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Abstract

We begin with a general account of the goals of axiomatization, introduc-
ing several variants (e.g. modest) on Detlefsen’s notion of ‘complete descrip-
tive axiomatization’. We examine the distinctions between the Greek and mod-
ern view of number, magnitude and proportion and consider how this impacts
the intent of Hilbert’s axiomatization of geometry. We list propositions from Eu-
clid, Archimedes, and Descartes that a modern axiomatization must account for.
We argue, as indeed did Hilbert, that propositions concerning polygons, area, and
similar triangle are derivable (in their modern interpretation in terms of number)
from Hilbert’s first order axioms. We note that Tarski’s extension to the first order
complete theory E2 of geometries over real closed fields grounds the geometry of
Descartes as well as Euclid. Then we break new mathematical ground by consid-
ering a proposition strangely absent from explicit treatment in Hilbert’s geometry:
formulas for the circumference and area of a circle. We provide a (complete) first
order theory of geometry in which the formula C = πd computes the circumfer-
ence of a circle but which has non-Archimedean models. We argue that Hilbert’s
continuity properties show much more than the data set of Greek mathematics and
thus are an immodest complete descriptive axiomatization.

By the geometric continuum we mean the line situated in the context of the
plane. Consider the following two propositions1.

(*) Euclid VI.1: Triangles and parallelograms which are under the same
height are to one another as their bases.

Hilbert2 gives the area of a triangle by the following formula.
∗Research partially supported by Simons travel grant G5402.
1For diagrams illustrating the the Euclidean propositions about area, see Theorem 4.6.4 and Remark 4.6.7.
2Hilbert doesn’t state this result as a theorem; and I have excerpted the statement below from an applica-

tion on page 43 of [40].
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(**) Hilbert: Consider a triangle ABC having a right angle at A. The measure
of the area of this triangle is expressed by the formula

F (ABC) =
1

2
AB ·AC.

When formulating a new axiom set in the late 19th century Hilbert faced sev-
eral challenges:

1. Identify and fill ‘gaps’ in Euclid’s reasoning.

2. Reformulate propositions such as VI.1 to reflect the 19th century understanding
of real numbers as measuring both length and area.

3. Ground the geometry of Descartes.

Hilbert also accomplished an additional task: grounding calculus. We will
argue that in meeting this additional goal, Hilbert added axioms that were unnecessary
for purely geometric considerations. We frame this discussion in terms of the notion of
descriptive axiomatization from [18]. But the axiomatization of a theory of geometry
that had been developing for over two millenia leads to several further considerations.
First, while the sentences (*) and (**) clearly, in some sense, express the same propo-
sition, the sentences are certainly different. How does one correlate such statements?
Secondly, previous descriptions of complete descriptive axiomatization omit the possi-
bility that the axioms might be too strong and obscure the ‘cause’ for a proposition to
hold. We introduce the term ‘modest’ descriptive axiomatization to denote one which
avoids this defect. We give several explicit lists of propositions from Euclid and refer to
[37] for an explicit linking of subsets of Hilbert’s axioms as justifications for these lists.
In particular, we analyze the impact of the distinction between ratios in the language of
Euclid and segment multiplication in [40] or multiplication3 of ”numbers”. Then, we
examine in more detail, certain specific propositions that in the modern interpretation
might appear to depend on Dedekind’s postulate. The main mathematical innovation
is that in Section 6 we provide first order axiomatizations to justify the formulas for the
circumference and area of the circle, even in non-archimedean fields. We conclude that
the first order axioms provide a modest complete descriptive axiomatization; while the
second order axioms aim at results that are beyond traditional geometry.

I very much appreciate helpful comments by Rose Cherubin, Philip Ehrlich,
William Howard, Juliette Kennedy, Craig Smorynski and Jouko Väänänen.

3Hilbert 1894 in [42] or Heyting [39]; the most thorough treatment is in [3].
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1 Introduction

Hilbert groups his axioms for geometry into 5 classes. The first four are first order.
Group V, Continuity, contains Archimedes axiom which can be stated in the logic4

Lω1,ω and a second order completeness axiom equivalent (over the other axioms) to
Dedekind completeness5

of each line in the plane. Hilbert 6 closes the discussion of continuity with
‘However, in what is to follow, no use will be made of the ”axiom of completeness” ’.

Why then did he include the axiom? Earlier in the same paragraph7, he writes
that ‘it allows the introduction of limiting points’ and enables one ‘to establish a one-
one correspondence between the points of a segment and the system of real numbers’.
We will argue that by invoking ‘continuity’ Hilbert is justifying a mathematics beyond
Euclid’s geometry.

In Section 2, we consider several accounts of the purpose of axiomatization.
We adjust Detlefsen’s definition to guarantee some ‘minimality’ of the axioms by fixing
on a framework for discussing the various axiom systems: a modest descriptively com-
plete axiomatization. One of our principal tools is the notion of ‘data set’, a collection
of sentences to be accounted for by an axiomatization: ‘the data set for area X’ is time
dependent; new sentences are added; old ones are reinterpreted. In Section 3.1, we will
consider several concepts of the continuum so as to focus on the notions most relevant
here: those which involve order and the embedding of the line in the plane. We review
in Section 3.2 the Greek conceptions of proportion and ratio and the fundamental role
they play in Euclid’s geometry. With this background, Section 3.3 lists data sets that we
will axiomatize. We emphasize those propositions of Euclidean, Cartesian, Hilbertian
geometry which might be thought to require the Dedekind axiom. Section 4.1 con-
trasts the arithmetization of geometry program of the 19th century with the grounding
of algebra in geometry enunciated by Hilbert. We lay out in Section 4.2 various sets
of axioms for geometry and correlate them with the data sets of Section 3.3 in Theo-
rem 4.2.3. Section 4.3 sketches Hilbert’s proof that they suffice to define a field. In
Section 4.4 we also explore the role of the circle-circle intersection axiom and note
that several theorems, which at first glance (or first historical proof) used Dedekind’s
postulate, are consequences of Hilbert’s first order axioms. Section 4.5 has two pur-

4 In the logic, Lω1,ω , quantification is still over individuals but now countable conjunctions are permitted {archdef}
so it is easy to formulate Archimedes axiom : ∀x, y(

∨
m∈ωmx > y. By switch the roles of x and y we see

each is reached by a finite multiple of the other.
5 Dedekind defines the notion of a cut a linearly ordered set I (a partition of Q into two intervals (L,U)). {Dedpost}

Dedekind postulates that each cut has unique realization, a point above all members of L and below all
members U -it may be in either L or U (page 20 of [15]. If either the L contains a least upper bound
or the upper interval U contains a greatest lower bound, the cut is called ‘rational’ and no new element is
introduced. Each of the other (irrational) cuts introduces a new number. It is easy to see that the unique
realization requirement implies the Archimedes axiom. By Dedekind completeness of a line, I mean the
Dedekind postulate holds for the linear ordering of that line.

6Page 26 of [41].
7For a thorough historical description, see the section The Vollständigkeit, on pages 426-435 of [42]. We

focus on the issues most relevant to this paper.
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poses. On the one hand we distinguish the geometric conception of multiplication as
similarity from repeated addition. On the other, we report Hilbert’s first order proof
that similar triangles have proportional sides. Again, in Section 4.6 we report Hilbert’s
argument for the computation of area of polygons (avoiding Euclid’s implicit use of
the Archimedes axiom). We pause in Section 5 to consider in more detail the differ-
ences between the Euclidean and Cartesian data set. We note Cartesian geometry both
involves new interpretations of old constructions and an extension of the axiom set. We
argue that the Tarski’s first order complete geometry is a modest descriptively complete
axiom set for this data set. Finally, in section 6 we consider transcendental numbers
and the formulas for area and circumference of a circle. Such a formula as A = πr2

is not justified on the basis of Hilbert’s first order axioms (even with Archimedes); but
we provide a first order theory which justifies the formula. Finally, we conclude in
Section 7 with 1) an argument that Hilbert’s continuity axioms are overkill and 2) with
some speculations about the use of ‘definable analysis’ to justify parts of analysis on
first order grounds. The appendix analyzes the distinctions between the completeness
axioms of Dedekind and Hilbert.

2 The Goals of Axiomatization
{goalax}

In this section, we place our analysis in the context of recent philosophical work on
the purposes of axiomatization. We investigate the connection between axiom sets and
data sets of sentences for an area of mathematics. We introduce the notion of a modest
descriptively complete axiomatization for a particular data set.

Hilbert begins the Grundlagen [41] with:

The following investigation is a new attempt to choose for geometry a
simple and complete set of independent axioms and to deduce from them
the most important geometrical theorems in such a manner as to bring
out as clearly as possible the significance of the groups of axioms and the
scope of the conclusions to be derived from the individual axioms.

Hallett (page 434 of [42]) presaged much of the intent of this article:

Thus completeness appears to mean [for Hilbert] ‘deductive completeness
with respect to the geometrical facts’. . . . In the case of Euclidean ge-
ometry there are various ways in which ‘the facts before us’ can be pre-
sented. If interpreted as ‘the facts presented in school geometry’ (or the
initial stages of Euclid’s geometry), then arguably the system of the orig-
inal Festschrift [i.e. 1899 French version] is adequate. If, however, the
facts are those given by geometrical intuition, then matters are less clear.

4



We begin by considering several ways of construing the word ‘fact’ as it ap-
pears in this discussion. Hintikka doesn’t use that word; facts8 in his ‘descriptive use
of logic’ are a class of models:

If we use logical notions (such as quantifiers, connectives, etc) for the
purpose of capturing a class of structures studied in a particular mathe-
matical theory, we are pursuing the descriptive use of logic. To be more
precise, we exploit logic in the sense that we formulate an axiomatization
of a mathematical theory in order to describe that class of structures and
no other structures, as precisely as we can. Thus, a descriptive use of logic
consists, for example, in formulating an axiom system in order to capture
the class of structures which number-theory deals with, e.g. the series of
natural numbers.

If we want to systematize and formalize mathematicians reasoning about
the mathematical structures they are interested in, we are interested in the
deductive use of logic. . . . This machinery appeals to the deductive conse-
quence relation provided by the logic, which in turn is defined by a list of
inference rules.

Note that Hintikka’s ‘descriptive use’ is a semantic requirement - describe ‘as
precisely as we can’ a class of structures. In general this is a hard problem; we don’t
really know all the models. Thus, it is natural that several authors (e.g. [32] [53]) have
focused on the situation where, as in Hintikka’s example, the class is categorical; we
can have a strong conception of a particular structure: the natural numbers. This focus
has historical roots in Peano, Dedekind and the early axiomatizations of geometry (e.g.,
Hilbert and Veblen). Blanchette [11] provides an apt moniker for this view: model-
centric.

Detlefson [18] provides a syntactic counterpart to Hinktikka’s notion of de-
scriptive use, which he calls descriptive axiomatization. He motivates the notion with
this remark of Huntington (Huntington’s emphasis) [45]:

[A] miscellaneous collection of facts . . . does not constitute a science. In
order to reduce it to a science the first step is to do what Euclid did in
geometry, namely, to select a small number of the given facts as axioms
and then to show that all other facts can be deduced from these axioms by
the methods of formal logic.

Detlefsen describes a local descriptive axiomatization as an attempt to deduc-
tively organize a data set (a collection of commonly accepted sentences pertaining to

8We quote Hintikka’s discussion ( [44] as quoted in [32]) of the descriptive use of logic in full and truncate
his account of the deductive aspect.
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a given subject area of mathematics9 ). The axioms are descriptively complete if all
elements of the data set are deducible from them. This raises two questions. What is a
sentence? Who commonly accepts?

From the standpoint of modern logic, a natural answer to the first would be to
specify a logic and a vocabulary and consider all sentences in that language. Detlefsen
argues (pages 5-7 of [18]) that this is the wrong answer. He thinks Gödel errs in seeing
the problem as completeness in the now standard sense of a first order theory10. Rather,
Detlefsen presents us with an empirical question. We (at some point in time) look at the
received mathematical knowledge in some area and want to construct a set of axioms
from which it can all be deduced. In general such a data set is more graspable than all
models. Of course, the data set is inherently flexible; conjectures are proven from time
to time. In a way this version reflects Hintikka’s as the data set is indeed a description
of the class of its models. But it is very far from being model-centric as there is no
requirement of categoricity.

