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Abstract

We use iterations of elementary embeddings derived from the nonsta-
tionary ideal on ω1 to reprove some classical results about the number
of models of cardinality ℵ1 in various infinitary logics. We also consider
Galois stability in light of Burgess’s theorem on analytic equivalence re-
lations and find variants of the earlier theorems for Abstract Elementary
Classes.

In this paper we use iterated generic elementary embeddings to analyze the
number of models in ℵ1 in various infinitary logics and for Abstract Elementary
Classes. The arguments presented here are very much in the spirit of [7, 8], in
which these embeddings were used to prove forcing-absoluteness results. Those
papers focused on the large cardinal context. Here we work primarily in ZFC,
though we note several cases where our results can be extended assuming the
existence of large cardinals. The technique here provides a uniform method for
approaching and extending problems that Keisler et al. proved in the 1970’s.

We refer the reader to [1] for model-theoretic definitions such as Abstract
Elementary Class and for background on the notions used here. For example,
Theorem 0.2 is stated for atomic models of first order theories. The equivalence
between this context and models of a complete sentence in Lω1,ω is explained
in Chapter 6 of [1]. Abstract Elementary Classes form a more general context
unifying many of the properties of such infinitary logics as Lω1,ω, Lω1,ω(Q), and
Lω1,ω(aa).

A fundamental result in the study of ℵ1-categoricity for Abstract Elementary
Classes is the following theorem of Shelah (see [1], Theorem 17.11).

Theorem 0.1 (Shelah). Suppose that K is an Abstract Elementary Class such
that

• LS(K) = ℵ0;

• K is ℵ0-categorical;

• amalgamation fails for countable models in K1.

1Unlike first order logic, this is a strictly stronger statement than ‘amalgamation fails over
subsets of models of K.’
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Suppose also that 2ℵ0 < 2ℵ1 . Then there are 2ℵ1 non-isomorphic models of
cardinality ℵ1 in K.

Theorem 0.1 is one of the two fundamental tools to develop the stability
theory of Lω1,ω. The second is the following theorem of Keisler (see [1], Theorem
18.15).

Theorem 0.2 (Keisler). Suppose that K is the class of atomic models of a
complete first order theory, and that uncountably many types over the empty set
are realized in some uncountable model in K. Then there are 2ℵ1 non-isomorphic
models of cardinality ℵ1 in K.

The notion of ω-stability for sentences in Lω1,ω is a bit subtle and is more
easily formulated for the associated class K of atomic models of a first theory.
For countable A ⊆ M ∈ K, Sat(A) denotes the set of types over A realized in
atomic models2. K is ω-stable if for each countable M ∈ K, |Sat(M)| = ℵ0 3.

Combining these two theorems, Shelah showed (under the assumption 2ℵ0 <
2ℵ1) that a complete sentence of Lω1,ω which has less that 2ℵ1 models in ℵ1
has the amalgamation property in ℵ0 and is ω-stable. Crucially, the Shelah’s
argument relies on the assumption 2ℵ0 < 2ℵ1 in two ways. It first uses a variation
of the Devlin-Shelah weak diamond principle [5] for Theorem 0.1. Then using
amalgamation, extending Keisler’s theorem from types over the empty set to
types over a countable model is a straightforward counting argument, as it is in
this paper. We work on analogs of this analysis for arbitrary AEC in Section 4.

Using the iterated ultrapower approach we give a new proof of an extension
of Theorem 0.2 to the logic Lω1,ω(aa) (as claimed in [16]). Again, it suffices to
consider the case where amalgamation holds. Theorem 0.3 follows from Theorem
2.4 below.

Theorem 0.3. Suppose that K is the class of models of some fixed sentence of
Lω1,ω(aa), and that, for some countable set F of Lω1,ω(aa)-sentences, uncount-
ably many F -types are realized over some countable model in K. Suppose also
that 2ℵ0 < 2ℵ1 . Then there are 2ℵ1 non-isomorphic models of cardinality ℵ1 in
K.

We can prove a partial extension of Keisler’s Theorem for more general
Abstract Elementary Classes, as follows. Hypothesis (3) below corresponds to
one of the cases given by Burgess’s theorem for analytic equivalence relations
(see [11], Theorem 9.1.5). Theorem 0.4 follows from Theorem 4.6 below.

Theorem 0.4. Suppose that K is an Abstract Elementary Class such that

1. the set of reals coding countable structures in K and the corresponding
strong submodel relation ≺K are both analytic;

2. K satisfies amalgamation for countable models;

2This definition does not extend to uncountable A, see page 138 of [1]
3This requirement that M is a model is essential; Example 3.17 of [1] is ω-stable but there

are countable atomic A with |Sat(A)| = 2ℵ0
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3. there is a countable model in K over which there is a perfect set of reals
coding inequivalent Galois types.

Suppose also that 2ℵ0 < 2ℵ1 . Then there are 2ℵ1 non-isomorphic models of
cardinality ℵ1 in K.

Hypothesis (1) of Theorem 0.4 can be relaxed if one is willing to assume the
existence of a Woodin cardinal below a measurable cardinal.

Though the approach here can very likely be applied more generally, we
restrict our attention in this paper to the contexts of Theorems 0.3 and 0.4.

1 Iterations

The main technical tool in this paper is the iterated generic elementary embed-
ding induced by the nonstationary ideal on ω1, which we will denote by NSω1

.
We are using this as a device to reproduce Keisler’s constructions for expanding
a countable model of set theory in such a way that sets in the original model
get new members in the extension if and only if they are uncountable from the
point of view of the original model. Though this will not be relevant here, we
note that this these iterated embeddings and their relatives play a fundamental
role in Woodin’s Pmax forcing [24]. Most of this section is a condensed version
of Section 1 of [20].

