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The 1970’s witnessed two attempts to organize large areas of mathematics by intro-
ducing a structure in which all of that mathematics took place. Both of these programs
explicitly invoke large cardinal hypotheses; advocates of both programs deny that these
hypotheses are necessary. There were a few years ago no extant metatheorems justi-
fying these conclusions (but see McLarty [23]). By a metatheorem, I mean a way to
tell by looking at a particular proposition whether the purported use of large cardinals
is necessary. The natural expectation is that these criteria would be syntactic. But the
possibility of geometric criteria arise in [20] and the general model theoretic develop-
ment suggests other ‘contentual criteria’ (Section 4.) We have been unable to develop
any reasonable such theorem in the model theoretic case. This paper just explores the
territory.

As we will see, in both cases, the role of replacement as an intermediary between
Zermelo Set Theory and large cardinals arises in the analysis. This work was stimulated
by some questions raised by Newelski in [26] concerning the ‘absoluteness’ of the
existence of a bounded orbit and the discussions at about the same time concerning the
possible use of large cardinals in Wiles’ proof of Fermat’s last theorem.

On the one hand Grothendieck wanted to provide a framework in which to organize
large areas of algebraic geometry. For this he invented the notion of a universe, a large
enough set to be closed under the usual algebraic operations. He explicitly developed
cohomology theory using the existence of (a proper class of) universes1.

At about the same time, Shelah introduced his version of a ‘universal domain’,
later dubbed a monster model: C is a saturated model of T with cardinality κ a strongly
inaccessible cardinal. He writes in [29], ‘The assumption on κ does not, in fact, add
any axiom of set theory as a hypothesis to our theorems.’ This is a rather unclearly
stated metatheorem. ‘Which theorems?’ An acceptable answer in the short run is, ‘the
theorems in this book’. And, apparently, the statement is true in that sense. We seek
here to clarify what theorems are intended and which are not.

We give a brief comparison of the algebraic geometry side (in Section 1.2) relying
heavily on [22, 23, 20] and the model theoretic issues (in Subsection1.3). Section 2

∗I thank the John Templeton Foundation for its support through Project #13152, Myriad Aspects of
Infinity, hosted during 2009-2011 at the Centre de Recerca Matematica, Bellaterra, Spain. I thank Rutgers
University for support of visits where some of this work was done.

1The issue we address here of the size of the universe is distinct from the organization via sheaves ad-
dressed in [19].
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provides the connection between monster models and Hanf numbers. In Section 3 we
examine the model theoretic question more carefully in three examples and pose some
specific problems. We conclude with speculations about the ways one might sort out
the properties which do not depend on a long universe in Section 4

In addition to correspondence with McLarty, we want to thank Maryanthe Mariallis
and Enrique Casanovas for helpful discussions.

1 The two programs

1.1 Set Theoretic Background
We discuss four different set theories. The standard background theory for model the-
ory is ZFC. While there has been some work lately on the necessary uses of set theory
in model theory [32, 14, 2] they have focused on the role of the axiom of choice2 or
on principles near the GCH3 and mostly on infinitary model theory. Our subject here
is first order model theory and the role of axioms having to do with the length of the
universe.

We consider in Subsection 3.1 whether even relatively small cardinals such as iω1

are necessary in model theory. In the section on foundations of cohomology we discuss
ZC (Zermelo Set Theory), i.e. ZFC without either replacement or foundation, but
with the full axiom of separation. Maclane set theory (i.e. bounded Zermelo or MC
in McLarty) weakens ZC still more by postulating only separation for ∆0-formulas
(bounded quantification).

In the other direction, we consider whether certain uses of inaccessible cardinals
are as transparently unnecessary as is usually claimed by model theorists. For this it is
useful to extend from ZFC to NBG, (Von Neumann, Bernays, Gödel) set theory. This
is a conservative extension of ZFC, which distinguishes between classes and sets. See
[22] for a more detailed account.

1.2 Grothendieck Universes and Wiles proof
In formulating the general theory of cohomology Grothendieck developed the concept
of a universe – a collection of sets large enough to be closed under any operation that
arose. Grothendieck proved that the existence of a single universe is equivalent over
ZFC to the existence of a strongly inaccessible cardinal [15, Vol. I, p. 196]. More
precisely, U is the set Vα of all sets with rank below α for some uncountable strongly
inaccessible cardinal.

