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Here are some examples of fundamental issues that arise in high school math-
ematics. Students are puzzled by the assertion .9 = 1. After giving an excellent
presentation1 concerning her extensions to the logic unit in a geometry course,
Teacher A asked, ‘How do I respond when a student asks if it is true that the sum
of the angles of a triangle is 180◦’? A freshman complains, I learned in primary
school that you couldn’t take away a bigger number from a smaller one, what are
you doing? A junior objects that every step in his solution of

2 +
1

x− 2
=
x− 1

x− 2

is correct. Why is his answer of 2 wrong? A trigonometry text book poses the
question, ‘Show sinA = sinB if and only if A = B + 360K or A + B =
180 + 360K.’ What does this mean?

Full answers to these questions depend on the logical analysis developed during
the twentieth century. The central activity of the Chicago Teacher Transforma-
tion Institutes is the design and delivery of a sequence of courses for secondary
teachers. These are to be graduate courses in mathematics acceptable for degree
credit tailored for secondary teachers. ‘Logic across the high school curriculum’
was conceived as a version of UIC’s Math 430 adapted for secondary teachers. In
the remainder of this note, I develop in more detail the rationale for such a course
and some details of ‘tailoring’. Logic is a specific strategy for metacognition, ‘the
ability to monitor ones current level of understanding and decide when it is not
adequate’ (page 47 of [4]) and metacognition is a key element in how people learn.

One goal of the CTTI courses is to acquaint teachers with recent work. It is
very difficult to discuss current technical developments in mathematics. However,
three of the Time magazine list of the 20 most important scientists and thinkers
of the twentieth century were logicians and the work of two of them (Gödel and
Turing) deeply impacts our understanding of high school mathematics in a way
accessible to teachers. Mathematicians have generally internalized these under-
standings of mathematics, but, perhaps without exploring the rationale. The aim
of this course is to short circuit the generalization to mathematical maturity from
mastering technical material in a number of areas in mathematics by focusing on
the way mathematics is organized and justified, that is on logic.
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1I am recalling the gist of a conversation after a contributed talk several years ago at the Chicago
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This note outlines the themes of a course meeting two goals for a CTTI course:
connecting directly to high school mathematics and exposing teachers to recent
highly significant mathematics.

1. A FUNDAMENTAL DISTINCTION

The first step to answering Teacher A’s question is a following fundamental
distinction made by Aristotle.2

Deduction is the process of extracting information implied by given premises
regardless of whether those premises are known to be true or even whether they
are true. A deduction from premises whose truth value is not known produces
knowledge - of the fact that its conclusion is a consequence of its premises – not
just from knowledge of the truth of its conclusion.

Demonstrative logic is the study of demonstration (conclusive proof) as opposed
to persuasion or even probable proof. Demonstration produces knowledge. Ac-
cording to Aristotle, a demonstration is an extended argumentation that begins with
premises known to be truths and that involves a chain of reasoning showing by de-
ductively evident steps that its conclusion is a consequence of its premises. In
short, a demonstration is a deduction whose premises are known to be true. Math-
ematics is concerned with deduction and not with demonstration. So the short
answer to whether the sum of the angles of triangle is 180◦ is true, is ‘That is not
a mathematical question; it asks for a demonstration, whether a statement is true,
not a deduction, whether it follows from hypotheses.’. But a deeper answer is that
we must be more clear about what is meant by ‘true’. And that answer will be
developed through this essay.

The distinction between demonstration and deduction is particularly important
for geometry. Until the 19th century it was thought that geometry was the deduc-
tion of truths from unassailable premises that described the physical world. These
premises were Euclid’s Axioms (common notions) and Postulates (geometric as-
sumptions). We now take geometry as the deduction of conclusions from a certain
set of geometric hypotheses. These hypotheses might allow exactly one, many or
no parallel lines. Whether these geometrical hypotheses are ”true” is not a mathe-
matical question. But whether specific geometric statements follow from particular
sets of hypotheses is the essence of mathematics. So is formulating a notion of truth
so that such a verification justifies saying the proposition is true (somewhere). We
need further concepts.