Geometry is an example of what Detlefsen calls a local as opposed to a foun-
dational descriptive axiomatization. Beyond the obvious difference in scope, Detlefsen
points out several other distinctions. In particular ( [18] page 5), the axioms of local
axiomatizations are generally among the given facts while those of a foundational ax-
iomatization are found by (paraphrasing Detlefsen) tracing each truth in a data set back
to the deepest level where it can be properly traced. Comparing geometry at various
times opens a deep question we want to avoid. In what sense do (*) and (**) opening
this paper express the same thought, concept etc. Rather that address the issue of what
is expressed, we will simply show how to interpret (*) (and other propositions of Eu-
clid) as propositions in Hilbert’s system. See Section 3.2 for this issue and Section 3.3
for extensions to the data set over the centuries.

An aspect of choosing axioms seems to be missing from the account so far.
Hilbert [43] provides this insight into how axioms are chosen:

If we consider a particular theory more closely, we always see that a few
distinguished propositions of the field of knowledge underlie the construc-
tion of the framework of concepts, and these propositions then suffice by
themselves for the construction, in accordance with logical principles, of
the entire framework. . . .
These underlying propositions may from an initial point of view be re-
garded as the axioms of the respective field of knowledge . . .

We want to identify a ‘few’ distinguished propositions11 from the data set
9There is an interesting subtlety here. Suppose our body of mathematics is group theory. One might think

the data set was the sentences in the vocabulary of group theory true in all groups. (The axioms are evident).
But these sentences are not in fact the data set of ‘group theory’; that subject is concerned about the properties
and relations between groups. So taking the commutative law as a sentence that might illegitimately be added
as an axiom for groups is studying the wrong subject.

10We argue against this in Remarks 5.9 and 6.21.
11Often, few is interpreted as finite. Whatever Hilbert meant, we should now be satisfied with a small
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which suffice for the deduction of the data set. By a modest axiomatization12, we
mean one that implies all the data and no more13. Of course, ‘no more’ is a rough
term. One cannot expect a list of known mathematical propositions to be deductively
complete. By more, we mean introducing essentially new concepts and concerns. As
we’ll see below, Hilbert’s first order axioms are a modest axiomatization of the data:
the theorems in Euclid about polygons (not circles) in the plane. We give an example in
Remark 4.4.4 of an immodest first order axiomatization. The mathematical goal of this
paper is to provide a modest descriptively complete axiomatization of plane geometry
including the propositions concerning the circumference and area of a circle. If the
data were deductively closed, there would be an easy sufficient condition for a modest
axiomatization: the axioms must come from the data set. But it isn’t. For example,
Hilbert’s proof that a plane satisfying the parallel postulate is embeddible in 3-space
concludes with a concept (embeddible) that is totally foreign to the Greeks.

We return to our question, ”what is a sentence?”. The first four groups of
Hilbert’s axioms are sentences of first order logic: quantification is over individuals
and only finite conjunctions are allowed. As noted in Footnote 4, Archimedes axiom
can be formulated in Lω1,ω . But the Dedekind postulate in any of its variants is a
sentence of a kind of second order logic14. All three logics are deductive systems so
that the set of provable sentences is recursively enumerable. Second order logic (in
the standard semantics) fails the completeness theorem but by the Gödel and Keisler
[46] completeness theorems every valid sentence of Lω,ω or Lω1,ω is provable. In the
following discussion we focus on the second order axiom. We take up the Archmidean
axiom in detail and the role of Lω1,ω in Section 6 on π .

Adopting this syntactic view, there is a striking contrast between the data set in
earlier generations of such subjects as number theory and geometry and axiom systems
advanced at the turn of the twentieth century; except for the Archimedean axiom, the
data sets are expressed in first order logic. But through the analysis of the concepts
involved, Dedekind arrived at second order axioms that formed the capstone of each
axiomatization: induction and Dedekind completeness. These axioms answered real
problems (especially in analysis). But a primary goal was to describe a particular
structure, to attain categoricity.

In the quotation above, Hilbert takes the axioms to come from the data set.
But this raises a subtle issue about what comprises the data set. For examples such as
geometry and number theory, it was taken for granted that there was a unique model. In
one sense this reflects a model-centric view. But even Hilbert (Blanchette’s represen-

finite number of axioms and axiom schemes. At the beginning of the Grundlagen, Hilbert adds ‘simple,
independent, and complete’. Such a list including schemes is simple.

12We considered replacing ‘modest’ by ’precise or‘safe’ or ‘adequate’. We chose ‘modest’ rather than
one of the other words to stress that we want a sufficient set and one that is as necessary as possible. As the
examples show, ‘necessary’ is too strong. Later work finds consequences of the original data set undreamed
by the earlier mathematicians. Thus just as, ‘descriptively complete’, ‘modest’ is a description, not a formal
definition.

13This concept describes normal work for a mathematician. ”I have a proof; what are the actual hypotheses
so I can convert it to a theorem.”

14See the caveats on ‘second order’ in Section 9.
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tative of the deductivist view) adds his completeness axiom to guarantee categoricity
and to connect with the real numbers. So one can certainly argue that the early 20th
century axiomatizers took categoricity as part of the data15. But is it essential? can one
obtain the first order consequences without making second order assumptions?

Hallett (page 429 of [42]) formulates this issue in words that fit strik-
ingly well in the ‘descriptive axiomatization’ framework, ”Hilbert’s system with the
Vollständigkeit is complete with respect to ‘Cartesian’ geometry’.” But by no means is
Cartesian geometry a part of Euclid’s data set.

3 Descriptions of the Geometric Continuum

In the first subsection, we distinguish the ‘geometric continuum’ from the set theoretic
continuum. In Section 3.2 we sketch the background shift from the study of various
types of magnitudes by the Greeks, to the modern notion of a collection of real numbers
which are available to measure any sort of magnitude. In the third subsection we set
out various data sets for ‘plane geometry’ and discuss the distinctions among them. In
the remainder of the paper we will analyze axiomatizations for each data set.

3.1 Conceptions of the continuum
{preformal}

In this section, we motivate our restriction, the geometric continuum is a linearly or-
dered structure and provide some background on the demand that the line is situated in
the plane. Sylvester16 describes the three divisions of mathematics:

There are three ruling ideas, three so to say, spheres of thought, which
pervade the whole body of mathematical science, to some one or other of
which, or to two or all of them combined, every mathematical truth admits
of being referred; these are the three cardinal notions, of Number, Space
and Order.

This is a slightly unfamiliar trio. We are all accustomed to the opposition
between arithmetic and geometry. While Newton famously founded the calculus on
geometry (see e.g. [19]) the ‘arithmetization of analysis’ in the late 19th century re-
versed the priority. From the natural numbers the rational numbers are built by taking
quotients and the reals by some notion of completion. And this remains the normal ap-
proach today. We want here to consider reversing the direction again: building a firm
grounding for geometry and then finding first the field and then some completion and

15In fact Huntington invokes Dedekind’s postulate in his axiomatization of the complex field in the article
quoted above [45].

16As quoted in [50].
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considering incidentially the role of the natural numbers. In this process, Sylvester’s
third cardinal notion, order, will play a crucial role. In the first section, the notion that
one point lies between two others will be fundamental and an order relation will natu-
rally follow; the properties of space will generate an ordered field and the elements of
that field will be numbers (but definitely not the set of natural numbers).

We here argue briefly that there is a problem: there are different conceptions
of the continuum (the line); hence different axiomatizations may be necessary to reflect
these different conceptions. These different conceptions are witnessed by such collec-
tions as [21, 60] and further publications concerned with the constructive continuum
and various non-Archimdean notions of the continuum.

Feferman [27] lists six17 different conceptions of the continuum: (i) the Eu-
clidean continuum, (ii) Cantors continuum, (iii) Dedekinds continuum, (iv) the Hilber-
tian continuum, (v) the set of all paths in the full binary tree, and (vi) the set of all
subsets of the natural numbers. For our purposes, we will identify ii), v), and vi) as
essentially cardinality based as they have lost the order type imposed by the geometry;
so, they are not in our purview. We want to contrast two essentially geometrically based
notions of the continuum: those of Euclid and Hilbert. And we identify Dedekind’s and
Hilbert’s conceptions for reasons described in Section 9.

We began by stipulating that by ‘geometric continuum’, we meant the line
situated in the plane. One of the fundamental results of 20th century geometry is that
any (projective18 for convenience) plane can be coordinatized by a ‘ternary field’. A
ternary plane is a structure with one ternary function f(x, y, z) such that f has the
properties that f(x, y, z) = xy + z would have if the right hand side were interpreted
in a field. In accord with our concerns with Euclidean geometry here, we assume
the axioms of congruence and the parallel postulate; this implies the ternary field is
actually a field. But these geometric hypotheses are necessary. In [5], I constructed
an ℵ1-categorical projective plane where the ternary field is a wild as possible (in the
precise sense of the Lenz-Barlotti classification).

3.2 Ratio, magnitude, and number
{magnum}

In this section we give a short review of Greek attitudes toward magnitude and ratio
as described for example in [52, 26, 64]. We by no means follow the ‘geometric al-
gebra’ interpretation decried in [35]. We attempt to contrast the Greek meanings of
propositions with Hilbert’s understanding. When we rephrase a sentence into algebraic
notation we try to make clear this is a modern formulation, not the intent of Euclid.

Euclid develops arithmetic in chapters VII-IX. What we think of as the ‘num-
ber’ one, was the unit: a number (Definition VII.2) is a multitude of units. These

17Smorynski [61] notes that Bradwardine already reported five in the 14th century.
18That is, any system of points and lines such that two points determine a line, any two lines intersect in a

point, and there are 4 non-collinear points.
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are counting numbers. So from our standpoint (considering the unit as the number 1)
Euclid’s numbers (in the arithmetic) can be thought of as the ‘natural numbers’. The
numbers19 are a discretely ordered collection of objects.

Following Mueller20 we work from the interpretation of magnitudes in the
Elements as ”abstractions from geometric objects which leave out of account all prop-
erties of those objects except quantity” : length of line segments, area of plane figures,
volume of solid figures etc. Mueller emphasizes the distinction between the properties
of proportions of magnitudes developed in Chapter V and those of number in Chapter
VII. The most easily stated is implicit in the proof V.5; for every m, every magnitude
can be divided in m equal parts21. This is of course, false for the numbers.

There is a second use of ‘number’ in Euclid. It is possible to count unit magni-
tudes, to speak of, e.g. four copies of a unit magnitude. So (in modern language) Euclid
speaks of multiples of magnitudes by positive integers. See Remark 4.3.4 where we
give a modern mathematical interpretation of this usage.

Magnitudes of the same type are also linearly ordered and between any two
there is a third.22 Multiplication of line segments yielded rectangles. Ratios are not
objects; equality of ratios is a 4-ary relation between two pairs of homogenous magni-
tudes23.

Remark 3.2.1. Here are 4 important definitions or propositions from Chapter V of
Euclid.

1. Definition V.4 of Euclid [26] asserts: Magnitudes are said to have a ratio to one
another, which are capable, when multiplied, of exceeding one another.

2. Definition V.5 defines ’sameness of two ratios’ GG, (in modern terminology):
The ratio of two magnitudes x and y are proportional to the ratio of two others
z, w if for each m,n, mx > ny implies mz > nw (and also if > is replaced by
= or <.

3. Definition V.6 says, Let magnitudes which have the same ratio be called propor-
tional.

4. Proposition V.9 asserts that ‘same ratio’ is, in modern terminology, a transitive
relation. Apparently Euclid took symmetry and reflexivity for granted and treats
proportional as an equivalence relation.

19More precisely, natural numbers greater than 1.
20page 121 of [52].
21page 122 of [52].
22The Greeks accepted only potential infinity. So, while from a modern perspective, the natural numbers

are ordered in order type ω, and any collection of homogeneous magnitudes (e.g. areas) are in a dense linear
order (which is necessarily infinite); this completed infinity is not the understanding of the Greeks.