McLarty summarised the general situation in [22]:

Large cardinals as such were neither interesting nor problematic to
Grothendieck and this paper shares his view. For him they were merely

2See Shelah’s proof in [32] that for countable theories Morley’s categoricity theorem is provable in ZF.
3In particular many results in infinitary logic apparently require 2κ < 2κ

+
, at least for κ < ℵω . See [1]

for background and more references.

2



legitimate means to something else. He wanted to organize explicit cal-
culational arithmetic into a geometric conceptual order. He found ways to
do this in cohomology and used them to produce calculations which had
eluded a decade of top mathematicians pursuing the Weil conjectures [28].
He thereby produced the basis of most current algebraic geometry and not
only the parts bearing on arithmetic. His cohomology rests on universes
but weaker foundations also suffice at the loss of some of the desired con-
ceptual order.

As written the great applications of cohomology theory (e.g. Wiles and Faltings)
implicitly rely on universes. Most number theorists regard the applications as requiring
much less than their ‘on their face’ strength and in particular believe the large cardinal
appeals are ‘easily eliminable’. An animated discussion on Math Overflow [35] and
earlier on FOM4 emphasizes this belief. This discussion is perhaps best summed up
by the amusing remark of Pete Clark, ‘If a mathematician of the caliber of Y.I. Manin
made a point of asking in public whether the proof of the Weil conjectures depends
in some essential way on inaccessible cardinals, is this not a sign that ”Of course not;
don’t be stupid” may not be the most helpful reply?’

There are in fact two issues. McLarty[22] writes: ‘Wiles’s proof uses hard arith-
metic some of which is on its face one or two orders above PA, and it uses functorial
organizing tools some of which are on their face stronger than ZFC.’

There are two current programs for verifying in detail the intuition that the formal
requirements for Wiles proof of Fermat’s last theorem can be substantially reduced.
On the one hand, McLarty’s current work ([23, 24]) aims to reduce the ‘on their face’
strength of the results in cohomology from large cardinal hypotheses to finite order
Peano. On the other hand Macintyre aims to reduce the ‘on their face’ strength of
results in hard arithmetic[20] to Peano. These programs may be complementary or a
full implementation of Macintyre’s might avoid the first.

McLarty ([23]) reduces

1. ‘ all of SGA5’ to Bounded Zermelo plus a Universe.

2. ‘”the currently existing applications” to Bounded Zermelo itself, thus the consis-
tency strength of simple type theory.’

The Grothendieck duality theorem and others like it become theorem schema.

The essential insight of the McLarty’s papers on cohomology is the role of replace-
ment in giving strength to the universe hypothesis. In [23], a ZC-universe is defined
to be a transitive set U modeling ZC such that every subset of an element of U is itself
an element of U . He remarks that any Vα for α a limit ordinal is provable in ZFC to
be a ZC-universe. McLarty then asserts the essential use of replacement in the origi-
nal Grothendieck formulation is to prove: For an arbitrary ring R every module over R
embeds in an injectiveR-module and thus injective resolutions exist for allR-modules.
But he gives a proof in a system with the proof theoretic strength of finite order arith-
metic6 that every sheaf of modules on any small site has an infinite resolution. (Section

4Search ‘universes’ or Wiles on the Fom archive.
5SGA refers to a sequence of Grothendiecks works.
6In [24], McLarty reduces the strength to second order arithmetic for certain cohomology theories.
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3.6 of [23].)
Macintyre [20] dismisses with little comment the worries about the use of ‘large-

structure’ tools in Wiles proof. He begins his appendix [20], ‘At present, all roads to
a proof of Fermats Last Theorem (henceforward FLT) pass through some version of
a Modularity Theorem (generically MT) about elliptic curves defined over Q . . . A ca-
sual look at the literature may suggest that in the formulation of MT (or in some of
the arguments proving whatever version of MT is required) there is essential appeal to
higher-order quantification, over one of the following’. He then lists such objects as C,
modular forms, Galois representations . . . and summarises that a superficial formula-
tion of MT would be Π1

m for some smallm. But he continues, ‘I hope nevertheless that
the present account will convince all except professional sceptics that MT is really Π0

1.’
There then follows a 13 page highly technical sketch of an argument for the proposition
that MT can be expressed by a sentence in Π0

1 along with a less-detailed strategy for
proving MT in PA.

Macintyre’s complexity analysis is in traditional proof theoretic terms. But his re-
mark that ‘genus’ is more a useful geometric classification of curves than the syntactic
notion of degree suggests that other criteria may be relevant.