It may be particularly relevant, given the science/math focus of the CTTI, to
discuss the distinction between justification in mathematics and science.

2. FORMAL LANGUAGE

Teacher A’s simplest correct and informative reply to the question about the
sum of the angles of a triangle is, ‘It is true in the systems we are studying’. We
now explore at some length what that means. In the course of that exploration we
discuss many other basic notions of high school mathematics that are clarified by

2These comments are adapted from unpublished notes of John Corcoran.
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this approach. We have to consider what a mathematical statement is; we first focus
on algebra.

The key idea of mathematical logic is the distinction between syntax, a for-
mal language for expressing mathematics, and semantics, mathematical structures
where sentences of this language are true or false. A second key component of
syntax is the notion of proof in a formal system. The formal proof notion is far
more pertinent to high school mathematics than to college or certainly to most
mathematical research. Mathematical research is about the relations among math-
ematical structures; high school algebra is about formal derivations in the language
of ring theory.

The formal language makes it easy to distinguish two fundamentally different
mathematical usages: terms that denote numbers (usually called expressions in
high school algebra) and relations between numbers (statements that are true or
false). We now discuss several other notions, fundamental to high school math,
that are clarified by thinking of formal languages.

Equality and Equivalence relations. In a course for teachers, equality deserves
special treatment for several reasons. First is to show that equality plays a common
role in the various algebraic axioms systems and geometry rather than (as the lan-
guage in American algebra texts suggests) new properties of equality are invented
for each operation and each subject. (Texts refer to the addition property of equal-
ity and the multiplicative property of equality rather than just noting that addition
and multiplication are functions.)

Second, while the distinctions between equality and equivalence are properly
glossed over for K-12 students, secondary teachers need to understand the full
story. Expressions in a formal language such as 3

4 ,
6
8 , .75, .749 are equivalent rep-

resentations of a single rational number. And, pace Frank Morgan, decimal repre-
sentations are expressions in a formal language, they are not numbers3.

In algebra, we prove x2 − 4 = (x+ 2)(x− 2) to show each of the expressions
determines the same function from < to <. The notion of equivalence relation is
central both to the idea of normal form, which permeates high school mathematics
without explicit mention and to the notion of quotient structures that is not formally
studied in high school but is important for a full understanding of the material.

Parsing. One of the most unpleasant parts of many logic books is the totally
unmotivated proof on page 2 that the expressions in the formal language satisfy
the ‘unique readability’ property. This is often accomplished by a sophisticated
induction on the number of parentheses, or by studying Polish or inverse Polish
notation. Who cares? Any teacher who mistakenly drills students on PEMDAS
cares.4 But Pemdas is flawed because it tries to provide a simple rule where no
simple rule is possible. The goal for high school teaching should be to understand
the role of parentheses and the role of the associativity and commutativity in some-
times omitting them. Clear statements of ‘simplification’ requires both the notions

3In [7], the construction of the real numbers is avoided by a one sentence reference to infinite
decimals.

4‘Please Excuse My Dear Aunt Sally’ is a flawed mnemonic for teaching order of operations.
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of derivation and equivalence relations. Study of this concept focuses attention on
the basic pedagogical issue: ‘simplification for what’.

The definition of a polynomial is the simplest example of the inductive definition
of a term (expression) in a formal language.

Definitions. Students need to understand that a mathematical definition is just
an abbreviation for certain relations among concepts that are currently being con-
sidered. That is, we consider explicit definition: ‘a is prime’ if and only if ‘its only
divisors are itself and 1. More formally we can introduce a new predicate P for
prime numbers and write P(x) ↔ (y|x ← y = 1 ∨ y = x). It makes no sense to
ask if a definition is true, but it is often important to ask whether two definitions
are equivalent.

Variables. As we discuss in Section 4, most calculations in high school algebra
use quantifier free formulas. But already in problems like 5 ‘Show sinA = sinB
if and only if A = B + 360K or A + B = 180 + 360K,’ there are treacherously
suppressed uses of the existential quantifier. Not to mention that the statement fails
a basic logical test of meaningfulness: equivalent statements have the same free
variables.