23Homogeneous pairs means magnitudes of the same type. Ratios of numbers are described in Chapter
VII while ratios of magnitudes are discussed in Chapter V.
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We now contrast Euclid’s notion of proportionality with the segment multipli-
cation of Descartes and Hilbert. We begin with a particular sequence of theorems that
illuminate the distinction. Bolzano discusses the ‘dissimilar objects’ found in Euclid24

and finds Euclid’s approach fundamentally flawed. {BC}

Remark 3.2.2 (Bolzano’s Challenge).

Firstly triangles, that are already accompanied by circles which intersect
in certain points, then angles, adjacent and vertically opposite angles,
then the equality of triangles, and only much later their similarity, which
however, is derived by an atrocious detour [ungeheuern Umweg], from
the consideration of parallel lines, and even of the area of triangles, etc.!
(1810, Preface)

Bolzano’s ‘atrocious detour’ has two aspects: a) the evil of using two dimen-
sional concepts to understand the line25 and b) the following ‘detour’ to similarity26. In
VI.1,using the technology of proportions from chapter V, Euclid determines the area of
a triangle or parallelogram; in VI.2, he uses these results to show that similar triangles
have proportional sides. The role of the theory of proportions is to show that the area
of two parallelograms whose base and top are on the same parallel lines (and so the
parallelograms have the same height) but whose bases are of possibly incommensu-
rable lengths have proportionate areas. This step in the arguments uses the properties
of proportion in Book V. It is then straightforward to deduce V1.2. And from VI.2, he
constructs in VI.12 the fourth proportional to three lines.

Descartes defines the multiplication of line segments to give another seg-
ment27. From segment multiplication, we can regain the notion of proportionality. {propdef}

Definition 3.2.3 (Proportionality:). We write the ratio of CD to CA is proportional to
that of CE to CB,

CD : CA :: CE : CB

which is defined as
CD × CB = CE × CA.

where × is taken in the sense of segment multiplication defined as in Descartes by the
fourth proportional or as in Definition 4.3.2.

Now (*) (VI.1) is interpreted as a variant of (**):

F (ABC) =
1

2
α ·AB ·AC.

24This is taken from [29].
25In contrast, we take such concepts as fundamental in understanding the geometric continuum.
26Section 4 reports how Hilbert avoids this detour.
27He refers to the construction of the fourth proportional (‘ce qui est meme que la multiplication’ [17]).

See also Section 21 page 296 of [13].
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Here F (ABC) is an area function satisfying the properties discussed in Defi-
nition 4.6.6. But the cost is that Euclid does not specify what we now call the propor-
tionality constant while Hilbert must. As we’ll see in Definition 4.6.6, Hilbert assigns
a proportionality constant (in this case the constant is one).

In his proof of VI.1 (our *) Euclid applies Definition 5.5 above to deduce
the proportionality of the area of the triangle to its base. But this assumes that any
two lengths (or any two areas) have a ratio in the sense of Definition V.4. This is an
implicit assertion of Archimedes axiom for both area and length28. As developed in
Section 4, Hilbert’s treatment of area and similarity has no such dependence. It is
widely understood29 that Dedekind’s analysis is radically different from that of Eu-
doxus. A principle reason for this, which we emphasize at the end of Section 6, is that
Eudoxus applies his method to specific situations; Dedekind demands that every cut
be filled. Secondly, Dedekind develops addition and multiplication on the cuts. Thus,
Dedekinds’s postulate should not be regarded as part of the Euclidean data set.

Hilbert shows the multiplication on segments satisfies the semi-field axioms30.
A last step is to fixing 0, 1, so that addition and multiplication can be defined on the
points of the line through 0, 131. Then there is an identification between the points on
the line and the domain of an ordered field.

3.3 Some geometric Data sets
{data}

We begin by distinguishing a number of topics in geometry; these represent distinct
data sets in Detlefsen’s sense. We label the data sets by names of mathematicians as a
convenient references.

1. Euclid I polygonal geometry32

2. Euclid II: circle geometry33

3. Archimedes: π arc length34

28Euclid’s development of the theory of proportion and area requires the Archimedean axioms. Our asser-
tion is one way of many descriptions of the exact form and location of the dependence among such authors
as [26, 52, 64, 28, 61]. Since our use of Euclid is as a source of sentences, not proofs, this reliance is not
essential to our argument.

29Stekeler-Weithofer [65] writes, ”It is just a big mistake to claim that Eudoxus’s proportions were equiv-
alent to Dedekind cuts.” Feferman [27] avers, ”The main thing to be emphasized about the conception of
the continuum as it appears in Euclidean geometry is that the general concept of set is not part of the ba-
sic picture, and that Dedekind style continuity considerations of the sort discussed below are at odds with
that picture.” Stein [64] gives a long argument for at least the compatibility of Dedekind’s postulate with
Greek thought ”reasons . . . plausible, even if not conclusive- for believing the Greek geometers would have
accepted Dedekinds’s postulate, just as they did that of Archimedes, once it had been stated.”

30In a semi-field there is no requirement of an additive inverse.
31And thus all axioms for a field are obtained. Hilbert had done this in lecture notes in 1894 [42].
32The Elements: Chapter I (except I.1 and (I.22), chapter II, III except for III.1 and III.17, chapters IV-VI.
33The Elements: Chapter IV.
34The Elements: Euclid XII.2 (area of circle); Archimedes: [2].
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4. Descartes: nth roots35

5. Weierstrass: analysis 19th century A = πr2, C = πd.

Table 1 lists five data sets and the proposed descriptively complete axioma-
tization. For example, the third data set is the geometry of polygons and circles with
measurement of arc length. The relevant axiom sets are defined in Notation 4.2.2 for
the Euclidean propositions, Theorem 5.8 for Descartes and Theorem 6.2 for the area
and circle formulas. Theorem 4.2.3 spells out an appropriate axiom system for each
topic. I used Weierstrass as the symbol of the 19th century clarification of the founda-
tions of analysis. This activity goes well beyond the traditional area of geometry. As
we noted in the introduction, Hilbert was aiming to justify this other phenomena.

Table 1:

Data set/topic Name Axiom set
polygons Euclid I HP5

circles Euclid II EG
arc length π Arch Arch or Tπ

nth roots, segment multiplication Descartes E2
limits Weierstrass Hilbert

Now we outline some specific theorems, will be addressed below, that might
be thought to depend on the continuity axioms. {goal}

Remark 3.3.1. 1. Euclid I

(a) Similar triangles have proportional sides (Theorem 4.5.2) {sidesplitter}
(b) Area of polygons

(c) Pythagorean theorem {pythag}
(d) laws of sines and cosine {sincos}

2. Euclid II

(a) Euclid 3: circle intersection (Theorem 4.4.5) {cci}
(b) Construction of an equilateral triangle. Euclid I.1

3. Archimedes:

(a) Formulas for circumference of circle: Theorem 6.7,

(b) Formulas for area of circle:Theorem 6.11

4. Descartes
35[17]
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(a) segment multiplication and coordinate geometry

(b) Extraction of nth roots for all n. Theorem 5.8 {extract}
(c) analytic geometric and the association of polynomials with curves {poly}

5. Weierstrass

(a)
√

2 ·
√

3 =
√

6. (Theorem 4.4.1) {irrational}
(b) All angles have measure. (Theorem 6.17)

(c) analysis of continuous and even transcendental functions

(d) provable categoricity

We deal in detail below with Euclid I; the crucial point for a), b), c) is that
the arguments in Euclid all go through the theory of area which depends on Eudoxus
and so has an implicit dependence on the Archimedean axiom. Hilbert eliminates this
dependence.

The role of Euclid II appears already in Proposition I of Euclid36 where Euclid
makes the standard construction of an equilateral triangle on a given base. Why do the
two circles intersect? While some37 regard the absence of this axiom as a gap in Euclid,
Manders (page 66 of [49]) asserts: ‘Already the simplest observation on what the texts
do infer from diagrams and do not suffices to show the intersection of two circles
is completely safe38.’ For our purposes, here we are content to accept that adopting
the circle-circle intersection axiom resolves those continuity issues around circles and
lines39. We separate this case because Hilbert’s first order axioms do not resolve this
issue40; he chooses to resolve it (implicitly) by an appeal to Dedekind41.

We discuss Descartes in Section 5. In Section 6 we come to the new mathe-
matics of this paper. We provide a first order theory to justify the formulas for circum-
ference and area of a circle. For this, Hilbert implicity uses both continuity axioms to
guarantee the existence of π.

36http://aleph0.clarku.edu/˜djoyce/java/elements/bookI/propI1.html
37[72], page 4
38Manders develops the use of diagrams as a coherent mathematical practice; others have developed the

idea of formalizing a deductive system which incorporates diagrams. Here is a rough idea of this program.
Properties that are not changed by minor variations in the diagram such as subsegment, inclusion of one
figure in another, two lines intersect, betweenness are termed inexact. Properties that can be changed by
minor variations in the diagram, such as whether a curve is a straight line, congruence, a point is on a
line, are termed exact. We can rely on reading inexact properties from the diagram. We must write exact
properties in the text. The difficulty in turning this insight into a formal deductive system is that, depending
on the particular diagram drawn, after a construction, the diagram may have different inexact properties. The
solution is case analysis but bounding the number of cases has proven difficult.

39Circle-circle intersection implies line-circle intersection. Hilbert already in [41] shows (page 204-206
of [42]) that circle-circle intersection holds in what we call a Euclidean plane. See Section 4.4.

40Hilbert is aware of this and of the alternative discussed here.
41Moore suggests in [51] that Hilbert may have added the completeness axiom to the second edition

specifically because Sommer in his review of the first edition pointed out it did not prove the line-circle
intersection principle.
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Showing a particular set of axioms is descriptively complete is inherently em-
pirical. One must check whether each of a certain set of results is derivable from a
given set of axioms. Hartshorne uses this yardstick at various places (e.g Theorem
10.4) in [37] and we summarise the project in Theorem 4.2.3.

4 Axiomatizing the geometry of polygons and circles
{axgeom}

In the first section we contrast the goal here of an independent basis for geometry with
the 19th century arithmetization project. The second section lays out the first order
axioms that will be employed. Section 4.3 sketches Hilbert’s definition of a field in
a geometry. Section 4.4 distinguishes the role of the circle-circle intersection axiom
and notices that a number of problems that can be approached by limits have uniform
solutions in any ordered field; completeness of the field is irrelevant. We then return to
Bolzano’s challenge and derive first, Section 4.5, the properties of similar triangles and
then, Section 4.6, the area of polygons.

4.1 From Arithmetic to geometry or from geometry to algebra?
{agorga}

On the first page of Continuity and the Irrational Numbers, Dedekind writes:

Even now such resort to geometric intuition in a first presentation of
the differential calculus, I regard as exceedingly useful from the didac-
tic standpoint . . . But that this form of introduction into the differential
calculus can make no claim to being scientific, no one will deny.

I have no intention of denying that claim. I quote this passage to indicate
that Dedekind’s motivation was to provide a basis for calculus not geometry. But I
will argue that the second order Dedekind completeness axiom is not needed for the
geometry of Euclid and indeed for the grounding of the algebraic numbers, although
it is for Dedekind’s approach. Further I will discuss in Section 7 the possibility that
a kind of ’definable’ continuity provides a substitute for many (certainly not all) of
Dedekind’s concerns.

Dedekind provides a theory of the continuum (the continuous) line building
up in stages from the structure which is fundamental to him: the natural numbers under
successor. This development draws on second order logic in several places. The well-
ordering of the natural numbers is required to define addition and multiplication by
recursion. Dedekind completeness is a second appeal to a second order principle.

Perhaps in response to Bolzano’s insistence, Dedekind constructs the line
without recourse to two dimensional objects and from arithmetic. Thus, he succeeds in
the ‘arithmetization of analysis’.
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We proceed in the opposite direction for several reasons. Most important is
that we are seeking to ground geometry, not analysis. Further, we would assert that
the concept of line arises only in the perception of at least two dimensional space.
Dedekind’s continuum knows nothing of being straight or breadthless. Hilbert’s proof
of the existence of the field is the essence of the geometric continuum. By virtue of its
lying in a plane, the line acquires algebraic properties.

