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Abstract

Our aim is to see which practices of Greek geometry can be expressed in vari-
ous logics. Thus we refine Detlefsen’s notion of descriptive complexity by provid-
ing a scheme of increasing more descriptive formalizations of geometry

Following Hilbert we argue that defining a field structure on a line in ‘Eu-
clidean geometry’ provides a foundation for both geometry and algebra. In par-
ticular we prove from first principles:

√
2 ·
√
3 =

√
6, similar triangles have

proportional sides, Euclid’s 3rd axiom: circle intersection, the area of every trian-
gle is measured by a segment. For these as Hilbert showed, no theory of limits is
needed. Thus, the first order theory as described by Hilbert or Tarski is adequate
for proportion and polygonal area.

We further consider the role of π and determining the area and circumference
of a circle. and the area of a circle of radius r is πr2. Here we extend the first order
geometry by adding a constant for the length π. Here we will rely on the axiom of
Archimedes but only in the metatheory and not at all on Dedekind completeness.
The natural numbers are not definable in these geometries. Finally Dedekind com-
pleteness add a second order axiom to give the modern basics of modern analysis.

Very preliminary -not yet for general release. I expect to give a major reorganization to
this material. But the present version explains the role of multiplication as similarity vrs as
repeated addition and sketches the study of circles. This requires adding formal notions of
area and arc length. This is partially carried out in Section 7. This version just clarifies a
few points from the presentation at the Urbana meeting.

∗
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1 Introduction

We aim here to lay out and compare some first order axiomatizations of (fragments
of) Euclidean geometry. The first goal is to obtain a general treatment of proportion
without resulting to either Eudoxus or any second order completeness axiom. Then
we extend Hilbert’s analysis to consider a first order axiomatization which includes the
circumference and area of a circle and the assigns a measure to angles. In the process
we consider Hilbert’s axiomatization and argue that a more sympathetic attitude to
Euclid provides a more natural axiomatization of the geometry of constructions. This
is however an incomplete and undecidable theory. The natural completion is Tarski’s
decidable first order theory of the reals: the geometry of the plane over any real closed
field. We employ Detlefsen’s concept of descriptive completeness in Subsection 1.1
to assess the success of the axiomatization. In particular, our analysis uses a tool not
available to Hilbert in 1899, a clear distinction between first and second order logic.
Note in particular that the first order complete geometry described in Theorem 7.0.4 is
biinterpretable with the theory of real closed fields and so can be proved consistent in
systems of low proof theoretic strength1

A fundamental issue is the distinction between the arithmetic and geometric
intuitions of multiplication. The first is as iterated addition; the second is as scaling or
proportionality. The late 19th century developments provide a formal reduction of the
second to the first but the reduction is only formal; the intuition is lost. In this paper
we view both intuitions as fundamental and develop the second (Section 3): with the
understanding that development of the first through the Dedekind-Peano treatment of
arithmetic is in the background. See Remark 3.1.5 for the connection between the two.

This paper unites my interests in the foundations of mathematics and math-
ematics education. The mathematical sections were first written in [5] as notes for
a workshop for teachers and are based on Hartshorne’s undergraduate text [23]. But
I realized this search for an understandable introduction to geometry (in contrast to
Birkhoff-Moise axiomatization which destroyed high school geometry in the United
States [6]) actually fits well into Hilbert’s program.

1.1 The Goals of Axiomatization
{goalax}

Hilbert begins the Grundlagen [25] with

The following investigation is a new attempt to choose for geometry a
simple and complete set of independent axioms and to deduce from them
the most important geometrical theorems in such a manner as to bring

1The canonical reference is [24] pages 38-48. Tarski announces the result in [35]. Tomás gives a detailed
proof in [36]. Harvey Friedman?? proves the consistency of the theory of real closed fields in EFA (expo-
nential or elementary) function arithmetic, a system which allows induction only over bounded quantifiers
and has consistency strength ω3.
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out as clearly as possible the significance of the groups of axioms and the
scope of the conclusions to be derived from the individual axioms.

In this paper, we adopt Hilbert’s ‘first order axioms’ and attempt to disen-
tangle the uses of arithmetic and second order logic ‘to deduce from them the most
important geometrical theorems’. That is, we argue that some uses of ‘continuity’ or
more precisely Dedekind completeness in Hilbert’s development were unnecessary.

For example, Dedekind (page 22 of [11]) writes ‘ . . . in this way we arrive at
real proofs of theorems (as, e.g.

√
2 ·
√

3 =
√

6), which to the best of my knowledge
have never been established before.’ We will give an equally rigorous but much more
simple proof of this in Theorem 4.0.1.

The meaning of Hilbert’s introduction depends greatly on what Hilbert meant
by ‘complete’. While in the context of the preface it clearly means, ‘decides relevant
statements’, in modern terminology, the completeness axiom in [25] (page 25) is se-
mantic: it asserts that there is a unique maximal model of the five groups of axioms2.

Hilbert’s first formulation of completeness builds in categoricity. With
Hilbert’s later syntactic version, which just asserts the second order proposition that
the line is Dedekind complete, one gets a formulation where categoricity is a metathe-
orem. We seek weaker axiomatizations which still fulfill the criteria of justifying the
most important geometrical theorems. For this Detlefsen’s criterion for descriptive
completeness is relevant. He [14] quotes Huntington [28]:

[A] miscellaneous collection of facts . . . does not constitute a science. In
order to reduce it to a science the first step is to do what Euclid did in
geometry, namely, to select a small number of the given facts as axioms
and then to show that all other facts can be deduced from these axioms by
the methods of formal logic.

But what does ‘fact’ mean? Detlefsen says, ‘a commonly accepted sentence
pertaining to a given subject area’. This raises the issue of the meaning of sentence. A
natural solution would be to specify a logic and a vocabulary and consider all sentences
in that language. Detlefsen argues (pages 5-7 of [14]) that Gödel errs in seeing the
problem as completeness of a first order theory. We examine here the case of plane
geometry and see that questions arise that are not explicitly in our first order framework
for geometry3.

This problem arises in proving that similar triangles have proportional sides.
Here the notion of proportional for Euclid requires going beyond the first order lan-

2In the 7th edition this was replaced by line completeness, which is a variant of Dedekind completeness.
See [26].

3Thus in our case, even if we have a complete first order theory, we have to show that it correctly repre-
sents ‘proportionality’. In this instance, we show that a small fragment of the complete theory suffices for
this purpose.
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guage of geometry – in particular using infinite sequences of approximations. This
could lead to positing Dedekind completeness and separability of the coordinatizing
field as in [9]. However, Hilbert[26] showed a that for a certain first order theory (Eu-
clidian geometry, Notation 2.1.1) similar triangles have proportional sides. The key
point is that for triangles in a model M to be similar, the lengths of their sides must be
in M .

We study several natural examples of problems that should be solved to get
descriptive completeness and solve them within a first order context. We will present a
first order complete set of axioms for plane geometry.