From the standpoint of this paper the McLarty’s approach is not really a metatheo-
rem but a statement that there was only one essential use of replacement and it can be
eliminated. In contrast, Macintyre argues that ‘apparent second order quantification’
can be replaced by first order quantification. But the argument requires deep under-
standing of the number theory for each replacement in a large number of situations.
Again, there is no general theorem that this type of result is provable in PA. A battery
of techniques is displayed for translating the statements to Π0

1 and reducing the proof
theoretic strength of the axioms.

1.3 Monster models in Model theory
Many model theory papers begin ‘We work in a big saturated model’ or slightly more
formally, ‘We are working in a saturated model of cardinality κ for sufficiently large κ
(a monster model).’

What does sufficiently mean? In every case I know such a declaration is not in-
tended to convey a reliance on the existence of large cardinals. Rather, in Marker’s
phrase, it is a declaration of laziness, ‘If the stakes were high enough I could write
down a ZFC proof’. As we note below, in standard cases the author isn’t being very
lazy; but the route to formalizing a metatheorem expressing this intuition does not seem
clear.

This was not a problem for the early history of classification theory. Work focussed
on stable theories. And a stable theory has a saturated model in every λwith λκ(T ) = λ,
where κ(T ) is an invariant that is less than |T |+. Thus, there is a plentiful supply of
monster models. But recently model theory has moved to the investigation of unstable
theories and these issues become more acute, as we discuss in Subsection 3.2. We will
see that the difficulty is not just the lack of saturated models but lack of the control of
structure provided by stability theory.

The fundamental unit of study is a particular first order theory. The need is for a
monster model of the theory T . If M is a κ-saturated model of T , then every model N
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of T with cardinality at most κ is elementarily embedded in M and every type over a
set of size < κ is realized in M . So every configuration of size less than κ that could
occur in any model of T occurs in M . Then general theorems are asserted to hold for
each theory.

In fact, the requirement that the monster model be saturated in its own cardinality
is excessive. A more refined version of the ‘monster model hypothesis’ asserts: Any
first order model theoretic properties of sets of size less than kappa can be proved in a
κ-saturated strongly κ-homogenous model M (any two isomorphic submodels of card
less than κ are conjugate by an automorphism of M). Such a model exists (provably
in ZFC) in some κ′ not too much bigger than κ. See Hodges [17] or my monograph
on categoricity [1] for the refined version. (Hodges’ big model condition is ostensibly
stronger and slightly more complicated to state; but existence is also provable in ZFC.)
Buechler [6], Shelah [29], and Marker [21] expound the harmless nature of the fully
saturated version. Ziegler [36] adopts a class approach that could be formulated in
Gödel Bernays set theory. And we will follow that approach below.

In order to clarify the problem, we will address several specific problems where
some issues arise in calculating the size of the necessary ‘monster’.

2 Hanf Numbers and Monster models
In this section we expand a bit on the arguments for the eliminability of large cardinal
hypotheses in uses of the monster model. Then we connect the properties of a class
monster model with the calculability of certain Hanf functions.

Buechler7 argues that the apparent reliance can be removed by a sequence of appli-
cations of the same proof. To prove model theoretic statements about structures of size
at most κ, use a κ-monster. If κ increases, choose a larger monster. Note that the size
of the monster was not used in the argument.

So, for example, to compute the spectrum function of a first order theory via the
strategy of classification theory, theories are divided into categories by properties (sta-
bility class, DOP, OTOP, depth) which have no dependence on the size of the model.
Then for each class P a function fP is defined such that for κ < ρwhich is the size of a
given choice of monster model fP (κ) is (or is at least an upper bound for) the number
of models in κ. This function works for all κ by just redoing the argument for a larger
ρ as κ grows.

We work in Von Neumann, Bernays, Gódel set theory NBG, a conservative exten-
sion of ZFC, which admits classes as objects.

Definition 2.0.1 A monster model is a class model M which is a union of κ-saturated
models for arbitrarily large κ.

This definition (from [36]) is quite different from the usual usage in model theory.
We connect it with more standard usage by defining the notion of a κ-monster which
formalizes monster set models as certain kinds of special models [17, 8, 33].

7I paraphrase an argument that Buechler says holds ‘with few exceptions’ on page 70 of [6].
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Definition 2.0.2 1. A structure M of infinite cardinality κ is special if M is the
union of an elementary chain 〈Mλ : λ < κ, λ a cardinal 〉, where each Mλ is
λ+-saturated.

