, a) with solution set X.

In usual mathematics the word ‘defined’ is often short for ‘well-defined’ saying
that the value of a function defined on a quotient space does not depend on the
choice of a representative.

2This begs the question of defining morphism. A good approximation is ‘definable map’. In algebraic
geometry a morphism is (cf [Poi87, p 79: section 4.4]) a constructible (generically quasi-rational) bijection.
Biregular and birational are more specific syntactic restrictions on an isomorphism.



In model theory, we add the adjective ‘definable’ when there is a formula of the
language that captures the notion. Thus, the algebraic geometric ‘automorphism’
becomes ‘definable bijection’. It is worth noting that many important automorphisms
in algebraic geometry do not necessarily preserve structure.

Remark 2.2.4 (Why infinitary logic?). A natural question at this point is: Why is
axiomatizability in L, ., relevant to geometric questions? The answer to this ques-
tion is not univocal, and strongly reflects different historical issues arising in different
areas of mathematics. We discuss four responses, two from ordinary mathematics,
two from logic.

1. In ordinary mathematics:

(a)

(b)

The constraints of expressibility offered by a particular logic force a de-
tailed analysis of the hypotheses of a result. This analysis in similar earlier
cases has led to, for example, the Zilber-Pink conjecture and the Conjec-
ture on the Intersection of Tori (see e.g. [BMPTW20]).

Of course, each of the ‘canonical structures’ is explicitly definable in set
theory. But this definition in most cases is useless for studying the object.
Useful succinct second order axioms are available for the real and com-
plex numbers but are only partially known for universal covers. First order
logic is stymied a priori by the intractability of arithmetic. Thus, cate-
goricity in infinitary logic is essential for giving an ‘algebraic’ account of
an ‘analytic object’. This use of model theory can be seen as part of the
larger scale GAGA mathematical program of bridging analytical concepts
and algebraic ones.

2. Inlogic (in particular, in model theory):

(a)

(b)

A natural question is: are there important mathematical notions express-
ible in infinitary logic which are not expressible in first order? The study of
complex exponentiation yielded a superb initial example: the categoricity
of the covering map of C* in [BaysZil].

This raises the question of what are the new axioms in this paper that re-
quire an infinitary description. The infinite dimension axioms are well
known and the switch from ‘standard kernel’ to ‘standard fiber over 2’ (i.e.
¢ 1(2)) is unremarkable. It seems the finite index conditions (Section
are not first order expressible.

10



3 Categoricity, quasiminimality and excellence

We give a quick sketch of notions around categoricityﬂ and the history of their logical
development.

Definition 3.0.1 (Categoricity). 1 A theory T in a logic L is a collection of L-
sentences in a vocabulary .

2 T is categorical in cardinality « (k-categorical) if all models M of T with
|M| = k are isomorphic.

Although certain canonical mathematical structures are fruitfully axiomatized in
second order logic, rather than second order categoricity, we usually consider these
characterizations as defining these structures in set theory. Such definitions are ex-
actly what it means to be a structure. Second order categoricity per se gives no useful
mathematical information. In contrast, k-categoricity in first order logic or in L, .,
provides very significant (combinatorial geometric) information; it assigns a dimen-
sion to each model.

3.1 The Classical Categoricity Theorems

The following results survey the spectrum of cardinals in which certain types of the-
ory can be categorical. These theorems are of the form if a theory (or a sentence) is
categorical in some high enough cardinal(s), then it must be categorical on a tail of
cardinals.

Theorem 3.1.1 (Morley’s Categoricity Theorem). A countable first order theory is
categorical in one uncountable cardinal if and only if it is categorical in all uncount-
able cardinals. [Mor6J5].

Theorem 3.1.2 (Shelah’s Categoricity under the weak continuum hypothesis below
Ny). Assuming 28 < 2%n+1 g sentence in Ly, « that is categorical in X, (for every
n < w) is categorical in all uncountable cardinals [|She83d], [|She83b].

Theorem 3.1.3 (Shelah’s Categoricity theorem for excellent sentences). An excel-
lent sentence in L, ., is categorical in one uncountable cardinal if and only if it is
categorical in all uncountable cardinals [She83al], [[She83b|].

Theorem 3.1.4 (Zilber’s Categoricity for quasi-minimal excellent classes). A qguasi-
minimal excellent class is categorical in all uncountable cardinals [Zil04)].

3More specifically, when in model theory we use the word categoricity, we mean categoricity in a specific
cardinality or ‘in power’. See a thorough discussion of categoricity in various logics in [Ball8| §3.1] and an
exposition of the philosophical import of the notion in [CMVZ21].
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3.2 Pregeometries (matroids) and quasiminimality

The presence of quasiminimal pregeometries provides an extremely fruitful and nat-
ural control of models in a class (and of their interactions).

Definition 3.2.1 (Combinatorial Geometry). A closure system is a set G together with
a ‘closure’ relation on subsets of G

c :P(G) = P(G)

satisfying the following axioms.
AL c(X) = H{c(X") : X' Cpin X}
A2. X Cc(X)
A3. cl(cl(X)) = cl(X)

(G, cl) is a pregeometry if; in addition, we have:
Ad. Ifa € cl(Xb) and a & cl(X), then b € cl(Xa).

If points are closed (cl({a}) = {a}, for each a) the structure is called a geometry.
Pregeometries are virtually the same mathematical objects as matroids.

Definition 3.2.2. 1. A subset D of a T-structure M is first order-definable in M
if there is a € M and an L, ,,(T)-formula ¢(z,y) such that D = {m € M :
M = p(m,a)}. Ifa€ A C M, D is definable with parameters from A.

2. aclyr(A) (the algebraic closure of A in M) is {m € M: ¢(m,a),a € A},
where ¢(x, @) has only finitely many solutions in M.

3. dclpr(A) (the definable closure of A in M) is defined as was the algebraic
closure, but replacing ‘finitely many’ by ‘one’.

4. An infinite definable subset D (or its defining formula p(x)) is strongly minimal
if every definable subset of D in every elementary extension of M is finite or
cofinite.

5. A theory is strongly minimal if the formula x = x is strong minimal.
The notion of type is a crucial tool in model theory.

Definition 3.2.3. 1. The first order type of a over B (in M), denoted tp,,;(a/B),
is the set of L, .,-formulas with parameters from B that are satisfied in M (for
a, B C M).
2. The quantifier-free type of a over B (in M), denoted tp(a/B: M), is the
set of quantifier-free first order formulas p(x,b) such that M = ¢(a,b) (as
before, b ranges over tuples of B).

12



In most contexts, when we just say ‘the type of a over B, we mean the first
order type. Note also that if a property is defined without parameters in M, then it
is uniformly defined in all models of Th(M) (the theory of M, i.e., the set of all 7
sentences that are true in M).

Here are three fundamental observations on strongly minimal sets.

* A strongly minimal set admits a combinatorial geometry when the closure is
taken as acl (Definition 3.2.2).

 There is a unique type of elements in a strongly minimal set that are not alge-
braic. This is called the generic type for D.

* In many important examples (e.g. DC'Fp), the structure of the model is con-
trolled by its strongly minimal sets.

Shelah’s abstract notion of independence (for some first order theories, crystal-
lized as non-forking) weakens the notion of combinatorial geometry by dropping A3;
in some desirable cases this property is recovered on the points realizing a regular
type and in even better cases the dimensions of the regular types determine the iso-
morphism type of the model. However, a priori, the existence of a global dimension
is unusual.

We now look at the generalization of strong minimality, introduced by Zilber, that
is central in the connections between model theory and algebraic geometry described
in this paper.

Definition 3.2.4 (Quasiminimal structure). A structure M is quasiminimal if every
first order (L, .,) definable subset of M is countable or cocountable. Algebraic
closure is generalized by saying b € acl (X)) if there is a first order formula with
countably many solutions over X which is satisfied by b.

Definition 3.2.5 (Quasiminimal excellent geometry). Let K be a class of L-structures
such that M € K admits a closure relation cly; mapping X C M to cly(X) C M
that satisfies the following properties.