The only coherent explanation of the notion of variable involves the interpreta-
tion of formal languages in structures. In the next section, we discuss this notion,
formalized by Tarski in 1933 but in common use by mathematicians long before.
This substitutional account of the meaning of variable is pervasive in high school
mathematics. This approach to the notion of variable occurs in all logic texts; it is
laid out in the context of high school algebra in [1].

This approach to variables allows a uniform understanding of solution of equa-
tions, variables as arguments for functions, analytic geometry, the role of param-
eters and families of functions; these are all crucial topics of high school mathe-
matics. Teachers (and many texts) complicate the curriculum because they don’t
understand the essential unity.

This framework enables the discussion of the difference between intensional
(function as rule) and extensional (function as set of order pairs) definition of func-
tion6.

The study of calculus and limits require quantification. This is precisely what led
Newton down the false trail of ‘variable quantities’. And by studying quantification
we are able to give a clearer and more full explanation of limits and the foundations
of calculus.

3. NUMBER SYSTEMS, TRUTH, AND VALIDITY

A student learns in primary school that he can’t take away a bigger number from
a smaller one. But in the upper grades, he can. The student is now working in a
different number system. But has that distinction been made strongly enough?
It does not make sense to speak of the truth of a statement without specifying

5This is a direct quote from a text whose name we suppress.
6U.S. teachers who went to high school in the late 20th century were taught only the extensional

definition; now they are expected to teach the intensional version.
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the system about which it is asked. Thus, the primary school understanding of
subtraction is correct for the natural numbers but not for the integers.

Number Systems. A structure or model for a formal language is a set with a
prescribed group of operations corresponding to the relation and function symbols
in the language. This is the general term exemplified by the concept of a number
system.

Note that the formal language of ring theory (say two binary operations of addi-
tion and multiplication, a constant 0, and a unary −) is applicable to a wide variety
of structures: Boolean algebras, the integers, the rational numbers, and the real
numbers. By changing the formal language similar ideas apply to geometry. A
geometry is a system of points, line, planes and and relations of incidence and con-
gruence. In the Birkhoff-Moise formulation it also includes the real numbers. The
exact formulation is irrelevant to the insight that both number systems and geome-
tries are models for statements in a formal language. And the question ‘in which
geometries is the sum of the angles equal to 180o?’ is of the same type as ‘in which
fields is there a square root of two?’.

This viewpoint provides a connection between the subjects of high school math-
ematics from basic algebra through geometry to trigonometry and the beginnings
of calculus.

Number systems can be approached both intuitively – everyone has some un-
derstanding of the natural number sequence – and formally. Formally can be un-
derstood in two ways. Specifying an axiom system (which specifies the structure
uniquely?) or constructing a system from more primitive systems. Thus we can de-
fine the reals as the unique complete ordered field. Or the reals can be constructed
as completions (by adding cuts or summing series) of the rational field. Under ei-
ther definition, the theory of limits can be developed to justify the assertion that the
equation .9 = 1 holds in the real numbers.

Truth. There is a systematic way to define the concept that a sentence φ is
true in a system A for the language of φ. We write A |= φ. Note that truth is
defined only in particular systems. A sentence that is true in all systems for a given
vocabulary is valid. We move here from number systems to more general systems
such as linear orders, geometries, or most concretely, Tarski’s world. Tarski’s world
broadens the fairly intuitive idea of what it means for an equation to be true in the
real numbers and enables a concrete understanding of quantification. This provides
a framework for understanding truth of geometric statements in various models of
geometry. Thinking of plane geometry as a system of point and lines with an
incidence relation formalizes Hilbert’s famous quip about chairs, tables, and beer
mugs.

