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ABSTRACT. We give a complete and elementary proof of the following upward
categoricity theorem: LetK be a local abstract elementary class with amalga-
mation, arbitrarily large models, and countable Löwenheim-Skolem number. If
K is categorical inℵ1 thenK is categorical in every uncountable cardinal. In
particular, this provides a new proof of the upward part of Morley’s theorem
in first order logic without any use of prime models or heavy stability theoretic
machinery (dependence relations, Morley rank, etc.).

INTRODUCTION

Shelah’s categoricity conjecture asserts that for any abstract elementary
classK, there is a cardinalκ such that ifK is categorical in someλ > κ thenK
is categorical in all larger cardinals. In general this question remains wide open.
But under the additional hypothesis thatK has the amalgamation property, Shelah
proved an approximation [Sh394]: IfK is categorical in cofinally many cardinals
then it is eventually categorical. He shows this by showing that ifK is categorical in
some cardinalλ beyond an appropriate Hanf numberH2 (see [Ba2]), thenK is cat-
egorical in every cardinal betweenH2 andλ. This was a seminal paper. However
it was difficult to read, contained many gaps, a few inaccuracies, and much mate-
rial which was not needed for the most expeditious proof of the result. Shelah has
circulated a substantially revised version. This paper has sparked a flood of work
in the last few years ([Ba, Ba2, GrVD1, GrVD2, GrVD3, GrVV, Hy, Le2, VD2]).
Baldwin clarified some of the role of Ehrenfeucht-Mostowski models in [Ba2] and
the more sophisticated uses in [Ba]. Grossberg and VanDieren [GrVD2], abstracted
the notion of tame from Shelah’s argument and proved that ifK is tame andK is
categorical inλ andλ+ with λ > LS(K) thenK is categorical in all cardinals be-
yondλ+. Fix for the moment the following terminology; a Galois typep ∈ S(M)
is extendibleif it has a nonalgebraic extension to everyN containingM ; p is fully
minimal if there is at most one such nonalgebraic extension to eachN containing
M . Now the moral we take from [GrVD2] is the following Theorem: IfK is λ-
categorical and there is a fully minimal extendible type inS(M) (with |M | = λ)
such that there is no(p, λ) Vaughtian pair, thenK is categorical in all cardinals

Date: January 31, 2005.
The first author is partially supported by NSF grant DMS-0100594.

1



2 JOHN T. BALDWIN AND OLIVIER LESSMANN

greater thanλ. To get such ap which is fully minimal and extendible depends
on tameness. There are several strategies to find such ap with no Vaughtian pair
([Sh394, GrVD2, Ba, Le2]); each paper uses its own variant on the notions that
we dubbed ‘fully minimal’ and ‘extendible’ for this survey. We introduce another
variant here. The upwards categoricity result is improved to assume categoricity in
only a single cardinalλ+, with λ ≥ LS(K) = ℵ0 in [Le2], and laterλ > LS(K)
in [Ba, GrVD3]. The most important tool for these extensions is the proof of the
result sketched in [Sh394]: below the categoricity cardinals: chains ofµ saturated
models of length at mostµ are saturated.

An important theme stemming from both [Sh394] and [GrVD1] is to study
abstract elementary classes with strong ‘compactness’ condition on Galois types.
The notion of alocal abstract elementary class (AEC) is stronger thantame; we
discuss the distinction in the text. In this paper, for countable languages we prove
upward categoricity transfer from categoricity inℵ1 for local AEC without any
reliance on the unions of saturated models lemma. In fact, the argument here is
self-contained. The importing of ‘quasiminimality’ and ‘big’ from the study of
atomic models to this more general context and the use of superlimits is due to
Lessmann. With these techniques we avoid any reference to a notion of indepen-
dence. This work and that of [HV] argue for the study of local AEC. The recent
work of [GrVV] considers the caseℵ0 < λ = LS(K) by making stronger ‘model
theoretic’ hypotheses and employing much heavier machinery.

The paper is organized as follows. Section 0 contains some well-known
facts (most of them due to Shelah) about abstract elementary classes with amalga-
mation, whose often simplified and complete proofs can be found in [Ba]. Section 1
is devoted to some facts about big and quasiminimal types. Section 2 contains the
proof of the main theorem.

In addition to stimulating discussions with Grossberg, VanDieren, and
Villaveces, we would like to acknowledge Laskowski’s contributions to the for-
mulation of the work on coherent sequences of types in Section 2.

0. PRELIMINARIES

In this section, we recall some of the results of Shelah on abstract elemen-
tary classes. For more details and further context the readers are advised to consult
Baldwin’s online book [Ba], where all these facts and examples can be found, or
Grossberg’s expository paper [Gr].

We assume throughout that(K,≺K) is anabstract elementary class(AEC)
in the languageL, namely,K is a class ofL-structures, equipped with a partial
ordering≺K on theL-structures inK satisfying the following conditions:

(1) K is closed under isomorphism;
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(2) If M, N ∈ K andM ≺K N thenM ⊆ N i.e., M is anL-substructure of
N ;

(3) There is a least cardinalLS(K) such that for allN ∈ K andA ⊆ N there
is M ≺K N containingA of size at most|A|+ LS(K).

(4) If M,N, M∗ ∈ K with M ⊆ N andM,N ≺K M∗ thenM ≺K N ;
(5) K is closed under Tarski-Vaught chains: Let(Mi : i < λ) be a≺K-

increasing and continuous chain of models ofK. Then
⋃

i<‚ Mi ∈ K.
Also M0 ≺K

⋃
i<‚ Mi and further, ifMi ≺K N ∈ K for eachi < λ, then⋃

i<‚ Mi ≺K N .

The cardinalLS(K) in (3) is called theLöwenheim-Skolem number. We
will assume throughout this paper thatLS(K) = ℵ0 and thatK has no finite mod-
els, but neither of these requirements is necessary for the results in the first section.
Since we do not have formulas, we cannot phrase the Tarski-Vaught test; (4) and
(5) are the consequences we need from it. Notice that none of the conditions per-
mit us to construct models of large cardinality. We list a few examples, as well as
non-examples.

Examples 0.1. (1) The classK of models of a first order theoryT in the lan-
guageL with M ≺K N if M is an elementary submodel ofN forms an
abstract elementary class withLS(K) = |L|+ ℵ0.

(2) The class of saturated models of a superstable first order theory under el-
ementary substructure forms an abstract elementary class withLS(K) the
first stability cardinal.

(3) The class of models of a first order theory in the languageL omitting a
prescribed set ofL-types with elementary substructure forms an abstract
elementary class withLS(K) = |L|+ ℵ0.