1. Basic Conditions

(a) Each cly defines a pregeometry on M.

(b) Foreach X C M, cly(X) € K.

(c) countable closure property (ccp): If | X | < Rg then |cl(X)| < N.
2. Homogeneity

(a) A class K of models has No-homogeneity over () (Definition if the
models of K are pairwise gf-back and forth equivalent (Definition
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(b) A class K of models has Ng-homogeneity over models if for any G € K
with G empty or a countable member of K , any H, H' with G < H,G <
H', H is gf-back and forth equivalent with H' over G.

3. K is an almost quasiminimal excellent geometry if the universe of any model
H € K isin cl(X) for any maximal cl-independent set X C H.

4. We call a class which satisfies these conditions an almost quasiminimal excel-
lent geometry [BHH"14)].

An almost quasiminimal excellent geometry with strong submodel taken as A <
M, if aclpyr(A) = A, gives an abstract elementary class (AECﬂ But the distinct
notion of a quasiminimal AEC (defined in terms of < rather than any axioms) is due
to [Vasl1§|.

To obtain that the class is complete for L, ., [Kirl0, BHH™ 14] add the require-
ment of Ny-categoricity.

Remark 3.2.6. This definition differs only superficially from those in e.g. [KirlO],
where the connections with the combinatorial geometry was emphasized by distin-
guishing the treatment of elements depending on whether they were in cl(H ). How-
ever, [BHH " 14] required a quasiminimal structure to have a unique generic type.
This requirement fails in the two-sorted treatment we deal with here; there may be
acl-bases in each sort. So we replace quasiminimality with almost quasiminimality
(Iess explicit in [BHP20]) and we thus restore Zilber’s first intuition (Definition|3.2.4))
that quasiminimality means that all definable sets are countable or co-countable.

Remark 3.2.7 (Excellence). From Zilber’s introduction of the notion in [Z1l04], it
has been known that the axioms imply Nj-categoricity. See the exposition in
[BalQ9]. But, without further ‘excellence’ hypotheses, it was unknown whether the
class had larger models. Two formulations of excellence are 1) [She83al [She83bl|:
n-amalgamation of independent systems of models, for all n < w, and 2) A local
condition on the properties of a ‘crown’ [Kirl0]. Either of these implies the existence
of arbitrarily large models for theories in L, .,. As we discuss in Section in-
fluenced by work Hart and Shelah on first order classification theory, the next result
(here modified by ‘almost’) clarified the relationship.

Remark 3.2.8. Crucial Fact [Theorem: Bays, Hart, Hyttinen, Kesdld, Kirby]. Ev-
ery almost-quasiminimal class (Definition is excellent as described in Re-
mark[3.2.7) Thus, it is categorical in all uncountable cardinalities.

4See [[GL02] for the early history of the model theory of AECs.
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4 Modular and Shimura Curves

We begin with an astronaut’s view of the j-function and then turn to the model theo-
retic treatment of some generalizations.

4.1 The great confluence

The general form (over a field of characteristic 0) of an elliptic curve is
y? = 2% +ax +0.

At least since Diophantus (3rd century AD), the search for integer solutions for such
equations has been a central question. The cataloguing of such equations was a major
achievement of the 19th century. One key step toward this classification is to gener-
alize the original problem and look first for complex solutions. The solution set of
an elliptic curve is then a smooth, projective, algebraic curve of genus one. It can be
thought of as a ‘classical torus’ T, := C/A,, where 7 € C and A is the lattice in C
(the subgroup of (C, +) generated by (1, 7).

Klein studied modular and automorphic functions, which provide surprising and
deep links between geometry, complex analysis and number theory. The most famous
example is the j-function, analytic on H = {z : im(z) > 0}, the upper half plane,
and maps onto C and meromorphic with some poles on the real axis and the following
remarkable properties.

Theorem 4.1.1 (Classification of tori by the j-function). The following are equiva-
lent:

b
d

2. T, ~ T, in the algebraic geometry sense of Definition[2.2.1]
3. () =j(7)

This rather astonishing classical fact paves the way toward modern day classi-
fications. It provides equivalences between analytic and number-theoretic notions.
Strikingly, j is defined as a rational function of two analytic functions g2 and g3 (each
of them coding so-called ‘modularity’ properties):

. a
1. There exists s = [ . ot d

} € SLy(7Z) such that s(1) = 9+ = 7/,

g2(7)?
g2(7)* — 27g3(7)?
But where does the word ‘elliptic’ come from? A meromorphic function is called

an elliptic function, if it is doubly periodic: there are two R -linear independent com-
plex numbers w; and wy such that Vz € C, f(z + wi) = f(2) and f(z +w2) = f(2).

j(r) =12
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Abel discovered such doubly periodic functions arose from the solutions of elliptic
integrals — originally defined to find the arc length of an ellipse. Weierstral used the
symbol p to denote a family of functions @(z, A;) where the defining double sum
runs over the elements of the lattice A, generated by 1 and 7. The crucial property
of the function is that every meromorphic function that is periodic on A is a rational
combination of p(z,A;) and ¢'(z, A;). This field of functions is precisely Abel’s
field of elliptic functions.

Klein’s discovery of the j function unified the results of Weierstraf3. In his famous
investigation of the psychology of mathematical investigation, Hadamard devotes sev-
eral pages to Poincaré’s generalization of the j-function to the family of functions de-
rived from Fuchsian group actions. The crucial phrase for us is ‘the transformations I
had used to define the Fuchsian functions were identical with those of non-Euclidean
geometry’ [Had54, p 33].

This completes a very quick summary of the 19th century predecessors of the
theory of moduli spaces, developed in the next section. This study involves complex
analysis, actions by a discrete group, number theory, and non-Euclidean geometry.
The crucial model theoretic step is to formalize in a vocabulary for two-sorted struc-
tures of the form

A= ((H;{gi},eN), (Fy+,,0,1),j: H— F)

where (F,+,-,0, 1) is an algebraically closed field of characteristic 0, (H;{¢; }i<w)
is a set together with countably many unary function symbols, and j: H — F.

In the next section we provide some of the mathematical background for a formal
analysis of these two-sorted structures.

4.2 Moduli Spaces

Moduli spaces in geometry are parametrized collections of objects, together with
equivalences that allow us to see when two objects are in some sense ‘the same’,
and with families that articulate the variation between the objects in the collection.
Paraphrasing the important survey [BZ08|], ‘moduli spaces are a geometric solution
to a geometric classification problem.” They parametrize collections of geometric 0b-
Jjects, they define equivalences to say when two objects are the ‘same’, and establish
families that determine how we allow our objects to vary or modulate.

In model theory, the notion of a uniform family of definable sets has been thor-
oughly studied. Such a family is given by a formula of the form ¢(x,y). Each set in
the family is the solution set of ¢(a, y) (for some a), and the set {a : (Jy)¢(a,y)} is
an indexing set of the family. In the algebraic geometry setting, one can require that
the x fall into a variety V' and the y into a variety W,. V is a step toward the notion
of a moduli space.
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Except in § [5} we consider moduli spaces arising from a pair (G, X) consisting
of a group G acting on a space X. The algebraic varieties we study arise as quotients
'\ X (for I" a subgroup of G, see Definition . A modular curve arises as a
connected component of quotient of H by congruence subgroups (Definition[4.2.9) of
GL2(R). Shimura generalized the topic to groups acting on wider classes of domains.
Shimura curves are rather more complicated yet generally share similar categoricity
properties. Shimura varieties of higher dimension raise many new issues that we
sketch in Section|6] In this section, we consider only covers of modular curves by H.

