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Abstract

The projective plane of [2] is model complete in a language with additional constant
symbols. The infinite rank bicolored field of [14] is not model complete. The finite
rank bicolored fields of [4, 6] are model complete. More generally, the finite rank
expansions of a strongly minimal set obtained by adding a ‘random’ unary predicate
are almost strongly minimal and model complete provided the strongly minimal set is
‘well-behaved’ and admits ‘exactly rank k£ formulas’. The last notion is a geometric
condition on strongly minimal sets formalized in this paper.

There are a number of variants of the ‘Hrushovski construction’ [10] which produce w-
stable or even N;-categorical theories. All of them result in theories which are nearly model
complete (all formulas are equivalent to a Boolean combination of existential formulas); some
result in model complete theories (all formulas are equivalent to existential formulas). These
‘quantifier elimination’ results are closely connected to complexity of the axiomatization of
the theory. Every model complete theory is V3-axiomatizable; a theorem of Lindstrom [11]
asserts every V3-theory that is categorical in some infinite power is model complete. One
of the intriguing features of the Hrushovski construction and the associated Shelah-Spencer
random graph was that theories constructed for some other purposes naturally arose with
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VdV-axiomatizations. Almost no natural theories are that complex. It was a surprise when
Holland [9] proved that the strongly minimal Hrushovski constructions were in fact model
complete (and so admit V3-axiomatizations). In this paper we investigate several variants
on the construction and show that Holland’s model completeness extends from the strongly
minimal case to Nj-categorical expansions by a unary predicates of strongly minimal sets
which satisfy a certain geometric condition: the existence of exactly k-independent sequences.
In fact we show that these theories are all almost strongly minimal. Ahlbrandt and Baldwin
[1] had shown that every Ng-categorical almost strongly minimal theory is axiomatizable
using at most n alternations of quantifiers for some n. But Marker [12] has shown that the
minimal such n could be arbitrary. The essence of Marker’s counterexamples is to make
the definition of the strongly minimal set complicated. Our strongly minimal sets are ;-
definable.

The infinite rank bicolored field of [14] is not model complete. Using an argument in
the style of [9], we establish the model completeness of an expansion by constants of the
projective plane in [2].

This paper builds on the notation and results in [4, 5, 2]. The general framework consists
of a class K of countable models which have hereditarily nonnegative rank with respect to
a given predimension §. A strong substructure relation is defined on K, by A < B if for
every finite B’ contained in B, §(B’/A) > 0. In each case, the class K, has amalgamation
with respect to < and we are able to produce a countable generic structure G which is
w-saturated.

In the first section, we provide a sufficient condition for an almost strongly minimal theory
to have a finite extension by constants that is model complete. The main goal of the paper
is to prove certain constructions yield N;-categorical model complete theories. We exhibit
two quite different proof methods. In the second section we deal with expansions of a ‘well-
behaved’ strongly minimal set. Using the known N;-categoricity of the theories, we show
they are model complete. In fact, no expansion by constants is needed. The result depends
on the existence of exactly k-independent sequences. In the third section, we obtain directly
a V3-axiomatization of the projective plane [2] and prove these axioms are Wi-categorical.
By Lindstrom, we conclude model completeness. And in the final section we review the
significance of these results and suggest some further problems.

1 Some ‘Ancient’ model theory

We prove a sufficient condition for almost strong minimality that could have been proved long
ago but the proper formulation was missed. For this, we must be careful about the adjunction
of additional constants; we delineate this below. We will have to relativize certain notions
to the domain in which they are computed; we indicate this by subscripting the ambient
model.



We say the complete theory T is a principal extension of T if the language of T" is
obtained by adding a finite number of constants to that of 7" and if 7" is axiomatized by
adding one additional sentence to the axioms of T

Notation 1.1 ¢(M,c) denotes the set of solutions of ¢(v,c) in M.

Definition 1.2 1. For X C M, the algebraic closure of X in M, acly/(X) is the set of
elements a of M such that M = ¢(a,c) A (I<"v)p(v,c) for some ¢ € X and some
formula ¢.

2. The theory T is almost strongly minimal (witnessed by T') if T' is a principal extension
of T and there is a strongly minimal formula ¢(x) (over the empty set in T ) such that
for every M =T', M = acly(¢p(M)).