(4) More generally, letψ ∈ L‚;! and consider a fragmentA of L‚;! con-
taining ψ. Then the classK of models ofψ with M ≺K N if M is an
LA-elementary substructure ofN forms an abstract elementary class with
LS(K) = |A|.

(5) Let n be an integer above the arity of any relation or function in the lan-
guageL. Then the class ofLn-theories withLn-elementary submodel is
an abstract elementary class withLS(K) ≤ |L|+ ℵ0.

(6) The class of reducts toL of models of a theoryT ∗ in an expanded language
T ∗ underL-elementary substructuredoes notform in abstract elementary
class in general, as (5) may fail. For example, the class of free groups in
the language of groups does not form an abstract elementary class under
L-elementary substructure (or even infinitary-elementary substructure). In
fact, a famous example of Silver shows that such classes may be categorical
in a cofinal sequence of cardinals, and not categorical in another cofinal
sequence of cardinals.

(7) Any class of models closed under elementary equivalence with first order
elementary submodeldoes form an abstract elementary class.
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(8) The class of models of anL∞;!-theory withL∞;!-substructuredoes not
form an abstract elementary class in general: it may not have a Löwenheim-
Skolem number.

(9) The previous two examples have more concrete exemplars. The class of
Artinian (descending chain condition) commutative rings with unit be-
comes an AEC under elementary submodel. (See [Ba1].) But the class of
Noetherian (ascending chain condition) commutative rings with unit can
never be an abstract elementary class. Hodges ([Ho] 11.5.5) shows such
rings are not aPC∆ class with omitting types and any AEC is such a class
by Shelah’s presentation theorem ([Sh88], [Ba]).

We say thatf : M → N is aK-embeddingif f is an embedding and
im(f) ≺K N .

Hypothesis 0.2.We assume thatK satisfies theamalgamation property(AP): If
M0 ≺K M1,M2, there is a modelM∗ andK-embeddingf‘ : M‘ → M∗ which
are the identity onM0. And we assume also thatK joint embedding propertyfor
K-embeddings, which is as AP except withM0 = ∅. We also assume thatK
has arbitrarily large models. These properties imply immediately thatK has no
maximal models.

Letλ be a cardinal. By repeated use of AP and JEP, we can easily construct
aλ-model homogeneousmodelN i.e., if M1 ≺K M2 of size less thanλ and there
is aK-embeddingf1 : M1 → N then there exists aK-embeddingf2 : M2 →
N extendingf1. We also ‘allow’ N1 to be emptyi.e., any M of size less than
λ K-embeds insideN . We can further find a model which isstronglyλ-model
homogeneous i.e., satisfies in addition that any isomorphismf : M1 → M2 with
M‘ ≺K N of size less thanλ extends to anautomorphismof N .

Let us now consider the problem oftypes. As we pointed out, we do not
have formulas and hence no adequate syntactic notion of types. We therefore deal
with a semantic notion; we consider a relation∼ on triples of the form(a,M,N),
whereM ≺K N anda an element ofN . We say that

(a1, M1, N1) ∼ (a2,M2, N2)

if M1 = M2 and there exists a modelM∗ amalgamatingN1 andN2 overM1 via
K-embeddingsg‘ : M‘ → M∗ fixing M1 such that

g1(a1) = g2(a2).

It is an exercise using AP to check that∼ is an equivalence relation on such triples.
The equivalence class of(a,M,N) is theGalois type ofa overM (in N ) and will
be denoted bytp(a/M,N). Since we consider no other types, we will simply say
‘type’ for ‘Galois type’ but we may choose to use the full phrase for emphasis.
We denote byS(M) the set of Galois types overM . We say thatN ′ realizes
tp(a/M, N) if M ≺K N ′ and there existsa′ ∈ N ′ such thattp(a′/M, N ′) =
tp(a/M, N). We also writetp(a/M, N) ¹ M ′ for M ′ ≺K M for tp(a/M ′, N).
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We now examine these notions in some familiar classes of examples:

Examples 0.3. (1) The first order case: The class of models of a complete
first order theoryT with infinite models has AP, JEP, and arbitrarily large
models. Galois types correspond to the usual notion of types over models.

(2) The homogeneous case: Let T be a complete first order theory and letD
be a set of types over the empty set.D is good if for arbitrarily largeλ,
there existλ-homogeneous models of size at leastλ realizing, over the
empty set, exactly those types inD. Then, the class of models omitting all
types outsideD under elementary submodel forms an abstract elementary
class with AP, JEP, and arbitrarily large models. Galois types over mod-
els correspond to the usual syntactic notion of types in this context. This
generalizes to logics other than first order with similar conclusions.

(3) n-variable logic with amalgamation: Under amalgamation over sets [Dj]
(where it actually belongs to homogeneous model theory) we have AP and
JEP, and the syntacticLn-types are the Galois types. In [BaLe], a special
kind of amalgamation is introduced (in addition to AP and JEP) precisely
so that Galois types and syntacticLn-type coincide.

(4) The excellent case: Let K be a class of models of a Scott sentenceψ ∈
L!1;! underLA-elementary equivalence with a chosen countable fragment
A of L!1;! containingψ. If K is excellent(see [Sh87a], [Sh87b], or [Le1]
for the definition in the equivalent case of an atomic class), thenK has AP,
JEP, and arbitrarily large models. Again Galois types correspond to the
syntactic notion of types over models there. Notice that excellence is the
crucial reason why this is so. This is also a motivating reason for intro-
ducing the general context of abstract elementary classes: even in concrete
cases, showing that Galois types are well-behaved is very difficult.

It is natural to make the following definition.

Definition 0.4. Let µ > LS(K). We say thatN is µ-saturatedif N realizes each
q ∈ S(M) with M ≺K N of size less thanµ. We say thatN is saturatedif N is
‖N‖-saturated.

Notice that, we only considerµ-saturation forµ > LS(K); the notion of
LS(K)-saturation is problematic as there may not be any models of size less than
LS(K) in general. It is an easy observation that ifM is µ-model homogeneous,
thenM is µ-saturated (the converse also holds, see below).

Examples 0.5.If K is first order then a modelN is µ-saturated in the above sense
if and only ifK is µ-saturated in the usual sense. In the homogeneous case, when
K is the class of models of a good diagramD, then aD-modelN is µ-saturated
if and only if it is (D,µ)-homogeneous (see [Sh3] for definition). And, ifK is an
excellent class of models of a Scott sentence inL!1;!, thenN ∈ K is µ-saturated
if and only if N is µ-full (for
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From now until the rest of this paper, we fix a suitably big cardinalκ̄ and
a modelC which is stronglyκ̄-model homogeneous. We will useC as amonster
model: Every model of size less than̄κ is isomorphic to a≺K-submodel ofC and
every typep ∈ S(M) with M ≺ C of size less than̄κ is realized inC, asC is
κ̄-saturated.