Here, H refers, as in the rest of this paper, to the upper half complex plane (as the
setof points: H = {z € C : Im(z) > 0}). H s also called the hyperbolic plane (when
endowed with a metric and topology that make it hyperbolic rather than Euclidean).
See [Mi1y89] for a detailed description. In all our examples, the function p maps the
hyperbolic plane into a complex variety. We consider the action of PSLy(R) on H as
fractional linear transformations: for

A= [ " b } € SLy(Z) and T € H, A(r) = (mb).

d ct+d
The group of bijections (isometries, isom (H)) that preserve the hyperbolic metric
of H is generated by PSLo(R) and the map z — —Z; PSLo(RR) consists precisely of
all those isometries that preserve orientation (e.g. [Kat92]). After outlining here the
classical theory of such actions and moduli spaces, in section4.3|we describe a model
theoretic approach.

Definition 4.2.1 (Fuchsian group).

1. A subgroup G < isom(H) ~ PSLo(R) is discrete if it is discrete in the induced
topology.
2. A Fuchsian group is a discrete subgroup of PSLa(R).

The most important example of a Fuchsian group is PSLg(Z). Underlying this
entire study and almost one and a half centuries of interactions between number the-
ory and complex analysis is the remarkable fact that the quotient of H by certain
discrete subgroups has the structure of a Riemann surface [Miy89, §1.8] and even an
algebraic variety which, in important cases, is a moduli space [Mil12].

Definition 4.2.2 (Quotient of H by a group). If a group G acts on a set X, G\ X has
universe the collection of G-orbits of the action. w is the canonical map taking x to
its orbit Gz. The prototypical example corresponds to X = H.

Definition 4.2.3. The quotients V = S(C) of H by a discrete group T that we con-
sider are examples of moduli spaces. V' = J, . Vi is the image of a map p from
H that acts as a uniformizer for a family of varieties V,. Namely for each a,b € H,

Vo = Vi iff for some v € T, v(a) = b iff p(a) = p(b).
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We explored in Section the ur-example of a moduli space, elliptic curves as
uniformized by the j-function. The next definition relies on the fact that, while ele-
ments of PSLa(R) fix H setwise, they also act on all of C.

Definition 4.2.4 (Cusp). For a discrete subgroup T" of PSLa(R):
1. Wesayc € RU{oo} isacusp of I if ¢ is the unique fixed point of some y € T..
2. Pris the set of cusps of I and H* = Hf = HU Pr.

We relate some standard facts (see [Har14, p 15]). The first relies on the fact that
while some of the quotients we study are not compact, they can be compactified by
adding finitely many cusps from R U {o0}.

Fact 4.2.5. For any discrete subgroup I" C PSLa(R), the quotient I'\HY. is a compact
Hausdorff space that can be given the structure of a Riemann surface. Therefore if
I is of finite index in T, the quotient T \ H}. is a compact Riemann surface, and is
therefore algebraic by the Riemann existence theorem. H. is the compactification of
the quasi-projective algebraic variety (so first order definable) Hr, .

For the purposes of this paper since the quasiprojective variety Hp = T\ H
determines the (classical) algebraic variety (set of solutions of a system of polynomial
equations), H we work hereafter with Hyp. This is natural from a model-theoretic
standpoint since (in this situation) there are only finitely many cusps and so the sets
differ by only finitely many points.

Notation [4.2.6| fixes the group G for the rest of § 4| Setting the determinant as 1
and modding out the center guarantees the group action preserves both distance and
orientation.

Notation 4.2.6. Ler G = GL3(Q)t =qo¢ PSLy(Q)/Z(PSLy(Q)) ~ PSLy(Q)

modulo its center. I varies over subgroups of G

We now distinguish two kinds of points in H: ‘special’ points and ‘Hodge-
generic’ points. The equivalence of the following definition with the usual notion
[DH17, Definition 2.2] for Shimura varieties is in [DH17, Theorem 2.3].

Definition 4.2.7 (Special points). Fix (H, S(C), p) with S(C) biholomophic to T\ H.
A point x € H is special if there is a g € G whose unique fixed point is x.

We omit the definition of a Hodge generic point arising in algebra, as it does not
enter our discussion; we use only the equivalent characterization [DHI17, Prop 2.5]
given in Fact[4.2.8]1) and the dichotomy in 2) noted just after that proposition. It is
worth mentioning that for a point the fact of being “special” or “Hodge generic” does
not depend on the choice of the group I'; furthermore, these two notions are preserved
by the action of G = GL34(Q)*.

18



Fact 4.2.8. Special and Hodge generic points [[DHI7, Proposition 2.5]
(1) If z is Hodge generic the only g € G that fixes x is the identity.
(2) Every point in H is either Hodge generic or special.

Although we are studying the categoricity of the universal cover of a specific
modular curve (e.g. the image of the j-function, I"\ H), other modular curves naturally
arise in the analysis. The study of families of such curves is expounded in [Shi71l §6,
7]. A key tool to give a uniform treatment to a family is the existence of a common

commensurator of the generating Fuchsian groups. In fact, the members of the family
are interalgebraic and the entire family (indexed by the I' ) is studied in [DZ22a].

Definition 4.2.9. 1. The groups I' 5 (N a fixed integer) are given by

FN:{[(;L Z} el: bECEO,CLEdE].HlOdN}.

Note that each T has finite index in T and if N|M then T'yy C T'y.

2. Two subgroups T and T of a group H are said to be commensurable if ' N T
is of finite index in both of them.

3. A congruence subgroup is a subgroup I of T such that some T is a finite index
subgroup of T".

4. The commensurator comm(I") of a subgroup T' of PSLa(R) is
{6 € PSLy(R): 6T'6~" is commensurable with T'}.

We rely on the following standard fact.

Lemma 4.2.10. The group G = GL3%(Q)* (Notation is the commensurator
of any congruence subgroup I" of SLa(Z).

Because the functions ¢ € G are in the formal vocabulary, we employ congru-
ence subgroups I'g from Notation [f.2.TT| rather than the I'y. The Zg defined in No-
tation play a central role both in the quantifier elimination and via an inverse
limit in Section 4.4]

Notation 4.2.11. With G as fixed in Notation as each of the congruence sub-
groups of PSLa(Z) act on H we can define for any finite sequence of the form
g ={(e,92,...,9n) from G (by convention, g = e),

1. Tg=TNgy,'Tga...Ng; Ty
2. Letp:H — S(C).
(a) Zg is defined as {(p(x),p(g2x), ..., p(gnx)) € S(C)" : x € H}.
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(b) Letpg : H — Zg C S(C)" be defined by
z — p(gr) = (p(x),p(g1(x)), -, p(gn(x))).

(c) Let [pg| be the map from Hg onto Zg (Lemma given by [pglrr, =
pg ().
3. Let Hg denote I'g \ H.

All the previous are well-defined by our choice of p and I".
The following lemma [Ete22, 3.31] is central to Section 4.4.2] Its proof uses
Shimura theory very heavily.

Lemma 4.2.12. The map [¢g] is bijective on the Hodge generic points and the image
Zg is a variety contained in 8" (C), n = 1g(g). Moreover, [Ete22| p 17], for all g,
Zg is defined over the maximal Abelian extension L of the field of definition, F, of S.

Remark 4.2.13. From the model theoretic standpoint, it makes no sense to say the
[¢g] are definable since their domains Hg are not. While the maps [¢g] are bijective
on Hodge generic points, they may identify special points.

4.3 Quantifier Elimination in Modular and Shimura
Curves

We now lay out the vocabulary and first order theory for studying modular curves. The
mathematical input is a Fuchsian group I" acting on hyperbolic space H and the image
curve S(C) = I' \ H- (Definition [4.2.4) with a standard model p = (H, S, p). The
structure of a discrete group is unwieldy from a traditional model theoretic standpoint
because its first order theory is unstable and undecidable. Just as modules are usually
studied in model theory by adding unary function symbols f, for the elements of the
ring, in order to represent the action of G on H, we add symbols f, for g € G as unary
functions that act on H. We thus use a two-sorted presentation of our structures: a
sort for the domain, a sort for the target, and a map p connecting them.

Remark 4.3.1 (Sorts). A two-sorted structure interprets two sort symbols and ad-
ditional relation and function symbols with the understanding that each such rela-
tion/function either is restricted to one of the predicates or explicitly connects them.