We describe a technical condition on M C N models of a theory 7" which guarantees
that M < N. Recall that a definable subset X of N is minimal in N if every subset of X,
that is definable with parameters in N is finite or cofinite. And X is strongly minimal if this
condition remains true when parameters from an elementary extension of N are allowed.

Theorem 1.3 Let T = Th(N) and suppose there is an e € N and an ezistential formula
¢(x,e) such that ¢(x,e) is minimal in N and acly(¢(N,e)) = N. If M C N is a model of
T that satisfies: a) acly(M) = M, b) e € M and c¢) ¢(N,e) N M is infinite then M < N.

Proof. Applying the Tarski-Vaught test we fix a formula ¢ (z, c) with ¢ € M that has a
solution in N and show it has a solution in M. Let » > 0 be least so that there is an r-tuple
d from ¢(N,e) such that (N, c) Nacly(Md) # 0. If r = 0, we are done. If not, choose
O(v,y1, . ..yr) such that for some n < w,

T = (Vy)(3 " )(v,y)

and
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1<i<r

Consider the formula

0 (y1) = (Fv)Fya, ., y) [0V, y1, - yr) A(v,€) A d(y1, €)],

which has parameters in M. Then '(y;) has a solution in M. (If ¢’ is algebraic, this follows
by the definition of algebraic closure; if not #'(N) is cofinite in ¢(x, e) (by minimality). Since
¢(N,e) N M is infinite, #" has a solution in M.) But if e; is a solution of ¢ in M, for some
€2,...,e, €N,

(N, c)Nacly(Mes, ...,e.) =19(N,c)Nacly(Mey, e, ... e.) # 0,

contradicting the minimality of r. U3



Lemma 1.4 Suppose a countable saturated model N and formula ¢(x, ) satisfies the hypoth-
esis in the first sentence of Theorem 1.8 and for every M =T with M C N, acly(M) = M.
Suppose further that e realises a principal type. Then the theory T = Th(M,e) is model
complete and witnesses that T is almost strong minimal.

Proof. Consider a pair M, My of countable models, M; C M, = T". We want to show
My < M,. Since N is saturated, M, can be elementarily embedded in N. So it suffices
to show that any substructure M of (N,e) that satisfies 7" is an elementary submodel.
Condition a) of Theorem 1.3 is part of our hypothesis; condition b) holds since e realises a
principal type. For condition ¢) note that since T is complete and e realises a principal type,
¢(M, e) is infinite in the sense of M; since ¢(x,e) is existential, this implies ¢(NN,e) N M is
infinite. The almost strong minimality is automatic since N is saturated. O

The most trivial example shows that in general it is necessary to pass to 7. Consider the
theory of (w,S). Of course, if the universe is the algebraic closure with no new parameters
of the strongly minimal set, which itself is defined without parameters, the original theory
T is model complete.

2 Expansions of strongly minimal sets

In this section we contrast the non-model completeness of the infinite rank bicolored fields
with the model completeness of the finite rank case. In fact, our arguments show arbi-
trary unary expansions (by the Hrushovski construction with ) of sufficiently well-behaved
strongly minimal sets are almost strongly minimal without parameters. Thus, we extend the
model completeness from bicolored fields to a more general setting.

We will consider expansions of a strongly minimal set (in a language denoted L) by a
unary predicate P (to form the language L); we say the points satisfying P are black. The
following notations summarize the notions used below; details and justifications for these
definitions are in [4, 5, 6]. Recall that G denotes the generic model for the relevant case and
is w-saturated.

Notation 2.1 1. The base theory T in the language Ly admits elimination of quantifiers,
elimination of imaginaries and has the definable multiplicity property.

2. §(x) = 0r(x) = k- Ry (x) — |P(x)|; for X C N, dy(X) =inf{§(X’): X C X' C, N},
where Ry is Morley rank.

3. K, is the class of models of Ty that have nonnegative dimension relative to or(x). We
write T} for the theory of the generic of K.



4. Ky is the members of Ko in which the number of realizations of each primitive are
bounded by a finite-to-one function p as in Definition 2.9 of [4]. We write T}' for the
theory of the generic in rank k.