Furthermore, types over such smallK-submodels correspond toorbits of
the automorphism group ofC i.e., if tp(a/M,C) = tp(b/M, C) there exists an
automorphismf of C fixing M such thatf(a) = b. We denote byAut(C/M) the
group of automorphisms ofC fixing M pointwise.

We work insideC and only consider models, sets, and types of size less
thanκ̄. Since anyN ≺K C, all typestp(a/M, N) are of the formtp(a/M,C), so
we will simply write tp(a/M). Observe that given aK-embeddingf : M → N
and a typep ∈ S(M), the typef(p) is well-defined: Leta‘ ∈ C realisep and let
f‘ ∈ Aut(C) extendingf , for ` = 1, 2. Then,f−1

1 ◦f2 ∈ Aut(C/M), which we can
apply totp(a1/M) = tp(a2/M), sotp(a1/M) = tp(f−1

1 ◦f2(a2)/f−1
1 ◦f2(M)),

from which we obtain

tp(f1(a1)/f(M)) = tp(f2(a2)/f(M)),

sincef2(M) = f(M) = f1(M). We denote byf(p) this common value.

The monster model point of view allows us to dispense with amalgamation
diagrams in favour of more familiar first order monster model arguments but is
entirely equivalent.

As Baldwin showed in [Ba, Ba2], this simplifies some arguments consid-
erably. As an example, we leave the next proposition as an exercise. The trivial
implication of (1) was already pointed out. The left to right is now easy using the
monster model (see Proposition 0.12 for a hint). (2) is simply a back and forth
construction using (1).

Proposition 0.6. (1) N is µ-saturated if and only ifN is µ-model homoge-
neous.

(2) Two saturated models ofN1, N2 containingM such that‖N1‖ = ‖N2‖ >
‖M‖ are isomorphic overM .

The main concept of this paper is that ofcategoricity.

Definition 0.7. Let λ be a cardinal. We say thatK is λ-categorical(or categorical
in λ) if all models ofK of sizeλ are isomorphic.

As in the first order case, the key to understand categoricity isstability.

Definition 0.8. Let λ be a cardinal. We say thatK is λ-stable(or stable inλ) if
|S(M)| ≤ λ for eachM ∈ K of sizeλ.
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The first consequence of categoricity is stability. Shelah’s presentation the-
orem [Sh88, Ba, Gr] asserts than any abstract elementary class can be represented
as the class of reducts toL of models of a first order theory in an expanded lan-
guageL∗ of sizeLS(K) omitting a set of first orderL∗-types. This implies that
the Hanf number for abstract elementary classes is at mosti(2LS(K))+ ([Sh] VII).
The next fact is proved using Ehrenfeucht-Mostowski models in a similar way to
the first order case. The argument takes several pages and involves a number of el-
ements. First, Shelah’s presentation theorem allows the representation of the AEC
K as an pseudo-elementary class with omitting types. Second, sinceK has arbi-
trarily large modelsK has Ehrenfeucht-Mostowski models. Now a careful choice
of a sufficiently homogeneous linear order as skeleton (ω<!

1 ), which realizes only
countably many cuts over countable subsets, allows one to concludeω-stability;
this is the only fact quoted in the entire paper that doesn’t appear in various model
theory texts. A complete proof of the lemma can be found in Baldwin’s online
book [Ba].

Fact 0.9. If K is ℵ1-categorical thenK is ℵ0-stable.

We can now prove the existence of saturated models inℵ1.

Proposition 0.10. If K isℵ0-stable, then there exists a saturated model of sizeℵ1.

Proof. Construct an≺K-increasing and continuous chain(Mi : i < ℵ1) of count-
able modelsMi such thatMi+1 realizes every Galois type overMi. This is possible
by ℵ0-stability. The regularity ofℵ1 implies that

⋃
i<ℵ1

Mi is saturated. ¤

Definition 0.11. We say thatN is universal overM if M ≺K N and for eachM ′
with M ≺K M ′ and‖M ′‖ ≤ ‖N‖, there is aK-embeddingf : M ′ → N which is
the identity onM .

By Proposition 0.6, ifN is saturated andM ≺K N with ‖M‖ < ‖N‖,
thenN is universal overM (and in particular, if there is a saturated model of sizeµ,
then any model of sizeµ extends to a saturated model). The existence of universal
models of the same size follows from stability. We will iterate the idea of the next
proof a number of times, to build limit models from universal ones, and superlimits
from limits. This is why we give a complete proof.

Proposition 0.12. LetK beµ-stable. For eachM of sizeµ there is a universal
modelM ′ overM of sizeµ.

Proof. Let (Mi : i < µ) be an increasing and continuous sequence of models
of sizeµ, with M0 = M , such thatMi+1 realizes every type inS(Mi). This is
possible byµ-stability. LetM ′ =

⋃
i<„ Mi. We claim thatM ′ is universal over

M . Let N be of model of sizeµ with M ≺K N . We will find f ′ : N → M ′,
which is the identity onM as follows. WriteN = M ∪{ai : i < µ}. We construct
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an increasing and continuous chain of models(Ni : i < µ) and an increasing
and continuous chain ofK-embeddingsfi : Ni

∼= Mi, with fi ¹ M = idM ,
such thatai ∈ Ni+1. (Note that we do not require thatNi ≺K N .) For i = 0,
simply let N0 = M and f0 = idM , and at limits, take unions. Now having
constructedfi : Ni

∼= Mi, considerpi = tp(ai/Ni). Thenfi(pi) is a type over
Mi, hence realized inMi+1 by construction, say byb. Choose an automorphism of
C extendingfi sendingai to b. Let Ni+1 = h−1(Mi+1). ThenNi ≺K Ni+1 and
ai ∈ Ni+1. Furthermore,fi+1 = h ¹ Ni+1 : Ni+1

∼= Mi+1 is as desired. This is
enough: TheK-embeddingf :

⋃
i<„ fi is an isomorphism between

⋃
i<„ Ni and

M ′ which is the identity onM . SinceN ⊆ ⋃
i<„ Ni (and henceN ≺K

⋃
i<„ Ni),

thenf ′ = f ¹ N : N → M ′ is the desiredK-embedding. ¤

Now let us return to types. Letp ∈ S(M) andq ∈ S(N), with M ≺K N .
We say thatq extendsp if some (equivalently any) realization ofq realizesp. We
will write p ⊆ q if q extendsp, in spite of the fact that types are not sets of formulas.