The distinction between the arithmetic and geometric intuitions of multipli-
cation is fundamental. The first is as iterated addition; the second is as scaling or
proportionality. The late 19th century developments provide a formal reduction of the
second to the first but the reduction is only formal; the intuition is lost. In this paper
we view both intuitions as fundamental and develop the second (Section 4.3): with the
understanding that development of the first through the Dedekind-Peano treatment of
arithmetic is in the background. See Remark 4.3.4 for the connection between the two.

4.2 The geometry of Euclid/Hilbert
{euclid}

We identify two levels of formalization in mathematics. By the Euclid-Hilbert style we
mean the axiomatic approach of Euclid along with the Hilbert insight that postulates are
implicit definitions of classes of models42 By the Hilbert-Gödel-Tarski-Vaught style,
we mean that that syntax and semantics have been identified as mathematical objects;
Gödel’s completeness theorem is a standard tool, so methods of modern model theory
can be applied43. We will give our arguments in English; but we will be careful to spec-
ify the vocabulary and the postulates in a way that the translation to a first order theory
is transparent. This will allow us to apply the insight that non-elementary properties of
models can strengthen the effect of first order assertions (as in Theorem 6.17.f).

{ccp}
Postulate 4.2.1. Circle Intersection Postulate If from points A and B, circles with

radius AC and BD are drawn such that one circle contains points both in the
interior and in the exterior of the other, then they intersect in two points, on
opposite sides of AB. {HP5}

Notation 4.2.2. We follow [37] in the following nomenclature.

A Hilbert plane is any model of Hilbert’s incidence, betweenness44, and con-
gruence axioms. We abbreviate these axioms by HP. We will write HP5 for these
axioms plus the parallel postulate.

By the axioms for Euclidean geometry we mean HP5 and in addition the
circle-circle intersection postulate 4.2.1. We will abbreviate this as EG45.

42The priority for this insight is assigned to such slightly earlier authors as Pasch, Peano, Fano, in works
such as [30] as commented on in [12] and chapter 24 of [36].

43See Section 8.1 and [8] for further explication of this method and Section 6 for an application.
44These include Pasch’s axiom (B4 of [37]) as we axiomatize plane geometry. Hartshorne’s version of

Pasch is that any line intersecting one side of triangle must intersect one of the other two.
45In the vocabulary here, there is a natural translation of Euclid’s axioms into first order statements. The
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By definition, Euclidean plane is a model of EG: Euclidean geometry.

We write E2 for a geometrical axiomatization the plane over a real closed
field (RCF) (Theorem 6.2).

With these definitions we align various subsystems of Hilbert’s geometry with
certain collections of propositions in Euclidean geometry. {justify}

Theorem 4.2.3. 1. The sentences of Euclid I, polygonal geometry: (Chapter I (ex-
cept I.1 and (I.22), chapter II, III except for III.1 and III.17, chapters IV-VI.) are
provable in HP5.

2. The sentences of Euclid II, circle geometry: (Chapter IV, I.1 and I.22, III.1 and
III.17

are provable in EG.

3. The sentences of Archimedes, arc length and π: (Euclid XII.2, area of circle) are
provable in Hilbert I-IV plus Archimedes or in the first order Tπ (see Section 6).

4. The sentences of Descartes:(nth roots) are provable in RCF (E2).

5. The 19th century analysis of Weierstrass is provable in Hilbert’s full system.

Proof. For 1) and 2) see Sections 20-23 of [37]. For 3) see (see Section 6) and
for 4) Section 5. For 5) choose an analysis text such as [63]. 4.2.3

In [4] and [7] we give an equivalent set of geometrical postulates, which return
to Euclid’s construction postulates and stress the role of Euclid’s axioms (common
notions) 46 in interpreting the geometric postulates. For aesthetic reasons we use SSS
rather than SAS as the basic congruence postulate in those notes. Below we explicitly
state the postulates only if it seems essential for the development.

We will frequently switch from syntactic to semantic discussions so we stip-
ulate precisely the vocabulary in which we take the axioms above to be formalized. {geovoc}

Notation 4.2.4. The fundamental relations of plane geometry make up the following
vocabulary τ .

1. two-sorted universe: points (P ) and lines (L).

2. Binary relation I(A, `):

Read: a point is incident on a line;

constructions have be viewed as ‘for all there exist sentences. The axiom of Archimedes as discussed below
is of course not first order. We write Euclid’s axioms for those in [26] vrs (first order) axioms for Euclidean
geometry, EG.

46See http://aleph0.clarku.edu/˜djoyce/java/elements/bookI/bookI.html#
cns
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3. Ternary relation B(A,B,C):

Read: B is between A and C (and A,B,C are collinear).

4. quaternary relation, C(A,B,C,D): Read: two segments are congruent, in sym-
bols AB ∼= CD.

5. 6-ary relation C ′(A,B,C,A′, B′, C ′): Read: the two angles ∠ABC and
∠A′B′C ′ are congruent, in symbols ∠ABC ∼= ∠A′B′C ′.

Note that I freely used defined terms such as collinear, segment, and angle in
giving the reading of these relation symbols.

4.3 From geometry to segment arithmetic to numbers
{num}

We introduce in this section segment arithmetic and sketch Hilbert’s definition of the
(semi)-field of segments with partial subtraction and multiplication. We assume what
we called HP5 in Notation 4.2.2. The details can be found in e.g. [41, 37, 7] {segeq}

Notation 4.3.1. Note that congruence forms an equivalence relation on line segments.
We fix a ray ` with one end point 0 on `. For each equivalence class of segments, we
consider the unique segment 0A on ` in that class as the representative of that class.
We will often denote the segment 0A (ambiguously its congruence class) by a . We say
a segment CD (on any line) has length a if CD ∼= 0A.

Of course there is no additive inverse if our ‘numbers’ are the lengths of seg-
ments which must be positive. However, this procedure can be extended to a field
structure on segments on a line not a ray (so with negatives), either directly as sketched
in [4] or by passing through the theory of ordered fields as in Section 19 of [37]. Fol-
lowing Hartshorne [37], here is our official definition of segment multiplication47. {segmultdef}

Definition 4.3.2. [Multiplication] Fix a unit segment class 1. Consider two segment
classes a and b. To define their product, define a right triangle with legs of length 1
and a. Denote the angle between the hypoteneuse and the side of length a by α.

Now construct another right triangle with base of length b with the angle
between the hypoteneuse and the side of length b congruent to α. The product ab is
defined to be the length of the vertical leg of the triangle.

47Hilbert’s definition goes directly via similar triangles. The clear association of a particular angle with
right muliplication by a recommends Hartshorne’s version.
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Note that we must appeal to the parallel postulate to guarantee the existence
of the point F .

It is clear from the definition that there are multiplicative inverses; use the
triangle with base a and height 1. The roughly 3 page proof that multiplication is
commutative, associative, distributes over addition, and respects the order uses only
the cyclic quadrilateral theorem and connections between central and inscribed angles
in a circle.

It is easy48 to check that the multiplication defined on the positive reals by this
procedure is exactly the usual multiplication on the positive reals because they agree on
the positive rational numbers. The final extension to make the multiplication on points
(rather than segments) is also straight forward. To summarize (details in section 21 of
[37]):

Theorem 4.3.3. The theory of Hilbert fields satisfying the parallel postulate is biinter-
pretable with theory of ordered pythagorean49 planes. The interpreting formulas are
first order with constants naming two points. {twomult}

Remark 4.3.4. We now have two ways in which we can think of the product 3a. On
the one hand, we can think of laying 3 segments of length a end to end. On the other,
we can perform the segment multiplication of a segment of length 3 (i.e. 3 segments
of length 1 laid end to end) by the segment of length a. It is an easy exercise to show
these are the same. But it makes an important point. The (inductive) definition of
multiplication by a natural number is indeed ‘multiplication as repeated addition’. But
the multiplication by another field element is based on similarity, implies the existence
of multiplicative inverses, and so is a very different object.

We pause to discuss the first notion of multiplication in last paragraph which
we earlier described as a second meaning of ”number” at the beginning of Section 3.2.
This is a kind of ‘scalar multiplication’ by positive integers that can be viewed mathe-
matically as a rarely studied object: a semiring (the natural numbers) acting on a semi-
group (positive reals under addition). There is no uniform definition50 of this scalar

48One has to verify that segment multiplication is continuous but this follows from the density of the order
since the addition respects order.

49A field is Pythagorean if for every a, 1 + a2 has a square root.
50Instead, there are infinitely many formulas φq(x, y) defining qx = y but only for q > 0.
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multiplication within the field; multiplication by 17
27 is defined in the geometry but not

multiplication by − 17
27 .

A mathematical structure more familiar to modern eyes is obtained by extend-
ing to the negative numbers and has a well-defined notion of subtraction, both of the
scalars which are now the ring (Z,+, ·) and on the (now a module) (<,+). Now we
can multiply by − 17

27 but the definition is still non-uniform.

Once we have defined the field, we have a uniformly defined and multiplica-
tion and this intrinsic geometrical multiplication restricts to that imposed by counting
where it is defined.

4.4 Initial consequences of field arithmetic
{sqrt}

In this section we investigate statements of two sorts: 1) statements of Euclid’s geom-
etry that depended on the Archimdean axiom and 2) statements about the properties
of real numbers that Dedekind deduces from his postulate but are true in any field
associated with a geometry modeling HP5.

We established in Section 4.3 that one could define an ordered field in any
plane satisfying HP5. The converse is routine, the ordinary notions of lines and inci-
dence in F 2 creates a geometry over any ordered field, which is easily seen to satisfy
HP5. We now exploit this equivalence.

We will prove some algebraic facts using our defined operations, thus bas-
ing them on geometry. We begin with Property 3.3.1.5a: square root commutes with
multiplication for algebraic numbers.

Dedekind (page 22 of [15]) wrote ‘ . . . in this way we arrive at real proofs of
theorems (as, e.g.

√
2 ·
√

3 =
√

6), which to the best of my knowledge have never been
established before.’

Note that this is a problem for Dedekind but not for Descartes. Already Eu-
clid, in constructing the fourth proportional, constructs from segments of length 1, a
and b, one of length ab; but he doesn’t regard this operation as multiplication. When
Descartes interprets this procedure as multiplication of segments, he has no problem.
But Dedekind has presented the problem as multiplication in his continuum and so he
must prove a theorem to find the product as a real number; that is, he must show the
limit operation commutes with product. We report Hilbert’s equally rigorous but much
more simple proof that any field arising from geometry (e.g. the reals) is closed under
multiplication (of any segments). {dedprob}

Theorem 4.4.1. In an ordered field, for any positive a, if there is an element b > 0
with b2 = a, then b is unique (and denoted

√
a). Moreover, for any positive a, c with

square roots,
√
a ·
√
c =
√
ac.

This fact holds for any field coordinatizing a plane satisfying HP5.
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Thus, the algebra of square roots in the real field is established without any
appeal to limits. The usual (e.g. [63, 1]) developments of the theory of complete
ordered fields invoke the least upper bound principle to obtain the existence of the roots
although the multiplication rule is obtained by the same algebraic argument as here.
Our approach (like Hilbert’s) contrasts with Dedekind51; our treatment is based on the
geometric concepts and in particular regards ‘congruence’ as an equally fundamental
intuition as ‘number’. The justification here for either the existence or operations on
roots does not invoke limits.

The shift here is from ‘proportional segments’ to ‘product of numbers’. Euclid
had a rigorous proof of the existence of a line segment which is the fourth proportional
of 1 : a = b : x. Dedekind demands a product of numbers; Hilbert provides this by a
combination of his interpretation of the field in the geometry and geometrical definition
of multiplication.

We now consider Properties 3.3.1 .1c and .1d. It is well-known that the
Pythagorean Theorem is equivalent for Hilbert planes to the parallel postulate. Eu-
clid’s proof of Pythagoras I.47 uses an area function as we will justify in Section 4.6.
His second proof uses the theory of similar triangles that we will develop Section 4.5.
Thus, in both cases Euclid depend on the theory of proportionality (and thus implicitly
on Archimedes axiom) to prove the Pythagorean theorem; Hilbert avoids this appeal.
Similarly, since the right angle trigonometry in Euclid concerns the ratios of sides of
triangles the field multiplication interprets the geometrical operations.