We assume familiarity with the basic properties of these constructions and proceed di-
rectly to the new results. In particular, we frequently use

Fact 2.2 Every member of Ko (of fg) can be strongly embedded in the generic model G
for Ko (for K}).

If M is in K, and c realizes a complete L -type over M, we denote by M |c] the structure
whose universe is the Ls-algebraic closure of Mc and whose only black points are in Mc.

We now show that the infinite rank bicolored field fails to be model complete. Thus, it
provides a somewhat less contrived example than Lindstrom’s original one [11] of a theory
which is V3-axiomatizable but not model complete. In fact, the argument extends to unary
expansions of any strongly minimal set in which singletons have infinite algebraic closure.

Theorem 2.3 Let K, be the class of countable bicolored fields with nonnegative dimension
relative to 0(x) = k X Ry (x) — |P(x)|. T is not model complete.

Proof. By algebraic we mean ‘L s-algebraic’. Let ko be the algebraic closure of a point a; that
is not algebraic and satisfies {a;} < ko. Let My be a countable model of T} with ky < M,.
Let ¢(x,y) be a formula which asserts that k + 1 elements are pairwise algebraic over y and
distinct without implying that any of the elements are algebraic over y. Let (b, by,. .., bx)
be a sequence of black points that satisfy ¢(b,a;). So d(b/ky) < 0. Embed My|by, b1, . . ., bg]
in G = T by Fact 2.2. Then M, is a submodel of G but not an elementary submodel
because there is no k + 1-tuple of distinct black points in My satisfying ¢(xg, x1, ..., Tx; a1)
as kﬁo S Mo. DQ.S

In contrast, we show that for each k the theory T} of a rank k£ unary expansion of a
strongly minimal set [6] that satisfies Assumption 2.11 is model complete. For this, we use
freely the ‘code notation’ described in [4]; this includes formulas such as O¢, ¢c.

Notation 2.4 For N =T} andb € N,
1. tpy(b) denotes the set of parameter-free L-formulas 1 (x) such that N = ¢(b).

2. Diag(b) denotes the set of parameter free L;-formulas ¢¥(x) such that N |=(b). We
need no subscript N because we have assumed that Ty admits elimination of quantifiers.

3. Following [4], we denote by I(y) a collection of universal L-formulas such that for any
NeKyandb e N, if N = I(b) then b < N.

5



4. Let ¢ be a primitive code and suppose N = Oe(b’) and b C b C N. We write
xe(b) = k to denote a first order formula that holds in N if the cardinality of a
maximal set in N of pairwise disjoint solutions (each disjoint from b) of ¢e(x,b’) is

k.

The next few lemmas show that if M C N are models of T} then M is strong in N;
indeed, M is d-closed in N (i.e. if a € N, X C M and dy(a/X) =0 then a € M).

Lemma 2.5 Let b < N =T}'. Then
Ty U I(y) U Diag(b) [= tpy(b).

Proof. By saturation of G, tpy(b) is realized in G by some b’. For some M = T} let ¢ €
M |= T} satisfy I(y)UDiag(b) (in the sense of M). Then tp,,(c) is realized in G by some c'.
But ¢’ and b’ are automorphic in G by genericity. So tpy(b) = tpg(b’) = tpg(c’) = tpy(c),
as required. Oy 5

Lemma 2.6 If M < N are models of T} there is no a € N — M which is primitive over
M. Thus, M 1is d-closed in N.

Proof. Fix a primitive code ¢ and b’ C M such that f¢(b’). Let b be the intrinsic closure
of b’ in M (hence in N, since M < N). There is a maximal r such that M | ye(b) =7,
witnessed, say, by ai,...,a,. By Lemma 2.5, N = ye(b) = r. Therefore ¢(x,b’) is not
realized in N — M since any realization a,,; would be disjoint from a,...,a,,b and so
contradict the definition of y¢ .

Uag

Remark 2.7 Let G be generic for T}'. The definition of genericity yields immediately that
for aX C G, dg(a/X) =0 if and only if a € aclg(X). For this, recall that if dg(a/X) > 0,
then a has infinitely many conjugates over X in G.

Lemma 2.8 Let M C N be countable models of T}'. Then M < N. Moreover, if M C G
then aclg (M) = M.