Notation 4.3.2 (The formal vocabulary 7). The two-sorted vocabulary 7 consists of
the sorts (unary predicate symbols) D (the covering sort), S the target sort, and a
function ¢ mapping D onto the sort .S.

We write 7 for the vocabulary of the first sort with G = G%4(Q™). The sec-
ond 7 = R where R is the set of formulas in {+, —, 0,1, X} specified in Defini-
tion T is 7¢ U 7 U {p}. There are constant symbols for each element of the
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field E*°(X) defined in Notation We use f, to name the functions acting on D,
but often write the shorter g(x) or gz instead of fy(x).

The following notation is essential to understand the Axioms [4.3.5] Note in the
prototype q is replaced by the known covering map p.

Notation 4.3.3. The standard model for a modular curve determined by a Fuchsian
group " € G = G*(Q™) will consist of a 7-structure p = (H, S, p) with the domain
H, the variety S(F’) over the algebraically closed field F' defined by I" \ H, and R
the set of all Zariski closed relations on S(F')" (for all n) with constants from a field
E(Y) that are true in F. E“ is the maximal abelian extension of the defining
(reflex) field E of S. E“b(E) is the extension of E% (F} in [Ete22, p 19]) obtained
by adding the coordinates of the (< Rg) special points, and closing to a field.

Notation 4.3.4. For a structure p, we write Th(p) for the complete first order theory
of all sentences true in p and 7'(p) for the specified set of axioms true of p. Clearly,
T(p) € Th(p).

We must distinguish Th(p) from its subset 7'(p) until we prove T'(p) is a com-
plete axiomatization of Th(p).

Definition 4.3.5 (First Order Axioms). T'(p) is the following collection of first order
sentences that are to hold in a structure (D, S(F), q).

1. Each sentence in Th((H, {f, : g € G)). These include ‘Special Point axioms’
SPy: For each g € G that fixes a unique point in D

Yo,y € Dl(g(x) =z Ag(y) =y) = = =y
2. Th(S(C), R) (R from Definition4.3.2])

3. The covering map; for each g € G™ and all m < w:

(a) Modl,
Vo € D (q(g1(), ... q(gm(z)) € Zg)
(b) Mody:
Vz € Zgdz € D(q(g1(2)), - .- q(gm(z)) = 2)
(c)

MOD = {Modg A Mod : g € G™,m < w}
Note that MOD is a countable collection of first order sentences.
Notation 4.3.6. By the choice of £%°(X), special points belong to dcl ((}). Therefore,
we can name each one of them by d,, where g € G fixes d . Any g that fixes a point
isin G — SLo(Z) [Ete22, Lemma 3.18]. There will be distinct g1, g2 that fix the same
point (e.g. if g2 = g}). If so, T(p) + dg, = d,, The theory of (D, G) contains the
uniqueness axiom (Definition 1) that entails g(d,) = dg.
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The cover sort is a set with unary functions. Both its theory (since the universe
is a union of orbits) and that of the field sort (since algebraically closed) are strongly
minimal and quantifier eliminable.

Definition 4.3.7. We say two structures M and N are qf-back and forth equivalent
if the system [ of partial isomorphisms of M and N between isomorphic finitely
generated substructures satisfies the back and forth condition: For each f € I and
each m € M — dom f, there exists an n € N such that f U {(m,n)} € I, and
symmetrically, for eachn € N —im f, there exists m € M such that f U{(m,n)} €
1. In this situation dom f is definably close.

Notation 4.3.8. We write g(z) for (g1(x), . .. gn(x)) where g has length n and begins
with e. And then g(x) denotes the sequence of length nm obtained when g is applied
to each element of a sequence x € (D)™. When convenient we write gx or gz for
the action, omitting the parentheses.

We now sketch the proof of Theorem that T'(p) axiomatizes a complete,
quantifier eliminable 7-theory.

Definition 4.3.9 (The back and forth). Fix two models q = (D, S(F),q) and
q =(D',S(F'),q) of T(p). We define the gf-back-and-forth system I of substruc-
tures of q and q’ For each f € I, dom f and rg f are each finitely generated over
E() . A typical member f of the system for q has dom f = U = Up U Ug. Since
U is finitely generated, Up consists of the G-orbits of a finite number of x € D; Ug
is S(Ly) where Ly is the field generated by E%°(X) (since the elements of £ (X))
elements are named), the coordinates of the ¢(z) for z € Up and finitely many addi-
tional points of ' N U. Note that the additional points determine finitely many new
field elements since ¢ is constant on each orbit, so the field remains finitely gener-
ated. Define a similar subsystem for q’, labeling by putting primes on corresponding
objects. By Lemma[.2.8| every point of D is either special and so named in the vo-
cabulary (Remark [4.3.6)), or Hodge generic. Thus we can ignore the special points in
building the back and forth system.

Suppose f is an isomorphism between U C q and U’ C q'. Then f restricts to a
G-equivariant (elements in the same orbit have the same image) injection of Up into
Ups and an embedding of S(Ly ) into S(F”) induced by an embedding o of L into
S(F"), that fixes E2 ().

Note that the following claim is for arbitrary finite sequences g, but only single-
ton z. The type r4 of an infinite sequence (here represented by an infinite tuple of
variables v) includes the types of gz for any finite g.

The main consequence of the following claim is that we may reduce types of
points in the domains sort to quantifier-free types of their images in the field sort.
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Claim 4.3.10. [DHI7, Prop 3.3]If d € D — Up is Hodge generic:
T‘d(V) ): tqu(d/U)a

where rq(v) = Ugeq tPer(a(8(d))/U) = tpgr((a(g(d)) : g € G)/U).

Proof. We show that there is a unique quantifier-free type over U of an element of D
that restricts to r4. The consistent non-trivial types in 7¢ are i) {x # f : f € Up} and
ii) {x # gz} for any non-identity g € G. The first is captured by (¢(z), ¢(f)) & Ze,e
for each f € Up and the second by (¢(z), ¢(x)) & Z. 4 if g ¢ I' and these are both
in7r(v).

Suppose h € S(M)“ (for a saturated M = T(p) containing U) realizes r4(Vv)
and h with d’ € D(M) satisfy h = (q(g(d’)) : g € G). By the previous paragraph
d' ¢ Up. So d' realizes tp,;(d/U) as required. O

Notation 4.3.11. For a type r(v) over a set A and an isomorphism f from A to B,
f(r) is the set of B-formulas ¢(v, f(a)) with ¢(v,a) € r.

Claim 4.3.12. [DHI7, Prop 3.4] Fix g. If v € Up, there is an ' € Up such that
q(g(z")) € S(F')™ realizes f(tp,r(a(g(z))/Lv))-

Proof. We write Zg for the points in S(F) satisfying (the formula defining) Z,.
Using Notation Claim implies that the smallest algebraic subvariety
Wg' of S(F)" that is defined over Ly and contains ¢(g(x)) € S(F)" determines
tp,(&(x))/Ly). Since Mody is true in q, Wg' C Zg. But since (by Lemma
Zg is fixed setwise by o (the map described after Definition - being defined
over (%), we have that Zg = Zg, and therefore Wg C Zg . Now applying
M odé in ', we find the required z’. O

Having proved Claim [4.3.12] we can finish the argument. We need one more
crucial piece for the ‘forth’. What if x € D — Up? For this, we need q’ to be
w-saturated (realize all types over finite sets).

Theorem 4.3.13. Suppose that q and ' are w-saturated. Then the qf-system de-
scribed in Remark is a back and forth; hence, T (p) admits elimination of quan-
tifiers and is complete.

Proof. Suppose f is an isomorphism between U C q and U’ C ¢'. Then f restricts
to a G-equivariant injection of Up into Up/ and an embedding of S(L/) into S(F”)
induced by an embedding o of L,, into S(F"), that fixes £ ().