To meet Detlefsen’s demand for descriptive completeness, we must show the
consequences of these axioms include the ‘commonly accepted sentences’ pertaining
to this subject area. We avoid Dedekind completeness while recovering a number of
these commonly accepted proposition; their proofs are scattered in the paper.

Below, by ‘measured by a segment’ we mean that if the area of the triangle is
A square units, there is a segment with length A units. Thus we adopt the modern view
of number. See Remark 3.1.1.

Here is a summary of the geometrical theorems discussed and the type of logic
necessary for the formalization. {goal}

Theorem 1.1.1. The following hold in Euclidean geometry. (See Notation 2.1.1.)

1. first order: (Hilbert)

(a)
√

2 ·
√

3 =
√

6. (Theorem 4.0.1)

(b) the side-splitter theorem (Theorem 5.0.2)

(c) Euclid 3: circle intersection (Theorem 4.0.4)

(d) The area of every triangle is measured by a segment (Heron). Theo-
rem 4.0.4

2. first order: (new)

(a) Formulas for area and circumference of circle Theorem ??
(b) In some models all angles have measure.

We will study in more detail in a later version of the paper.

1. Lω1,ω: Archimedes axiom

(a) In every model, every angle has a measure

2. Second order logic: Dedekind completeness

(a) Categoricity and ‘analysis’
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1.2 Methodology

We identify two levels of formalization in mathematics. By the Euclid-Hilbert style we
mean the axiomatic approach of Euclid along with the Hilbert insight that postulates
are implicit definitions of classes of models. By the Hilbert-Gödel-Tarski-Vaught style,
we mean that that syntax and semantics have been identified as mathematical objects;
Gödel’s completeness theorem is a standard tool4. In the development here, we want
to have the best of both worlds. We will give our arguments in English; but we will
be careful to specify the vocabulary and the postulates in a way that the translation
to a first order theory is transparent. This will allow us to apply the insight that sec-
ond order properties of models can strengthen the effect of first order assertions (as in
Theorem 1.1.1.5. As part of our less formal approach, we make use of the analysis of
Manders [30] to use diagrams to make proofs more understandable5. Properties that
are not changed by minor variations in the diagram such as subsegment, inclusion of
one figure in another, two lines intersect, betweenness are termed inexact. Properties
that can be changed by minor variations in the diagram, such as whether a curve is a
straight line, congruence, a point is on a line, are termed exact. We can rely on reading
inexact properties from the diagram.We must write exact properties in the text. The
difficulty in turning this insight into a formal deductive system is that, depending on
the particular diagram drawn, after a construction, the diagram may have different in-
exact properties. The solution is case analysis but bounding the number of cases has
proven difficult.

In this paper, we lay out formal axioms so that our work can be grounded
in modern logic and even support some arguments that invoke the completeness theo-
rem but discuss the connections between the axioms as laid out by Hilbert and more
construction oriented versions which are truer to Euclid’s practice.

1.3 Setting

Adrian Mathias [31] quotes Sylvester on the three divisions of mathematics.

There are three ruling ideas, three so to say, spheres of thought, which
pervade the whole body of mathematical science, to some one or other of
which, or to two or all of them combined, every mathematical truth admits
of being referred; these are the three cardinal notions, of Number, Space
and Order.

This is a slightly unfamiliar trio. We are all accustomed to opposition between
arithmetic and geometry. While Newton famously founded the calculus on geometry

4See [7] for further explication
5This approach is probably best described as the normal proof mode of a mathematician. But we are aware

that no completeness theorem has been yet proved for Euclidean geometry with diagrams at the strength we
employ.
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(see e.g. [15]) the ‘arithmetization of analysis’ in the late 19th century reversed the
priority. From the natural numbers the rational numbers are built by taking quotients
and the reals by some notion of completion. And this remains the normal approach to-
day. We want here to consider reversing the direction again: building a firm grounding
for geometry and then finding first the field and then some completion and considering
incidentially the role of the natural numbers. In this process, Sylvester’s third cardinal
notion order will play an ambiguous role. On the one hand in the first section, the
notion that one point lies between two others will be fundamental and an order relation
will naturally follow. In a sequel, we will eschew order and consider the development
of projective or complex geometry.

Bolzano discusses the ‘dissimilar objects’ found in Euclid6 and finds Euclid’s
approach fundamentally flawed.

Firstly triangles, that are already accompanied by circles which intersect
in certain points, then angles, adjacent and vertically opposite angles, then
the equality of triangles, and only much later their similarity, which how-
ever, is derived by an atrocious detour [ungeheuern Umweg], from the con-
sideration of parallel lines, and even of the area of triangles, etc.! (1810,
Preface)

Much of this paper is an exploration of the relations between different themes
in Euclid: congruence and parallelism, area, similarity. We will use segment arithmetic
to analyze these connections.

By ‘their similarity’, I take Bolzano to be referring to the proof that that two
triangles are similar (corresponding angles are equal) if and only the sides are propor-
tional. (Euclid VI.4 and VI.5, which follow Euclid VI.1 and VI.2 which heavily involve
parallelism and area. As outlined in [2, 8], Hilbert both carries out Euclid’s argument
and shows that while the parallel postulate is not essential; the theorem of Desargues,
which follows using both parallel postulate and congruence, is. However, Hilbert con-
tinues to rely on the use of area in particular (implicitly ???) on De Zolt’s axiom that a
non-trivial triangle has a positive area. However, as we describe below, Hartshorne [23]
has shown (using a variant on Hilbert construction of the field) that this reliance is not
necessary. In a later paper we will discuss the role of the Desargues theorem in finite
and complex geometry; but here we introduce order and use the parallel postulate.

6This is taken from [19].
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2 The geometry of Euclid/Hilbert
{euclid}

2.1 Introduction

This section pertains to our fundamental goal of establishing a simple set of axioms
for geometry. But for the principal goal of this paper, using the coordinatization of the
field as a tool to define proportionality, the exact axioms are not important. {HP5}

Notation 2.1.1. We follow [23] in the following nomenclature.

A Hilbert plane is any model of Hilbert’s incidence, betweenness, and con-
gruence axioms. We abbreviate these axioms by HP. We will write HP5 for these
axioms plus the parallel postulate. A Euclidean plane is one that satisfies HP5 and in
addition the circle-circle intersection postulate 2.3.5. Our official axiom list will be an
alternative axiomatization of a Euclidean plane.

Notations such as Eax1,HC4, HaC4 in the axiom list show the corresponding
axiom in Euclid, Hilbert, or Hartshorne. Axioms without an author code such as C1
or B2 denote the official axioms of this exposition, coded by C for construction, B for
betweenness etc.

This section is primarily concerned with the interplay between the axiom sys-
tems of Euclid, Hilbert, and Hartshorne and our official variant which we hope is more
appropriate for high school instruction. The definition of the field in Section 3 relies
only on HP5.

2.2 Foundational Issues
{fund}

In this section we expand on some perhaps idiosyncratic interpretations of Euclid’s
axioms (as opposed to the postulates) that serve to give a more unified account of the
foundations of geometry.