Theorem 4.4.2. The Pythagorean theorem as well as the law of cosines, Euclid II.11
and the law of sines, Euclid II.13 hold in any Hilbert plane with the parallel postulate
(HP5).

We note Hilbert’s first order justification because Euclid’s arguments for them
implicitly relied on the Archimedean axiom. {exfields}

Example 4.4.3. Hartshorne [37] introduces two instructive examples.

1. A pythagorean field is one closed under addition, subtraction, multiplication,
division and for every a,

√
(1 + a2). However, the Cartesian plane over a

Pythagorean field may fail to be closed under square root and the Poincaire
model over a such a field may fail to have equilateral triangles and thus the
circle-circle intersection postulate also fails . (Exercise 39.30, 30.31 of [37])

2. On page 146, Hartshorne observes that the smallest ordered field closed under
addition, subtraction, multiplication, division and square roots of positive num-
bers satisfies the circle-circle intersection postulate. {impr}

Remark 4.4.4. Note that if HP5 + CCI were proposed as an axiom set for polygonal
geometry it would be a complete descriptive but not modest axiomatization.

51Dedekind objects to the introduction of irrational numbers by measuring an extensive magnitude in
terms of another of the same kind (page 9 of [15]).
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Recall that we distinguished a Hilbert plane from a Euclidean plane in Nota-
tion 4.2.2. As in [37], we have: {ccstrength}

Theorem 4.4.5. A Hilbert plane satisfies the circle-circle intersection postulate, 4.2.1
if and only if every positive element of the coordinatizing plane has a square root.

Similarly, in every Euclidean plane such that every positive element of the co-
ordinatizing plane has a square root, Heron’s formula computes the area of a triangle
from the lengths of its sides.

Heron’s formula demonstrates the hazards of the kind of organization of data
sets attempted here. First, Heron apparently lived in the first century AD (and maybe
the proof is due to Archimedes) so it doesn’t fit in any of my time frames. Secondly,
the geometric proof of Heron doesn’t involve the square roots of the modern formula
[38]. But since in EG we have the field and we have square roots, the modern form
of Heron’s formula can be proved from EG. Thus as in from (*) to (**), the different
means of expressing the geometrical property requires different proofs.

In each case we have considered in this section, Greeks give geometric argu-
ments for what in modern days becomes a calculation involving the field operations
and square roots.

We still need to complete the argument that HP5 is descriptively complete for
polygonal Euclidean geometry. In particular, is the notion of proportional included in
our analysis. The test question is the similar triangle theorem. We turn to this issue
now.

4.5 Multiplication is not repeated addition
{similar}

In the natural numbers, addition can be defined as iterated succession and multiplica-
tion as iterated addition. But the resulting structure is essentially undecidable. How-
ever, this structure does not illuminate the essential aspect of multiplication as similar-
ity; many elements have no multiplicative inverse.

Definition 4.5.1. Two triangles 4ABC and 4A′B′C ′ are similar if under some
correspondence of angles, corresponding angles are congruent; e.g. ∠A′ ∼= ∠A,
∠B′ ∼= ∠B, ∠C ′ ∼= ∠C.

Various texts define ‘similar’ as we did, or as corresponding sides are propor-
tional or require both (Euclid). We now meet Bolzano’s challenge by showing that in
Euclidean Geometry (without the continuity axioms) the choice doesn’t matter.

Recall that we defined proportional in terms of segment multiplication in Def-
inition 3.2.3. {simtri}

Theorem 4.5.2. Two triangles are similar if and only if corresponding sides are pro-
portional.
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Here is Hartshorne’s proof of the fundamental result.

Proof of Theorem 4.5.2: If ABC and A′B′C ′ are similar triangles then using
the segment multiplication we have defined

AB

A′B′
=

AC

A′C ′
=

BC

B′C ′
.

Consider the triangle ABC below with incenter G.

Proof. The point G is the incenter so HG ∼= GI ∼= GJ . Call this segment
length a.

Now construct AK ∼= BL ∼= MC all with standard unit length. Let the
lengths of BL be s, NK be t and PM be r.

Let the lengths of AI ∼= AH be x, BH ∼= BJ be y, and CI ∼= AJ be z.

By the definition of multiplication t · x = s · z = a. Therefore the length of
AC is a

t + a
r = a(r+t)

rt .

Duplicate on the second triangleA′B′C ′ to get the length ofA′C ′ is a
′

t + a′

r =
a′(r+t)
rt . The crucial point is that because the angles are congruent r, s, t are the same

for both triangles.

But then A′C′

AC = a′

a . Now note the same is true for the other two pairs of sides
so the sides of the triangle are proportional.

The same ideas allow one to reverse the argument and show triangles with
proportional sides are similar. 4.5.2

Remark 4.5.3. As Hilbert showed, in any model M of HP5: similar triangles have
proportional sides. There is no assumption that the field is Archimedean or satisfies
any sort of completeness axiom. There is no appeal to approximation or limits.
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4.6 Area of polygonal figures
{area}

In Section 4.5 we saw Bolzano’s challenge 3.2.2 is answered by a proof that similar
triangles have proportional sides without resorting to the concept of area. But area is
itself a vital geometric notion. We show now that using segment multiplication Hilbert
grounds the now familiar methods of calculating the area of polygons. As Hilbert
writes52, ”We ... establish Euclid’s theory of area for the plane geometry and that
independently of the axiom of Archimedes.”

In this section, we sketch Hartshorne’s [37] exposition of this topic. We stress
the connections with Euclid’s common notions and are careful to see how the notions
defined here are expressible in first order logic; in line with our 4th objection to sec-
ond order axiomatization, this shows that although these arguments are not carried out
as direct deductions from the first order axioms, the results are derivable by a direct
deduction.

Here is an informal definition53 of those configurations whose areas are con-
sidered in this section.

Definition 4.6.1. A figure is a subset of the plane that can be represented as a finite
union of disjoint triangles.

Hilbert raised a ‘pseudogap’ in Euclid54 by distinguishing area and content.
In Hilbert two figures have

1. equal area if they can be decomposed into a finite number of triangles that are
pairwise congruent

2. equal content if we can transform one into the other by adding and subtracting
congruent triangles.

Euclid treats the equality of areas as a special case of his common notions.
The properties of equal content, described next, are consequences for Euclid of the
common notions and need no justification. {areaax}

Theorem 4.6.2 (Properties of Equal Content). The following properties of area are
used in Euclid I.35 through I.38 and beyond. They hold for equal content in HP5.

52Emphasis in the original: (page 57 of [41])
53In order to justify the application of the completeness theorem we have to introduce inductively a defini-

tion scheme giving the definition of n-decomposable figure as the disjoint union of an (n−1)-decomposable
figure A with a triangle such that a portion of one side of the triangle lies on a portion of one side of the
figure A. In Section 6, we give such formal definitions to find area and circumference of a circle.

54Any model with infinitessimals shows the notions are distinct and Euclid I.35 and I.36 fail for what
Hilbert calls area. Hilbert shows they are equivalent under the axiom of Archimedes. Since Euclid includes
preservation under both addition and subtraction in his common notions, his term ‘area’ clearly refers to
what Hilbert calls ‘equal content’, I call this a pseudogap.
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1. Congruent figures have the same content.

2. The content of two ‘disjoint’ figures (i.e. meet only in a point or along an edge)
is the sum of the two content of the polygons. The analogous statements hold for
difference and half.

3. If one figure is properly contained in another then the area of the difference
(which is also a figure) is positive.

There are serious issues concerning the formalization in first order logic of the
notions in this section. Notions such as polygon involve quantification over integers;
this is strictly forbidden within the first order system. We can approach these notions
with axiom schemes. We want to argue that we can give a uniform metatheoretic
definition of the relevant concepts and prove that the theorems hold in all models of the
axioms.

Observe that while these properties concern ‘figure’, a notion that is not defin-
able by a single formula in first order geometry, we can replace ‘figures’ by n-gons for
each n. For the crucial area of a triangle is proportional to the base and the height, we
need only ‘triangles or quadrilaterals’. In general we could formalize formalize these
notions with either equi-area predicate symbols55 or by a schema, or by a function
mapping into the line as in Definition 4.6.6. Here is the basic step.

Definition 4.6.3. Two figures α and β (e.g. two triangles or two parallelograms) have
equal content in one step there exist figures α′ and β′ such that the disjoint union of α
and α′ is congruent to the disjoint union of β and β′ and β ∼= β′.

Reading equal content for Euclid’s ‘equal’, Euclid’s I.35 (for parallelogram)
and the derived I.37 (triangles) become the following. With this formulation Hilbert
accepts Euclid’s proof. {areaprop}

Theorem 4.6.4. [Euclid/Hilbert] If two parallelograms (triangles) are on the same
base and between parallels they have equal content in 1 step.

55For example, we could have 8-ary relation for quadrilaterals have the same area, 6-ary relation for
triangles have the same area and 7-ary for a quadrilateral and a triangle have the same area.
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By adding and subtracting figures, Euclid shows ADBC has the same content as
EFBC.

Now for arbitrary figures:

Definition 4.6.5 (Equal content). Two figures P,Q have equal content in n steps 56

if there are figures P ′1 . . . P
′
n, Q′1 . . . Q

′
n such that none of the figures overlap, each

P ′i and Q′i are scissors congruent and P ∪ P ′1 . . . ∪ P ′n is scissors congruent with
Q ∪Q′1 . . . ∪Q′n.

Varying Hilbert, Hartshorne (Sections 19-23 of [37]) shows that these prop-
erties of content are satisfied in the first order axiom system EG (Notation 4.2.2). The
key tool is: {areafn}

Definition 4.6.6. An area function is a map α from the set of figures, P , into an ordered
additive abelian group with 0 such that

1. For any nontrivial triangle T , α(T ) > 0.

2. Congruent triangles have the same content.

3. If P and Q are disjoint figures α(P ∪Q) = α(P ) + α(Q).

56The diagram is taken from [41].
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This formulation hides the quantification over arbitrary n-gons. We clarify
the method of translating to first order in Definition 6.5.

It is evident that if a plane admits an area function then the conclusions of
Lemma 4.6.2 hold. This obviates the need for positing separately De Zolt’s axiom that
one figure properly included in another has smaller area57. In particular this implies
Common Notion 4 for ‘area’. Using the segment multiplication, Hilbert (compare the
exposition in Hartshorne) establishes the existence of an area function for any plane
satisfying HP5. The key point is to show that formula A = bh

2 does not depend on the
choice of the base and height. Thus, Hilbert proves (**) without recourse to the axiom
of Archimedes. {incomtri}

Remark 4.6.7. In contrast, recall the diagram for Euclid’s, VI.1.

If, for example, BC, GB and HG are congruent segments then the area
of ACH is triple that of ABC. But without assuming BC and BD are commen-
surable, Euclid calls on Definition V.5 of the proportionality chapter to assert that
ABD : ABC :: BD : BD.

We have now shown that the axioms for Euclidean planes (HP5 + circle-circle
intersection) suffice to prove Properties 3.3.1 a to d. Before addressing the question of
π, we consider the extensions to Cartesian geometry.

5 Descartes and Tarski
{DT}

It is not our intent to give a detailed account of Descartes’ impact on geometry. We
want to bring out the changes from the Euclidean to the Cartesian data set.

Of course the most important is to explicitly (on page 1 of [17]) define the
multiplication of line segments to give a line segment. And later on the same page
to announce constructions for the extraction of nth roots for all n. The second of

57Hartshorne notes that (page 210 of [37]) that he knows no ‘purely geometric’ (without segment arith-
metic and similar triangles) proof for justifying the omission of De Zolt’s axiom.
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these cannot be done in EG, since it is satisfied in the field which has solutions for all
quadratic equations but not those of odd degree58.