Forx € q—U, we must find 2’ € U’ so that f U (x, ') generates an isomorphism
between the structures generated by U U {z} and U’ U {2'}. If 2 € S, x = ¢(&) for
some & € D so we restrict to that case. If z € Up, =’ exists as Ul’j is closed under

23



action by G. Since the coordinates of special points are in £%°(¥), whose points are
all named, for a special point x, ' must equal .

The difficult case is when =z € (D — Up) is Hodge generic. But
we noted in Claim {.3.10] that it suffices to simultaneously realize all types
tpyr((q(g17), ... q(gnw))/U) for all g (of arbitrary length). A slight variant on the
argument for Claim [4.3.12]still holds if for fixed x, we replace a single g by an arbi-
trary finite set of g. By compactness, the entire type is consistent and so satisfied in
the w-saturated q’. There is one final step. By induction we have to choose 2’ for a
sequence x,y,x where x € Up andy € Ug for some k. But what if z € Ug? By
Claim 4.3.10} tp,¢(x,y) is determined by tp,;(g(x),y) (in the field sort). That we
can choose of z" € Uy to satisfy f(tp,¢(g(x),y)) is now immediate by w-saturation
and quantifier elimination in the field-sort.

By Karp’s theorem [Bar73l Theorem 3], the existence of the back and forth im-
plies all w-saturated models of 7'(p) are L, ., (indeed, Lo ,,) elementarily equiva-
lent. Every model has an w-saturated elementary extension, so 7'(p) is complete. []

4.4 Galois Representations and finite index conditions

In this section we begin by considering the action of discrete and Galois groups on
the domain and field sorts. Then we unite these approaches by defining a Galois
representation. We then state the key to establishing categoricity, a consequence of
Serre’s open mapping theorem.

4.4.1 Two views: domain and field sort

We explore the following diagram which links the domain sort (via the quotient) with
the field sort.

H ~T\H 2%, 7

h
idHﬁl y’ﬁ,y
Zg

Convention 4.4.1. g = (e, g1 ...gn—1) has length n. We restrict to g with 'y <T'
(normal subgroup). Recall Zg C S (C)'s(®),

We have two views of ‘essentially’ the same map. The first moves to a quotient
on the domain side which is not 7-definable; the second ‘names’ the range of the first
in the target side. We begin with quotient data but with manifestations in both the
domain and target.

Domain/Quotient data: The first view motivates id for identity.
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Definition 4.4.2. Let g C h. Define idyg : Hy, — Hg by [z]r, — [2]r,.

The normality hypothesis implies that I'g /'y, acts on Hg: for A € TI'g, A[z]r, :=
[Az]r,, so the representatives \; of the cosets of I'g /T'y, index the equivalence classes;
thus the action is transitive.

Field data: We define the right hand column of the diagram.

Definition 4.4.3. 1. For g C h, Ig(g) = n, Ig(h) = m, Yng, denotes the re-
striction of the natural projection from S(C)™ onto S(C)™ to a map from
Zn C S(C)™ onto Zg C S(C)".

2. Choose z € Zg and let L = L, be a finitely generated extension of the defining
field for S such that z is defined over L. Write L for acl(L).

3. Now, Aut(C/L) acts on the fiber of {y, g over z, by its action on the coordinates
of z; as it would for any definable finite-to-one map from Zy* — Zg.

To connect the two sides, conjugating by [¢n], Aut(L/L) acts on idl:g1 (2).

Lemma 4.4.4. [Ete22| §3.5 p. 18] Aut(C/L) acts on the fiber of Yy g over z, (and so
via [¢n] on idl:g1 (z)). This action commutes with the action of the free and transitive
(simply transitive) action of I'g /T'y, on the fibers of idy g. Thus we have a homomor-
phism (Galois representation) pg y, from Aut (L/L) into T'g/T'p.

4.4.2 Galois Representation

While the notion of a representation of a group A frequently refers to linear represen-
tations, a homomorphism of A into a matrix group B, here we will discuss specific
examples of a more general notion: a representation of A is a homomorphism of A
into a group B. This is a Galois representation if A is the Galois group of one field
over another. In Section we gave Galois representations of Aut(L/L) into
I'g/T'h. In order to understand how to combine the actions of the I'g /'y, as g, h vary,
we need the notion of inverse limit.

Definition 4.4.5 (Inverse Limit). Given a directed set (I, <) an inverse system on
is a family of structures (A; : i € I), and for i < j, maps f;; from Aj to A; such that
1 < j < kimplies fij o fjk = fik.

An inverse limit of this inverse system is an object A= @Ai and a family of
morphisms g; : A — A; such that (1) foralli < jinl, f;j o g; = g; and (2) given
any A" and family ¢ ; satisfying (1) there is a unique morphism h : A — A’ such that
foralliel,g;=g;oh.

Definition 4.4.6. Galois Representations of Inverse Limits We work with a modular
curve S(C) = T\ H which is defined over E®(X). (Notation . Since each
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I'g C T, pgy, : Aut (L/L) — T and by taking an inverse limit of the representations
p;h, we obtain:

p?: Gal(L/L) - T

where T = r&lh I'/T'w. The h range over all finite sequences as Convention
See Definitiond.4.5|and [Ete22) §3.6 p 17].

For any groups H; < Hj that act on a set X the H;p-orbits of X partition the
Hj-orbits. So if [Hy : Hj] is finite and Hy is infinite, the obits will have the same
cardinality and the smaller [Hy : H1] is, the closer we are to an isomorphism.

Now, we can state the first of two crucial sufficient conditions for categoricity.

Definition 4.4.7. First Finite Index Condition (FIC1) The first finite index condi-
tion is satisfied by a modular curve p: H — S(C) if:
For any non-special points x1,...x,, € H in distinct G-orbits (Defini-

tions and for any field L containing the field over E°°(X) along with the
coordinates of the p(x;), the image of the induced homomorphism p : Gal(L/L) —

T has finite index inT"".

Recall from Lemma 4.3.10| that
ra(v) = tpys(d/U).

where 74(v) = Ugcq tpgr(a(g(d))/U) = tpyp({q(gd) : g € G)/U). The argument
for Lemma [4.3.10| began with the observation that r4(v) implied, in particular, that
d ¢ Dy, so d is an independent Hodge generic. We will deduce from Lemma |4.4.8
that (under FIC1) only finitely many tuples g from r, are really needed.

Lemma 4.4.8. Assume FICI. Then, for each z, for some g, the map

m

ps : Aut(L/Lg) = Ty = Limnog(Tg/Tn)™
is surjective.

Proof. Let I = im(p,) and let k = [T : I]. Suppose not. Choose g with g C g such
that [['g : I'g] = k. Thus, for any h O g, p, must be onto I'g /T'y,. For, if not, there is
an7 € I's /T’y and that is not in I; it must be in a new coset of I in T, contrary to the
choice of g. O

Corollary 4.4.9. (Under FICI) Ford € D — U,

tpy s (¢(&(d))/U) = ra(v) = tpgs(d/U).
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Proof. The second implication is Lemma For the first, choose any h O g(d)
and let m = lg(g), r = lg(h). Let 7 C Zj be the fiber over g(d') € Z* of the
finite-to-one map Yng : Zy, — Zg'. Similarly, tp,,(h(d)/Ly) is determined by
the Aut(C/Ly)-orbit G C F containing h(d). Then, tp,(h(x)/Ly) is determined
by the Aut(C/Ly)-orbit G C F containing h(x). But G = F, since p, induces
a homomorphism from Aut(C/Ly) onto I'y /Ty, and I'g /Ty, acts transitively on the
fiber. Since this holds for any such h, we finish. O

We turn now to the infinitary axioms that are needed to obtain categoricity.

Notation 4.4.10 (Infinitary Axioms). 1. ® is the L, ., sentence asserting that
for (D, S, q) both the dimension of the field bi-interpretable with S and of the
strongly minimal structure (D, {fy : g € I'}) are infinite.

2. SF (standard fibers) denotes the Ly, .,-axiom:

(Vavy € D)(q(x) = q(y) = \/ = = fy(v)).