4. PROOF

Why can a student do each step correctly in ‘solving’

2 +
1

x− 2
=
x− 1

x− 2
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and obtain an incorrect answer? He has not understood that the solution proce-
dure is a proof that identifies the only possible solutions, but that it remains to be
determined if the identified numbers are solutions – that is do they satisfy the equa-
tion? This is a complex situation. The isolation of 2 as the only possible root is
a derivation in the formal system of ring theory, which provides solutions in the
case of polynomial equations. But the student has overextended the method. For
polynomials, the isolation of possible roots is literally a formal proof in equational
logic as discussed in undergrad texts by Burris or Barwise-Etchemendy. But solv-
ing the equation is rather more complicated: it requires knowing the definition of
‘solution’. The ‘check’ is the essential part of the solution.

Logical Consequence. A proposition φ is a logical consequence of a propo-
sition ψ if whenever ψ is true, φ is true. This fundamental notion is often as ex-
pressed as saying the inference from ψ to φ is valid. The difficulty with this notion
is that, at least a priori, it is uncheckable. How do we analyze the ‘whenever’? We
have spoken of language and models but not of proof; proof is a fundamental tool
to relate statements and their truth.

Durand [3] analyzes several notions of logical implication and notes that student
confusion between the truth conditions for (∀x)[P (x)→ Q(x)] and P (a)→ Q(a)
may underlie what appear to confusions between implication and equivalence. She
notes difficulties caused by the imprecise use of quantifiers in high school. These
studies support the careful study of the logic of atomic sentences as a prelude for
first order logic.

Formal Proof. Almost all logic books introduce some formal proof system,
with arcane, often unmotivated, rules, and frequently little connection to proofs
as mathematicians do them. Books on mathematical reasoning often introduce
various rules of inference and explain their connections to how mathematicians
actually prove theorems. Both approaches lose a big idea: There is a small list
of reasoning principles, which can be exhibited in the course, that account for all
correct (valid) inferences. The set of validities is unique; the choice of reasoning
principles is not. Each text book provides a different but equivalent set of reasoning
principles.

Theorem 4.1 (Godel). There is a set of axioms and rules of inference for first order
logic such that a sentence is true in every structure if and only if it can be proved
in this system.

Or in the language of the last subsection, a sentence is valid if and only if it
provable.

Let us distinguish between proof, which provides both explanation and justifi-
cation, and derivation, which provides only justification. No one except computers
and beginning students derives, that is, does proofs in a formal system. Why is
this relevant for teachers? Confusion between these notions lead to an unhealthy
focus on extremely formal arguments in algebra/geometry.7 The goal of this course

7The first ‘proof’ for many American high school students is a six step excursion passing through
axioms of the real numbers to show that if equal segments are taken away from equal segments the
remaining segments are equal.
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is for teachers to prove not derive. But more important, to clarify the difference.
The reason these notions are often confused is because, as noted at the beginning
of this section, the ‘proofs’ that are most common in high school algebra are often
misconstrued as simply derivations.

5. THEORIES

We return to Teacher A’s reply to the question about the sum of the angles of a
triangle, ‘it is true in the systems we are studying’. In the Section 3, we elaborated
on the notion of system and in particular systems for geometry. But how does one
specify the ones we are studying? Fix a set of postulates. The statement is true
in any geometric system satisfying appropriate axioms. But it is not valid. It is a
theorem of the theory given by those axioms. By studying theories, we can provide
both a unifying theme for high school mathematics and introduce the teachers to
the inspiring results of 20th century logic.

Axiomatics. The powerful ideas that ought to unify high school mathematics,
distributivity and commutativity, the existence of inverses, etc. are instead pre-
sented as new ideas in each separate field leaving the student with hundreds of
unrelated facts to connect. By exhibiting these as general laws which apply to in-
tegers, rationals and reals (for appropriate operations) the essential unity can be
demonstrated. Understanding the connections among the first order theories of in-
tegral domains, fields, the real field, and the complex field provides a coherence
to the high school curriculum. In particular, the notion of algebra as generalized
arithmetic is justified as a key tool for the teaching of introductory algebra.

In geometry, the distinction should be made between the local proof in some
curricula (CME, IMP) and the global axioms of Moise-Birkhoff which dominate
American high school geometry. Background in formal language enables the role
of non-standard models and different axioms systems for geometry to be under-
stood.