Proof. Suppose for the sake of contradiction that M £ N. Let A C N — M be minimal
with respect to inclusion so that 6(A/M) < 0. Necessarily, all elements of A are black. Let ¢
be the transcendence degree of A over M. Since M is L-algebraically closed, ¢ > 0. Then,

k-l —|A| = 6(A/M) < 0.

Choose a from A of length k - ¢ that extends a transcendence basis for A over M. Then
d(a/M)=0and M < Ma so a contains a primitive b over M. But M [b] imbeds strongly
into G, contradicting Lemma 2.6 (with G as N and M as M).

6



Now suppose M C G. We have just seen M < G; whence by Lemma 2.6, M is d-closed
in G. By Remark 2.7, aclg (M) = M. Oog

Since it follows easily from Zilber’s Irreducibility Lemma (Proposition 2.12 of [13]) that
finite rank fields are almost strongly minimal, we could conclude that the relevant 7" is
model complete. However, we have a stronger result.

We generalize to strongly minimal sets a property that the formula z; 4+ ... 4+ 2z, = 0 has
in either vector spaces or algebraically closed fields.

Definition 2.9 A formula ¢(xq, ..., zx) has exactly rank k—1 if for every generic (over the
parameters of ¢) solution a = {(ay,...,ax) of ¢(z1,...,zx), Ry(a) =k —1 and any proper
subsequence of a is independent.

Note that ¢ is exactly rank k, just if for any generic solution a of ¢, a subset of a
is independent if and only if it has at most k-elements: i.e. the sequence is exactly k-
independent.

Remark 2.10 Note that the k-ary ¢(x) has exactly rank k — 1 if and only if for any subse-
quence X' of x with length r < k, and any ¥ (x') with Morley rank less than r,

Ryr((x') A p(x)) <k — L.
That is, 1 is not satisfied by a generic solution of ¢.

We augment our requirement on the underlying theory 7 of a strongly minimal set by
requiring that exactly rank k& formulas are dense in the following sense.

Assumption 2.11 The underlying theory Ty satisfies the following condition: If 1;(x,y)
fori < m are a finite set of k+ 1-ary formulas such that for some g, for each i < m, ¥;(x, g)
has rank at most k — 1, there is a formula ¢(x,y) such that ¢(x,g) has exactly rank k — 1
and for each 1 < m,

Ru(o(x,9) ANpi(x,9)) < k — 1.

Remark 2.12 In either vector spaces or algebraically closed fields the formula x1 + ... +
Tpt+y+z =0 gives us (as we fix g fory and substitute various elements e of the prime model
for z) a family of disjoint exactly rank k formulas. Any theory of a strongly minimal set with
such a disjoint family ¢(x,y) (or more weakly with Ry (p(x,a;) N ¢(x,a;)) < k—1ifi#j)
satisfies Assumption 2.11. For example, in vector spaces, for any g and v;(x,y) fori < m
there is an e in the prime model such that Ry(Y;(X,9) ANx1+ ... +ar+g+e=0) <k —1.



Note that trivial strongly minimal sets do not have exactly rank &k formulas for £ > 2. It
is not hard to check that some structures constructed by the Hrushovski method (e.g. the
original strongly minimal set) do have exactly rank k formulas in &+ 1 variables for every k.
The construction of a bicolored field that is not w-stable (although built by the Hrushovski
construction) in [4] used essentially the fact that in algebraically closed fields for m < n
there are exactly rank m formulas in n variables.

Theorem 2.13 Let Kg be the class of those models of a well-behaved L s-strongly minimal
theory as specified in paragraph 2.1 and satisfying Assumption 2.11. There is an existential
L-strongly minimal formula A\(x) over the empty set such that the generic model satisfies
G = aclg(M(G)).

Thus, since G is satuated, the theory, T}, of the generic model is almost strongly minimal
without naming parameters, i.e. with itself as the required T".