2. A structure M is strongly κ-homogeneous if for every A contained in M with
|A| < κ, every elementary embedding of A into M can be extended to an auto-
morphism of M .

3. A κ-monster model Cκ is a special model of cardinality µ = iκ+(κ).

Fact 2.0.3 A κ-monster is unique up to isomorphism, µ+-universal and strongly κ+-
homogenous.

Now the natural conjecture is:

Conjecture 2.0.4 For any property P , the class monster M satisfies P if and only if
all sufficiently large κ-monsters Cκ satisfy P .

The main problem is to specify what is meant by a property. A too generous defini-
tion is ‘a class in NBG’. But the issue is to refine this notion. And all we actually give
here are some specific examples that should be considered in making a definition.

This conjecture would follow if ‘all sufficiently large κ-monsters Cκ satisfy P .’
were replaced by a ‘uniform proof’ that ‘for all sufficiently large κ-monsters that Cκ
satisfies P .’ This is the strategy that works successfully for the spectrum problem. But
I don’t see how to get this claim in general; we examine a specific problem where a
uniform argument is not apparent in Subsection 3.2.

Finding such a uniform argument seems related to Hanf numbers. Hanf [16] intro-
duced the following extremely general and soft argument. P (K, λ) ranges over such
properties as: K has a model in cardinality λ, K is categorical in λ, or the type q is
omitted in some model of K of cardinality λ. We will see some more novel examples
below.

Theorem 2.0.5 (Hanf) Fix a set of classes K of a given kind (e.g. the classes of
models defined by sentences of Lµ,ν for some fixed µ, ν of a given similarity type). For
any property P (K, λ) there is a cardinal κ such that if P (K, λ) holds for some λ > κ
then P (K, λ) holds for arbitrarily large λ.

Proof. Let
µK = sup{λ :P (K, λ) holds }

where µK = ∞ if there is no bound on the cardinality of models of K satisfying P .
Then

κ = sup{µK :µK <∞}.

�2.0.5

Definition 2.0.6 P is downward closed if there is a κ0 such that if P (K, λ) holds with
λ > κ0, then P (K, µ) holds if κ0 < µ ≤ λ.

The following is obvious.
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Theorem 2.0.7 If a property P is downward closed then for any κ there is a cardinal
µ such that for any class of models K with vocabulary8 of size κ, if some model in
K with property P has cardinality greater than µ, then there is a model in K with
property P in all cardinals greater than µ.

That is, if each of a collection of classes is downward closed for a property P there
is a Hanf Number for P in the following stronger sense.

Definition 2.0.8 (Hanf Numbers) The Hanf number for P , among classes K with
vocabulary of cardinal κ, is µ if: if there is a model in K with cardinality > µ that has
property P , then there is a model with property P in all cardinals greater than µ. In
this situation µ is the Hanf number of P (for classes with vocabulary of cardinal κ).

Definition 2.0.9 1. A function f (a class-function from cardinals to cardinals) is
strongly calculable if f can (provably in ZFC) be defined in terms of cardinal
addition, multiplication, exponentiation, and iteration of the i function.

2. A function f is calculable if it is (provably in ZFC) eventually dominated by a
strongly calculable function. If not, it is incalculable.

Here are several examples of properties of first order T where Hanf numbers may
or may not be calculable.

1. T has a model in κ.

2. T has a saturated (or special) model in κ.

3. T has a model that is a group with a bounded orbit in the sense of Subsection 3.2.

4. The Hanf number for omission and saturation (Subsection 3.3).

For 1), the Hanf number is the cardinality of the vocabulary, so it is calculable. For
2) the Hanf number is the first stability cardinal for stable theories and again this is cal-
culable. But for unstable theories there is considerable not yet determinative research
on the existence of saturated models so the Hanf number has not been calculated. See,
e.g., [30, 12]. Note that 2) is not downward closed. We explore some cases of 3) where
the Hanf number is calculated and some where it remains an open question in Subsec-
tion 3.2. And we note in Subsection 3.3 that the Hanf number for case 4) is incalculable
in general but it is for superstable T .

If Conjecture 2.0.4 holds, the natural size for a monster model for studying a prop-
erty P is the Hanf number of P . Unfortunately, as our discussion in Subsection 3.2
shows, the equivalence in Conjecture 2.0.4 is not obvious.

Most examples in the literature of Hanf numbers are variants on the Morley’s omit-
ting types theorem and the Hanf number9 is iω1 . There are more complicated examples
in [31, 1].