Recall that NSω1
is closed under countable unions. Moreover, Fodor’s Lemma

(see, for instance, [14]) says that for any stationary A ⊆ ω1, if f : A → ω1 is
regressive (i.e., f(α) < α for all α ∈ A), then f is constant on a stationary
set. Forcing with the Boolean algebra (P(ω1)/NSω1

)M over a ZFC model M
gives rise to an M -normal ultrafilter U on ωM1 (i.e., every regressive function on
ωM1 in M is constant on a set in U). Given such M and U , we can form the
generic ultrapower Ult(M,U), which consists of all functions in M with domain
ωM1 , where for any two such functions f , g, and any relation R in {=,∈}, fRg
in Ult(M,U) if and only if {α < ωM1 | f(α)Rg(α)} ∈ U . By convention, we
identify the well-founded part of the ultrapower Ult(M,U) with its Mostowski
collapse. The corresponding elementary embedding j : M → Ult(M,U) (where
each element of M is mapped to the equivalence class of its corresponding con-
stant function on ωM1 ) has critical point (i.e., first ordinal moved) ωM1 (see Fact
1.2 and the discussion before). We say that such an embedding is derived by
forcing with (P(ω1)/NSω1

)M over M . Fodor’s Lemma implies that the iden-
tity function represents the ordinal ωM1 in the ultrapower. It follows then by
the definition of Ult(M,U) that for each A ∈ P(ω1)M , A ∈ U if and only if
ωM1 ∈ j(A). Each ordinal γ ∈ ωM2 is represented in Ult(M,U) by a function of
the form f(α) = o.t.(g[α]), where g : ω1 → γ is a surjection (and o.t. stands for
“ordertype”), so the ordinals of Ult(M,U) always contain an isomorphic copy of
ωM2 (which is less than or equal to j(ωM1 ), since each such f has range contained
in ωM1 ) as an initial segment. We call such a function f a canonical function for
γ. While it is possible to have well-founded ultrapowers of the form Ult(M,U)
(at least assuming the existence of large cardinals), this does not always happen.
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Since we want to deal with structures whose existence can be proved in ZFC,
we define the fragment ZFC◦ to be the theory ZFC − Powerset − Replacement
+ “P(P(ω1)) exists” plus the following scheme, which is a strengthening of ω1-
Replacement: every (possibly proper class) tree of height ω1 definable from set
parameters has a maximal branch (i.e., a branch with no proper extensions;
in the cases we are concerned with, this just means a branch of length ω1).
The theory ZFC◦ holds in every structure of the form H(κ) or Vκ, where κ is

a regular cardinal greater than 22
ℵ1

(recall that H(κ) is the collection of sets
whose transitive closures have cardinality less than κ). For us, the importance of
ZFC◦ is that it proves Fact 1.1 below, which implies that M is elementarily em-
bedded in Ult(M,U) whenever M is a model of ZFC◦ and U is an M -ultrafilter
on ωM1 .4 The proof of the fact is a direct application of the ω1-Replacement-like
scheme in ZFC◦.

1.1 Fact (ZFC◦). Let n be an integer. Suppose that φ is a formula with n+ 1
many free variables and f0, . . . , fn−1 are functions with domain ω1. Then there
is a function g with domain ω1 such that for all α < ω1,

∃xφ(x, f0(α), . . . , fn−1(α))⇒ φ(g(α), f0(α), . . . , fn−1(α)).

We let j[x] denote {j(y) | y ∈ x}. One direction of Fact 1.2 below follows
from the fact that every partition in M of ωM1 into ω many pieces must have
one piece in the ultrafilter U , so, if x is countable then every function from ω1

to x in M (i.e., every representative of a member of j(x)) must be constant on
a set in U (so must represent a member of j[x]). For the other direction, note
that if x is uncountable then any injection from ω1 to x represents an element
of j(x) \ j[x] in the ultrapower Ult(V,U).

1.2 Fact. Suppose that M is a model of ZFC◦, and that j : M → Ult(M,U) is
an elementary embedding derived from forcing over M with (P(ω1)/NSω1

)M .
Then for all x ∈M , j(x) = j[x] if and only if x is countable in M .

If M is a countable model of ZFC◦ then there exist M -generic filters for
the partial order (P(ω1)/NSω1

)M . Furthermore, if j : M → N is an ultrapower
embedding of this form (where N may be ill-founded), then P(P(ω1))N is count-
able (recall that the ultrapower uses only functions from M), and there exist
N -generic filters for (P(ω1)/NSω1)N . We can continue choosing generic filters
in this way for up to ω1 many stages, defining a commuting family of elementary
embeddings and using this family to take direct limits at limit stages.

We use the following formal definition.

1.3 Definition. Let M be a model of ZFC◦ and let γ be an ordinal less than or
equal to ω1. An iteration of M of length γ consists of models Mα (α ≤ γ), sets
Gα (α < γ) and a commuting family of elementary embeddings jαβ : Mα →Mβ

(α ≤ β ≤ γ) such that

4An M -ultrafilter on ω1 is a maximal proper filter contained in P(ω1)M ; in the cases we
are interested in, the filter is not an element of M .
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• M0 = M ,

• each Gα is an Mα-generic filter for (P(ω1)/NSω1
)Mα ,

• each jαα is the identity mapping,

• each jα(α+1) is the ultrapower embedding induced by Gα,

• for each limit ordinal β ≤ γ, Mβ is the direct limit of the system

{Mα, jαδ : α ≤ δ < β},

and for each α < β, jαβ is the induced embedding.

The models Mα in Definition 1.3 are called iterates of M . When the individ-
ual parts of an iteration are not important, we sometimes call the elementary
embedding j0γ corresponding to an iteration an iteration itself. For instance,
if we mention an iteration j : M → M∗, we mean that j is the embedding j0γ
corresponding to some iteration

〈Mα, Gβ , jαδ : α ≤ δ ≤ γ, β < γ〉

of M , and that M∗ is the final model of this iteration.

1.4 Remark. We emphasize that for any countable model M of ZFC◦ there
are 2ℵ0 many M -generic ultrafilters for (P(ω1)/NSω1

)M . It follows that there
are 2ℵ1 many iterations of M of length ω1.

1.5 Remark. As noted above, the ordinals of Ult(M,U) always contain an
isomorphic copy of ωM2 as an initial segment, whenever M is a countable (well-
founded or illfounded) model of ZFC◦ and U is an M -normal ultrafilter. It
follows from this that whenever

〈Mα, Gβ , jαδ : α ≤ δ ≤ ω1, β < ω1〉

is an iteration of M , ω
Mω1
1 contains a closed copy of ω1 corresponding to the

members of the set {ωMα
1 : α < ω1}. This set is called the critical sequence of

the iteration.