The foundations here are an ahistorical reformulation and variant of Euclid,
taking great care with some of the corrections of Hilbert and less with others. First we
distinguish between axioms and postulates. Axioms are general mathematical assump-
tions. Postulates are subject specific; we study postulates for geometry.

Axiom 1. Things which equal the same thing also equal one another.

Axiom 2. If equals are added to equals, then the wholes are equal.

Axiom 3. If equals are subtracted from equals, then the remainders are equal.

Axiom 4. Things which coincide with one another equal one another.
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Axiom 5. The whole is greater than the part.

Euclid used ‘equal’ in a number of ways: to describe congruence of segments
and figures, to describe that figures had the same measure. Numbers in the modern
sense do not appear in Euclid, but we introduce them in Section 3. Thus, we regard the
common notions as properties that first and foremost describe congruence (between
segments and between angles). To be precise in the modern sense we explicitly remark
properties of equality that were tacit in Euclid.

Remark 2.2.1. We take the following to be intended by the notion of equality in the
common notions:

Things which equal the same thing also equal one another. Every thing is
equal to itself (reflexivity) and if one thing is equal to another then the second is equal
to the first (symmetry).

These are ‘logical axioms’. They hold in all contexts. Exactly how they are
interpreted in discussed in specific cases below. In particular ‘equality’ in the axioms
can be interpreted as either identity, congruence, or same area. Thus the first conclu-
sion from the axioms is that both equality of points and congruence of segments are
equivalence relations. But of course Euclid means more by equality in various contexts
and we explore those meanings below.

We follow Hilbert in regarding the notions of point and line and the relations
of lie-on and between as undefined but determined by the postulates. As we now un-
derstand it, Euclid’s definitions of such concepts are only explanations motivating the
implicit definition given by the postulates. We fix now the fundamental notions as a
list of relation symbols giving vocabulary (similarity type) for our study. We will be
giving first order axioms for this vocabulary. {geovoc}

Notation 2.2.2. The fundamental relations of plane geometry are:

1. two-sorted universe: points (P ) and lines (L).

2. Binary relation I(A, `):

Read: a point is incident on a line;

3. Ternary relation B(A,B,C):

Read: B is between A and C (and A,B,C are collinear).

4. quaternary relation, C(A,B,C,D): Read: two segments are congruent, in sym-
bols AB ≈ CD.

5. 6-ary relation C ′(A,B,C,A′, B′, C ′): Read: the two angles ∠ABC and
∠A′B′C ′ are congruent, in symbols 〈ABC ≈ 〈A′B′C ′.

τ is the vocabulary containing these symbols.
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Note that I freely used defined terms such as collinear, segment, and angle in
giving the reading.

Postulate 2.2.3. Eax1, HC4, HaC4 Congruence of segments (angles) is an equiva-
lence relation.

2.3 Construction Postulates
{constpost}

Following Euclid we consider first construction postulates. Hilbert chose to view many
of the same principles from a slightly different perspective as incidence or congruence
postulates. The following list also provides a correspondence between the formulations
of Euclid [18], Hilbert [26], and Hilbert as numbered by Hartshorne [23] (these we
label with Ha).

Postulate 2.3.1. Construction postulates {conp}

C1: E1, HI1, HaI1 Given points A and B, a unique line segment may be drawn be-
tween them.

C2: (Eax4, E2), HIII3, HaC3 the segment a ∼= a′ and b ∼= b′ then the result a
⊕
b

and a′
⊕
b′ obtained by applying 1) to copy b (b′) after a (a′) are congruent.

Hilbert and Hartshorne (HaC3) give an additional postulate corresponding to
Euclid’s, equals added to equals are equal for segments. We consider this as a conse-
quence of Axiom 2.

Dicta Note that each construction postulate is given data and constructs fur-
ther points, line segments, or circles.

There are three further construction postulates. The first two give the second
two incidence postulates in Hartshorne (page 66) or Hilbert I3. {E2}

Theorem 2.3.2 (Euclid’s 2nd postulate). A line segment may be extended indefinitely
in either direction.

This is not explicit in Hilbert but evidently follows from the 3rd construction
postulate above. That is, why we labeled C2 as ((Eax4,E2), HIII3, HaC3).

Euclid7 defines a circle as: A circle is a plane figure contained by one line such
that all the straight lines falling upon it from one point among those lying within the
figure equal one another. In this we see his greater generality than modern treatments
in regarding curves as lines. We will use line as an abbreviation for straight line. Then
we define.

7All references to Euclid are to Heath’s translation, usually taken from Clarke’s website http://
aleph0.clarku.edu/˜djoyce/java/elements/bookI/bookI.html#posts
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Definition 2.3.3 (Circle). A circle with center A and radius AB is the collection X of
points such that for each P ∈ X , AX ∼= AB. {E3}
Postulate 2.3.4. C3: Euclid’s 3rd postulate Given a point P and any segment AB

there is a circle with P as center whose radius is congruent to AB.

Theorem 2.3.2 immediately implies every line contains at least two points and
Postulate2.3.4 that there are 3 non-collinear points. These conditions are additional
axioms in Hilbert and Hartshorne.

Euclid renders Postulate 3 as: To describe a circle with any center and radius.

There is no postulate in Hilbert or Hartshorne corresponding precisely to Eu-
clid’s third; they just regard a circle as the locus of points equidistant from a fixed
center. The following postulate is not explicit in either Euclid or Hilbert so the first two
entries of the coding is blank.

{ccp}
Postulate 2.3.5. C4: ( , , HaE)Circle Intersection Postulate If from points A and

B, circles with radius AC and BD are drawn such that one circle contains
points both in the interior and in the exterior of the other, then they intersect in
two points, on opposite sides of AB.

While some regard the absence of this axiom as a gap in Euclid, Manders
(page 66 of [30] asserts: ‘Already the simplest observation on what the texts do infer
from diagrams and do not suffices to show the intersection of two circles is completely
safe.’

We give Postulate 2.3.5 a special status beyond the postulates for a Hilbert
plane as it has exact algebraic content which we state in (Theorem 4.0.4).

Note that two of Hilbert’s congruence axioms (HC1- segment copy) and HC3-
segment addition well-defined) follow easily from Circle intersection (for HC1 by Eu-
clid I.1 and I.2) and Common notion 2 (for HC3). So if we read Circle intersection
as a consequence of a proper reading of diagrams, we are showing an equivalence of
Euclid’s axioms and postulates (‘properly read’) and Hilbert’s system.

Hartshorne (Exercise 39.31 of [23]) observes that equilateral triangles can fail
to exist in a Hilbert plane 8 and so circle intersection fails by Euclid 1.2. But this model
also fails the parallel postulate.

2.4 Betweenness
{betp}

Euclid allowed the diagrams to carry information about betweenness. We follow
Hilbert and (specifically) Hartshorne and give explicit betweenness axioms but let the

8A specific Poincaire model
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vocabulary carry more of the information. Note that betweenness is a way to impose
order; in conjunction with axioms that imply the definability of a field, this will imply
the line is infinite (and densely ordered); for simplicity we posit this ordering first.

The statement ‘A is between B and C’ cannot be made unless A,B,C are
collinear.