8This gets a bit more technical; see page 32 of [1].
9This is for countable vocabularies; for a vocabulary with cardinality κ, the relevant Hanf number

i(2κ)+ .

7



3 Three Examples

3.1 Is replacement needed?
One of the fundamental tools of model theory constructs indiscernibles realizing types
from a prescribed set.

Theorem 3.1.1 Let M be a big saturated model. For every large enough set I ⊂ M ,
there exists an infinite sequence of order indiscernibles J ⊂ M such that for every
finite b ∈ J there is an a ∈ I with tp(b/∅) = tp(a/∅).

The crux here is the requirement that the complete types of the sequences in J are
types realized in I . With no requirement on the types appearing in J , only Ramsey’s
theorem and compactness is needed in the standard Ehrenfeucht-Mostowski proof.

We can guarantee this result only if |M | ≥ iω1
. This example makes the question,

‘What set theory is used in model theory?’ a little sharper. Friedman proved [13]
that Borel determinacy required the existence of iω1 . Are there such examples of
necessary uses of replacement in first order model theory? Morley [25] showed both
that iω1

sufficed for the cardinality of I and that it was necessary. But this necessity
argument itself uses replacement.

In some sense Theorem 3.1.1 and Hanf numbers for omitting types require the
existence of iω1 even to be stated. Those notions are about size or about ‘logics’. But
here is a theorem clearly stated in ZC, but for which known proofs use replacement.
Byunghan Kim[18] proved:

Theorem 3.1.2 (Kim) For a simple first order theory non-forking is equivalent to non-
dividing.

The usual easily applicable descriptions of simple theories involve uncountable ob-
jects. But definitions of simple, non-forking, and non-dividing are equivalent in ZC to
statements about countable sets of formulas. Indeed we quote below such formulations
which were given as the definitions in Casanovas’ recent exposition [7]. Nevertheless,
the argument for Kim’s theorem employs Morley’s technique for omitting types; that
is: The standard argument uses the Erdos-Rado theorem on cardinals less than iω1

.
Our goal here is simply to state this proposition clearly enough to show that it is

properly formulated without any use of replacement. For this, we simply repeat the
basic definitions from [7] where the exact result we are after is given a short complete
proof. We work in a complete first order theory in a countable vocabulary.

Definition 3.1.3 Let ai be a sequence of finite tuples in a model of a first order theory
T . A set of formulas X = {φ(x,ai) : i < ω} is k-inconsistent if every k element subset
of X is inconsistent.

With this notion in hand we can define forking and dividing.

Definition 3.1.4 Let A ∪ {a} ∪ {aj :j < n} be a subset of a model of T .
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1. The formula φ(x,a) k-divides over A if there is an infinite set I = {ai : i < ω}
such that {φ(x,ai) : i < ω} is k-inconsistent and all the ai realize tp(a/A). φ
divides if it k-divides for some k.

2. The formula π(x,a) forks over A if for some finite set of formulas ψj(x,aj)
with j < n, π(x,a) `

∨
j<n ψj(x,aj) and each ψj(x,aj) divides over A.

Definition 3.1.5 The formula φ(x,y) has the tree property with respect to k < ω if
there is a tree (as : s ∈ ω<ω) (in some model of T ) such that for all η ∈ ωω , the
branch {φ(x,aη�n) :n < ω} is consistent and for all s ∈ ω<ω , the family of siblings
{φ(x,aŝ i) : i < ω} is k-inconsistent.

Definition 3.1.6 T is simple if there is no formula φ(x,y) which has the tree property
in T .

There is a direct proof of the following result in [7].

Theorem 3.1.7 Let T be a simple theory. A partial type π(x,a) divides over A if and
only it forks over A.

None of the arguments given in [7] directly invoke replacement. But Lemma 1.1 of
that paper, which is applied at a crucial point, is a variant of the standard:

Theorem 3.1.8 [Morley omitting types theorem] Let T be a τ -theory, Γ a set of partial
τ -types (in finitely many variables) over ∅ and µ = (2|τ |)+, Suppose Mα for α < µ
are a sequence of τ -structures, each omitting all types in Γ and satisfying T such that
|Mα| > iα.

Then, in a model M of T omitting all types in Γ, there is a countable sequence I of
order indiscernibles such that for every finite sequence a ∈ I , tp(a/∅) is realized in
each Mα.

The crucial message of Morley’s theorem as opposed to the standard Ehrenfeucht
Mostowski argument which takes place in ZC is the requirement that the finite types
that will be realized in J are specified in advance to come from the Mα. I know of
no proof of Theorem 3.1.7 that does not rely on replacement to invoke Erdos-Rado via
Morley’s omitting types theorem.