Consider an⊆-increasing chain of types(pi : i < δ), say withpi ∈ S(Mi).
The first question (existence) is whether there isa ∈ C such thata realizespi, for
eachi < δ (unions of types are really intersections of orbits). The second question
(uniqueness) is whether whena, b ∈ C such thata, b realizepi for eachi < δ and
M– =

⋃
i<– Mi do we necessarily have

tp(a/M–) = tp(b/M–)?

The answer to both questions isno in general; concrete examples are provided
in [BaSh]. In order to deal with the first question, we introduce the following
definition.

Definition 0.13. An ⊆-increasing chain of Galois types(pi : i < δ) with pi ∈
S(Mi) is coherentif there exist elementsai ∈ C and fi;j ∈ Aut(C/Mi), for
i < j < δ, such that:

(1) pi = tp(ai/Mi);
(2) fi;j(aj) = ai for i < j < δ.
(3) fi;j = fi;k ◦ fk;j for anyi < k < j < δ.

The next proposition implies that the union of a coherent chain of Galois
types is realized.

Proposition 0.14. Let (pi : i < δ) be a coherent chain of types, withpi ∈ S(Mi).
Then there existsp– ∈ S(M–), with M– =

⋃
i<– Mi, such that(pi : i < δ + 1) is

a coherent chain of types.

Proof. Let ai |= pi andfi;j ∈ Aut(C/Mi), for i < j < δ, witness the coherence of
(pi : i < δ). Let M– =

⋃
i<– Mi. We need to finda– so that forp– = tp(a–/M–)

there arefi;– for i < δ demonstrating that(pi : i < δ + 1) is coherent.
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Let gi = f0;i ¹ Mi : Mi → C. Notice that the sequence(gi : i < δ)
of K-embeddings is increasing and continuous. Hence we can findg ∈ Aut(C)
extending

⋃
i<– gi. Let a– = g−1(a0) and definefi;– = f−1

0;i ◦ g. Thenfi;– fixes
Mi sinceg extendsf0;i ¹ Mi and sendsa– to ai. Furthermore,fi;j ◦ fj;– =
fi;j ◦ f−1

0;j ◦ g = f0;i ◦ g = fi;–. ¤

Remark 0.15. Since any⊆-increasing chain of Galois types(pi : i < ω) is coher-
ent, the previous proposition shows that its union is realized. Since any countable
ordinal is either a successor or has cofinalityω, we derive easily from this that the
union of any countable chain of types is realized. Without further assumptions, this
may fail for longer chains in general.

We now consider tameness. We will then consider a strengthening which
is related to uniqueness. Baldwin [Ba] introduces two parameter versions of both
notions. These will be needed in any attempt to extend the results here without
making the ‘global tameness’ assumptions that we use here.

Definition 0.16. Letχ be an infinite cardinal. We say thatK isχ-tame, if whenever
p 6= q ∈ S(N), there existsM ≺K N of sizeχ such thatp ¹ M 6= q ¹ M . We will
say thatK is tameif K is ℵ0-tame.

In Remark 1.9 of [Sh394], Shelah refers to the question as to whether
categoricity implies tameness as ‘the main difficulty’.

Remark 0.17. (1) If K is first order, homogeneous,Ln with amalgamation or
excellent thenK is χ-tame forχ = LS(K).

(2) It follows from Shelah’s result in [Sh394] that ifK is categorical in arbitrar-
ily large cardinals, thenK is χ-tame for someχ less than the Hanf number.
There is no argument deriving locality from a categoricity hypothesis.

(3) It is not clear at this stage, how strong tameness is. In the interesting partic-
ular cases considered by Zilber and Gavrilovich, tameness is established by
proving ‘excellence’, though sometimes only an excellence-like condition,
as the context is not strictlyL!1;!. The advantage of excellence is that it is
a condition involving only countable models, whereas tameness involves
uncountable models also. The disadvantage is that it is far more compli-
cated. Also, it follows from our upward categoricity theorem and Shelah’s
results on categorical sentences inL!1;! [Sh48] that it is consistent with
ZFC that any localL!1;!-class with AP and arbitrarily large models that is
categorical inℵ1 is excellent.

And now the strengthening:

Definition 0.18. We say thatK is local if wheneverp 6= q ∈ S(N) andN =⋃
i<„ Ni, for µ a cardinal, then there isi < µ such thatp ¹ Ni 6= q ¹ Ni.

Notice that ifK is first order, homogeneous, or excellent, thenK is local.
Baldwin calls this property∞-local in [Ba].
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Proposition 0.19. If K is local thenK is tame.

Proof. We prove by induction onµ, that if tp(a/M) 6= tp(b/M), for M of sizeµ,
then there is a countableM ′ ≺K M such thattp(a/M ′) 6= tp(b/M ′).

Forµ = ℵ0, there is nothing to show. Now assume thatµ > ℵ0. Let M be
given. Choose(Mi : i < µ) increasing and continuous such that‖Mi‖ = |i|+ ℵ0

and
⋃

i<„ Mi = M . If tp(a/M) 6= tp(b/M), then there isi < µ such that
tp(a/Mi) 6= tp(b/Mi), sinceK is local. But by induction hypothesis, there is
M ′ ≺K Mi countable such thattp(a/M ′) 6= tp(b/M ′). So, we are done since
M ′ ≺K N . ¤

We now show that the answer to both existence and uniqueness question is
positive whenK is local:

Proposition 0.20. Assume thatK is local. Let(Mi : i ≤ δ) be an increasing and
continuous sequence of models, and(pi ∈ S(Mi) : i < δ) be an⊆-increasing
sequence of types. Then there is a uniquep ∈ S(M–) extending eachi < δ.

Proof. Uniqueness follows easily: Ifδ is a successor, there is nothing to show, so
we may assume thatδ is a limit. By taking a cofinal subsequence if necessary, we
may assume thatδ is a cardinal, so uniqueness follows immediately from the fact
thatK is local.

For existence, assume that(pi : i < δ) is given. We show by induction on
i < δ that(pj : j ≤ i) is coherent. Fori = 0 or a successor, this is easy. Assume
that i is a limit and that(pj : j < i) is coherent. Then by Proposition 0.14, there
existsp′i ∈ S(Mi) such that(pj , p

′
i : j < i) is coherent. Butp′i ¹ Mj = pi ¹ Mj ,

for eachj < i by definition. Hence by uniqueness, we must havep′i = pi, which
shows that(pj : j ≤ i) is coherent. Thus(pi : i < δ) is coherent, and so there exist
p ∈ S(M–) extending eachpi by another application of Proposition 0.14. ¤

1. BIG AND QUASIMINIMAL TYPES

In this section, we assume thatK is an abstract elementary class with AP,
JEP, and arbitrarily large models. We assume further thatLS(K) = ℵ0 and thatK
is ℵ0-stable.