Postulate 2.4.1. Betweenness

Postulate B1 A is between B and C implies A is between C and B.

Postulate B2 For any pair of points A,B there is a point C with B between A and C

Postulate B3 For any three distinct points, exactly one is between the other two.

Postulate B4 Pasch’s postulate: A line that intersects one side of triangle (not in a
vertex) must intersect one of the other two.

We omit the careful development of the plane and line separation theorems.
Note however, the betweenneess postulates imply.

Theorem 2.4.2. Each line is given a dense linear order, defined by A < C if and only
if (∃y)B(A,C).

This linear order imposes the order topology on the plane. When the theory is
completed by making the field real closed we access the power of o-minimality [12].

2.5 Congruence

Hilbert introduces 4 congruence postulates. The first three concern congruence of
segments: segment copy, segment addition is well-defined, segment congruence is an
equivalence relation; we have discussed the first two in Subsection2.3 and the 3rd in
Subsection 2.2.

We choose to take SSS as our fundamental congruence postulate because of
the ease of deducing the ability to copy angles. {sss}

Postulate 2.5.1 (The triangle congruence postulate: SSS). Let ABC and A′B′C ′ be
triangles with AB ∼= A′B′ and AC ∼= A′C ′ and BC ∼= B′C ′ then 4ABC ∼=
4A′B′C ′

In Euclid this result, SSS, is proved from SAS. The proof is 4 steps: Euclid
Propositions 1.5 to 1.8. These 4 steps are not hard and are correct. But his proof
of SAS depends on the unstated notion of superposition, so we have to add one con-
gruence axiom; we choose to add SSS. One reason for this choice is that just as the
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second proposition in Euclid allows one to copy a line segment, SSS gives an immedi-
ate method to copy angles. All the other criteria for congruence (SAS, ASA, HL . . . )
are theorems.

Hartshorne points out in the exercises on page 103 of [23]:

Fact 2.5.2. In any Hilbert plane, one can construct angle bisectors, midpoints, per-
pendicular to a line ` through a point A (on or off `) and more.

In particular, this allows the construction of an incenter.

3 From geometry to segment arithmetic to numbers
{num}

In this section we will explore several mechanisms for moving from geometric con-
structions to operations on numbers. We assume what we called HP5 in Notation 2.1.1.

3.1 Segment arithmetic defined

For this we introduce segment arithmetic. This topic appears in Euclid, gets a differ-
ent interpretation in Descartes and still another in the 19th century arithmetic of real
numbers.

We want to define the multiplication of ‘lengths’ to give another length.
This differs from the treatment of multiplication in Book II of Euclid (and every-
where else in antiquity) as giving an area. Identify the collection of all congruent
line segments as having a common ‘length’ and choose a representative segment OA
for this class. There are then three distinct historical steps. (See in particular [21]
and Heath’s notes to Euclid VI.12 (http://aleph0.clarku.edu/˜djoyce/
java/elements/bookVI/propVI12.html.) In Greek mathematics numbers
(i.e. 1, 2, 3 . . . ) and magnitudes (what we would call length of line segments) were
distinct kinds of entities and areas were still another kind.

Remark 3.1.1. From geometry to numbers {geonum}

1. Euclid shows that the area of a parallelogram is jointly proportional to its base
and height. 9

2. Descartes defines the multiplication of line segments to give another seg-
ment10. Hilbert shows the multiplication on segments satisfies the field axioms11.

9In modern terms this means the area is proportional to the base times the height. But Euclid never
discusses the multiplication of magnitudes.

10He refers to the fourth proportional (‘ce qui est meme que la multiplication’[13])
11In [26], the axioms for a semiring (no requirement of an additive inverse) are verified.
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Descartes for good reason does not fix the unit segment. We do by naming points
0, 1.

3. Identify the points of the line with (a subfield) of the real numbers. Now, fixing
0, 1, addition and multiplication can be defined on the points of the line through
0, 112.

The standard treatment in contemporary U.S. secondary school geometry
books is to begin with stage 3, taking the operations on the real numbers as basic.
We will pass rather from geometry to number, concentrating on stage 2. Thus, not all
real numbers may be represented by points on the line in some planes. {segeq}

Notation 3.1.2. Note that congruence forms an equivalence relation on line segments.
We fix a ray ` with one end point 0 on `. For each equivalence class of segments, we
consider the unique segment 0A on ` in that class as the representative of that class.
We will often denote the class (i.e. the segment 0A by a. We say a segment (on any
line) CD has length a if CD ∼= 0A.

We first introduce an addition and multiplication on line segments. Then we
will prove the geometric theorems to show that these operations satisfy the field axioms
except for the existence of an additive inverse. We note after Definition 3.2.5 how to
remedy this difficulty by the passing to points as in stage 3. {segadddef}

Definition 3.1.3 (Segment Addition). Consider two segment classes a and b. Fix repre-
sentatives of a and b as OA and OB in this manner: Extend OB to a straight line, and
choose C on OB extended (on the other side of B from A) so that so that BC ∼= OA.
OC is the sum of OA and OB.

Diagram for adding segments

It is easy to see that this addition is associative and commutative.

Of course there is no additive inverse if our ‘numbers’ are the lengths of seg-
ments which must be positive. We discuss finding an additive inverse after Defini-
tion 3.2.5. Following Hartshorne [23], here is our official definition of segment multi-
plication13

12And thus all axioms for a field are obtained. Hilbert had done this in lecture notes in 1894[27].
13Hilbert’s definition goes directly via similar triangles. The clear association of angle with right mulipli-

cation by a recommends Hartshorne’s version.
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{segmultdef}

Definition 3.1.4. [Multiplication] Fix a unit segment class 1. Consider two segment
classes a and b. To define their product, define a right triangle14 with legs of length 1
and a. Denote the angle between the hypoteneuse and the side of length a by α.

Now construct another right triangle with base of length b with the angle
between the hypoteneuse and the side of length b congruent to α. The length of the
vertical leg of the triangle is ab.

Note that we must appeal to the parallel postulate to guarantee the existence
of the point F . {twomult}

Remark 3.1.5. We now have two ways in which we can think of the product 3a. On
the one hand, we can think of laying 3 segments of length a end to end. On the other,
we can perform the segment multiplication of a segment of length 3 (i.e. 3 segments
of length 1 laid end to end) by the segment of length a. It is an easy exercise to show
these are the same. But it makes an important point. The (inductive) definition of
multiplication by a natural number is indeed ‘multiplication as repeated addition’. But
the multiplication by an other field element is based on similarity, implies the existence
of multiplicative inverses, and so is a very different object.

We access the first notion of multiplication by natural numbers and deriva-
tively positive rationals converting the set of positive points on the line into a Q-module
from the outside; there is no uniform definition of this scalar multiplication within the
field; multiplication by 17

27 is defined in the geometry but not multiplication by 17
27 .

However, we now have the multiplication uniformly defined and this intrinsic geomet-
rical multiplication restricts to that imposed by counting where it is defined.