Fact 1.6 below says that the final model of an iteration of length ω1 is
correct about uncountability. It is an immediate consequence of Fact 1.2 and
the definition of iterations. This gives another proof of Corollary B on page 138
of [16]. Corollary A on page 137 can also be proved by considering ideals on
other cardinals. The last sentence of Fact 1.6 follows from the remarks at the
end of the second paragraph of this section. The second author observed that
the absoluteness of the existence of a model in ℵ1 of an arbitrary sentence is
Lω1,ω follows easily from Fact 1.6; it is shown in [6] that this argument can be
carried out using Corollary A of [16].
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1.6 Fact. Suppose thatM is a model of ZFC◦, and thatMω1 is the final model of
an iteration of M of length ω1. Then for all x ∈Mω1 , Mω1 |= “x is uncountable”
if and only if {y | Mω1

|= x ∈ y} is uncountable. Furthermore, ωM2 is a proper

initial segment of ω
Mω1
1 .

Fact 1.7 records the fact that one can easily make Mω1
correct about sta-

tionarity for subsets of its ω1 (again, this is due to Woodin[24]). Note that the
notion of stationarity makes sense for any uncountable set (so in particular, for

ω
Mω1
1 as below, even if it is ill-founded) : Y ⊆ [X]ℵ0 is stationary if and only if

every for every function F : X<ω → X there is a nonempty element of Y closed
under F .

1.7 Fact. Suppose that M is a model of ZFC◦, {Bξ : ξ < ω1} is a partition of
ω1 into stationary sets and

〈Mα, Gβ , jα,γ : α ≤ γ ≤ ω1, β < ω1〉 (1)

is an iteration of M of length ω1. Suppose that for every α < ω1 and every
A ∈ (P(ω1) \NSω1

)Mα there is a ξ < ω1 such that, for all β ∈ ω1 \ α,

β ∈ Bξ ⇒ jα,β(A) ∈ Gβ .

Then for all A ∈ P(ω1)Mω1 , Mω1 |= “A is stationary” if and only if A is sta-
tionary.

The following lemma gives a construction for building generic ultrapowers
whose ω1’s are illfounded, though, as remarked above, they must be illfounded
up to at least the ω2 of the ground model. Given a function f : ω1 → ω1, we let
If be the normal ideal on ω1 generated by sets of the form

{β < ω1 | g(β) ≥ f(β)},

where g is a canonical function for an ordinal less than ω2. Whenever γ <
γ′ < ω2, g is a canonical function for γ and γ′ is a canonical function for γ′, it
follows that {β < ω1 | g(β) < g′(β)} contains a club. It follows that for each
S ∈ P(ω1), S ∈ If if and only if {β ∈ S | f(β) ≥ g(β)} is nonstationary for
some canonical function g for an element of ω2. If 〈σβ : β < ω1〉 is a 3-sequence
and π : ω1 → ω1 × ω1 is a bijection, then ω1 6∈ If , where f : ω1 → ω1 is the
function defined by letting h(β) be o.t.(π[β])+1 whenever π[β] is a wellordering
(and 0 otherwise). We note that 3 is forced by the partial order which adds a
subset of ω1 by countable initial segments, and that this partial order does not
add subsets of ω. Some hypothesis beyond ZFC◦ is needed for Lemma 1.8, as
it is false for models in which the nonstationary ideal is saturated.

Lemma 1.8. Suppose that M is a countable transitive model of ZFC◦, and that
f∗ : ωM1 → ωM1 is a function in M such that ω1 6∈ If0 . Then there is an M -
normal ultrafilter U such that the wellfounded ordinals of Ult(M,U) are exactly
ωM2 .
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Proof. Applying the usual construction of a M -normal ultrafilter, it suffices to
show that if

• S is a subset of ωM1 in M ,

• f : S → ωM1 ,

• S 6∈ Ih,

• {Tα : α ∈ ωM1 } is a collection of stationary subsets of S in ω1 whose
diagonal union is S,

then there exist α < ωM1 and S′ ⊆ Tα and f ′ : S′ → ω1 in M such that

• for all β ∈ S′, f ′(β) < f(β),

• S′ 6∈ If ′ .

This implication gives a recipe for building an M -normal filter with the property
that every function in M from ωM1 to the ordinals either represents an ordinal
below ωM2 or dominates on a set in the filter another function which does not
represent an ordinal below ωM2 . The recipe uses an enumeration {hn : n ∈ ω}
of (ωω1

1 )M . In each step, starting with f = f∗ and S = ω1, it applies the
implication above to min{f, hn} (for the next n, considered in order) if S 6∈
Imin f,hn , and to f otherwise.

To see that the implication holds, fix f and S as given. Since If is normal
and S 6∈ If , there is an α such that S ∩Tα 6∈ If . Let S0 be the set of β ∈ S ∩Tα
for which f(β) is a successor ordinal. If S0 is not in If , then let S′ = S0 and
let f ′(β) = f(β) − 1 for β ∈ S′. Then since adding 1 to the values of any
canonical function for any γ < ω2 gives a canonical function for γ + 1, we have
that S′ 6∈ If ′ .

If S0 ∈ If , there is an If -positive S1 ⊆ S ∩ Tα such that f(β) is a limit
ordinal for all β ∈ S1 . Let fn : S1 → ω1 (n ∈ ω) be functions such that for
each β ∈ S1, 〈fn(β) : n < ω〉 is an increasing sequence with supremum f(β). It
suffices to see that S1 6∈ Ifn for some n ∈ ω. Supposing towards a contradiction
that S1 ∈ Ifn for each n ∈ ω, fix, for each n a canonical function gn (for some
ordinal γn < ωM2 ) such that {β ∈ S1 | fn(β) ≥ gn(β)} is nonstationary. Let γ
be an element of ωM2 greater than all the gn’s, and fix a canonical function g for
γ. Then for each n ∈ ω the set {β ∈ S1 | fn(β) > g(β)} is nonstationary, which
means that the set {β ∈ S1 | f(β) > g(β)} is nonstationary, which means that
S1 ∈ If , giving a contradiction.

The following consequence of large cardinals (due to Woodin, but see [7])
will be used in Remark 4.7 and Section 5. Given an ordinal δ, Col(ω1, <δ) is the
partial order which consists of countable partial functions f : ω1 × δ → δ, with
the stipulation that f(α, β) < β for all (α, β) ∈ dom(f), ordered by inclusion.
This partial order preserves stationary subsets of ω1 and does not add countable
sets of ordinals. If δ is a regular cardinal, then δ is the ω2 of any forcing extension
by Col(ω1, <δ).