Marco Panza [56] formulates in terms of ontology a key observation,

The first point concerns what I mean by ‘Euclid’s geometry’. This is the
theory expounded in the first six books of the Elements and in the Data.
To be more precise, I call it ‘Euclids plane geometry’, or EPG, for short.
It is not a formal theory in the modern sense, and, a fortiori, it is not, then,
a deductive closure of a set of axioms. Hence, it is not a closed system,
in the modern logical sense of this term. Still, it is no59 more a simple
collection of results, nor a mere general insight. It is rather a well-framed
system, endowed with a codified language, some basic assumptions, and
relatively precise deductive rules. And this system is also closed, in an-
other sense (Jullien (2006), 311-312), since it has sharp-cut limits fixed
by its language, its basic assumptions, and its deductive rules. In what fol-
lows, especially in section 1, I shall better account for some of these limits,
namely for those relative to its ontology. More specifically, I shall describe
this ontology as being composed of objects available within this system,
rather than objects which are required or purported to exist by force of the
assumptions that this system is based on and of the results proved within
it. This makes EPG radically different from modern mathematical theories
(both formal and informal). One of my claims is that Descartes geometry
partially reflects this feature of EPG.

In our context we interpret ‘composed of objects available within this system’
model theoretically as the existence of certain starting points and the closure of each
model of the system under admitted constructions. We take Panza’s ‘open’ system to
refer the diversity of constructions60, such as ruler and compass, conic, ‘mechanical’
available in Greek geometry and (at least partially) systematized by Descartes. It is
exactly in this way that we have argued that the first order axioms solve Problem 3.3.1
1a.-d. But Descartes allows many more constructions (again cf. [56]) than the ruler
and compass permitted in EG. in particular these allow the extraction of nth roots for
all n and the solution of many higher degree polynomials. For our purpose we take the
common identification of Cartesian geometry with real algebraic geometry: the study
of polynomial equalities and inequalities in the theory of real closed fields. To justify
this geometry we adapt Tarski’s ‘elementary geometry61. The extent to which study of
further constructions might be done in extensions of Tarski’s system (e.g. adding the
exponential function) is a possible development of the themes here.

58See section 12 of [37].
59There appears to be a typo. Probably ‘more a” should be deleted. jb
60The types of constructions allowed are analyzed in detail in Section 1.2 of [56] and the distinctions with

the Cartesian view in Section 3.
61Tarski axiomatizes his system with only a single sort for points; this is an inessential distinction from

our standpoint.
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From Tarski [67] we get {Tarskiax}

Theorem 5.8. Tarski [66] calls the following system of axioms E2. It is first order
complete for the vocabulary in Notation 4.2.4.

1. Euclidean geometry

2. An infinite set of axioms declaring that every polynomial of odd-degree has a
root.

Admittedly, this step may be criticized for being too strong, as we have criti-
cized the Dedekind postulate. There are several responses to this claim. If the real num-
bers (or even the real algebraic numbers) are indeed the intended model for Descartes
then we are indeed accounting for exactly the (first order sentences) in Dedekind’s data
set. Further, our axioms are in the spirit of Descartes – asserting the solutions of certain
equations.

The connection with Dedekind’s approach is seen by the formulation in [34];
the first order completeness of the theory is imposed by an axiom Schema of Continuity
- a definable version of Dedekind cuts:

(∃a)(∀x)(∀y)[α(x) ∧ β(y)→ B(axy)]→ (∃b)(∀x)(∀y)[α(x) ∧ β(y)→ B(xby)],

where α, β are first-order formulas, the first of which does not contain any free oc-
currences of a, b, y and the second any free occurrences of a, b, x. This schema allow
the solution of odd degree polynomials. By the completeness of real closed fields, this
theory is also complete62. {gc}

Remark 5.9 (Gödel completeness). In Detlefsen’s terminology we have found a Gödel
complete axiomatization of (in our terminology Cartesian) plane geometry. This guar-
antees that if we keep the vocabulary and continue to accept the same data set no
axiomatization can account for more of the data. There are certainly open problems in
plane geometry [47]. But however they are solved the proof will be formalizable in E2.
Of course, more perspicuous axiomatizations may be found. Or one may discover the
entire subject is better viewed as an example in a more general context.

In the case at hand, however, there are more specific reasons for accepting the
geometry over real closed fields as ‘the best’ descriptive axiomatization. It is the only
one which is decidable and ‘constructively justifiable’.

Ziegler [75] has shown that every nontrivial finitely axiomatized subtheory of
RCF63 is not decidable. Thus both to more closely approximate the Dedekind con-
tinuum and to obtain decidability we restrict to planes over RCF; Tarski [34] gave a

62Tarski proves the equivalence of geometries over real closed fields with his axiom set in [66]. He calls
the theory elementary geometry, E2.

63RCF abbreviates ‘real closed field’; these are the ordered fields such that every positive element has a
square root and every odd degree polynomial has at least one root. The theory is complete and recursively
axiomatized so decidable. By nontrivial subtheory, I mean one satisfied by one of C,<, or a p-adic field
Qp. For the context of Ziegler result and Tarski’s quantifier elimination in computer science see [48].
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geometric axiomatization (and proved biinterpretability) between RCF and the theory
of all planes over real closed fields. The crucial fact that makes decidablity possible
is that the natural numbers are not first order definable in the real field. The geometry
can represent multiplication as repeated addition in the sense of a module over a Z but
not with the full ring structure. As Tarski noticed and Friedman [31] proved, RCF is
provably consistent in exponential function arithmetic (EFA).

Of course, another crucial contribution of Descartes is coordinate geometry.
Tarski provides a converse; his interpretation of the plane into the coordinatizing line
[68] underlies our smudging of the study of the ‘geometry continuum’ with axiomati-
zations of ‘geometry’.

6 Archimedes: π, arc length and area of circles
{pi}

Dedekind (page 37-38) observes that what we would now call the real closed field
with domain the field of real algebraic numbers is ‘discontinuous everywhere’ but ‘all
constructions that occur in Euclid’s elements can . . . be just as accurately effected as in
a perfectly continuous space’. Strictly speaking, for constructions this is correct. But
the proportionality constant between a circle and its circumference π is absent, so even
more not both a straight line segment of the same length as the circumference and the
diameter are in the model64. We want to find a theory which proves the circumference
and area formulas for circles and countable models of the geometry over RCF, where
‘arc length behaves properly’. This involves finding an analogue for the method of
exhaustion.

Mueller (page 236 of [52]) makes a basic point.

One might say that in applications of the method of exhaustion the limit
is given and the problem is to determine a certain kind of sequence con-
verging to it, . . . Since, in the Elements the limit always has a simple de-
scription, the construction of the sequence can be done within the bounds
of elementary geometry; and the question of constructing a sequence for
any given arbitrary limit never arises.

This distinction can be expressed in another way. We speak of the method of
Eudoxus: a technique to solve certain problems, which are specified in each applica-
tion. In contrast, Dedekind’s postulate provides a solution for 2ℵ0 problems.

A second contrast between Euclid’s and the modern approach is that the se-
quences constructed in the study of magnitutes in the Elements are of geometric objects,
not numbers. (Implicitly) using Archimedes axiom, Euclid proves (XII.2) that the area
of a circle is proportional to the square of the diameter. In a modern account, as we

64Thus, the compass postulate derived from [10] is violated. (See Remark 6.14.)
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saw already in Section 4.4, where we have interpreted segmentsOa as representing the
number a, we must identify the proportionality constant and verify that it represents a
point in any model of the theory65. This shift in interpretation drives the rest of this
section.

Thus, we search first for the solution of a specific problem: is π in the under-
lying field? At the end of the section, we address the more modern question of defining
a function that assigns a straight line segment as the measure of an angle.

Archimedes is a transitional figure here. By beginning the calculation of ex-
pansion of π, he is moving towards the treatment of it as a number. The validation in
the theory Tπ below of the formulas A = πr2 and C = πd are answering the questions
of Hilbert and Dedekind not questions of Euclid or even Archimedes.

Now that we have established that each model of EG has the field of con-
structible number embeddable in the field definable any line of the model, we can
interpret the Greek theory of proportionality in terms of cuts. Each pair of proportional
pairs of magnitudes determines a cut (E.g. page 33-34 of [14]. The non-first order
postulates of Hilbert play complementary roles. The Archimedean axiom is minimiz-
ing; each cut is realized by at most one point so each model has cardinality at most 2ℵ0 .
The weak66 Dedekind’s postulate is maximizing; each cut is realized, set of realizations
could have arbitrary cardinality.

We have labeled this section, Archimedes, for two reasons. He is the first
(Measurement of a Circle in [2]) to prove the circumference of a circle is proportional
to the diameter and begin the approximation of the proportionality constant (which
wasn’t named for another 2000 years). Secondly, his axiom is used not only in his
work but implicitly by Euclid in proving the area of a circle is proportional to the
square of the diameter.

Recall from Section 4.3, that in interpreting the field in the geometry, we
named two arbitrary points as 0, 1 and the field is definable in this expanded vocabulary.
In that case, any pair of points will do. Now we are going to add another constant
symbol π and add axioms about that constant to those for real closed fields guaranteeing
that the interpretation of π makes the formulas for area and circumference of a circle
hold 67.

Euclid’s 3rd postulate, ”describe a circle with given center and radius”, im-
plies that a circle is uniquely determined by its radius and center. In contrast Hilbert
simply defines the notion of circle and (see Lemma 11.1 of [37]) proves the uniqueness.
In either case we have: two segments of a circle are congruent if they cut the same cen-
tral angle. As the example of geometry over the real algebraic numbers shows, there is

65For this reason, Archimedes needs only his postulate while Hilbert would also need Dedekind’s postulate
to prove the circumference formula.

66See footnote5.
67I have presented parallel arguments for arc length and area. Deriving one from the other might be more

efficient but I want to stress the need for careful extension of the definitions of area and length to curves.
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no guarantee that there is a straight line segment whose ‘length’ is π. We remedy this
with the following extension of the system. {defpiax}

Definition 6.1 (Axioms for π). Add to the vocabulary a new constant symbol π. Let in
(cn) be the perimeter of a regular 3 ∗ 2n-gon inscribed68 (circumscribed) in a circle of
radius 1. Let Σ(π) be the collection of sentences

in < 2π < cn

for n < ω.

At this point we need some modern model theory. A first order theory T
for a vocabulary including a binary relation < is o-minimal if every 1-ary formula is
equivalent in T to a Boolean combination of equalities and inequalities [16]. Anachro-
nistically, the o-minimality of the reals is a main conclusion of Tarski in [67]. {piax}

Theorem 6.2. The following set Tπ of axioms is first order complete for the vocabulary
τ in Notation 4.2.4 along with the constant symbols 0, 1, π.

1. E2, that is:

(a) the axioms EG of a Euclidean plane.

(b) A family of sentences declaring every odd-degree polynomial has a root.

2. Σ(π)

Proof. We have established that there are well-defined field operations on the
line through 01. By Tarski, the theory of this real closed field is complete. The field
is bi-interpretable with the plane [68] so the theory of the geometry T is complete as
well. Further by Tarski, the field is o-minimal. The type69 over the empty set of any
point on the line is determined by its position in the linear ordering of the subfield of
constructible numbers F0; each constructible number is definable over the empty set.
Each in, cn is an element of the field F0. This position in the linear order of 2π in the
linear order on the line through 01 is given by Σ. Thus T ∪ Σ is complete. 6.2

We have given conditions on the point π names in any model of Tπ . In an
non-Archmidean model there will be other realizations of the type of π over the empty
set; nevertheless π is a specific point. We now connect the length of the segment 0π
with the circumference of a circle. To avoid complications, we restrict our discussion
of ‘arc length’ to circles and straight lines with the following notation. Recall that

68I thank Craig Smorynski for pointing out that is not so obvious that that the perimeter of an inscribed
n-gon is monotonic in n and reminding me that Archimedes started with a hexagon and doubled the number
of sides at each step.

69Let A ⊂ M |= T . A type over A is a set of formulas φ(x,a) where x, (a) is a finite sequence of
variables (constants from A) that is consistent with T . It is over the empty set if the elements of A are
definable without parameters in T (e.g. the constructible numbers).
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Euclid uses the word line to refer to any curve and restrictively defines ‘straight line’.
We have taken straight line as the basic notion. We will use the capitalized word Line
segment to mean either a straight line segment or an arc (segment of a circle).