Proof. Choose any L;-formula p(x) which asserts that & — 1 elements are pairwise
algebraic and distinct without implying that any of the elements are algebraic; thus p(x) has
infinitely many solutions. Then any a that is Ls-generic for p(x) A A;< P(x;) is minimal
strong over the empty set with d(a/0) = 1. Now, A(z) := (Ix')p(z,x’) is L-strongly minimal
(where x = xx’). To see this just note that in G for any a € G, each b € A\(G) is either
algebraic over a (if dg(b/a) = 0) or is in the infinite orbit of those elements in A(G) with
dg(b/a) = 1. This gives minimality; strong minimality follows since G is saturated.

Now we show each element of G is in acl(A(G)). Let g be an arbitrary element of G
and let G = iclg(g). (Recall [4] that iclg(g) is the least subset of G containing g which is
strong in G.) Let b; for i < k be k independent (over G7) black realizations of p. Write a;
for the first element of b,. Now each b; is contained in a member of f’g since d(b;) = 1
and b; contains no primitive pairs. The only primitive pairs in the free amalgam of two
finitely generated structures Xi, X, are those in one of the X;. Let B denote the free
union of the b;, B € fg; write BG for the free amalgam of B and (. Since no primitive
pair is embeddable in any of the b; and G is embeddable in a member of K}, BG is

embeddable in a member of f’g . Let wy,...,w,_1v = wv be an enumeration of variables
for the elements of BG and also let u; (as the first element of the sequence w;) stand for
a;. Let @ = (ay,...a5—1) and u = (uy,...ux_1). Since each b; is in acl(q;) and since we

will be concerned only with realizations of the diagram of ag that are independent from
G over g, we need only to control the L-dimensions of subsets of ag. Note that B has
transcendence degree k (over both G and ()) and has (k — 1) - k elements which are all black;
so 0(B/G) =k-k—k-(k—1) =k We want to choose an additional formula ¢(u,y) so
that if B’ is a solution of ¢(u, g) A A,k pi(W;) containing a, and B’ is independent from G
over g, then G[B'] is a primitive extension of G that is in K. If we choose ¢(u,y) to be
exactly rank k then aj, ..., a)_, is exactly kK — 1 independent over ¢g and this guarantees the
primitivity. In particular, §(B'/G) =k-(k—1)—k-(k—1) =0.



Now, possibly refining our choice of ¢, we ensure G[B'] is in Kg. Since p is finite-to-one
and BG is finite, there are only finitely many primitive codes d so that more than u(d)
realizations of d can occur in some set with the same cardinality as BG. FEach possible
arrangement o of p(d) + 1 realizations of d in BG is described by a formula 1y  on a subset
of the variables wv. Since we are concerned only with solutions B’ which are independent
from G over g we may restrict to formulas of the form: @Z)dya(u’ ,v) with u’ a subsequence
of u. For each d,o, Rg(¥q,(0',g)) < lg(u'), since if a realization of ¢y (v, g)) were
independent from g and violated u, BG would violate p, contrary to hypothesis. If for some
d,o,lg(u) <k-—1, 1/1d7g(u’7 g) is not satisfied by a generic solution of ¢(u,b), lest the fact
that ¢(u, g) has exactly rank k& — 1 be violated. (See Remark 2.10.) So without loss of
generality, each ¢d,a<u’ y) is k+ l-ary. It suffices to choose ¢(u,y) so that ¢(u,y) is exactly
rank k£ and for each d, o,

Rg(p(u, 9) A g, (0,9)) < k—1.

Assumption 2.11 guarantees we can choose such a ¢. So if B’ is a generic solution of ¢(u, g),
G[B'] is a primitive extension of G, which is in K}. Since G € K, G < G[B'] and G is
d-closed in all strong extensions, ¢(u, g) A Ai<kp;(W;) can be realized in G by some a. The
a; are k independent solutions of X\ and g € acly (ag, ..., a;_;) as required. Os.13

Theorem 2.14 If Ty satisfies 2.1 and satisfies Assumption 2.11 then T} is model complete.
In particular, the rank k bicolored fields are model complete.

Proof. In the general case apply Theorem 1.3, Lemma 2.8, and Lemma 2.13. Remark 2.12
guarantees the application to bicolored fields. Note that we don’t need 7" since we showed
almost strong minimality without adding parameters. Og 14

3 The almost strongly minimal projective plane

In this section we show that the almost strongly minimal projective plane of [2] has a principal
extension which is model complete. The argument is an elaboration of Holland’s argument
in [9] that the ab initio strongly minimal Hrushovski examples are model complete. The two
innovations are the extension from rank 1 to rank 2 and the use of an extension by constants.