With amalgamation, any type has an extension, but a non-algebraic type
may have a bounded number of solutions and thus no non-algebraic extension to a
model that contains all of them. The next definition is a strengthening of nonalge-
braicity to avoid these types. We begin by discussing only countable models.

Definition 1.1. Let p ∈ S(M). We say thatp is big if p has a nonalgebraic
extension to anyM ′ with M ≺K M ′ and‖M‖ = ‖M ′‖.
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Notice that ifp ∈ S(N) is big andM ≺K N thenp ¹ M is big. The next
proposition will allow us to find big types.

Proposition 1.2. Let p ∈ S(M) andM countable. The following conditions are
equivalent:

(1) p is big;
(2) p has a nonalgebraic extension to someM ′ universal overM ;
(3) p is realised uncountably many times inC.

Proof. (1) implies (2) by definition, since there exists a countable universal model
M ′ overM by Proposition 0.12. (2) implies (3): LetM ′ be a universal model over
M and letp′ ∈ S(M ′) be a nonalgebraic extension ofp. Suppose thatA ⊆ C is
a countable set of realizations ofp. Let N be countable containingA ∪ M . By
universality ofM ′ overM , we may assume thatN ≺K M ′. Sincep is realised
outsideN (any realization ofp′), thenA does not contain all the realizations ofp
in C, sop must be realised uncountably many times inC. Finally (3) implies (1) is
clear, asp must be realised outside any countable model containingM . ¤

We now show that big types exist.

Proposition 1.3. There exists a big typep ∈ S(M), for each countableM . More-
over, if p ∈ S(M) is big andM ′ is countable containingM , then there is a big
p′ ∈ S(M ′) extendingp.

Proof. Let M be given. ChooseN countable universal overM . Then any nonal-
gebraicq ∈ S(N) is such thatq ¹ M ∈ S(M) is big by the previous proposition.
Moreover, ifp ∈ S(M) is big andM ′ is countable containingM , we can choose
N countable universal overM ′. Sincep is big, p has a nonalgebraic extension
q ∈ S(N); againq ¹ M ′ is big by the previous proposition. ¤

We now consider the simplest big types.

Definition 1.4. A type p ∈ S(M) is quasiminimalif p is big and has exactly one
big extension inS(M ′) for anyM ≺K M ′ with ‖M‖ = ‖M ′‖.

We will primarily be interested in quasiminimal types over countable mod-
els. The name quasiminimal is consistent with Zilber’s usage, since each quasimin-
imal type is realised uncountably many times but has at most one extension which
is realised uncountably many times. We can now show that quasiminimal types
exist by using the usual tree argument:

Proposition 1.5. There exists a quasiminimal type over some countable model.
Moreover, ifp ∈ S(M) is big andM is countable, then there is a countableM ′
extendingM and a quasiminimalp′ ∈ S(M ′) extendingp.
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Proof. Since big types exist by the previous proposition, it is enough to show the
second sentence. Letp ∈ S(M) be big and suppose, for a contradiction, thatp has
no quasiminimal extension over a countable model. Sincep has a big extension
over any model by the previous proposition, this means that each big extension
of p has at least two big extensions. We can therefore construct a tree of types
(p· : η ∈ !>2) with p· ∈ S(M·) andM· countable, such that

(1) M〈〉 = M andp〈〉 = p;
(2) 〈p·�n : n < `(η)〉 is⊆-increasing;
(3) p· is big;
(4) M· 0̂ = M· 1̂ butp· 0̂ 6= p· 1̂.

But this contradictsℵ0-stability: Letη ∈ !2. Since(p·�n : n < ω) is countable
and increasing, there isp· extending eachp·�n by Remark 0.15. LetN be count-
able containing

⋃
·∈!>2 M·. Eachp· for η ∈ !2 has an extension inS(N), so

there are2ℵ0 types overN , a contradiction. ¤

We finish this section with a result on uniqueness of nonalgebraic exten-
sions over certain countable models:limit modelsand over saturated models of
cardinalityℵ1.

Definition 1.6. Let M be a countable model. Letα < ω1 be a limit ordinal. A
countable modelN is anα-limit model overM if there exists an increasing and
continuous chain(Mi : i < α) such thatM0 = M , eachMi+1 is universal over
Mi, andN =

⋃
i<fi Mi. We say that(Mi : i < α) is anα-tower forN overM .

Observe that ifN is anα-limit over M , thenN is anω-limit over M :
If (Mi : i < α) is anα-tower for N over M , choose(αn : n < ω) a cofinal
sequence forα with α = 0. Then(Mfin : n < ω) is anω-tower forN overM
asMfin+1 is universal overMfin . Observe also that for any countableM and any
limit ordinal α < ω1, there exists anα-limit N overM by repeated applications of
Proposition 0.12.

We now prove two facts about limit models, which are adapted from She-
lah’s Lemma 2.2 in [Sh394]; they are stated and proved in [Sh88]. Analogous
arguments for uncountable cardinalities are much more difficult; compare [VD1,
GrVV].

Proposition 1.7. Let α1, α2 < ω1 be limit ordinals. LetM be countable and
assume thatN‘ is anα‘-limit overM . ThenN1

∼=M N2.

Proof. Without loss of generality, we may assume thatα1 = ω = α2. Let
(M ‘

n : n < ω) be anω-tower for N ‘ over M , for ` = 1, 2. Proving the iso-
morphism betweenN1 andN2 is now a standard back-and-forth construction us-
ing the universality ofM ‘

n+1 over M ‘
n: We construct an increasing sequence of
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K-embeddingsfn such thatdom(f2n) containsM1
n andim(f2n+1) containsM2

n,
with f0 = idM . This is possible, since eachM ‘

n+1 is universal overM ‘
n, for

` = 1, 2, and is enough, as the union of thefn is an isomorphism betweenN1 and
N2 which is the identity onM . ¤

Since the value of the ordinalα is immaterial, we will simply say thatN
is a limit overM , whenN is anα-limit over M . The next proposition is simply
proved by pasting the towers witnessing the limits together.

Proposition 1.8. Let α < ω1 be an ordinal, not necessarily a limit. Assume that
(Mi : i < α) is increasing and continuous such thatMi+1 is a limit overMi, for
i < α. Then

⋃
i<fi Mi is a limit overM .