A model whose iterates are all wellfounded is said to be iterable.
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Theorem 1.9. Suppose that κ is a regular cardinal, λ < κ is a measurable
cardinal and δ < λ is a Woodin cardinal. Let X be a countable elementary sub-
model of either Vκ or H(κ), with δ and λ in X. Let M be the transitive collapse
of X, and let δ̄ be the image of δ under this collapse. Let g ⊆ Col(ω1, <δ̄) be
an M -generic filter. Then M [g] is iterable.

2 Lω1,ω(aa)

Briefly, the logic Lω1,ω is the extension of first order logic where one allows
countable conjunctions and disjunctions of formulas, except in the case where
this would give rise to formulas with infinitely many free variables. Each formula
in Lω1,ω has a rank, the number (less than ω1) of steps it takes to construct the
formula from atomic formulas (see the appendix to [2]). More explicitly, we may
think of sentences of Lω1,ω as well-founded trees of height of at most ω; then
the rank of a sentence is just the rank of the corresponding tree in the sense
of Section 3. An ill-founded model of ZFC◦ can contain objects which it thinks
are sentences of Lω1,ω which are really not, i.e., if the rank of the sentence as
computed in the model is an ill-founded ordinal of the model. On the other
hand, if a (real) sentence φ of Lω1,ω exists in an ω-model M of ZFC◦, then M
computes the rank correctly, and is therefore well-founded at least up the rank
of φ. Furthermore, M correctly verifies whether the models that it sees satisfy
φ. In both cases, the computation of the rank and the verification of the truth
value, M runs exactly the same process that is carried out in V .

The logic Lω1,ω(aa) extends Lω1,ω by adding the quantifier aa, where aax ∈
[X]ℵ0 φ means “for stationarily many countable x ⊆ X, φ holds”, i.e., for any
function f : X<ω → X, there is a countable x ⊆ X closed under f such that x
satisfies φ. Note that “there exist uncountably many x ∈ X such that φ holds”
can be expressed using aa. Note also that if M is a model of ZFC◦ as in conclu-
sion of Fact 1.7, i.e., such that for all A ∈ P(ω1)Mω1 , Mω1 |= “A is stationary”
if and only if A is stationary, then if X is a set in M of cardinality ℵ1 (in M)
and Y is a subset of [X]ℵ0 in M , then Mω1

|= “Y is stationary” if and only if
Y is stationary

The second parts of the equivalences in the following theorems are Σ∼
1
1, and

therefore absolute. The forward directions simply involve taking the transitive
collapse of a countable elementary submodel of suitable initial segment of the
universe. The reverse directions involve building iterations as in the previous
section (using Fact 1.7 for correctness about stationarity). Since the final models
of these iterations are well-founded up to at least the ω2 of the corresponding
original models, they verify correctly truth for members of the set F for the
models that they see.

Theorem 2.1. Given a sentence φ of Lω1,ω(aa), the existence of a model of
size ℵ1 with a member satisfying φ is equivalent to the existence of a countable
model of ZFC◦ containing {φ} ∪ω which thinks there is a model of size ℵ1 with
a member satisfying φ.
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Theorem 2.2. Given a countable fragment F of Lω1,ω(aa), the existence of a
model of size ℵ1 satisfying ℵ1-many F -types is equivalent to the existence of a
countable model of ZFC◦ containing F ∪ {F} ∪ ω which thinks there is a model
of size ℵ1 satisfying ℵ1-many F -types.

We prove in Theorem 2.4 below that the second part of the equivalence in the
previous theorem implies that there are 2ℵ1 many models of size ℵ1, pairwise
satisfying only countably many F -types in common. First we note an easier
argument for getting ℵ1 many such models.

Suppose that M is an ω-model of ZFC◦ and x̄ = 〈xα : α < ωM1 〉 is a sequence
of distinct subsets of ω in M . Then given any iteration of M as above, x̄ will

be an initial segment of j0,ω1
(x̄) = 〈xα : α < ω

Mω1
1 〉, and xα 6∈ Mβ whenever

α ≥ ωMβ

1 (by the remarks before Fact 1.2).
Furthermore, if A is any countable set of reals not in M , one can easily build

an iteration of M such that A ∩Mω1
= ∅. Now let F be a countable fragment

of Lω1,ω(aa), and let M be a ω-model of ZFC◦ in which F is countable, which
thinks there exists a model N of size ℵ1 realizing uncountably many F -types.
Then there are uncountably many iterations {jξ : ξ < ω1} of M producing
models {Mξ

ω1
: ξ < ω1} such that the models Mξ

ω1
pairwise have only the reals

from M in common, and thus the models jξ(N) pairwise realize just countably
many F -types in common.

To get 2ℵ1 many uncountable iterates pairwise having just countably many
reals in common, we use Theorem 2.3 below. Note that one can force MAℵ1
(the restriction of Martin’s Axiom which asserts the existence of a filter meeting
any ℵ1 many maximal antichains from a c.c.c. partial order) to hold over any
countable model of ZFC◦. By “distinct iterations” we mean literally iterations
that are not the same set, formally speaking. In particular, this means (using
the notation from Theorem 2.3) that there is some β such that Gβ 6= G′β . When

β is minimal with this property, Mβ = M ′β and there is a set A ∈ P(ω1)Mβ such

that A ∈ Gβ and ω
Mβ

1 \A ∈ G′β , since Gβ and G′β are distinct Mβ-ultrafilters.

Theorem 2.3 (Larson [19]). If M is a countable model of ZFC◦ + MAℵ1 and

〈Mα, Gβ , jα,γ : α ≤ γ ≤ ω1, β < ω1〉

and
〈M ′α, G′β , j′α,γ : α ≤ γ ≤ ω1, β < ω1〉

are two distinct iterations of M , then

P(ω)Mω1 ∩ P(ω)M
′
ω1 ⊂Mβ ,

where β is least such that Gβ 6= G′β.