3.2 Verifying the field properties

Before we can prove the field laws hold for these operations we introduce a few more
geometric facts. This proof from multiplication defined from congruence obtains the

14The right triangle is just for simplicity; we really just need to make the two triangles similar.

14



commutative law before the associative. Hilbert (Section 31 of [26]) shows in the
absence of congruence but with the Archimedean property commutativity holds. {ceninsang}

Fact 3.2.1. [Euclid III.20] CCSS G-C.2 If a central angle and an inscribed angle cut
off the same arc, the inscribed angle is congruent to half the central angle.

We need proposition 5.8 of [23], which is a routine (if sufficiently scaffolded)
high school problem. {cquad}

Corollary 3.2.2. CCSS G-C.3 Let ACED be a quadrilateral. The vertices of A lie
on a circle (the ordering of the name of the quadrilateral implies A and E are on the
opposite sides of CD) if and only if ∠EAC ∼= ∠CDE.

Proof. Given the conditions on the angle draw the circle determined byABC.
Observe from Lemma 3.2.1 that D must lie on it. Conversely, given the circle, apply
Lemma 3.2.1 to get the equality of angles. 3.2.2

Now we get the main result. In our exposition here we give full details only
for part 2 with an indication of how to extend to part 3. The others are easy. {mult2works}

Theorem 3.2.3. The multiplication defined in Definition 3.1.4 satisfies.

1. For any a, a · 1 = 1

2. For any a, b
ab = ba.

3. For any a, b, c
(ab)c = a(bc).

4. For any a there is a b with ab = 1.

5. a(b+ c) = ab+ ac.
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Proof. 2) Given a, b, first make a right triangle4ABC with legs 1 forAB and
a for BC. Let α denote ∠BAC. Extend BC to D so that BD has length b. Construct
DE so that ∠BDE ∼= ∠BAC and E lies on AB extended on the other side of B from
A. The segment BE has length ab by the definition of multiplication.

Since ∠CAB ∼= ∠EDB by Corollary 3.2.2, ACED lie on a circle. Now
apply the other direction of Corollary 3.2.2 to conclude ∠DAE ∼= ∠DCA (as they
both cut off arc AD. Now consider the multiplication beginning with triangle4DAE
with one leg of length 1 and the other of length b. Then since ∠DAE ∼= ∠DCA and
one leg opposite ∠DCA has length a, the length of BE is ba. Thus, ab = ba.

3) To prove associativity note that the following diagram encodes right multi-
plication by a and c.

Now the following diagram suffices to prove the associative law using argu-
ments similar to those for commutativity.
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Figure 1: multiply by a Figure 2: multiply by c

Note that AE can be represented as either (ba)c or (bc)a use the commutative
law twice to complete the proof. 3.2.3

It is now fairly straightforward to show:

Corollary 3.2.4. Moreover the addition and multiplication respect the order.

The remainder of this section is a modification to identify points on the line
with numbers and so have additive inverses. Thus we obtain the full field multiplica-
tion. This step can be done intrinsically in the style of Artin [4] or as in Hartshorne
[23], one can extend abstractly from the multiplication on the positive semiring to the
full field.
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{pointadd}

Definition 3.2.5 (Adding points). Recall that a line is a set of points. Fix a line ` and
a point 0 on `. We define an operations + on `. Recall that we identify a with the
(directed length of) the segment 0a.

For any points a, b on `, we define the operation + on `:

a+ b = c

if c is constructed as follows.

1. Choose T not on ` and m parallel to ` through T .

2. Draw 0T and BT .

3. Draw a line parallel to 0T through a and let it intersect m in F .

4. Draw a line parallel to bT through a and let it intersect ` in c.

Diagram for point addition

0b ∼= ac

It is straightforward to verify:

Lemma 3.2.6. The addition of points is associative and commutative with identity
element 0. The additive inverse of a is a′ provided that a′0 ∼= 0a where a′ is on ` but
on the opposite side of 0 from a.

To summarize (details in section 21 of [23]):

Theorem 3.2.7. The theory of Hilbert fields satisfying the parallel postulate is biinter-
pretable with theory of ordered pythagorean15 planes. The interpreting formulas are
first order with constants naming two points.

15A field is Pythagorean if for every a, 1 + a2 has a square root.
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4 The role of algebra
{sqrt}

We established in Section 3 that one could define an ordered field in any plane satisfy-
ing HP5. The converse is routine, the ordinary notions of lines and incidence in F 2

creates a geometry over any ordered field which is easily seen to satisfyHP5. We now
exploit this equivalence.

We will prove some algebraic facts using our defined operations, thus basing
them on geometry. On the other hand we reduce the completeness of the theory of
our geometry to the well-known completeness of real closed fields. Dedekind proves√

2 ·
√

3 =
√

6 by a detour through the approximations of irrationals by cuts in the
rationals. In contrast the following triviality holds in all ordered fields. {dedprob}

Theorem 4.0.1. In an ordered field, for any positive a, if there is an element b > 0
with b2 = a, then b is unique (and denoted

√
a. Moreover, for any positive a, c with

square roots,
√
a ·
√
c =
√
ac.

In particular it holds for any field coordinatizing a plane satisfying HP5.

Thus the algebra of square roots in the real field is established without any
appeal to limits. The usual (e.g. [33, 1]) developments of the theory of complete or-
dered fields invoke the least upper bound principle to obtain the existence of the roots
although the multiplication rule is obtained by the same algebraic argument as here.
More appropriate to Dedekind’s concerns, our treatment is based on the fundamen-
tal concept of congruence 16 which we regard as an equally fundamental intuition as
‘number’. The justification for the existence of roots does not invoke limits.

It is well-known that the Pythagorean Theorem is equivalent for Hilbert planes
to the parallel postulate.

Euclid’s proof of Pythagoras I.47 uses an area function as we will justified
in Section 6. Another standard proof uses the theory of similar triangles that we will
develop Section 5. In any case, we have

Theorem 4.0.2. The Pythagorean theorem holds in any Hilbert plane with the parallel
postulate (HP5). {exfields}

Example 4.0.3. Hartshorne [23] introduces two instructive examples.

1. A pythagorean field is one closed addition, subtraction, multiplication, division
and for every a,

√
(1 + a2). However, the Cartesian plane over a Pythagorean

field may fail to be closed under square root and the Poincaire model over a such
a field may fail to have equilateral triangles and thus the circle-circle intersection
postulate. (Exercise 39.30, 30.31 of [23])

16Given Dedekind’s animus to the notion of ‘measureable magnitudes’ (page 15 of [11]).
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2. On page 146, Hartshorne observes that the smallest ordered field closed under
addition, subtraction, multiplication, division and square roots of positive num-
bers satisfies the circle-circle intersection postulate.

Recall that we distinguished a Hilbert plane for a Euclidean plane in Nota-
tion 2.1.1. As in [23], we have: {ccstrength}

Theorem 4.0.4. A Hilbert plane satisfies the circle-circle intersection postulate, 2.3.5
if and only every positive element of the coordinatizing plane has a square root.

Similarly, in every Euclidean plane such that every positive element of the co-
ordinatizing plane has a square root, Heron’s formula computes the area of a triangle
from it side lengths.