We now consider nonalgebraic extensions of quasiminimal types. At this
point we need locality/tameness hypotheses.

Proposition 1.9. SupposeK is local. Letp ∈ S(M) be quasiminimal, withM
countable, and letN be a limit overM . Then there is a unique nonalgebraic
extension ofp in S(N).

Proof. Let (Nn : n < ω) be anω-tower for N over M . Let q ∈ S(N) be the
unique big type extendingp in S(M). Then q is nonalgebraic, which proves
existence. Now assume thatq′ ∈ S(N) be a nonalgebraic extension ofp. Let
n < ω. Thenq ¹ Nn andq′ ¹ Nn are two big extension ofp; the first by restric-
tion, and the second by Proposition 1.2. Hence, by quasiminimality ofp, we have
q ¹ Nn = q′ ¹ Nn. Since this holds for anyn < ω, we have thatq = q′, sinceK is
local. ¤

We can extend the previous result to the saturated model of sizeℵ1 (which
exists by Proposition 0.10).

Proposition 1.10. SupposeK is local. Letp ∈ S(M) be quasiminimal, withM
countable. There is a unique nonalgebraic extension ofp to any saturated model
N of sizeℵ1 containingM .

Proof. First, there can be at most one nonalgebraic extension ofp over the model
saturated model of sizeℵ1, since it is saturated: Ifq1 6= q2 ∈ S(N), with N of
sizeℵ1 both extendp, then, since locality implies tameness, there isM ′ countable,
with M ≺K M ′ ≺K N , such thatq1 ¹ M ′ 6= q2 ¹ M ′. SinceN is saturated, it
is universal overM ′, and henceq1 ¹ M ′ andq2 ¹ M ′ are big, by Proposition 1.2.
This contradicts the quasiminimality ofp.

We now turn to existence and notice that by Proposition 0.6, it is enough
to prove it for some saturated model of sizeℵ1. Consider an increasing and con-
tinuous chain of models(Mi : i < ℵ1), such thatM0 = M , andMi+1 is universal
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overMi. This is possible by Proposition 0.12. Notice that eachMi+1 realizes ev-
ery type overMi by universality. Hence the modelN =

⋃
i<ℵ1

is saturated, and by
Proposition 1.8, eachMi is a limit overM . Let p0 = p. By Proposition 1.9, there
is a unique nonalgebraicpi ∈ S(Mi) extendingp0. By uniqueness, the sequence
(pi : i < ℵ1) is⊆-increasing, and so there isq ∈ S(N) extending eachi < ω1 by
Proposition 0.20. Then,q is clearly nonalgebraic, as eachpi is. ¤

2. UPWARD CATEGORICITY: GOING UP INDUCTIVELY

In this section, we assume thatK is a local abstract elementary class, with
AP, JEP, and arbitrarily large models. We assume thatLS(K) = ℵ0 and thatK
is categorical inℵ1. Notice thatK is tame by Proposition 0.19 andℵ0-stable by
Fact 0.9, so the results of the previous section apply.

The idea is to prove by induction onµ ≥ ℵ1 that every model of sizeµ is
saturated. This implies categoricity inµ by Proposition 0.6. This is the reason why
the assumption that all the uncountable models of size at mostµ are saturated will
appear as an assumption in two of the following propositions.

We first show that we can extend quasiminimal types to larger models,
provided all the intermediate models are saturated:

Proposition 2.1. Letp ∈ S(M) be quasiminimal, withM countable. Letµ ≥ ℵ1

and assume that every model of sizeκ is saturated, withℵ1 ≤ κ ≤ µ. Thenp has
a unique nonalgebraic extension to any model of sizeµ.

Proof. We prove inductively that there exists a unique nonalgebraic extension ofp
in S(N) by induction onµ = ‖N‖ ≥ ℵ1. For µ = ℵ1 this is Proposition 1.10.
Now assume thatµ > ℵ1. By assumption, we can find(Ni : i < µ) an increasing
and continuous chain of saturated models of size‖Ni‖ = |i| + ℵ1. By induc-
tion hypothesis, there exists a unique nonalgebraicpi ∈ S(Ni) extendingp. By
uniqueness, the sequence(pi : i < µ) is ⊆-increasing, so there existsq ∈ S(N)
extending eachpi by Proposition 0.20. Now the uniqueness ofq is as in Proposi-
tion 1.10, sinceN is saturated. ¤

We now introduce Vaughtian pairs:

Definition 2.2. Let p ∈ S(M) be quasiminimal, withM countable. A(p, µ)-
Vaughtian pairis a pair of modelsN1, N2 of sizeµ with M ≺K N1 ≺K N2,
N1 6= N2, such that there is a nonalgebraic extension ofp in S(N1) which is not
realised inN2.

Let p ∈ S(M) be quasiminimal withM countable. The goal is to prove
that there are no(p, µ)-Vaughtian pairs for any uncountableµ. In order to extend
the traditional Vaught argument, we will need to find a countable substitute for the
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notion:N is saturated overM . In the excellent case [Le1], one can use countable
full models overM : Two countable full models overM are isomorphic overM
and the union of any countable chain of full models overM is full overM . Here,
the key will be to use certain kinds of limits, introduced in [Sh88], thesuperlimits,
which have good uniqueness properties (Proposition 2.5), and will behave well
under unions (Proposition 2.6).

Definition 2.3. Let α < ω1 be a limit ordinal. LetM be a countable model. A
countable modelN is anα-superlimit overM if there exists an increasing and
continuous chain(Ni : i < α) such thatN0 = M , Ni+1 is a limit overNi, and⋃

i<fi Ni = N . We call(Ni : i < α) as above anα-supertower forN overM .

Clearly, a superlimit is a limit, since ifMi+1 is a limit overMi thenMi+1

is universal overMi. But anα-superlimit is also an(ω · α)-limit, by unravelling
the definitions. So, we clearly have the uniqueness property, but we also have
a stronger one. First, let us use a convenient piece of notation: GivenN an α-
superlimit overM , we denote byN̄ someα-supertower(Ni : i < α) for N over
M .

The next proposition shows that it is enough to understandω-superlimits.

Proposition 2.4. Let α < ω1 be a limit ordinal. LetM be countable. Every
α-superlimit overM is anω-superlimit overM .

Proof. As α is a countable limit ordinal, there is(αn : n < ω) cofinal in α,
with α0 = 0. Then if (Ni : i < α) is an α-supertower forN over M , then
(Nfin : n < ω) is clearly anω-supertower forN overM , asNfin+1 is a limit over
Nfin by Proposition 1.8. ¤

So we focus onω-superlimits. The proof of the next proposition is simply
an iteration of Proposition 1.7.