3. T°°(p) denotes Th(p) U {®} and
4. TS (p) denotes Th(p) U {SF} U {P}.

Definition 4.4.11. For (D,S(F),q) = T&%(p) and X C DU S(F),

cl(X) = ¢~ (acl(¢(X)))
where acl is the field algebraic closure in F.

An essential consequence of the standard fibers axiom is that Definition 4.4.11
defines an almost quasiminimal closure relation satisfying the countable closure con-
dition from Definition [3.2.4] This closure dimension restricts on the separate sorts to
the dimension of the constituent strongly minimal sets that is expressed in ®,. This
accomplishes the aim of an (L, .,-complete so Ny-categorical) L, ., theory with
arbitrarily large models.

A class K of models has Rg-homogeneity over () (Definition (the precise
statement is from [Ete22] p 4]) if the models of K are pairwise qf-back and forth

equivalent (Definition 4.3.7).

Theorem 4.4.12. [[DHI7, Theorem 4.11] If the standard model p of a modular curve
satisfies FIC1, then the class of models of T3 (p) is Ro-homogenous over (). In par-
ticular, by Karp [Kar64, |\Bar73], all models of T' g‘jp(p) are back and forth equivalent
and so satisfy the same sentences of Ly, ..
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Proof. Our task is to replace the w-saturation hypothesis from Lemma by
adding the infinitary axioms and the condition FIC1. As in the proof of theorem[4.3.13|
we need only worry about Hodge generic points. Suppose we have a partial func-
tion f from q to q' with domain and range U and U’ as in Lemma between
models q and q of 755 (p). Proceed as in the proof of the second paragraph of
Lemma[4.3.13] We vary the argument for the ‘difficult case’ from the 3rd paragraph.
Choose g by Lemma Taking g for the g in Lemma.3.12] for x € Up, there
isan ' € Ups such that (*) ¢(g(2')) € S(F')™ realizes f(tp,;(q(&(z))/Lv)). We
want to show that the same choice 2’ satisfies (*) for every h D g. This is immediate
from Lemma4.4.9] The argument is completed by induction as in the ‘final step’ of
the proof of Lemma[4.3.13]

O

Remark 4.4.13 (FIC2). Like FIC1, FIC2 is a finite index condition on Galois repre-
sentations into inverse limits. Now, however there are independence conditions over
the ground field. [DH17, Condition 4.8] provides sufficient conditions so that a minor
modification of the proof of Theorem |4.4.12] shows FIC2 implies homogeneity over
models; pairs of models are back and forth equivalent over a countable submodel.
This is the first place in the argument where types over countable algebraically closed
fields rather than the empty set (i.e. a fixed countable field) are encountered. Com-
bining this result with Theorem§.4.12] the homogeneity conditions are now stronger
than those defining quasiminimal excellence in [BHH™14]. Thus, we apply that paper
and obtain:

Theorem 4.4.14. For any modular curve interpreted as a standard model p (Defini-
tion for T (p), T°(p) is almost quasiminimal excellent and so categorical
in every infinite power.

Proof. We need only that FIC1 and FIC2 hold for all modular curves. This is proved
in [DHI17, §5], where the proof for FIC1 relies heavily on [Ser72, §6] and FIC2 on
[Rib75]]. ]

With further effort they extend this result to Shimura curves.

Remark 4.4.15. Keisler’s theorem [Kei70, Corollary 5.10] and work of Shelah
[Bal09, §7] show that an RX;-categorical sentence ¢ of L, ., not only has only count-
ably many types in any countable fragment of L, ., containing ¢ (Keisler) but has
a completiorﬂ (Shelah). Equivalently, the completion must specify the isomorphism
type of the countable model. The only such completion consistent with having an
uncountable model is adding P .

SThat is, a sentence ¢* that implies ¢ and decides every L,,, .,-sentence.
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We have used FIC1 to prove categoricity in all powers. In fact, N;-categoricity
implies FIC1. For this, [DH17, [Ete22] argue that the weaker hypothesis of having
just countably many types over the empty set in the theory 7% implies FIC1. If
FIC1 holds, for some z, by Lemma [4.4.8] for every g, there is h O g with a g /T',-
orbit contained in wggl (z) that projects to that I'g orbit. So under the assumption that
FICI fails, there is a g, such that for every h O g there are distinct I'g /'y, -orbits
01, O9 contained in wggl(z) that project to the same I'g-orbit.

By Lemmal4.3.10] if two points are Galois equivalent they realize the same quan-
tifier free 7-type; so Oy, Os realize distinct Galois orbits (and so any two orbits that
project to them must realize distinct 7-types). But since I acts transitively on each
Zg, there is a complete tree of splittings of Aut(C/L) orbits that all project to z. This
contradicts Keisler’s theorem. So Ry -categoricity of T3 implies FIC1.

Remark 4.4.16. [DHI17, §5], using both Serre’s open mapping theorem [Ser72l §6]
for the finite index condition and work by [Rib75]] on Shimura curves show FIC1 and
FIC2 hold for all modular and Shimura curves. So our remaining sections concern
higher dimensional varieties. FIC1 is known for some higher dimensional Shimura
varieties and conjecturally for others, while FIC2 is true for all [Ete22].

[DH17]] use both to prove categoricity. Since the Galois group is not accessible in
our formal language, FIC1 cannot be directly expressed in the two-sorted theory. So
the goal of a ‘fully formal invariant’ cannot be achieved unless explicit reliance on
the finite index conditions as an hypothesis is avoided.

5 First order Excellence

Here is the opening paragraph of [BHP20].

Let G = G" be a complex algebraic torus, or let G be a com-
plex abelian variety. Considering G(C) as a complex Lie group, with
LG = To(G(C)) its (abelian) Lie algebra, the exponential map provides
a surjective analytic homomorphism

exp : LG - G(C).

In the spirit of Zilber, their paper aims at finding ‘algebraic descriptions’ of the
cover exp which characterize the standard structure (at least up to categoricity in
power). They solve a more general problem by providing a first order theory T for
the situation and showing each model M (M here) of T'is determined by relations
among two designated substructures and a certain transcendence degree. In this gen-
erality, the result is proved for any abelian group of finite Morley rank (henceforth
fmr groups). Then, under slightly stronger hypotheses, the result becomes a true
categoricity result for, in particular, an abelian variety defined over a number field.
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We address in this section four new ingredients: formalized non-standard covers,
“first order excellence’, Kummer theory, and a distinction between classification and
categoricity. First order excellence appears to be both necessary and applicable for
higher order Shimura varieties.

As noted in [BHP20], the quasiminimal approach studied earlier in this paper
suffices to prove the L., .,-categoricity in power for Abelian varieties. The goal of
this section is to identify the distinctive elements of the [BHP20|| proof that later
reappear in [Ete22].

5.1 The two-sorted structure and fmr groups

A first order theory 7 is stable in « if any M |= T, with |M| = &, |S(M)| = k.
(S(M) denotes the set of 1-types over M.) Morley showed that w-stability (more
properly, Rp-stability) of a theory 7" is equivalent to stability in all powers (and also
to the Morley rank having an ordinal value for each type). We need here a slightly
weaker condition called superstability: T is stable in & if k > 280,

The theory of (Z, +) is one of the prototypical strictly superstable theoriesﬂ (that
is, superstable, but not Ny-stable). One can fix arbitrarily the congruence class of an
element z for each n. This gives 20 distinct types realized by non-standard integers.

There is an extensive theory of fmr groups (see [BN94, ABCO8]]). We need here
only the basics. In particular, Macintyre’s result [Mac70] that an w-stable group is
divisible by finite. We now introduce the two-sorted theory; with that notation we are
able at the end of this section to outline the main steps of the proof.

Unlike [DHI17] where @ Zg is in the background of the proof of (our) Theo-
rem [4.4.12] but not the statement, [BHP20] build the structure of non-standard covers
into the vocabulary of the two sorted structure by the p,, below.