Completeness in high school algebra A simpler form of Gödel’s completeness
theorem is endemic in high school algebra. Any equation between polynomials that
is true in the real numbers is provable from the equational axioms for a commu-
tative ring with multiplicative inverse. Tarski’s high school algebra problem asked
whether the same result held for exponential polynomials (as studied in the second
algebra course). Surprisingly, the answer is no; the counterexample is displayed
in [8]. A positive result is more germane to high school. Students are asked to
solve over the reals a polynomial inequality in one variable. What does that mean?
The set of real numbers that satisfy the inequality can be represented as a Boolean
combination of intervals. There is a hidden theorem that every system has a so-
lution of this form. There are important generalizations of this idea. Any ordered
structure where any first order definable set (in particular an inequality) defines a
Boolean combination of intervals is called o-minimal. Tarski showed the real field
is o-minimal in the 1930’s; Wilkie showed the real exponential field is o-minimal
in 1996 [10]. The study of o-minimal theories resulted in a research community of
real algebraic geometers and logicians with important applications in analysis.
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Algorithms. At the elementary level, the distinction between algorithms for
arithmetic operations (e.g. multiplication) and the basic function they compute
must be made clear. But in the computer age the notion of algorithm takes on a
much more central role. The very idea of a stored program computer arose with
Turing’s work in formalizing the abstract idea of computation. The distinction
between definition by recursion and proof by induction often arises as teachers
address the idea of modeling physical and geometric sequences by algebraic for-
mulas. Yet such concepts as the distinction between open and closed forms for
functions are often unknown to them. The distinction between unsolvability and
infeasibility appears8 in some high school curricula.

Incompleteness and Undecidability. Hilbert’s first problem asked for a so-
lution to the continuum problem; the second asked to prove the consistency of
arithmetic; the tenth asked for a method to determine if an arbitrary family of Dio-
phantine equations is solvable. The crucial insight of twentieth century logic is not
just the solution of these problems but refining the understanding of what solution
means, by providing a precise meaning for when a problem is not solvable. This
led to the development of computability theory. The significance of this subject
for society is indicated by the article ‘An Explanation of Computation Theory for
Lawyers’ [9]. The mathematical part of this article is appropriate for this course.

The work of Gödel and Cohen shows that analogously to parallel postulate in
geometry, the continuum hypothesis can be neither proved nor disproved from the
accepted axioms for set theory (Zermelo-Fraenkel plus the axiom of choice). Gödel
also showed (given Turing’s analysis of computability) that there is no computable
algorithm to determine whether a sentence of arithmetic is true in the natural num-
bers. Nor can the consistency of arithmetic be proved within the system, which is
what Hilbert hoped.

We can return to the kind of questions with which we began. Euclidean geome-
try is incomplete in the sense that certain propositions are neither consequences nor
refuted by the basic axioms. We can find a computable set of axioms for geometry
such that their consequences are a complete theory (every sentence or its negation
is provable). There is an algorithm that decides whether any given sentence is true
in the standard model of geometry; there is no such algorithm for arithmetic.

To make the distinction concrete, let p1(x1, . . . xn) = 0, . . . pk(x1, . . . xn) = 0
be a finite system of equations in n variables. There is a computable function that
tells for each such system whether or not it has a solution in the real numbers.
There is not (not just undiscovered, there is not) such an algorithm if the question
is solution in the integers. Whether there is a such an algorithm for the rational field
is a question investigated by logicians and number theorists of the highest level.

6. CONCLUSION

The course in logic across the high school curriculum provides a splendid op-
portunity to clarify teachers ideas about notions that are fundamental in their daily
teaching while connecting these ideas to some of the most important results of

8or is confused
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20th century mathematics. The examples cited above demonstrate that basic logi-
cal issues are particularly important for high school teaching as opposed to college
teaching or for mathematical research. The actual connection of logic with research
in core mathematics can be seen in such articles as ([2, 6, 5]); those methods are
much more advanced than I discuss here.
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