Proposition 2.5. Let N, N ′ be ω-superlimits overM . ThenN ∼=M N ′. Fur-
thermore, if(Nn : n < ω) and (N ′

n : n < ω) are ω-supertowers forN andN ′
(respectively) overM , then there exists an isomorphismf : N ∼=M N ′ such that

f ¹ Nn : Nn
∼= N ′

n, for eachn < ω.

We writef : N̄ ∼= N̄ ′ for an isomorphism between the two supertowers of
two superlimitsN andN ′ as in the previous proposition.

We will show that countable unions ofω-superlimits areω-superlimits un-
der the right circumstances. We will need to consider sequences of supertowersN̄i,
so it is natural to order them. The most natural choice is to consider the following
partial order≤ betweenω-supertowers:

(Nn : n < ω) ≤ (N ′
n : n < ω),
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if for eachn < ω, N ′
n is a limit overNn. Unfortunately, this is too strong for our

purposes, so we consider the weakening≤∗, where the∗ serves, as usual, to denote
eventualdomination: We say that

(Nn : n < ω) ≤∗ (N ′
n : n < ω),

if for eachn < ω, there existsm ≥ n such thatN ′
m is a limit overNn. Notice

thatN ′
k is a limit overNn for eachk ≥ m by Proposition 1.8. It is clear that≤∗ is

transitive, and ifN̄ ≤ N̄ ′ thenN̄ ≤∗ N̄ ′.

The proof that there are no Vaughtian pairs requires the analysis of arbi-
trary sequences of models, where unlike towers there is no guarantee that each
model is universal over its predecessor. For this, we consider unions of superlim-
its. The notation is a bit cumbersome, but the proof is a straightforward diagonal
argument.

Proposition 2.6. Let α < ω1 be a limit ordinal. Let(N i : i < α) be an≺K-
increasing and continuous chain ofω-superlimits overM with ω-supertowersN̄ i,
for i < α. Suppose, in addition, that

N̄ i ≤∗ N̄ j , for i < j < α.

Then
⋃

i<fi N i is anω-superlimit overM . Moreover, there exists(Nfi
n : n < ω)

anω-supertower for
⋃

i<fi N i overM such that

N̄ i ≤∗ (Nfi
n : n < ω), for eachi < α.

Proof. It is enough to prove the last sentence. In addition, by choosing a cofinal
sequence(αn : n < ω) for α with α0 = 0, and using the transitivity of≤∗, we may
assume thatα = ω. So we consider an≤∗-increasing sequence(N̄ i : i < ω) of
ω-supertowersN̄ i for N i overM . We will construct a strictly increasing function
f : ω → ω such thatf(0) = 0 and for each integern > 0

Nn
f(n) is a limit overN i

k, for eachi, k < n.

This is enough: LetN!
n := Nn

f(n), for eachn < ω, Then(N!
n : n < ω) is an

ω-supertower for
⋃

i<! N i overM sinceN!
0 = M andN!

n+1 is a limit overN!
n

by the definitions. Furthermore,

N̄ i ≤∗ (N!
n : n < ω), for eachi < ω :

Let i, k < ω be given and considern := max(i, k) + 1. ThenN!
n (= Nn

f(n)) is a

limit over N i
k by definition.

It remains to show that such anf can be found. By definition of≤∗, for
eachi < ω there exists a strictly increasing functionfi : ω → ω such that

N i+1
fi(n) is a limit overN i

n, for eachn < ω.
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We definef(n) by induction onn. Let f(0) = 0. Having constructedf(n), we
definef(n + 1) by taking the maximum of the following three numbers:

fn(f(n)), fn ◦ fn−1 ◦ · · · ◦ f0(n), f(n) + 1.

Thenf(n + 1) is as required: The fact thatf(n + 1) is at least the first number
ensures thatNn+1

f(n+1) is a limit overN i
k for i ≤ n andk < n. Thatf(n + 1) is at

least the second number ensures thatNn+1
f(n+1) is a limit over eachN i

n, for i ≤ n,
since

fn ◦ fn−1 ◦ · · · ◦ f0(n) ≥ fn ◦ fn−1 ◦ · · · ◦ fi(n).
And finally, f(n + 1) > f(n) sincef(n + 1) is at least the third number. This
finishes the proof. ¤

We prove a simple result which will be used in the proof that there are no
Vaughtian pairs:

Proposition 2.7. Suppose thatM0, M1 are countable andA is a countable set.
There exists a countableN containingM0∪M1∪A which is a limit over bothM0

andM1.

Proof. It is enough to find a countable modelN which is universal overM0 andM1

and containsA. But this is clear: Choose firstN ′ containingA which is universal
overM0. Now chooseN ′′ containingN ′ ∪M1 which is universal overM1. Since
N ′ ≺K N ′′ andN ′ is universal overM0, then so isN ′′. ¤

We now prove that there are no Vaughtian pairs.

Proposition 2.8. Let p ∈ S(M) be quasiminimal withM countable. Then there
are no(p, µ)-Vaughtian pairs, withµ ≥ ℵ1.

Proof. Suppose thatN0 ≺K N1 is a (p, µ)-Vaughtian pair, forµ ≥ ℵ1. By the
usualω-chain argument, we may assume thatµ = ℵ1, and hence thatN0 andN1

are saturated by Proposition 0.10.

We now construct a(p,ℵ0)-Vaughtian pairN0 ≺K N1 such thatN ‘ is an
ω-superlimit overM , with ω-supertowerN̄ ‘, for ` = 0, 1, and such that

N̄0 ≤∗ N̄1.

Let N ‘
0 = M for ` = 0, 1. Choose a limitN0

1 over M such thatN0
1 ≺K N0

(this is possible sinceN0 is saturated). Now chooseN1
1 ≺K N1 a limit overN1

0

containing an elementa ∈ N1 \ N0. Now having constructedN0
n ≺K N0 and

N1
n ≺K N1 countable withN1

n a limit overN0
n, chooseN0

n+1 ≺K N0 a limit over
N0

n containing all the realizations of the unique big extension ofp to N0
n in N1

n

(this is possible since this set is countable). Now choose countableN1
n+1 ≺K N1

a limit over bothN1
n andN0

n+1 (this is possible by Proposition 2.7,N1
n+1 can be

chosen insideN1 by the saturation ofN1). LetN ‘ =
⋃

n<! N ‘
n, for ` = 0, 1. Then
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N ‘ is anω-superlimit overM with ω-supertowerN̄ ‘ such thatN̄0 ≤∗ N̄1 (even
N̄0 ≤ N̄1). Furthermore,N0 ≺K N1 forms a(p,ℵ0)-Vaughtian pair. Letp0 be
the unique big type extendingp in S(N0), which exists by countability ofN0 and
quasiminimality ofp.