For the reader’s convenience, we sketch the proof of the version of Theorem
2.3 for iterations of length 1 (which appears in [9]). Suppose that M is a count-
able model of ZFC◦ + MAℵ1 and let G and G′ be two distinct M -generic filters
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for (P(ω1)/NSω1)M . Then there exist disjoint sets A, A′ in (P(ω1 \ NSω1)M

such that A ∈ G and A′ ∈ G′. Let N = Ult(M,G) and N ′ = Ult(M,G′), and fix
x ∈ P(ω)N \M and x′ ∈ P(ω)N

′ \M . Then there exist functions f : A→ P(ω)M

and f ′ : A′ → P(ω)M representing x in N and x′ in N ′ respectively. Applying
Fodor’s Lemma we see that, since x and x′ are not in M , there exist B ⊆ A and
B′ ⊆ A′ in G and G′ respectively on which f and f ′ (respectively) are injective.
Applying Fodor’s Lemma again we can thin B and B′ to sets C and C ′ on which
the ranges of f and f ′ are disjoint and contain only infinite, co-infinite sets, by
subtracting nonstationary sets. Finally, it is a consequence of MAℵ1 (see [15],
for instance) that for any two disjoint sets of infinite, co-infinite subsets of ω,
there is a subset of ω which intersects each member of the first set infinitely,
and no member of the second set infinitely. Thus if M satisfies MAℵ1 there is
such a z ⊆ ω in M with respect to the ranges of f�C and f�C ′, which means
that x ∩ z is infinite and x′ ∩ z is not.

Using this, one gets the following version Keisler’s theorem (see Fact 18.15
of [1]), for Lω1,ω(aa).

Theorem 2.4. Let F be a countable fragment of Lω1,ω(aa). If there exists a
model of cardinality ℵ1 realizing uncountably many F -types, there exists a 2ℵ1-
sized family of such models, each of cardinality ℵ1 and pairwise realizing just
countably many F -types in common.

Proof. Let N be a model of cardinality ℵ1 realizing uncountably many F -types,

let X be a countable elementary submodel of H((22
ℵ1

)+) containing {N} and
the transitive closure of {F}. Let M be the transitive collapse of X, and let N0

be the image of N under this collapse. Let M ′ be a c.c.c. forcing extension of
M satisfying Martin’s Axiom. By choosing a pair of distinct generic ultrafilters
for each model we can build a tree of iterates of M ′ giving rise to 2ℵ1 many
distinct iterations of M ′ of length ω1 (as in Remark 1.4). Since F -types can
be coded by reals using an enumeration of F in M , the images of N0 under
these iterations will pairwise realize just countably many F -types in common,
by Theorem 2.3.

If one assumes in addition that 2ℵ0 < 2ℵ1 , then, as in Theorem 18.16 of
[1], one gets that if there exists a model of cardinality ℵ1 realizing uncountably
many types over some countable subset, then there exists a 2ℵ1-sized family
of nonisomorphic models. That is, if there is an uncountable model N with
a countable subset A over which uncountably many types are realized, then
there are models Nf (f ∈ 2ℵ1) all containing the same countable set A and all
realizing different sets of types over A, so that any isomorphisms of any two Nf1
and Nf2 into a third Nf3 must map A to different sets (which is impossible if
2ℵ1 > 2ℵ0).

We conclude this section by showing that a strengthening of Lemma 5.1.8
of [1] can be proved using Lemma 1.8.

Lemma 2.5. Suppose that φ is a sentence of Lω1,ω(aa) in a language with a
binary predicate <, and suppose that there is a model M of φ for which the
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ordertype of (M,<) is ω1. Then there is a model M ′ of φ of cardinality ℵ1 such

that (M ′, <) embeds Q. Furthermore, if θ is a regular cardinal greater than 22
ℵ1

,
then M ′ can be taken to be an element of a model N of ZFC◦ such that (M ′, <)
is isomorphic to ωN1 and M ′ satisfies every formula in N that M does in H(θ).

Proof. Let θ′ be a regular cardinal greater than θ and let X be a countable
elementary submodel of H(θ′) with θ,M ∈ X. Let N0 be the transitive collapse
of X∩H(θ), let N1 be the transitive collapse of X and let M0 be the image of M
under these collapses (it is the same under each). Let N2 be a forcing extension
of N1 (with the same reals) satisfying 3. Applying Lemma 1.8 (for the first step
of the iteration) and Fact 1.7 (for the rest), we can find an iteration j : N2 → N
of length ω1 such that that wellfounded ordinals of N are exactly ωN2

2 . Letting
M ′ be the image of M0 under this iteration, we have that (M ′, <) is isomorphic
to ωN1 , which embeds Q as it is illfounded. Furthermore, M ′ ∈ j(N0), M ′

satisfies the same sentences in j(N0) that M does in H(θ) and ω
j(N0)
1 = ωN1 .

3 Analytic equivalence relations

For our purposes, a tree is a set of finite sequences closed under initial segments.
If T ⊆ X<ω is a tree, for some set X, then [T ] is the set of x ∈ Xω such that
x�n ∈ T for all n ∈ ω. If T ⊆ (X × Y )<ω, for some sets X and Y , then the
projection of T , p[T ] is the set of f ∈ Xω such that for some g ∈ Y ω, (f, g) ∈
[T ] (this definition involves a standard identification of pairs of sequences with
sequences of pairs). For any positive n ∈ ω, a subset of (ωω)n is analytic if it
has the form p[T ] for some tree T ⊆ (ωn × ω)<ω.

Recall that for a tree T ⊆ X<ω for some set X, the ranking function
rankT : T → Ord ∪ {∞} is defined in such a way that for all t ∈ T , rankT (t)
is the smallest ordinal α such that α > rankT (s) for all proper extensions s
of t in T , and rankT (t) = ∞ if no such α exists (which happens if and only
if rankT (s) = ∞ for some proper extension s of t). We write rank(T ) for
rankT (〈〉). Then rank(T ) =∞ if and only if T has an infinite branch.

Now suppose that M is an ω-model of ZFC◦, and T ⊆ X<ω is a tree in M ,
for some X in M . If rank(T )M = ∞, then there is an infinite branch through
T in M . If rank(T )M is in the well-founded part of M , then there is no infinite
branch through T (in V ). It follows easily from the definition of rank(T ) that
if rank(T )M is an ill-founded ordinal of M , then T has an infinite branch in V
but no infinite branch in M . If M is ill-founded then there will be trees T in
M for which this happens.

Given sets X, Y , a tree T ⊆ (X × Y )<ω and s∗ ∈ X<ω, Ts∗ is the set of
(s, t) ∈ T such that s is compatible with s∗ (i.e., one of them extends the other).

Lemma 3.1. Suppose that M is a (possibly ill-founded) ω-model of ZFC◦, and
that T ⊆ (X × Y )<ω is a tree in M , for some sets X and Y . Suppose that x is
the unique element of p[T ]. Then x ∈M .