The first part of the argument, through Lemma 3.8, will work for any ab initio example.
For concreteness, we work with the rank 2 case.

Fix a finite relational language L. If X and Y are L-structures, we write X C Y to
indicate X is a substructure of Y. In agreement with current terminology we replace the
y of [2] by 6. We depend heavily on the development in [2] and [9]. In particular, for the
projective plane, L contains a single binary relation which is constrained to be symmetric
and irreflexive.



Definition 3.1 Let M be an L-structure. For X C, M, r(X) is the number of (unordered)
tuples @ from X such that M = R(a) for some R in L. Let

(X)) =2|X| —r(X).
Primitive pairs are easy to define in this ab initio context.

Definition 3.2 1. X is primitive over Y if 6(X/Y) = 0 and for every proper subset X'
of X, 8(X'/Y) > 0.

2. The pair (X,Y) is a minimal primitive pair if X is primitive over Y and X is not
primitive over any proper subset of Y.

If X is primitive over M then there is a unique smallest Y C_, M such that the pair
(X,Y) is minimal primitive (take Y ={z € M : RN((XM)" — M") Z RN (XM — {z})"
for some n-ary R € L}).

Notation 3.3 On page 701 of [2] we constructed arbitrarily large primitives over the empty
set such that each primitive A contains three discrete points and four points so that no three
are connected to a common point in A. Fix such a primitive A and let n be its cardinality.

For any finite set G, Atg(x) is the formula expressing the atomic diagram of G. We write
AT pc(v,x) for the atomic diagram of PG where (P, G) is a primitive pair.

Definition 3.4 Let T" be a collection of (universal) sentences, in the vocabulary of one
binary relation symbol R and constant symbols {ay, ... ,an,_1}, ensuring the following.

1. 6(X) > 0 for all finite X.

2. Fiz a set A ={ag,...,an_1} (whose existence is guaranteed by the previous paragraph)
that is primitive over the empty set and such that ag,aq,as have no edges between
them and no three of as,...,a,_1 are connected to a common point in A. Add an
aziom saying the constants {ao, ..., a,_1} form a structure isomorphic to this primitive
structure A.

3. There is no 4-cycle in any model of T*.

4. Fiz a function p from (isomorphism types of ) minimal primitive pairs (X,Y) into N
with p((X,Y)) > 6(Y). For each pair (X,Y), the sentence

\V/Y/VXl, Cee 7Xu(X,Y)+1 /\At(x’y)(Xi, Y/) - \/ Xz N X]‘ 7é @
i i#j
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We write K = Mod(T"); K| would closer to our usage in Section 2 but since we are
dealing only with the finite rank case here, we suppress the parameters.
We use the formulation of the ‘strong amalgamation lemma’ from [9)].

Lemma 3.5 Let B1Bs be a free amalgam of By and By over By = BiNBsy, where By, B, € K
and By — By is primitive over By. Suppose that (Q,F) is a minimal primitive pair with
F C BBy and that P is a collection of (Q, F) + 1 pairwise disjoint copies of Q over F in
B1Bs. Then the following hold.

1. F C By and some element P of P is contained in By — By.
2. ]fB() S Bg, thean BO and Bl —BQ =P.

For each N € K, we modify ¢ by defining for any finite X C N, dy(X) = min{d(X’) :
X C X' €, N}. As usual [7] for any finite X C Y C N, dy(X) < dy(Y) and dy is
lower semimodular: dy(XY) +dn(X NY) <dn(X)+dy(Y). Denote dy(XY) —dn(Y) by
dy(X/Y) for finite X, Y and dy(X/Y) = inf{dn(X/Ys) : Yo C,, Y} for finite X and infinite
Y. Then we can define a closure relation by a € cly(X) if dy(a/X) = 0. We call this relation
d-closure. Note that the relation does not define a geometry as exchange fails.

Notation 3.6 Let K = Mod(T") and let K™ denote the collection of M € K such that if
M < N € K, then for alla € N — M, dy(a/M) > 0. If M € K*, we say M is d-closed in
every strong extension in K.