Immediately, from Tarski [34] we get {tarskiax}

Theorem 4.0.5. The following set of axioms is first order complete for the vocabulary
in Notation 2.2.2.

1. Euclidean geometry

2. An infinite set of axioms declaring that every polynomial of odd-degree has a
root.

The field over real numbers is clearly a Euclidean plane. Moreover, we can
prove the existence of such a model by realizing the type of each cut in the rationals.
However, we can’t guarantee separability in such ‘a first order way’.

In [20] the completeness is imposed by an axiom Schema of Continuity - a
definable version of Dedekind cuts:

(∃a)(∀x)(∀y)[α(x) ∧ β(y)→ B(axy)]→ (∃b)(∀x)(∀y)[α(x) ∧ β(y)→ B(xby)],

where α, β are first-order formulas, the first of which does not contain any free occur-
rences of a, b, y and the second any free occurrences of a, b, x.

In Detlefsen’s terminology we have found a Gödel complete axiomatization of
plane geometry. But in accord with his analysis, we must wonder whether it is descrip-
tively complete. In particular, is the notion of proportional included in our analysis.
The test question is the similar triangle theorem. We turn to this issue now.

5 Multiplication is not repeated addition
{similar}

In the natural numbers, addition can be defined as iterated succession and multiplica-
tion as iterated addition. But the resulting structure is essentially undecidable. How-
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ever, this structure does not illuminate the essential aspect of multiplication as similar-
ity; many elements have no multiplicative inverse.

Definition 5.0.1. Two triangles 4ABC and 4A′B′C are similar if under some
correspondence of angles, corresponding angles are congruent; e.g. ∠A′ ∼= ∠A,
∠B′ ∼= ∠B, ∠C ′ ∼= ∠C.

Various texts define ‘similar’ as we did, or as corresponding sides are propor-
tional or require both (Euclid). We now prove our principal result, which shows the
choice doesn’t matter. {simtri}

Theorem 5.0.2. Two triangles are similar if and only if corresponding sides are pro-
portional.

We need to define proportional; this is of course easy for commensurable seg-
ments. Euclid appeals in chapter VI to the theory of Eudoxus to ground the notion for
incommensurable segments. Euclid defines commensurable in terms of the multiplica-
tion by natural numbers as we described just after Definition 3.1.4.

We simply define proportionality as it is now understood.

Definition 5.0.3. Proportionality

CD : CA :: CE : CB

is defined as

CD × CB = CE × CA.

where × is taken in the sense of segment multiplication defined in Defini-
tion 3.1.4.

Here is Hartshorne’s proof of the fundamental result.

Proof of Theorem 5.0.2: If ABC and A′B′C ′ are similar triangles then using
the segment multiplication we have defined

AB

A′B′ =
AC

A′C ′ =
BC

B′C ′ .

Consider the triangle ABC below with incenter G.
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Proof. The point G is the incenter so HG ∼= GI ∼= GJ . Call this segment
length a.

Now construct AK ∼= BL ∼= MC all with standard unit length. Let the
lengths of BL be s, NK be t and PM be r.

Let the lengths of AI ∼= AH be x, BH ∼= BJ be y, and CI ∼= AJ be z.

By the definition of multiplication t · x = s · z = a. Therefore the length of
AC is a

t + a
r = a(r+t)

rt .

Duplicate on the second triangleA′B′C ′ to get the length ofA′C ′ is a
′

t + a′

r =
a′(r+t)
rt . The crucial point is that because the angles are congruent r, s, t are the same

for both triangles.

But then A′C′

AC = a′

a . Now note the same is true for the other two pairs of sides
so the sides of the triangle are proportional.

The same ideas allow one to reverse the argument and show triangles with
proportional sides are similar. 5.0.2

Remark 5.0.4. Conversely if the sides of similar triangles are proportional, we can
divide so any subgeometry satisfying this proposition is coordinatized by a subfield.

Remark 5.0.5. Note the following.

For any model M of HP5: similar triangles have proportional sides.

There is no assumption that the field is Archimedean or satisfies any sort of
completeness axiom.

There is no appeal to approximation or limits.

It is easy17 to check that the multiplication defined on the reals by this proce-
dure is exactly the usual multiplication on the reals because they agree on the rationals.

17One has to verify that segment multiplication is continuous but this follows from the density of the order
since the addition respects order.
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6 Area of polygonal figures
{area}

In Section 5 we saw Bolzano’s challenge is answered by a proof that similar triangles
have proportional sides without resorting to the concept of area. But area is itself a
vital geometric notion. We show now that using segment multiplication we ground the
familiar methods of calculating the area of polygons.

As we discussed in Section 2.2, Euclid treats the equality of areas as a special
case of his common notions. Hilbert specified more particular properties; we use the
formulation from a high school text [16]. Here is an initial definition of those configu-
rations that have area.

Definition 6.0.1. A figure is a subset of the plane that can be represented as a finite
union of disjoint triangles.

Intuitively, two figures have equal content if we can transform one into the
other by adding and subtracting congruent triangles.

There are serious issues concerning the formalization in first order logic of
the notions in this section. Notions such as polygon and limit involve quantification
over integers; this is strictly forbidden within the first order system. We can approach
these notions with axiom schemes. We want to argue that we can give a uniform
metatheoretic definition of the relevant concepts and prove that the theorems hold in
all models of the axioms. {areaax}

Axiom 6.0.2 ( Area Axioms). The following properties18 of area are used in Euclid
I.35 and I.38.

1. Congruent figures have the same area.

2. The area of two ‘disjoint’ figures (i.e. meet only in a point or along an edge) is
the sum of the two areas of the polygons.

3. Two figures that have equal content 19 have the same area.

4. If one figure is properly contained in another then the area of the difference
(which is also a figure) is positive.

Observe that while these axioms involve notions that are not uniformly defin-
able in first order geometry, we can replace ‘figures’ by n-gons for each n. For the

18We combine the versions in [22] and from pages 198-199 of [16]; the high school version restricted to
polygons.

19The high school reads ‘scissor-congruent’ rather than ‘equal content’; this relies on the assumption
about the real numbers just before the statement of Postulates 3.3 and 3.4. That is, on Hilbert’s argument
[26] that for geometries over Archimedean fields, scissors-congruent and equal content are the same. Also
for simplicity the text restricts to polygons.
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crucial area of a triangle is proportional to the base and the height, we need only ‘tri-
angles or quadrilaterals’. In general we could formalize formalize these notions with
either equi-area predicate symbols20 or by a schema, or by a function mapping into the
line as in Definition 6.0.6. Here is the basic step.

Definition 6.0.3. Two figures α and β (e.g. two triangles or two parallelograms) have
equal content in one step there exist figures α′ and β′ such that the disjoint union of α
and α′ is congruent to the disjoint union of β and β′ and β ∼= β′.

Now, Euclid’s I.35 and I.36 become. {areaprop}

Theorem 6.0.4. [Euclid/Hilbert] If two parallelograms (triangles) are on the same
base and between parallels they have equal content in 1 step.