Proof. Since p[T ] is nonempty, rank(T )M cannot be in the well-founded part of
M . If rank(T )M =∞, then [T ]∩M is nonempty, which means that p[T ]∩M is
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nonempty. Suppose then that rank(T )M is an ill-founded ordinal of M . Then,
starting with with 〈〉, M can find all the initial segments of x by the following
process. Suppose that s ∈ X<ω is an initial segment of x. Then rank(Ts)

M is
an ill-founded ordinal of M . Since s is an initial segment of the unique element
of p[T ], the unique integer n such that s_〈n〉 is an initial segment of x is also
the unique integer n such that

sup{rankMT (s_〈n〉, t) : (s_〈n〉, t) ∈ T}

is greater than
sup{rankMT (s_〈m〉, t) : (s_〈m〉, t) ∈ T}

for all m ∈ ω \ {n}, since the former set contains ill-founded ordinals of M and
the latter contains only well-founded ordinals.

An interesting aspect of the proof just given is that it does not give an
element of [T ] in M .

Now suppose that E is an analytic equivalence relation on an analytic set
X ⊆ ωω. By the Burgess Trichotomy Theorem (Theorem 9.1.5 of [11]), either E
has at most ℵ1 many equivalence classes, or there is a perfect set P consisting of
E-inequivalent members of X. The following lemma shows that in this second
case, if M is an ω-model containing codes for E and P , and x ∈ ωω ∩M is E-
equivalent to a member of P , then this member of P is also in M . The lemma
follows from Lemma 3.1 plus the fact that the set of members of P which are
E-equivalent to x is an analytic set with a unique member.

Lemma 3.2. Suppose that M is a (possibly ill-founded) ω-model of ZFC◦, and
E is an analytic equivalence relation on ωω which is the projection of a tree T
on ω × ω × ω in M . Suppose that P is a perfect set of E-inequivalent members
of ωω such that P = [S] for a tree S ⊆ ω<ω in M . Let x ∈M ∩ωω be such that
xEy for some y ∈ P . Then y ∈M .

4 Abstract Elementary Classes

In this section we work with an abstract elementary class K in a countable
vocabulary τ with Löwenheim number ℵ0. To study the countable members of
K in descriptive set theoretic structure we regard them as collections of relations
(indexed by τ) on ω. The class of countable structures is a Polish spaces and
classes defined by a sentence Lω1,ω are Borel.

We study classes satisfying the following additional condition.

Definition 4.1. An abstract elementary class K is analytically presented if the
set of countable models in K, and the corresponding strong submodel relation
≺K, are both analytic.

This requirement is not as ad hoc as it might seem. Shelah’s presentation the-
orem (Theorem 4.15 of [1]) asserts that any AEC of τ -structures with countable
Löwenheim-Skolem can be presented as the reducts to τ of models of a first order
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theory in a countable language τ ′ which omit a family of at most 2ℵ0-types. If
the collection of omitted types is countable, we call these PCΓ(ℵ0,ℵ0) classes5.
Sentences in Lω1,ω(Q) are PCΓ(ℵ0,ℵ0). To say an AEC has a PCΓ(ℵ0,ℵ0)
implies as well that the strong substructure relation is PCΓ(ℵ0,ℵ0).

Note first than any PCΓ(ℵ0,ℵ0)-presented AEC is analytically presented,
as omission of a countable family of types in τ ′ is Borel, and taking the reduct
to τ makes the class of countable models analytic.

The assumption that K is analytically presented implies that the countable
models of K are the countable models of a PCΓ(ℵ0,ℵ0) class. Since any AEC K
is determined by its restriction to models of cardinality at most the Löwenheim
number, this restriction determines K. But it does not follow immediately that
an analytically presented K is a PCΓ(ℵ0,ℵ0) class. Example 4.29 of [1] is a
suggestive but not determinative example. Models in ℵ1 of PCΓ(ℵ0,ℵ0)-classes
are studied extensively in the first chapter of [23].

Following [1] we define for K a reflexive and symmetric relation ∼0 on the
set of triples of the form (M,a,N), where M and N are countable structures in
K with M ≺K N , and a ∈ N \M . We say that (M0, a0, N0) ∼0 (M1, a1, N1) if
M0 = M1 and there exist a structure N ∈ K and strong embeddings f0 : N0 →
N and f1 : N1 → N such that f0�M0 = f1�M1 and f0(a0) = f1(a1). We let ∼
be the transitive closure of ∼0. The equivalence classes of ∼ are called Galois
types. If an abstract elementary class is given syntactically the Galois types
over a countable M refine the syntactic types and in general there may be more
Galois types than syntactic types (e.g. [3]).

There is a natural coding of triples (M,a,N) as above by elements of ωω, and
for analytically presented AEC the set B consisting of those x ∈ ωω coding such
a triple is an analytic set. Furthermore, if we let E be the equivalence relation
on B such that xEy if and only if the triples coded by x and y are ∼-equivalent,
then E is analytic. For a given model M , we let EM be the equivalence relation
E restricted to the set BM consisting of codes for triples whose first element is
M . Then EM is also analytic.

By Burgess’s Trichotomy, for each such M there are either at most ℵ1
many EM -equivalence classes, or a perfect set of EM -inequivalent reals. For
the syntactic types discussed in the earlier sections the intermediate possibility
of ℵ1-types is impossible, as for each countable fragment of (Lω1,ω, Lω1,ω(Q),
Lω1,ω(aa)) the set of types is Borel (See 4.4.13 in [21].) But for analytically
presented AEC all three parts of the trichotomy occur (see Example 4.4 below)
and Theorem 0.2 does not generalize in full. Following [23], we use the following
definitions.

4.2 Definition. The abstract elementary class (K,≺) is said to be Galois ω-
stable if for each countable M ∈ K, EM has countably many equivalence classes,
and almost Galois ω-stable6 if for each countable M ∈ K, EM has at most ℵ1

5Shelah writes PCℵ0
or PC(ℵ0,ℵ0), suppressing the type omission, and Keisler writes

PCδ over Lω1,ω for this notion.
6Shelah, e.g. [13] calls this notion ‘weak stability’. Since we discuss a second notion of

weak stability ([12] where the ‘weak’ is more intrinsic, we change to ‘almost’ here.
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many equivalence classes.

In the infinitary case and certainly for AEC, we must consider stability with
respect to the cardinalities of the models under consideration; the analog for
Galois types of the first order theorem that ω-stability implies stability in all
powers fails except under very restrictive conditions. Baldwin and Kolesnikov
[3] exhibit complete sentences that are ω-Galois stable but not Galois stable in
ℵ1.