[BHP20, §2.2] use the inverse limit of Definition for divisible abelian
groups; although it is not profinite, they refer to it as a profinite universal cover de-
noted G of G and G is renamed as M. Although the hat has only one meaning in
[BHP20], it becomes overloaded here so we denote the inverse limit defined below
as M. While in [BHP20] a typical 2-sorted (3-sorted in structure 7 is represented
as either (M, M) or M, we write M = (M, M) and M for the or (profinite cover)
inverselimit from [BHP20L 1.2, 2.1] as that is the actual usage in most of the cited

paper.

Definition 5.1.1 (M). Given a commutative, divisible, abelian group (M, +), con-
sider the inverse limit M = 1&1 M, of isomorphic copies My, of M with the index
set partially ordered by m < n if and only m|n and with maps 1y, (multiplication by

%The other one is the theory of countably many equivalence relations E,, such that for each n, each
E,, -class is split into infinitely many E,,;-classes (and E,, ;1 C E,,).
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™) taking My, — Mp,. Concretely, (]\Zf, +) is the subgroup of the direct product of
w copies of M, containing those sequences ({gy, : 1 < k < w)) such that if k = nm,
gm =n X gk and gp = m X gg.

Notation 5.1.2 (The vocabulary 7). Let G be the given abelian group and T :=
Th(G) in a large enough countable language that T' has quantifier elimination. Fur-
ther, let T be the theory of (G, G) in the two-sorted language 7 consisting of the maps
Pn GG for each n, the theory T and, for each acl®d(()-definable subgroup H of
G, a predicate H for H and a predicate H for {x € G : p,(z) € H,n € N}.

Although the kernel of p = p1 is definable in the vocabulary given, a further
predicate ker* is included denoting the divisible part of the kernel (otherwise, it is
only type-definable).

The axioms [BHP20, 2.5] of T are chosen so that

Theorem 5.1.3. [[BHP20, 2.7, 2.8, 2.21] For an finr group G, (<([_}, G, po) E T and

therefore T admits quantifier elimination and is superstable of finite U -rank.

Although the 7" in Notation is w-stable, T is only superstable; also, many
elements of ker(p) are not divisible in ker(p).

Remark 5.1.4 (Quasiminimality, unidimensionality, notop). Abelian varieties as op-
posed to fmr groups, can be handled either by the quasiminimality methods of Sec-
tiond|or by the methods described in this section. A crucial distinction from Section[]
is that the former considered only the theory of unary functions from a group acting
on the domain, while here we have the full group structure.

To explain the fmr proof we need some further model theoretic background. In
general two types p, g over M are orthogonal when in different models N extending
M the number of realizations of p and ¢ can be varied arbitrarily. Non-orthogonality
for strongly minimal sets has a particularly clear meaning. The strongly minimal sets
D7 and Dy are non-orthogonal if there is a definable finite to finite binary relation on
D1 x Ds. A theory is unidimensional if all types are non-orthogonal.

The three features that underlie the [BHP20] proof are.

1. A fmr abelian group has finite width [Bal88l XV.1] (aka almost N;-categorical
[Las85)): Any model is the algebraic closure of the union of the bases of a
collection of strongly minimal D; for 7 < n < w. The D; are defined over the
prime model (the unique up to isomorphism model elementarily embedded in
every model of the theory).

2. In models of 7" with M the prime model of 7" and where G is defined over a
number field ko, Kummer theory allows the control of p~!(My) by the kernel

p~1(0).
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3. Instudying Abelian varieties the n in 1) can be taken as 1 because the variety is
interalgebraic with an algebraically closed field and so almost strongly minimal
(M = acl(D) for strongly minimal D).

Since Kummer theory doesn’t apply to arbitrary Shimura varieties, both 2) and 3)
fail for more general higher dimensional Shimura varieties (see Section [6)).

5.2 First order Excellence and fmr groups

Shelah’s main gap program defines a sequence of properties X of countable first or-
der theories forming a sequence of dichotomies [Ball8| §5.5] such that: if 7" satisfies
X, T has the maximal number of models in every uncountable cardinal. If 7' fails
X, the models of T satisfy conditions useful for classification. (e.g. stability im-
plies the existence of the ‘non-forking’ independence relation). The positive side of
the final dichotomy in the sequence is superstable without the omitting types order
property (denoted notop). Under this hypothesis, Shelah ([She90|] and earlier papers)
showed that an appropriate class of models of 7" had a notion of independence among
structures with n-amalgamation for all n that yields the classification of models. Hart
[Har87] reduced the amalgamation requirement to 2-amalgamation and this reduction
was extended to the quasiminimal excellent case in [BHH™ 14]. In Section@ we note
this ‘notop’ approach is used to study higher dimensional Shimura varieties.

In Section 3 of [BHP20] the techniques of [Har87|| are adapted to the specific
framework here to establish a decomposition of models of T analogous to that in
Remark [5.1.4] for models of T'. This yields

Theorem 5.2.1. [BHP20, Theorem 3.31] Each model N of T is determined up to
isomorphism by the transcendence degree of the algebraically closed field K such
that M = G(K), the isomorphism type of the inverse image, M, of the prime model
My of T, and the isomorphism type of M over M.

5.3 Abelian Varieties

From the model theoretic standpoint, an Abelian variety is a complete algebraic vari-
ety whose points form a group such that the group operations are definable in the am-
bient field. For Abelian varieties, Kummer theory eliminates (as in [Gav08, BGH14])
the reliance in Theorem on knowing the isomorphism type of M over the ker-
nel. The situation described in the opening paragraph of §[5]is a special case. Namely,
let G be (the formula defining) an abelian variety G(K') over a field K as in the in-
troduction to Section S| Assume G(C) and its ring of endomorphisms are definable
over a number field ky. With this notation:
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Theorem 5.3.1. [BHP20, Theorem 4.6] a model M = (M, M, q) of T is determined
up to isomorphism by the transcendence degree of the algebraically closed field K
such that M = G(K), and the 7 isomorphism type of kerp.

Remark 5.3.2 (Complete formal invariant). Theorem [5.3.1] gives categoricity in all
uncountable cardinalities by adding the L., ., sentence characterizing the standard
kernel. But Theorem [5.3.1]is more general than categoricity; it shows that models
with non-standard (possibly uncountable) kernel are characterized by the 7-diagram
of the kernel. Of course, this statement cannot be formalized in languages with
bounded length of conjunctions since the kernels can be arbitrarily large. But Zil-
ber’s goal (just after Notation [1.0.1)) only aimed at complete formal characterization
for prototypical mathematical structures.

6 Higher Dimensional Shimura Varieties

A Shimura variety is a higher-dimensional generalization of a modular curve that
arises as a quotient variety of a Hermitian symmetric space X by a congruence sub-
group of a reductive algebraic group defined over Q. We consider Shimura varieties
that are moduli spaces for generalized algebraic varieties. Rather than discussing fur-
ther technical details on the definition of a Shimura datum (G, X '), we survey the dif-
ferences that arise in generalizing the results in Remark [4.4.16|about Shimura curves
to higher dimensional Shimura varieties: S(C) =T\ X .

Central difficulties arise directly from the higher dimension in two ways. First, in
the curve case the 2-sorted structure is (almost)-quasiminimal because the variety in
field sort is a curve and so strongly minimal and the geometric closure on the cover
sort is given by a € cl(X) if a € ¢ !(acl((¢(X)). Quasiminimality can fail in the
higher dimensions. Second, rather than special points which are fixed points of some
g, one must treat special subvarieties [Ete22l §3.4] and finite unions thereof, special
domains. The fact that these are not merely points leads to several difficulties.

1. The structure of the covering sort is no longer strongly minimal. Even after
naming the elements of the group the special subvarieties give a complicated
structure on the covering sort.