As Hilbert showed (and this is why21 ‘equal content’ replaces ‘decompos-
able’) this theorem holds without the Archimedean axiom. Now for arbitrary figures:

Definition 6.0.5 (Equal content). Two figures P,Q have equal content in n steps 22

if there are figures P ′
1 . . . P

′
n, Q′

1 . . . Q
′
n such that none of the figures overlap, each

P ′
i and Q′

i are scissors congruent and P ∪ P ′
1 . . . ∪ P ′

n is scissors congruent with
Q ∪Q′

1 . . . ∪Q′
n.

Varying Hilbert, Hartshorne (Sections 19-23 of [23]) shows that these ax-
ioms for area are satisfied in the first order axiom system we label Euclidean geometry
(Notation2.1.1). The key tool is: {areafn}

Definition 6.0.6. An area function is a map α from the set of figures, P , into an ordered
additive abelian group with 0 such that

1. For any nontrivial triangle T , α(T ) > 0.

2. Congruent triangles have the same area.

3. If P and Q are disjoint figures α(P ∪Q) = α(P ) + α(Q).

20For example, we could have 8-ary relation for quadrilaterals have the same area, 6-ary relation for
triangles have the same area and 7-ary for a quadrilateral and a triangle have the same area.

21After Theorem 27 in [26].
22The diagram is taken from [26].
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This formulation hides the quantification over arbitrary n-gons. We clarify
the method of translating to first order in Definition 7.0.5.

It is evident that if a plane admits an area function then the area axioms hold.
This obviates the need for positing separately De Zolt’s axiom that one figure prop-
erly included in another has smaller area23 In particular this implies Common Notion
4 for ‘area’. Using the segment multiplication, Hilbert (compare the exposition in
Hartshorne) establishes the existence of an area function for any plane satisfying HP5.
The key point is to show that formula A = bh

2 does not depend on the choice of the
base and height.

23Hartshorne notes that (page 210 of [22]) that he knows no ‘purely geometric’ (without segment arith-
metic and similar triangles) proof for this.
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7 π
{pi}

Dedekind (page 37-38) observes that what we would now call the real closed field
based on the field of real algebraic numbers is ‘discontinuous everywhere’ but ‘all
constructions that occur in Euclid’s elements can . . . be just as accurately effected as
in a perfectly continuous space’. Strictly speaking, for constructions this is correct.
But the proportionality constant between a circle and its circumference π is absent, so
even more not both the circumference and the diameter are in the model. This absence
emphasizes the awareness of the authors of the Common Core State Standards for
Mathematics24 (that students should be required to understand as primitive terms both
‘length’ and ‘arc length’ 25). We want to find countable models where ‘circles behave
properly’.

Euclid’s construction axiom (Postulate 2.3.4) implies that a circle is uniquely
determined by its radius and center. And thus two segments of a circle are congruent
if they cut the same central angle. As the example of geometry over the real alge-
braic numbers shows, there is no guarantee that there is a straight line segment whose
‘length’ is π. We remedy this with the following extension of the system.

To avoid complications, we restrict our discussion of ‘arc length’ to circles
and straight lines with the following notation.

Notation 7.0.1. L(A,B,C,D) is a predicate of two pairs of points. Each of A,B and
C,D must be either collinear or two points on a circle. We read L(A,B,C,D) as AB
and CD are same length.

We will use the capitalized word Line to mean either a straight line or a circle.

Without writing out the formalities we use the notions of greater and lesser
length26. We adapt the following postulates from Archimedes article, On the sphere
and the circle I [3]. We have restricted from his more general axioms covering surfaces
and more general curves since we aim only at the circle.

Postulate 7.0.2 (Length). 1. If two Line segments are congruent they have same
length.

2. A straight line is the shortest distance between two points.

3. If A and B lie on a circle and C is exterior to the circle then the sum of BC and
AC is greater than AB.

24G-CO.1 [29]: Know precise definitions of angle, circle, perpendicular line, parallel line, and line seg-
ment, based on the undefined notions of point, line, distance along a line, and distance around a circular
arc.

25Thus we reject the Birkhoff-Moise ‘ruler’ and ‘protractor’ axioms which insert the second order theory
of the reals as a subset of the axioms of high school geometry.

26The key idea is that one circular segment is less than another if it has the same length as a straight line
segment that is properly contained a segment the same length as the other.
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{defpiax}

Definition 7.0.3 (Axioms for π). Add to the vocabulary a new constant symbol π. Let
in (cn) be length of a side of a regular n-gon inscribed (circumscribed) in a circle of
radius 1. Add for each n,

in < 2π < cn

to give a collection of sentences Σ(π).

At this point we need some modern model theory. A first order theory for a
vocabulary including a binary relation < is o-minimal if every 1-ary formula is equiv-
alent to a Boolean combination of equalities and inequalities [12]. Anachronistically,
the o-minimality of the reals is a main conclusion of Tarski in [34]. {piax}

Theorem 7.0.4. The following set Tπ of axioms is first order complete for the vocabu-
lary τ in Notation 2.2.2 along with the constant symbols 0, 1, π.

1. the axioms of a Euclidean plane.

2. A family of sentences declaring every odd-degree polynomial has a root.

3. Σ(π)

Proof. We have established that there is a well-defined field multiplication
on any line. By Tarski, the theory of this multiplication is complete. The field is
bi-interpetable with the plane so the theory of the geometry T is complete as well.
Further by Tarski, the field is o-minimal. Thus the type of any point over the empty set
is determined by its position in the ordered subfield of rational numbers. This position
is given for π by Σ. Thus T ∪ Σ is complete. 7.0.4

While we have not used the axiom of Archimedes in the object language, the
assertion that Σ is a complete type invokes the fact that lim in = lim cn which holds
because the reals are archimedean.

Now we want to argue that π as implicitly defined by the theory Tπ serves
its geometric purpose. For this, we add a new unary function symbol C mapping our
fixed line to itself and satisfying the following scheme asserting that for each n, C(r) is
between the perimeter of a regular inscribed n-gon and a regular circumscribed n-gon. {circfn}

Definition 7.0.5. Consider the following properties of a unary function C(r).

ιn For any points P,X1, . . . Xn such that all the segments PXi are congruent with
length r, and all the segments XiXi+1 (including XnX1) are congruent, the
sum in(r) of the lengths of the segments XiXi+1 (including XnX1) is less than
C(r).
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γn For any points P,X1, . . . Xn, Y1, . . . Xn such that all PXi are congruent with
length r, Yi is in the exterior of the circle, Xi is the midpoint of YiYi+1, and
all YiYi+1 (including YnY1) are congruent the sum cn(r) of the lengths of the
segments YiYi+1 (including YnY1) is greater than C(r).

Any function C(r) satisfying these axioms is called a circumference function,
we call C(r) the circumference of a circle with radius r. {circumfn}

Definition 7.0.6. The theory Tπ,C is the extension by definitions of the τ ∪ {0, 1, π}-
theory Tπ obtained by the explicit definition C(r) = 2πr.