Definition 6.3. By a bent line70 b = X1 . . . Xn we mean a sequence of straight line
segments XiXi+1 such that each end point of one is the initial point of the next.

1. Note each bent line b = X1 . . . Xn has a length [b] given by the straight line
segment composed of the sum of the segments of b.

2. An approximant to the arc X1 . . . Xn of a circle with center P , is a bent line
satisfying:

(a) X1, . . . Xn, Y1, . . . Yn are points such that all PXi are congruent and Yi
is in the exterior of the circle.

(b) Each of X1Y1, YiYi+1, YnXn is a straight line segment.

(c) X1Y1 is tangent to the circle at X1; Yn−1Xn is tangent to the circle at Xn.

(d) For 1 ≤ i < n, YiYi+1 is tangent to the circle at Xi.

Definition 6.4. Let S be the set (of equivalence classes of) straight line segments. Let
C be the set (of equivalence classes) of arcs. Now we extend the linear order on S on
to a linear order on S ∪ C as follows. For s ∈ S and c ∈ C

1. The segment s < c if and only if there is a chord XY of a circular segment
AB ∈ c such that XY ∈ s.

2. The segment s > c if and only if there is an approximant X1 . . . Xn to c with
[X1 . . . Xn] > c.

It is easy to see that this order is well-defined since each chord of an arc is
shorter than any approximant to the arc.

Now we want to argue that π, as implicitly defined by the theory Tπ , serves
its geometric purpose. For this, we add a new unary function symbol C mapping our
fixed line to itself and satisfying the following scheme asserting that for each n, C(r)
is between the perimeter of a regular inscribed n-gon and a regular circumscribed n-
gon of a circle with radius r. For this we specialize our notion of approximant to the
perimeter of the circumscribed (inscribed) polygons. {circfn}

Definition 6.5. Consider the following properties of a unary functionC(r) mapping S,
the set of equivalence classes (under congruence) of straight line segments, into itself.

70This is less general than Archimedes (page 2 of [2]) who allows segments of arbitrary curves ‘that are
concave in the same direction’.
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ιn For any points P,X1, . . . Xn such that all the segments PXi are congruent with
length r, and all the segments XiXi+1 (including XnX1) are congruent, the
sum in(r) of the lengths of the segments XiXi+1 (including XnX1) is less than
C(r).

γn For any points P,X1, . . . Xn, Y1, . . . Yn such that all PXi are congruent with
length r, Yi is in the exterior of the circle, Xi is the midpoint of YiYi+1, and
all YiYi+1 (including YnY1) are congruent the sum cn(r) of the lengths of the
segments YiYi+1 (including YnY1) is greater than C(r).

Any function C(r) satisfying these axioms is called a circumference function,
we call C(r) the circumference of a circle with radius r. {circumfn}

Definition 6.6. The theory Tπ,C is the extension of the τ∪{0, 1, π}-theory Tπ obtained
by the explicit definition C(r) = 2πr.

As an extension by explicit definition, Tπ,C is complete and o-minimal. Since
by similarity in(r) = rin and cn(r) = rcn, the approximations of π by inscribed
and circumscribed polygons and our definition of Tπ make the following metatheorem
immediate. {circform}

Theorem 6.7. In Tπ,C , C(r) = 2πr is a circumference function (i.e. satisfies all the
ιn and γn.

In an Archimedean field there is a unique interpretation of π and thus a unique
choice for a circumference function with respect to the vocabulary without the constant
π. By adding the constant π to the vocabulary we get a formula which satisfies the
conditions in every model. But in a non-Archimedean model, any point in the monad
of 2πr would equally well fit our condition for being the circumference.

We now sketch the extension of Tπ , analogous to that for circumference, to
treat the area of a circle. We extend the impact of the properties of equal content in
Theorem 4.6.2 by expanding the notion of figure. We called the expanded class with a
capital F .

Definition 6.8. A Figure is a figure or a sector of a circle. That is, either a sector
of circle or a subset of the plane that can be represented as a finite union of disjoint
triangles. {defpiax}

Lemma 6.9 (Additional property of π). Let In and Cn as the area of the regular n-gon
inscribed or circumscribing the unit circle.

In < π < Cn

for n < ω

Then Tπ proves each of these sentences is satisfied by π.
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Proof. The (In, Cn) define the cut for π in the constructible reals and the
(in, cn) define the cut for 2π.

Now, as in the segment case, by formalizing a notion of equal area, including a
schema for approximation by finite polygons, we can now define a formal area function
A(r). {circumfn}

Definition 6.10. The theory Tπ,C,A is the extension of the τ ∪ {0, 1, π}-theory Tπ
obtained by the explicit definition A(r) = πr2.

In the vocabulary with this function named we have: {circarea}

Theorem 6.11. In Tπ,C,A, the area of a circle is A(r) = πr2.

Remark 6.12. Since o-minimality is preserved by naming constants and by explicit
definition, the theory of the ordered field defined the geometry T0,1,π,A,C is o-minimal.
The theory T0,1,π,A,C verifies both the area and circumference functions. It is biinter-
pretable with the theory of the field. And thus it is constructive consistent (i.e provably
consistent in EFA and therefore in primitive recursive arithmetic ( [31])).

Remark 6.13. We have so far, in the spirit of the quote from Mueller at the beginning
of this section, tried to find the proportionality constant only for a specific proportion.
In the remainder of the section, we consider several ways of systematizing the solution
of families of such problems. First, still in a specific case we look for models where
every angle corresponds to the length of a straight line segment. Then we consider
several model theoretic schemes to organize such problems. {Birk}

Remark 6.14. Birkhoff [10] introduced the following axiom in his system71.

POSTULATE III. The half-lines `,m, through any point O can be put
into (1, 1) correspondence with the real numbers a(mod2π), so that, if
A 6= O and B 6= O are points of ` and m respectively, the difference
am − a`(mod2π) is ∠AOB.

Birkhoff takes the real numbers as an unexamined background object. He
argues that his axioms define a categorial system isomorphic to <2. So it is equivalent
to Hilbert’s.

The next task is to find a more modest version of Birkhoff’s postulate: a first
order theory with countable models which assign a measure to each angle between 0
and 2π. Recall that we have a field structure on the line through 01 and the number π
on that line. We will make one further explicit definition.

Definition 6.15. A measurement of angles function is a map µ from congruence classes
of angles into [0, 2π) such that if ∠ABC and ∠CBD are disjoint angles sharing the
side BC, µ(∠ABD) = ∠ABC + ∠CBD

71This is the axiom system used in virtually all U.S. high schools since the 1960’s.
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If we omitted the additivity property this would be trivial: Given an angle
∠ABC less than a straight angle, let C ′ be the intersection of a perpendicular to AC
through B with AC and let µ(∠ABC) = BC′

AB . (It is easy to extend to the rest of the
angles.) To obtain the additivity, we proceed as follows. {arclength}

Theorem 6.16. For every countable model M of Tπ , there is a countable model M ′

containing M such that a measure of angles function µ is defined on the (congruence
class of) each angle determined by points P,X, Y ∈M ′.

Proof. We adapt the proof of Theorem 6.7. Fix an angle XPY where X,Y
are on the circumference of a unit circle with center P . Replace the inscribed and
circumscribed polygons of Definition 6.5 by building polygons inscribed and circum-
scribing the sector (also using the two radii as two sides, but choosing new points to
refine the approximation by bisecting each central angle at each stage). As in the proof
of Theorem 6.2, we obtain the arc length as a type over PXY over the emptyset in Tπ .

Given a model N , let N ′ be a countable elementary extension of N realizing
all the, countably many, angle measure cuts in N . Now proceed inductively, let M0 =
M and Mn+1 = M ′n. Then Mω is required model where µ is defined on all angles.

6.16

Since each of the cuts we realized in the previous construction was given by a
recursive type over a finite set, a recursively saturated model72 will realize the relevant
type to verify the following theorem. {getarcl}

Corollary 6.17. If M is a countable recursively saturated model of Tπ a measure of
angles function µ is defined on the (congruence class of) each angle determined by
points P,X, Y ∈M .

Remark 6.18. We have constructed a countable modelM such that each arc of a circle
in M has length measured by a straight line segment in M . There is no Archimedean
requirement; adding the Archimdean axiom there would determine a unique number
rather than a monad.

Remark 6.19. Note that in any model satisfying the hypotheses of Corollary 6.17,
we can carry out elementary right angle trigonometry (angles less than 180o). Unit
circle trigonometry, where periodicity extends the sin function to all of the line violates
o-minimality. (The zeros of the sin function are an infinite discrete set.

Remark 6.20. As suggested by the quote from Mueller [52] opening this section,
the requirement of recursive saturation provides one principle for distinguishing the
application of the method of Eudoxus by the Greeks from the Deus ex machina of
Dedekind. Putatively, to state a problem is to state it recursively, so the proportions
for which we seek a proportionality constant will be satisfied in any model where each
recursive type over a finite set is realized.

72See for example [9].
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{gc1}

Remark 6.21 (Gödel completeness again). It might be objected that such minor
changes as adding to T the name of the constant π, or adding the definable functions
C and A undermines the claim in Remark 5.9 that E2 was descriptively complete for
Cartesian geometry. But the data set has changed. We add these new constants and
functions because the modern view of ‘number’ requires them.

Remark 6.22 (Lω1,ω). Another tool for formalizing the axiomatization is to work in
Lω1,ω . This allows the statement of the axiom of Archimedes. But it can give finer
information; we can stipulate the (unique!) realization of certain cuts. By passing to
Lω1,ω , we lose the full use of the compactness theorem. But there is still a completeness
theorem and ‘Barwise compactness’ (chapter 4 and 9 of [46]).

We could even take the Scott sentence73 of some favored (perhaps, the unique
countable recursively saturated) model and obtain ℵ0 categoricity. Unfortunately, we
cannot do this with the Hilbert model; it has no countable Lω1,ω-elementary submodel.

Tarski ends [66] by comparing the properties of three first order theories of
geometry E2, EG, and the weak second order theory74 of <2. Tarski concludes:

The author feels that, among these various conceptions, the one embod-
ied in E2 distinguishes itself by the simplicity and clarity of underlying
intuitions and by the harmony and power of its metamathematical impli-
cations.

We hope the ability to develop the formulas for the area and circumference of
circles in a very mild extension of E2 bears witness to his judgement.

7 Conclusion
{concl}

We discuss first the objections to second order axioms for ‘geometry’ and then sketch
briefly the ability to study certain analytic questions by definable functions.

8 The role of the Axiom of Archimedes in the Grundla-
gen

The discussions of the Axiom of Archimedes in the Grundlagen fall into several cat-
egories. i) Those, in Sections 9 -12 (from [41]) are metamathematical - concerning

73For any countable structure M there is a ‘Scott’ sentence φM such that all countable models of φM are
isomorphic to M ; see chapter 1 of [46].

74Weak second order logic allows quantification over finite sequences of elements.
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the consistency and independence of the axioms. ii) In Section 17, the axiom of
Archimedes is used justify the coordinatization of n-space by n-tuples of real num-
bers. iii) In Sections 19 and 21, it is shown that the Archimedean axiom is necessary
to show equicomplementable (equal content) is the same as equidecomposable (in 2 or
more dimensions). These are all metatheoretical results.

Coordinitization is certainly a central geometrical notion. But it does not
require the axiom of Archimedes to coordinatize n-space by the line in the plane. The
axiom is used to assign (a binary representation of a real) to each point on the line.
That is, to establish a correspondence between object defined in the geometry and an
extrinsic notion of real number. Thus, it is not a proof in the system advanced by
Hilbert.

The use of the Archimedean axiom to prove equidecomposable is the same
as equicomplementable is certainly a proof in the system. But an unnecessary one.
As we argued in Section 4.6, Hilbert could just have easily defined ‘same area’ as
‘equicomplementable’ (as is in a natural reading of Euclid).

Thus, we find no theorems in the Grundlagen proved from its axiom system
that essentially depend on the Axiom of Archimedes.