4.3 Example. Consider the abstract elementary class (K,≺) where K is the
class of well-order types of length ≤ ω1 and ≺ is initial segment. (K,≺) has
amalgamation and joint embedding in ℵ0, is almost Galois ω-stable and ℵ1-
categorical.

In view of Example 4.3, there is no hope of a direct generalization of The-
orem 0.2 to arbitrary Abstract Elementary Classes. The existence of almost
Galois ω-stable but not Galois ω-stable classes is one obstruction. This ex-
ample seems extreme as there are no models beyond ℵ1 and no nice syntactic
description of the class. In particular it is not analytically presented. But, we
can find apparently more tractable examples of almost ω-Galois stability.

A linear order L is 1-transitive if for any a, b in L, there is an automorphism of
L taking a to b. The class of groupable (equivalently 1-transitive) linear orders
has exactly ℵ1 countable models. (See Corollary 8.6 of [22].) The following
example is a variant by Jarden of a somewhat less natural version in Chapter 1
of [23].

4.4 Example. Let (K,≺) be the class of partially ordered sets such that each
connected component is a countable 1-transitive linear order with M ≺ N if
M ⊆ N and no component is extended. Since there are only ℵ1-isomorphism
types of components this class is almost Galois ω-stable. This AEC is analyt-
ically presented and definable as a reduct of a class in L(Q). But it has 2ℵ1

models in ℵ1 and 2ℵ0 models in ℵ0.

This example is unsatisfactory in two respects : it uses the Q quantifier, and
it involves taking a reduct.

We sketch an argument (told to us by Kesälä) that implies every almost
ω-Galois stable sentence of Lω1,ω with the amalgamation property and jep is
ω-Galois stable. Hyttinen and Kesälä introduced the important notions: finite
character and weak Galois type. An AEC K has finite character if for M ⊆ N
with M,N ∈ K: if for every finite a ∈ M there is a K-embedding of M into
N fixing a, then M ≺K N . The key point is that any sentence of Lω1,ω has
finite character and any such AEC is very close to Lω1,ω. Generally speaking,
sentences of Lω1,ω(Q) do not have finite character. Two points have the same
weak Galois type over a model M if they have the same Galois type over every
finite subset of M .

It follows easily from work of Kueker [18] and Hyttinen-Kesälä [12] that
for countable models of an AEC with finite character satisfying the amalgama-
tion and joint embedding properties, almost Galois ω-stability implies Galois
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ω-stability. Here is the argument. Hyttinen and Kesala call an AEC satisfying
these conditions weakly Galois ω-stable if there are only countably many weak
types over each countable model. For such classes, Hyttinen and Kesala show,
if two elements have the same weak Galois type over a countable model M
they have the same Galois type over M . Kueker proves (Corollary 4.9 of [18]
that for finitary AEC (with ap) points a and b have the same weak-Galois type
over a countable model M if and only if tp∞,ω(a/M) = tp∞,ω(a/M)7. Thus
for countable models of such sentences, syntactic ω-stability implies Galois ω-
stability. Since we noted above that almost Galois ω-stability implies syntactic
ω-stability (the set of syntactic types is Borel and so can’t have cardinality ℵ1),
we get the following.

4.5 Fact. If a complete sentence in Lω1,ω-sentence, satisfying amalgamation
and joint embedding, is almost Galois ω-stable then it is Galois ω-stable.

Baldwin, Larson, and Shelah [4] (see Theorem 5.4 below) have shown a
related fact: if a PCΓ(ℵ0,ℵ0) class satisfying amalgamation has only countably
many models in ℵ1 then it is Galois ω-stable if it is almost Galois ω-stable.

We deal with the case that there is a perfect set of EM -inequivalent reals,
for some M . This perfect set plays roughly the role that the uncountable set
of types played in Theorem 2.4. Since a Galois type is not a real but a set
of reals, we cannot reproduce the same argument from an uncountable set of
Galois types, but rather need a perfect set.

In the following theorem, we do not assume that K satisfies amalgamation or
the joint embedding property. However, one would typically use amalgamation
to obtain hypothesis (4) of the theorem.

Theorem 4.6. Suppose that

1. K is an analytically presentable abstract elementary class;

2. N is a K-structure of cardinality ℵ1, and N0 is a countable structure with
N0 ≺K N ;

3. P is a perfect set of EN0
-inequivalent members of ωω;

4. uncountably many members of P code triples which are ∼-equivalent to
triples (N0, a,N

′) such that N ′ ≺K N .

Then there exists a family of 2ℵ1 many K-structures of cardinality ℵ1, each
containing N0 and pairwise realizing just countably many P -classes in common.

Proof. Fix a regular κ > 22
ℵ1

, and let Y be a countable elementary submodel
of H(κ) with K∩H(ℵ1), N0, N and P in Y . Let M∗ be the transitive collapse
of Y , and let N∗ be the image of N under this transitive collapse. There is
a tree S ⊆ ω<ω in M∗ such that P = [S]. Let M0 be a forcing extension of
M∗ satisfying MAℵ1 . Let X be the set of reals of M0 ∩ P coding triples which

7Note this type is evaluated in a fixed Galois-saturated monster model.
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are ∼-equivalent to triples (N0, a,N
′) with N ′ ≺K N∗. Then X is uncountable

in M0. By Theorem 2.3, there are 2ℵ1 many iterates of M0 pairwise having
just countably many reals in common. Suppose that M1 and M2 are two such
iterates via embeddings j1 and j2, and that N1 and N2 are the corresponding
images of N∗. Then there is a real y ∈ j1(X) such that y 6∈ N2. Since y ∈
[j1(S)] = [S], y ∈ P and y codes a triple (M,a,N ′), where N ′ ≺K N1. If N1

and N2 were isomorphic via a map fixing M , then there would be a real x in
N2 which is EM -equivalent to y. Then Lemma 3.2 implies that y ∈ N1, which
gives a contradiction.

4.7 Remark. The assumption in the previous theorem that the set of reals
coding countable structures in K be analytic can be can be relaxed to the
requirement this set of codes be universally Baire (see [10]), if one is willing to
assume the existence of a Woodin cardinal with a measurable cardinal above
(see [7, 8]).

5 Absoluteness of ℵ1-categoricity

In first order logic, the Baldwin-Lachlan equivalence between ‘ℵ1-categorical’
and ‘ω-stable with no two-cardinal models’ makes the notion of ℵ1-categoricity
Π1

1 and hence absolute. Shelah provided an example of an AEC, definable
in L(Q), which is ℵ1-categorical under MA and has 2ℵ1 models in ℵ1 under
2ℵ0 < 2ℵ1 . It is an open question whether there is such a non-absolute example
in Lω1,ω. See [2] for some partial results.