As an extension by explicit definition, Tπ,C is complete. Since by similar-
ity in(r) = icn and cn(r) = rcn, the approximations of π by Archimedes and our
definition of Tπ make the following metatheorem immediate. {circform}

Theorem 7.0.7. In Tπ,C , C(r) = 2πr is a circumference function.

In an Archimedean field there is a unique interpretation of π and thus a unique
choice for a circumference function with respect to the vocabulary without the constant
π. By adding the constant π to the vocabulary we get a formula which satisfies the
conditions in every model. But in a non-Archimedean model, any point in the monad
of 2πr would equally well fit our condition for being the circumference.

In order to consider the area of a circle we extend the impact of the Area
Axioms in Axiom 6.0.2 by expanding a notion of figure. We called the expanded class
with a capital F .

Definition 7.0.8. A Figure is a figure or a sector of a circle. That is, either a sector
of circle or a subset of the plane that can be represented as a finite union of disjoint
triangles.

In analogy with Definition 7.0.3 define In and Cn as the area of the regular
n-gon inscribed or circumscribing the unit circle.

Now, as in the segment case, by formalizing a notion of equal area, including
a schema for approximation by finite polygons, we can externally get a formal area
function A(r). {circarea}

Theorem 7.0.9. The area of a circle is A(r) = πr2.

Note that if we carry out the procedure independently for circumference and
area in non-Archimedean models we can get different values of π. We can fix this by
combining the types or by working in infinitary logic to allow Archimedes.

We omit the tedious inductive argument that any figure contained in a cir-
cle is contained in a polygon with vertices the center and points on the circle. Now
Archimedes (Proposition 1 of The measurement of a circle) shows us that under our
definition.
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Theorem 7.0.10. If the supremum of the areas of the figures that are contained in a
circle C is equal to the infinum of the areas of the figures that contain a circle C then
that common number is the area of C.

The next task is to assign a measure to each angle. Recall that we have a field
structure on the line through 01.

Definition 7.0.11. A measurement of angles function is a map µ from congruence
classes of angles into [0, 2π) such that if ∠ABC and ∠CBD are disjoint angles shar-
ing the side BC, µ(∠ABD) = ∠ABC + ∠CBD

If we omitted the additivity property this would be trivial: Given an angle
∠ABC less than a straight angle, let C ′ be the intersection of a perpendicular to AC
through B with AC and let µ(∠ABC) = BC′

AB . (It is easy to extend to the rest of the
angles.) To obtain the additivity, we proceed as follows.

Definition 7.0.12. Normalize by making B the center and A,C points on a unit circle.
Define µ(∠ABC) to be twice the area of the sector of the circle ABC.

(For motivation, note that the area of a quarter circle is π/4 and in normal
usage a right angle is π/2 radians.)

The additivity of area gives the additivity of µ and Theorem 7.0.9 tells us the
range is in [0, 2π).

But, the definition may be essentially vacuous; we know for example that in
the plane over the real algebraic numbers a right angle does not have a measure.

Theorem 7.0.13. For every countable model M of Tπ,C , there is a countable model
M ′ containing M such that M ′ |= ‘µ is onto′.

Proof. We can adapt Archimedes proof finding the area of a circle to that
of a sector by building polygons inscribed and circumscribing the sector (also using
the two radii as two sides, but choosing new points to refine the approximation by
bisecting each central angle at each stage). By Axiom 6.0.2.4, the common limit of the
areas of the exterior and interior polygons is the area of the sector. As in the proof of
Theorem 7.0.4, we obtain the area as a type over the emptyset in Tπ . Now any choice
for the area must realize that cut.

Now proceed inductively, Given a model N , let N ′ be a countable elementary
extension of N realizing all the, countably many, angle measure cuts in N . Now pro-
ceed inductively, let M0 = M and Mn+1 = M ′

n. Then Mω is required model where µ
is onto.

Here is a sketch. Define a functionAL(A,B, r, P ) which is intended to be the
arc length for between A and B on the circle with center P and radius r. Demand that
for each n the value is between that of n-segments from A to B all inside the circle and
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n-segments external to the circle. Then the measure of the angle BPA is AL(A,B,r,P )
2πr .

This is unsatisfactory in that I am realizing many types but no more than the number
of points in the model so it seems I could get a countable model that is sufficiently
saturated.

Euclid XII.2 argued (cf. Proposition 25.1 of [23]) that the ratio of the area of
a circle to square of its radius is bounded above and below by the in and the cn. Our
theory has guaranteed the existence of a number satisfying these conditions. But since
the field is Archimedean, there is at most one such number.

If we want to ground right angle trigonometry we replace Σ by Σ1 =
Th(<, sin �(−π, π], π) which is o-minimal by Van Den Dries [12]. The axioms here
are extremely complicated (involving the Weierstrauss preparation theorem)27. So
meeting the goal of an ‘elementary’ in the informal sense foundation is dubious. Note
that we can’t define sin globally by this technique as Th(<, sin) is patently not o-
minimal.

8 Conclusion

We have expounded a procedure [22] to define the field operations in an arbitrary Eu-
clidean plane. In the steps of Hilbert, we show related algebraic arguments show that
with this definition of multiplication the square root function behaves properly on the
field defined in any such plane. More important this notion of multiplication gives a
meaning to ‘proportion’ that with no appeal to approximations implies that the sides of
similar triangles have proportional length. In particular, this result applies to the real
numbers. However, the existence of the reals in the usual sense requires some analog
of the Dedekind construction to show that each cut in the rationals is realized exactly
once. This argument also avoids Euclid’s notorious ‘detour’ through area. Hilbert’s
construction also establishes the theory of area for polygons in any Euclidean field and
in strong form by avoiding DeZolt’s axiom.

By adding axioms to require the field is real closed we obtain a complete first
order theory. The plane over the real algebraic numbers satisfies this theory; thus, there
is no guarantee that there is a line segment of length π. Using the o-minimality of real
closed fields, we can guarantee there is such a segment by adding a constant for π and
requiring it to realize the proper cut in the rationals. However, guaranteeing the unique-
ness of such a realization requires second order axioms. The exploration of analysis is
a further project. Note that by the categoricity of ACF0, any model of ACF0 with car-
dinality 2ℵ0 is isomorphic to C and so admits a topological structure isomorphic to C.
Thus in a sense we have a discrete axiomatization of the continuous structure. There
is no 2ℵ0 -categorical axiomatization of < so some extension is necessary. However,
it may be that something weaker than a categorical axiomatization will suffice. Tarski

27See [37]; the theorem is proved for restricted sin and restricted exponentiation. Similar methods and in
particular later work by Gabrielov allow the reduct to just restricted sin.
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[20] suggests a ‘continuity schema’ analogous to that for first order Peano. Peterzil
and Starchenko approach the complex case through o-minimality of the real part [32].
Finally, D’aquino, Knight, and Starchenko [10] connect nonstandard models of first
order Peano with appropriate models of RCF .

In a sense, our development is the opposite of that in [17]. Rather than trying
to unify all numbers great and small, we are interested in the minimal collection of
numbers that allow the development of a geometry according with our fundamental
intuitions.
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