To contradict categoricity inℵ1, we construct an increasing and continuous
chain (N i : i < ℵ1) of ω-superlimits overM , such thatN i 6= N i+1 with a
big extensionpi ∈ S(N i) of p which is not realised inN i+1, and such that the
sequence of limits(N̄ i : i < ω1) is ≤∗-increasing: We do this by induction on
i < ω1. For i = 0, this is given. At limit i < ω1, let N i =

⋃
j<i N j with

ω-supertowerN̄ i over M as in Proposition 2.6. Now having constructed theω-
superlimit modelN i with ω-supertowerN̄ i overM , for i limit or successor, choose
an isomorphismfi : N̄0 ∼= N̄ i as in Proposition 2.5. Thenfi extends to an
automorphismgi ∈ Aut(C/M) and we letpi = gi(p0), N i+1 = gi(N1), and
N̄ i+1 = g(N̄1). Thenpi ∈ S(Ni) is a big extension ofp which is not realised
in N i+1, and N̄ i ≤∗ N̄ i+1, sincegi is an automorphism respecting levels and
N̄0 ≤∗ N̄1.

Let N∗ =
⋃

i<!1
N i. ThenN∗ has sizeω1 but omitsp0: Otherwise,

there isa ∈ N∗ realizing p0. Sincea 6∈ N0, there isi < ω1 such thata ∈
N i+1 \Ni. Thentp(a/N i) is nonalgebraic and extendsp. Hence,tp(a/N i) = pi

by Proposition 1.9 sinceN i is a (super)limit overM , but this is a contradiction
sincea ∈ N i+1 andpi is not realised inN i+1. So,p0 is not realised inN∗, which
implies thatN∗ is not saturated, contradicting Proposition 0.10. ¤

The key to carry out the induction in the main theorem is the successor
case. We use the absence of Vaughtian pairs to show this. This argument is inspired
by the final argument in [Sh394] and Theorem 4.1 of [GrVD3].

Proposition 2.9. Letµ ≥ ℵ1. Assume that all models of sizeκ are saturated, with
ℵ1 ≤ κ ≤ µ. Then all models of sizeµ+ are saturated.

Proof. Fix p ∈ S(M) be quasiminimal andM countable, by Proposition 1.5. Let
N be a model of sizeµ+, with µ ≥ ℵ1. By assumption,N is µ-saturated, so we
may assume thatM ≺K N . Observe that since there are no(p, µ)-Vaughtian pair
by Proposition 2.8, every nonalgebraic extension ofp to a submodel ofN ′ ≺K N
of sizeµ must be realised inN , otherwise by choosing anyN ′′ of sizeµ, with
N ′ ≺K N ′′ ≺K N , andN ′ 6= N ′′, we have a(p, µ)-Vaughtian pair. We now
prove:

Claim. Let M ≺K M ′, with M ′ of sizeµ, and aK-embeddingf : M ′ → N
which is the identity onM . Let a ∈ C realisep. Then there existM ′′ of sizeµ,
with M ′ ≺K M ′′ anda ∈ M ′′, and aK-embeddingg : M ′′ → N extendingf .

Proof. If a is already inM ′, there is nothing to do. Otherwise the typep′ =
tp(a/M ′) is a nonalgebraic extension ofp, sof(p′) is a nonalgebraic extension of
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p over a submodel ofN of sizeµ. Thusf(p′) must be realised by someb ∈ N , by
the observation of the first paragraph. Choose an automorphismh of C extending
f sendinga to b, and chooseN ′ ≺K N of sizeµ containingb such thatf(M ′) ≺K
N ′. Let M ′′ = h−1(N ′) andg = h ¹ M ′′. Theng : M ′′ → N extendsf andM ′′
containsa and extendsM ′, as desired. ¤

We now show thatN is saturated. FixM0 ≺K N of sizeµ andq ∈ S(M0).
We will show thatq is realised inN . First, we may assume thatM ≺K M0, since
M0 is saturated (andµ ≥ ℵ1). We construct two increasing chains of models

(Mn : n < ω) and(M ′
n : n < ω), with Mn ≺K M ′

n,

such that each model is of sizeµ, M0 is as given above,M ′
0 realizesq, every

realization ofp in M ′
n is in Mn+1. We also construct an increasing chain ofK-

embeddings

fn : Mn → N, such thatfn ¹ M0 = idM0 .

This is easy to do: LetM0 be as above, and chooseM ′
0 of sizeµ extendingM0 and

realizingq. Let f0 = idM0 : M0 → N . Now having constructedfn : Mn → N
andMn ≺K M ′

n, there are at mostµ realizations ofp in M ′
n \Mn, so by applying

the previous claimµ-times, we can findMn+1 of sizeµ extendingMn containing
every realization ofp in M ′

n, as well as aK-embeddingfn+1 : Mn+1 → N ,
extendingfn. ChooseM ′

n+1 any model of sizeµ containingMn+1 ∪M ′
n.

This is enough: LetM! =
⋃

n<! Mn and M ′
! =

⋃
n<! M ′

n. Then
M! ≺K M ′

! are models of sizeµ. By Proposition 2.1 there is a nonalgebraic
extension ofp in S(M!), and by construction, this nonalgebraic extension is not
realised inM ′

! \M!. Since there are no(p, µ)-Vaughtian pairs by Proposition 2.8,
this implies thatM! = M ′

!. Hence,
⋃

n<! fn is aK-embedding fromM ′
! into N

fixing M0, and so sends a realization ofq in M ′
! to a realization ofq in N . This

shows thatq is realised inN . ¤

We can now prove upward categoricity fromℵ1.

Theorem 2.10. LetK be a local abstract elementary class with AP, JEP, arbitrar-
ily large models, andLS(K) = ℵ0. Assume thatK is categorical inℵ1. ThenK is
categorical in every uncountable cardinal.

Proof. We prove that uncountable models are saturated, which shows categoricity
in every uncountable cardinal by Proposition 0.6. Suppose, for a contradiction,
that there isχ ≥ ℵ1 and a model of sizeχ which is not saturated. Chooseχ
minimal with this property. Thenχ > ℵ1 (by Proposition 0.10) and cannot be a
limit cardinal. Henceχ = µ+, for someµ ≥ ℵ1. By minimality of χ, every model
of sizeκ, with ℵ1 ≤ κ ≤ µ < µ+ = χ, is saturated. Hence, by Proposition 2.9,
every model of sizeµ+ is saturated. This contradicts the choice ofχ. ¤
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