2. In the curve case the intersection of special domains was a point; that may fail
in higher dimensions.

3. The theories of two inverse limit structures p and p are considered as the cov-
ering space. The first structure is the analog of lim Z (Definition . The
second consists only of the standard points of this limit. The canonical uni-
versal cover p satisfies the first order Th(p) but not in general Th(p) [Ete22]
Example 5.7, Corollary 5.14].
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4. An L, ., categorical axiomatization is not claimed. Each model can be pre-

cisely characterized but the characterization is not in L, .,. See Remark[5.3.2}

. Finally, even this characterization depends on whether the variety under consid-

eration satisfies finite index conditions as in the modular case. Although FIC1
and FIC2 are true in the modular curve case, here the truth of F'IC1 for p is
actually equivalent to the characterizability of models of Tg}ﬁ(p) since [Ete22]
shows FIC2 is true.

Model Theory and Analysis

One can signal three different model theoretic approaches to analysis:

1. Axiomatic analysis studies behavior of fields of functions with operators but

without explicit attention in the formalism of continuity but rather to the alge-
braic properties of the functions. The function symbols of the vocabulary act
on the functions being studied; the functions are elements of the domain of the
model.

Example: DC Fy as discussed below.

. Definable analysis has a lower level of abstraction; the domain of the functions

remains the universe of the model. The functions being studied are the com-
positions of the functions named in the vocabulary; one cannot quantify over
them.

Example: o-minimality.

. Implicit analysis Attempts to provide ‘algebraic characterizations of important

mathematical structure by axiomatizations in infinitary logic that are categorical
in power. Example: the material in this paper.

The first two are discussed in [Ball8l §6.3]. The work expounded in this paper
has many commonalities with a prime example of axiomatic analysis: the study of
transcendence results for solutions of differential equations by the study of the w-

stable theory DC'Fy of differentially closed fields of characteristic zero. The notion
of ‘not integrable by elementary functions (Painlevé said ‘irreducible’) is formalized

by ‘the solution set is strongly minimal’ [Nagl4f]. The study of Schwartzian equa-
tions provides a general framework in which the j-function and modular curves are

explored. The work includes, variations on the Ax-Lindemann-Weierstrass theorem,

proofs that Generic differential equations are strongly minimal [DE23]] and Differen-
tial Chow Varieties are Kolchin-constructible [FLS17]], and analysis of strongly min-
imal solution sets defined by differential equations in terms of the Zilber trichotomy

and Ny-categoricity.
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But while the mathematical topics are the same, the aims are different: The covers
project tries to assign a categorical description of each cover. The DC'Fy approach
tries to understand transcendence results for solutions of the differential equations.

The crucial methodological difference is the two-sorted nature of the cover pro-
gram. The axiomatic analysis framework is preserved in that there is no explicit
treatment of convergence or continuity. But connecting the domain and target by
quotients under an explicit group action as well as the use of infinitary logic provides
tools not available in the earlier examples of axiomatic analysis.

8 Families of covers of algebraic curves

In recent work Zilber and Daw [DZ22b, [DZ22al| deal with families of covers of
curves. They build on earlier constructions we have discussed in this paper. Rather
than a cover of a single variety, albeit one that parameterized a family of varieties, an
entire family of such covers is studied and the covering space becomes an analytic
Zariski structure [Zil110]]. In [Zi]122]] the analysis of families is generalized by being
placed in a geometric algebraic setting.

The most salient difference between these works and those discussed earlier in
this paper is that, rather than a cover of a single variety, an entire family of covers
is now the main subject. Our earlier Definition 4.2.9] is now replaced by a basic
vocabulary consisting of three sorts, together with maps I'y \ H — C covering a
family of curves Sy (C).

8.1 Pseudo-analytic covers of modular curves

Major differences of paper [DZ22b]] from the earlier discussion of modular curves
include:

1. The basic vocabulary is now 3-sorted. More specifically, [DZ22b] considers
structures (D, G, jn, C) where the jn : H — Sy (C). The discrete group is
now given as a third sort incorporating a group operation (so its pregeometry is
locally modular, rather than trivial). This sort contains group with distinguished
subset (GL3 (Q), x,SLa(Z), E(Q), {d,, d; : ¢ € Q)}, where E is the col-
lection of elliptic elements of the group; those that have unique fixed points.
This structure is specified up to isomorphism by a sentence of L, .,. But not
all group elements are still named in the formal language.

2. The uniformizing functions j each map into P3(C) rather than into the arbi-
trarily high dimensional spaces of the maps [¢g] in [DHI7, [Ete22]. Further-
more, these are now defined over Q rather than over E%(X).

"F is the elliptic Mbius transformations and the dq, dq are specific diagonal matrices.
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3. As well as an almost quasiminimal axiomatization of the 3-sorted structure, the
domain is considered as a Zariski Analytic set with a quasiminimal geometry.
Both of these structures are shown to be uncountably categorical.

4. The special points are not named. However as in Definition {.3.5] they are
uniquely associated with elliptic elements of the group.

In many ways, this last distinction is the most important for the general program,
as naming of the special points trivializes some of the arithmetic. In [DZ22b]], the
structure of the family is proved to be categorical in all uncountable cardinalities.

8.2 Locally o-minimal covers of algebraic varieties

The paper [Zil22]] takes a more general approach. It abstracts away from naming
all elements of the discrete groups as earlier in this paper. The relations among the
universal and finite covers are given more abstractly as properties of maps from a
domain (whose smoothness is defined topologically and geometrically but not alge-
braically) onto families of algebraic varieties. This smoothness as well as the eventual
quasiminimality for curvesﬂ is controlled by external o-minimal structures.

Remark 8.2.1. 1. The formalization is new. For a fixed model R of the theory T’
of a fixed o-minimal expansion of the reals (e.g the restricted analytic functions)
a structure U(R) is defined. The resulting structure U(R) is an abstract Zariski
structurd’)

2. Generalizing the last paragraph of Section|S.1} in the standard model the domain
is a complex manifold U(C) with holomorphic maps f; onto algebraic varieties
X;i(C) with natural projections pr; ; among the X;. These analytic properties
are definable using theory of K-analytic sets in o-minimal expansions of the
reals developed in [PS08, [PS10]. We fix £ C C a subfield over which the
varieties X; are all defined.

3. The ostensibly two-sorted structure of 1) becomes one-sorted because the field
can be interpreted in the abstract Zariski structure. And the third sort of Sec-
tion[8.1 has disappeared because the group is no longer referenced directly.

4. The o-minimal geometry of algebraic closure in U(R) imposes the desired
quasiminimal geometry on U(R). The dimension function is denoted cdim for
‘combinatorial dimension’. Note that the ordering is not externally imposed on
U: rather, it is implied by the predicates described in (1) above and the dimen-
sion just mentioned.

8The set-up is for arbitrary algebraic varieties, but the categoricity result is only for curves and we restrict
to that case.

9Actually, U(R) = U(K) where K is taken as an algebraically closed field R + iR and U(R) is con-
structed analogously to U (C).
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5. As before, there is an L, ., sentence that axiomatizes the quasiminimal (ex-
cellent) geometry and whose models form an AEC that is categorical in all
cardinalities.

Zilber provides a proof of the following theorem [Zil22]:

Theorem 8.2.2 (Categoricity of families of smooth complex algebraic vari-
eties [[Z1122]]). Let U be a cover of a family of smooth complex algebraic variety,
formalized as in Remark and let $\(R) be its associated Ly, ,,-definable class. If
dimc(U) = 1, (i.e. if the varieties are curves) and cdim(R/k) is infinite, then $\(R)
is categorical in all uncountable cardinals.

Zilber remarks that in the case of higher dimensional varieties, categoricity in Ny
can still be proved.

Example 8.2.3. Here are some examples from [Zil22]]. Fix the o-minimal expan-
sion Ray, = Rexp,an Of the reals with the exponential function and the restricted (to
bounded intervals) analytic functions.

* LetI =N,U=C, fr(2) = exp(7), Dn = {z € C: —27n < Im(z) < 27mn}.
These are easily seen to provide a cover system.

* The j-function with variants jy as uniformizers for the modular curves I" y \ H
are examples; this study allows one to formalize their analytic properties in
terms of o-minimality. Finally, other examples include the Siegel half-space and
polarized algebraic varieties (these last examples are claimed but not developed
by Zilber).
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