Now, using Lemma 3.5, we produce a V3 axiomatization of Th(K™); we show this theory
is consistent and Nj-categorical. Thus, it is complete by the Los$-Vaught test and model
complete by Lindstrom’s theorem. Let ¢p ) (T) be a formula such that if M = Atg(g) and
if M[P’] is an extension obtained by realizing AT(p (v, g) by a P’ free from M over g then
M = ¢pe)(g) if and only if for some minimal primitive pair (Q, F)) with QF C P'g, @ is
realized too many times (i.e. at least u(Q, F) + 1 times) over F' in M[P']. More formally,
fix (P,G) and (Q, F'), minimal primitive pairs, with QF C PG. Let g,q,p and f enumerate
G,Q, P and F, respectively. Suppose that q,,...,q, are r = pu(Q, F) + 1 pairwise disjoint
copies of g over f in some free amalgam PM of PG with an element M of K over G. Let 3
enumerate Jrng{q;} — P and let C(7;7) be the atomic type of 5g. Note that there are only
finitely many possibilities for C'. Let ¢pay @7 (T) be the disjunction over all such C' of the
formulas FoC(v; T). For each minimally primitive pair (P, G) whose atomic type is realized
in an element of K, ¢(pq)(x) denotes the formula:

At(T) = \ epay.n (X),
where for fixed (P, G), the disjunction ranges over all minimally primitive pairs (@, F') con-
tained in PG. Note these axioms are V4.
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Definition 3.7 LetT™ denote the union of T* with the collection of all sentences (VX)p(p.c)(X).
Lemma 3.8 T™ aziomatizes K™.

Proof. If M |= T* then M € K™ since if M has a proper primitive extension M[P] €
K (for some minimal primitive pair (P, G)) then some (@, F') violates p in M[P] by the
definition of T*, contradicting M[P] € K. Conversely, if M [~ T*, for some (P,G) and
ge M ME —~ppe(g). Thenif M = AT¢(g) and P’ is a free realization of (P, G) over
M, M[P'| € K. But M < M[P] so M & K*. s

Now we have two further properties of d-closure. Recall that we have constants for the
elements of A in the language.

Lemma 3.9 . [f X< MeK" andY <N € K" and [ is an isomorphism from X
onto Y then f extends to an isomorphism from cly(X) onto cln(Y).

2. If X <M e K*, cly(X) C acly(X).

Proof. 1) First consider P contained in M which is primitive over X. So X P € K. There
is a copy P'Y of PX, so that P’ is primitive over Y and Y P’ € K. Now by Lemma 3.5, either
there is an embedding of P’ into NV over Y or NP’ € K. But the second case is impossible
since N € K*. With this base step in mind it is easy to construct the isomorphism by a
back and forth.

2) The use of p shows that if X < M, XP C M and dy(P/X) = 0, there are only
finitely many copies of P over X in M so P C acly/(X). s

In this context, we require a slight variant on Fact 2.2, which can be proved by amalga-
mation and taking unions of chains. Note that the existence of a function u guaranteeing
that there are only a finite number of solutions for each primitive is essential for this version.

Lemma 3.10 Each member of K can be strongly embedded in a member of K*.

To interpret the models of T as planes, regard each point of M as both a point and a
line. Interpret R(a,b) to mean both the point a is on the line b and the point b is on the line
a. Thus there is a built in polarity mapping a point a to the line Rxa. The following lemma
implies that any model M of T* is a projective plane under this interpretation. (The third
projective plane axiom, that every pair of points lie on a unique line, follows from the first
by the duality in the definition of the plane.)

Lemma 3.11 The theory T* implies the following.

1. Any two lines intersect in a unique point.

12



2. There are four points with no three lying on a line.

Proof. If two lines intersected in more than one point there would be a square. But
for any two points a,b € M, adding a point c related to both is a primitive extension. By
Lemma 3.5, either such ¢ exists in M or in some strong extension. But M is d-closed in any
strong extension, so there is such a ¢ € M. Every N |= T is a strong extension of a copy of
the primitive A, described in Definition 3.4. Condition 2) is witnessed in N by elements of
this copy of A. Os11

In any projective plane, given any line ¢ and two points a, b not on ¢, the entire plane is
in dcl(¢, a,b). Thus, in any infinite plane, any line has the same cardinality as the plane.