Shelah’s L(Q)-example fails amalgamation in ℵ0 and is not ω-stable under
any of the definitions. We focus here on the question of whether assuming
amalgamation is enough to make ℵ1-categoricity absolute for analytically pre-
sented AEC. Note that amalgamation for countable models in an analytically
presented AEC and existence of an uncountable model are Σ1

2 and so absolute
In the first case, write the property, in the second write every countable model
has a strong extension. This claim should not extend to AEC which are not
analytically presented: if membership in K were Π1

2, amalgamation would not
automatically satisfy Shoenfield absoluteness.

Let us consider for a moment the case where K is weakly Galois ω-stable
and satisfies amalgamation and the joint embedding property. In this case,
there is a model in K of size ℵ1 which realizes every Galois type over every one
of its countable substructures (i.e., it is ℵ1-Galois saturated). Furthermore, all
such models are isomorphic. The question of ℵ1-categoricity for K then just
depends on whether K has a model of size ℵ1 omitting some Galois type over
some countable substructure. Using Theorem 1.9, one can show that this fact
is also absolute to set forcing extensions, if there exist a proper class of Woodin
cardinals. The argument is analogous to the proof of Theorem 2.1, except
that here we need our iterates to be well-founded, so that they correctly assert
that a given Galois type is not realized; getting well-foundedness for iterates
of a transitive collapse of a countable elementary submodel is where Woodin
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cardinals are needed, and there is yet another step here, as one needs to do a
preliminary forcing with the image of Col(ω1, <δ) under the transitive collapse.
The Woodin cardinals are not necessary in all cases for this argument. If some
model realizes just countably many Galois types over some M , and not all, since
then this can be verified in an absolute way without the large cardinals, since
the iterates can contain codes for the countably many types that are realized.
To summarize, we have the following facts.

The second part of the following statement is Σ∼
1
2 and thus absolute.

5.1 Fact. Suppose that K is an analytically presented AEC. Then the following
statements are equivalent.

1. There exist a countable M ∈ K and an N ∈ K of cardinality ℵ1 such that

• M ≺K N ;

• the set of Galois types over M realized in N is countable;

• some Galois type over M is not realized in N .

2. There is a countable model of ZFC◦ whose ω1 is well-founded and which
contains trees on ω giving rise to K, ≺K and the associated relation ∼0,
and satisfies statement (1).

The third part of the following statement is Σ∼
1
2 and thus absolute.

5.2 Fact. Suppose that K is an analytically presented AEC, and suppose that
δ is a Woodin cardinal below a measurable cardinal. Then the following state-
ments are equivalent.

1. There exist a countable M ∈ K and an N ∈ K of cardinality ℵ1 such that

• M ≺K N ;

• some Galois type over M is not realized in N .

2. In some forcing extension via a partial order in Vδ, there exist a countable
M ∈ K and an N ∈ K of cardinality ℵ1 such that

• M ≺K N ;

• some Galois type over M is not realized in N .

3. There is a well-founded, countable, iterable model of ZFC◦ which contains
trees on ω giving rise to K, ≺K and the associated relation∼0, and satisfies
statement (1).

Now suppose that K is an analytically presented AEC. By the Burgess Tri-
chotomy, we have that either K is Galois ω-stable or almost Galois ω-stable, or
there exists a countable M ∈ K for which EM has a perfect set of inequivalent
reals. The third of these cases is Σ∼

1
2, and thus absolute. On its surface, the first

is Π∼
1
4, as it says that for every M , if M ∈ K then there are countably many

reals such that every suitable real is EM -equivalent to one of them. Statements
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of this type are also forcing-absolute in the presence of suitable large cardinals,
though not in ZFC.

Facts 5.1 and 5.2 give us the following. The word “absolutely” appears in
the first part since for all we know K can be sometimes Galois ω-stable and
sometimes only almost Galois ω-stable, and we want to rule this case out. In
the second part, “absolutely” rules out the third case of the Burgess Trichotomy,
but allows the case ruled out in the first part. This condition is necessary since
under CH every K is almost Galois ω-stable.

Theorem 5.3. Let K be an analytically presented AEC satisfying amalgamation
and the joint embedding property, and having an uncountable model.

• If K is absolutely Galois ω-stable, then the ℵ1-categoricity of K is absolute.

• If K is absolutely almost Galois ω-stable, and δ is a Woodin cardinal below
a measurable cardinal, then the ℵ1-categoricity of K is absolute to forcing
extensions by partial orders in Vδ.

As mentioned above, the second part of the previous theorem has recently
been improved (see [4]).

Theorem 5.4. Suppose that K is an analytically presented AEC satisfying
amalgamation and the joint embedding property, and having an uncountable
model. Suppose further that K is not Galois ω-stable, and that for no countable
M ∈ K are there perfectly many Galois types over M . Then K has at least ℵ1
many nonisomorphic models of cardinality ℵ1.

5.5 Remark. We should point out that our absoluteness results in this section
and the previous one relied only on the fact that the Galois types are induced by
an analytic equivalence relation. In the same way, the results of Section 2 were
analyzing Borel equivalence relations. Each approach then can be applied much
more generally, though we have no applications for this degree of generality at
this time.

6 Questions

The following questions have been left unresolved.

6.1 Question. Is there an example like Example 4.3 (Example 4.14 of [1]) (i.e.,
ℵ1-categorical, satisfying amalgamation and joint embedding but not ω-Galois
stable) where the set of codes for countable models is analytic?

6.2 Question. Can there be an absolutely weakly Galois ω-stable analytically
presented AEC whose Galois ω-stability (or lack thereof) is not absolute? Com-
sider Fact 4.5 and the succeeding paragraph.

6.3 Question. Is there a PCΓ(ℵ0,ℵ0) AEC, which is almost Galois ω-stable,
not Galois ω-stable and with κ models in ℵ1, ℵ1 ≤ κ < 2ℵ1?
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The answer to the following question is certainly negative, though we do not
yet have a proof.

6.4 Question. Suppose that K is an analytically presented AEC which is Galois
ω-stable. Does it follow then that the countable models of K are the reducts of
the countable models of an ω-stable PCΓ(ℵ0,ℵ0) AEC?
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