8.1 Against the Dedekind Posulate for Geometry
{againstded}

Our motto is: ‘Make no unnecessary hypothesis.’ Our fundamental claim is that (slight
variants on ) Hilbert’s first order axiom provide a modest descriptively complete axiom-
atization of most of Greek geometry. We spelt out in Section 3.3 a careful collection
of different data sets and showed in sections 4, 5, 6 that appropriate sets of first order
axioms are modest descriptively complete axioms for each them. We then showed a
slight extension of Tarski’s first order axiomatization accounts not only for the Carte-
sian data set but the basic properties of π. In the Appendix 9, we lay out the reasons
that the discussion in this paper concerns Dedekind’s rather than Hilbert’s formulation
of the continuity postulate.

As we pointed out in Section 3 of [8] various authors have proved under
V = L, any countable or Borel structure can be given a categorical axiomatization.
We argued there that this fact undermines the notion of categoricty as an independent
desiderata for an axiom system. There, we gave a special role to attempting to ax-
iomatize canonical systems. Here we go further, and suggest that even for a canonical
structure there are advantages to a first order axiomatization that trump the loss of
categoricity.

We argue then that the Dedekind postulate is inappropriate (in particular im-
modest) as an attempt to axiomatize the Euclidean or Cartesian or Archimedean data
sets for several reasons:
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1. It is not part of the data set but rather an external limitative principle.

The notion that there was ‘one’ geometry was implicit in Euclid. But it is not a
geometrical statement. Indeed, Hilbert described his completeness axiom (page
23 of [40]), ‘not of a purely geometrical nature’. This is most clearly seen in
Hilbert’s initial metamathematical formulation: that the model of Axiom groups
I-IV and Archimedes axiom must be maximal. {overkill}

2. It is not needed to establish the properly geometrical propositions in the data set.
We first reviewed in Theorem 4.2.3 the literature showing the first two data sets
in Section 3.3 are provable from the axioms we labeled in Notation 4.2.2 as EG
(HP5 + CCI) (Notation 4.2.2). Then we extended to Tarski’s E2 and our Tπ to
give first order axioms accounting for data sets 3 and 4.

3. Proofs from Dedekind’s postulate obscure the true geometric reason for certain
theorems. Hartshorne writes75:

‘... there are two reasons to avoid using Dedekind’s axiom. First, it
belongs to the modern development of the real number systems and
notions of continuity, which is not in the spirit of Euclid’s geometry.
Second, it is too strong. By essentially introducing the real num-
bers into our geometry, it masks many of the more subtle distinctions
and obscures questions such as constructibility that we will discuss
in Chapter 6. So we include the axiom only to acknowledge that it is
there, but with no intention of using it.

4. The use of second order logic undermines a key proof method – informal proof.
A crucial advantage of a first order axiomatization76 is that it licenses the kind of
argument77 described in Hilbert and Ackerman78:

Derivation of Consequences from Given Premises; Relation to Uni-
versally Valid Formulas
So far we have used the predicate calculus only for deducing valid
formulas. The premises of our deductions, viz Axioms a) through f),
were themselves of a purely logical nature. Now we shall illustrate by
a few examples the general methods of formal derivation in the pred-
icate calculus . . . . It is now a question of deriving the consequences
from any premises whatsoever, no longer of a purely logical nature.
The method explained in this section of formal derivation from
premises which are not universally valid logical formulas has its main
application in the setting up of the primitive sentences or axioms for
any particular field of knowledge and the derivation of the remain-
ing theorems from them as consequences . We will examine, at the

75page 177 of [37]
76See Section 9 for more detail on this argument.
77We noted that Hilbert proved that a Desarguesian plane in 3 space by this sort of argument in Section

2.4 of [6].
78Chapter 3, §11 Translation taken from [11].
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end of this section, the question of whether every statement which
would intuitively be regarded as a consequence of the axioms can be
obtained from them by means of the formal method of derivation.

We exploited this technique in Section 6 to provide axioms for the calculation
of the circumference and area of a circle.

Venturi79 formulates a distinction, which nicely summarises our argument:
‘So we can distinguish two different kinds of axioms: the ones that are necessary for
the development of a theory and the sufficient one used to match intuition and formal-
ization.’ In our terminology only the necessary axioms make up a ‘modest descriptive
axiomatization’. For the geometry Euclid I (basic polygonal geometry), Hilbert’s first
order axioms meet this goal. With Tπ , a modest complete descriptive axiomatization
is provided even including the basic properties of π. The Archimedes and Dedekind
postulates have a different goal; they secure the 19th century conception of <2 to be
the unique model and thus ground elementary analysis.

8.2 Why does axiom group V exist?

We return to the second paragraph of the introduction. Hilbert wrote that V.1 and V.2
allow one ‘to establish a one-one correspondence between the points of a segment and
the system of real numbers’. Here he is exhibiting a model centric rather than a descrip-
tive (in Detlefsen’s syntactic sense) approach to axiomatization. I think these should be
recognized as two distinct motivations: to make Euclid rigorous and to ground analytic
geometry and calculus. These are complementary but distinct projects. We have noted
here that the grounding of real algebraic geometry is fully accomplished by Tarski’s
axiomatization. And we have provided a first order extension to deal with the basic
properties of the circle.

8.3 But what about analysis?
{extensions}

We have expounded a procedure [37] to define the field operations in an arbitrary Eu-
clidean plane. We argued that the first order axioms of EG suffice for the geometrical
data sets Euclid I and II, not only in their original formulation but by finding propor-
tionality constants for the area formulas of polygon geometry. By adding axioms to
require the field is real closed we obtain a complete first order theory that encompasses
many of Descartes innovations. The plane over the real algebraic numbers satisfies this
theory; thus, there is no guarantee that there is a line segment of length π. Using the
o-minimality of real closed fields, we can guarantee there is such a segment by adding
a constant for π and requiring it to realize the proper cut in the rationals. However,

79page 96 of [73]
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guaranteeing the uniqueness of such a realization requires the Lω1,ω Archimedean ax-
iom.

Hilbert and the other axiomatizers of 100 years ago wanted more; they wanted
to secure the foundations of calculus. In full generality, this surely depends on second
order properties. But there are a number of directions of work on ‘definable analysis’.

One of the directions of research in o-minimality has been to prove the expan-
sion of the real numbers by a particular functions (e.g. the Γ-function on the positive
reals [62]); our example with arc length might be extended to consider other more
interesting transcendental curves.

Peterzil and Starchenko study the foundations of calculus in [57]. They ap-
proach the complex analysis through o-minimality of the real part in [58]. The impact
of o-minimality on number theory was recognized by the Karp prize of 2014. And a
non-logician, suggests using methods of Descartes to teach Calculus [59].

In a sense, our development is the opposite of Ehrlich’s in [25]. Rather than
trying to unify all numbers great and small, we are interested in the minimal collection
of numbers that allow the development of a geometry according with our fundamental
intuitions.

9 Appendix: Hilbert and Dedekind on Continuity
{Hilbdeb}

Hilbert’s formulation of the completeness axiom reads [41]:

Axiom of Completeness (Vollständigkeit): To a system of points, straight
lines, and planes, it is impossible to add other elements in such a manner
that the system thus generalized shall form a new geometry obeying all of
the five groups of axioms. In other words, the elements of geometry form
a system which is not susceptible of extension, if we regard the five groups
of axioms as valid.

We have used in this article the following adaptation of Dedekind’s postulate
for geometry (DG):

DG: The linear ordering imposed on any line by the betweenness relation
is Dedekind complete80.

While this formulation is convenient for our purposes, it misses an essential
aspect of Hilbert’s version. DG implies the Archimedean axiom and Hilbert was aiming

80See footnote 5.
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for an independent set of axioms. Hilbert’s axiom does not imply Archimedes. A
variant VER on Dedekind’s postulate that does not imply the Archimedean axiom was
proposed by Veronese in [74]81. If we substituted VER for DG, our axioms would also
satisfy the independence criterion.

Hilbert’s completeness axiom in [41] asserting any model of the rest of the
theory is maximal, is inherently model-theoretic. The later line-completeness [40] is
a technical variant82. Giovannini’s account [33] includes a number of points already
made here; but I note three further ones. First, Hilbert’s completeness axiom is not
about deductive completeness (despite having such consequences), but about maxi-
mality of every model (page 145). Secondly (last line of 153) Hilbert expressly rejects
Cantor’s intersection of closed intervals axiom because in relies on a sequence of inter-
vals and ‘sequence is not a geometrical notion. A third intriguing note is an argument
due to Baldus in 1928 that the parallel axiom is an essential ingredient in the categoric-
ity of Hilbert’s axioms 83

Here are two reasons for choosing Dedekind’s (or Veronese’s) version. The
most basic is that one cannot formulate Hilbert’s version as sentence Φ in second order
logic84 with the intended interpretation

(<2,G) |= Φ.

The axiom requires quantification over subsets of an extension of the model which
putatively satisfies it. Here is a second order statement85 of the axiom, where ψ denotes
the conjunction of Hilbert’s first four axiom groups and the axiom of Archimedes.

(∀X)(∀Y )∀R)[[X ⊆ Y ∧ (X,R�X) |= ψ ∧ (Y,R) |= ψ]→ X = Y ]

This anomaly has been investigated by Väänänen who makes the distinction
between the last two displayed formulas (on page 94 of [69]) and expounds in [70] a
new notion ‘Sort Logic’ which provides a logic with a sentence Φ which by allowing a

81The axiom VER asserts that for a partition of a linearly ordered field into two intervals L,U (with no
maximum in the lower L or minimum in the upper U ) and third set in between at most one point, there is
a point between L and U just if for every e > 0, there are a ∈ A, b ∈ B such that b − a < e. See
the insightful reviews [55] and [54] where it is observed that Vahlen [71] proves this axiom does not imply
Archimedes and section 12 of the comprehensive [24].

82Since any point in the definable closure of any line and any one point not one the line, one can’t extend
any line without extending the model. Since adding either the Dedekind postulate and or Hilbert complete-
ness gives a categorical theory satisfied by a geometry whose line is order isomorphic to < the two axioms
are equivalent (over HP5 + Arch).

83Hartshorne (sections 40-43 of [37] gives a modern account of Hilbert’s argument that replacing the
parallel postulate by the axiom of limiting parallels gives a geometry that is determined by the underlying
(definable) field. With V.2 this gives categoricity.

84Of course, this analysis is anachronistic; the clear distinction between first and second order logic did
not exist in 1900. By G, we mean the natural interpretation in <2 of the predicates of geometry introduced
in Section 4.2.

85I am leaving out many details, R is a sequence of relations giving the vocabulary of geometry and the
sentence ‘says’ they are relations on Y ; the coding of the satisfication predicate is suppressed.
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sort for an extension axiomatizes geometry in the sense of 9. The second reason is that
Dedekind’s formulation, since it is about the geometry, not about its axiomatization,
directly gives the kind of information about the existence of transcendental numbers
that we discuss in the paper.

In [69], Väänänen discusses the categoricity of natural structures such as real
geometry when axiomatized in second order logic (e.g. DG). He has discovered the
striking phenomena of ‘internal categoricity’. Suppose the second order categoricity
of a structure A is formalized by the existence of sentence ΨA such that A |= ΨA and
any two models of Ψ are isomorphic. If this second clause in provable in a standard
deductive system for second order logic, then it is valid in the Henkin semantics, not
just the full semantics.

Philip Ehrlich has made several important discoveries concerning the connec-
tions between the two ‘continuity axioms’ in Hilbert and develops the role of maxi-
mality. First, he observes (page 172) of [22] that Hilbert had already pointed out that
his completeness axiom would be inconsistent if the maximality were only with re-
spect to the first order axioms. Secondly, he [22, 23] systematizes and investigates
the philosophical significance of Hahn’s notion of Archimedean completeness. Here
the structure (ordered group or field) is not required to be Archimedean; the maxi-
mality condition requires that there is extension which fails to extend an Archimedean
equivalence class86. This notion provides a tool (not yet explored) for investigating the
non-Archimedean models studied in Section 6. The use in that section of various weak-
enings of saturation to study these models has natural links with Ehrlich’s rephrasing
the maximality condition in terms of homogeneous universal structure [20].
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