In this next lemma we write Rxaq for the set of points in the ambient structure N which
are R-related to ag. We complete the proof by showing:

Theorem 3.12 T is Ny-categorical; thus complete and model complete.

Proof. Let N | T*. The formula Rzay defines a line in the projective plane. Since
Rbag implies dy(b/ag) < 1, taking for X C Rzag the closure of X as cly(XA) N Rxag =
cln(Xag) N Rxag defines a geometry on the line Rxag. L.e., exchange holds on the line. More
specifically, the restriction satisfies all the axioms of Fact 2 of [9]. Suppose (M, A), (M’ A’)
are models of 7% with cardinality N;. Since each line has the same cardinality as the universe,
and any infinite set X has the same cardinality as its d-closure, there is a 1-1 correspondence
between the bases X,Y for the lines Rray and Rxaj. Note that the only edges between
X and A (respectively Y and A’) are the edges between ag (ag) and each point of X (V).
Moreover, A and A’ are isomorphic, so there is an isomorphism f between AX and A’Y.
Note that in general if A < M and X is independent over A, AX < M. In particular,
AX < M,AY < M’. By Lemma 3.9 1) f extends to an isomorphism of cly(XA) and
chy (YA'). But cly(XA) = M. To see this suppose b € M — cly(XA). Note first that since
X is a basis for the geometry on Rzag, every element of the line {z : Rxay} is in cly(XA).
If b is not on the line through ajas, there is a line through a;b which intersects the line aq in
b and a line through asb which intersects the line ag in b”. Now these lines are {x : Rxc,}
and {z : Rxcy} for some ¢y, ¢, so dp(b/cica) = 0. But ¢q, ¢ must be in cly(XA) since
the line through agb’ (respectively agb”) is fixed setwise by every automorphism which fixes
AX. Then b € cly(XA) as required. (A slight elaboration of this argument handles the case
where b is on the line ajas.)

Completeness is immediate by the T;os—Vaught test and model completeness follows since
the axioms for T™ are V3. 0512
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4 Context and Further Problems

In the wake of Lindstrom’s proof that a categorical V4 theory is model complete, there
was speculation that categoricity would imply some approximation to model completeness.
The results of Ahrbrandt-Baldwin [1] and [12], mentioned in the introduction, describe the
totally categorical case. We have taken two different approaches here to show that a large
family of examples are model complete. For the bicolored field case, we have used the
known complete theory and proved it is model complete. In the projective plane case, we
extended the language by constants, introduced a new V4 axiomatization, and proved it was
categorical.

Recent work shows the importance of geometrical considerations when considering the
relation between model completeness and N;-categoricity. Goncharov, Harizanov, Laskowski,
Lempp, and McCoy [8] show that if a strongly minimal set has a trivial geometry then an
extension by naming (possibly) infinitely many constants is model complete.

Our work is different in several respects. First, we are dealing with the family of exam-
ples generated by the Hrushovski construction. In particular, we are looking at expansions
of strongly minimal sets. Second, the geometric condition we require is one of sufficient
complexity, not of triviality. Further investigation is needed on the following questions.

Question 4.1 What strongly minimal sets have (uniform families of ) formulas with exactly
rank k?

We have some preliminary results on this issue. We used formulas with exactly rank &
earlier [4] to show that the ”finite-to-one” requirement is necessary to construct N;-categorical
bicolored fields. In particular one might ask.

Question 4.2 Must every nontrivial strongly minimal set have formulas of exact rank k for
each k?

In Section 3 we added constants to find a model complete theory.

Question 4.3 Is some (any) projective plane constructed in this way model complete in the
language of projective planes without constants?

The theory of the projective place described above is almost strongly minimal via the con-
stants ag, a1, as. Note however that ay,ay are algebraic over the empty set (since A was
chosen primitive). Thus the plane is actually algebraic over the line Rxaq. In [3], we con-
structed a plane which is the definable closure of any line. But in that case there were no
algebraic points.

Question 4.4 [s every projective plane with a built-in polarity as described after Lemma 3.10
or in [3] necessarily the definable closure of a line?
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