Question 3.1.9 Is Theorem 3.1.7 provable in ZC?

Remark 3.1.10 As we’ll see later in other examples, restricting to stable theories of-
ten reduces the set theoretic strength needed for a result. In particular, Shelah proved
the equivalence of forking and dividing for stable theories without any reliance on re-
placement. The strength of stationarity in stable theories allows the construction of the
required indiscernibles using only Ramsey’s theorem (as in Ehrenfreucht-Mostowski).
See Section V.3, in particular Theorem V.3.9 of [3].

Recently, Chernikov and Kaplan [9] proved a slight weakening of the theorem for
a much broader class of theories. They prove that for types over models10 in NTP2

10Examples of unstable theories where types over sets can fork without dividing are well known.
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theories; these11 include all simple and all NIP theories. But they still rely on ‘Kim’s
Lemma’ which uses replacement.

3.2 Bounded orbits of types
Newelski in [26] raised questions about how to calculate whether the action of a mon-
ster model of a first order theory of groups on its Stone space admitted a bounded
orbit. Also in [26], he reduced the problem to the calculation of the Hanf number for
saturation and omission, which makes general model theoretic sense. In Section 3.3,
we recall that this Hanf number is not calculable. In this section, we work only with
the Hanf number for bounded orbits in an attempt to see if it might be calculable (for
arbitrary theories of groups).

Assumption 3.2.1 T is a first order theory extending the theory of groups with count-
able vocabulary τ . Each model of T acts on itself and therefore on its Stone space by
left translation. For p ∈ S(M), p 7→ gp = {φ(g−1x,a) :φ(x,a) ∈ p}.

Notation 3.2.2 Consider M ≺ M ′, which are groups. Let p ∈ S(M ′), and let the
M ′-orbits of p be represented by pα (α < µ). Consider the restrictions qα = pα�M
and let P1, P2 denote the following conditions.

P1: Each qα extends uniquely to some type over M ′ in the orbit of p.

P2: Every pα restricts to some qα.

The following definition is adapted from [26].

Definition 3.2.3 Let C be a κ-monster, M ≺ C, q ∈ S(M), O = Mq. That is, O is
the orbit of q under left translation by M .

1. O is C-bounded if there is p ∈ S(C) with P1 and P2 and q = p�M .

2. O is ∞-bounded if it is C′-bounded for all κ-monsters C′ � M (for any κ >
|M |).

3. T has an∞-bounded orbit if for some M |= T , there is some∞-bounded orbit
in S(M).

4. For a fixed countable theory T , let µT be the least cardinality of an∞-bounded
orbit (for some κ-monster modeling T ) if such a model exists.

5. Let µbd = sup{µT : T has a model with an∞-bounded orbit }.

Now Newelski[26] asked12.

11T has TP2 if for some formula φ(x,y) and some k < ω there is an array {aji : i, j < ω} such that
each row φ(x,aji ) is k-inconsistent and for every η : ω → ω, each type φ(x,aηi (i)) is consistent.

12Newelski’s κ-monsters were not unique, complicating the issue even further.
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If we consider the existence of a bounded orbit in S(C) as a property of
T , then this property should not depend on the choice of Cκ provided κ
is large enough. In particular, if a type p ∈ S(C) has bounded orbit and
C′ = Cscr′κ � Cκ′ is a larger monster model (for some κ′ > κ, then there
should exist a type p′ ∈ S(C′) extending p with the GC

′
orbit of the same

size as that of the GC
′

-orbit of p. It is unclear to me, how large κ should
be for C to have this property.

In this section we give several other formulations of this question.

Question 3.2.4 1. Find a bound on µbd in terms of i-numbers.

2. Find an example where there is an∞-bounded orbit of size > 22
ℵ0 in a count-

able theory.

3. Is there a bound on the size of an ∞-bounded orbit in a countable theory of a
group.

By Remark 1.12 of [26] the Hanf number for µbd is no more than H(Nλ), (i.e.
H(PλN ) ) as discussed in Section 3.3. But we showed in [5] that this number is incal-
culable. However it is only an upper bound for the Hanf number for µbd.

We can’t answer any of these questions; we try to place them in a broader context
and address related questions. To begin with, instead of trying to bound the size of the
bounded orbit, one could bound the size of models which have a bounded orbit. If there
was no such bound, one would like to think that the monster model had a bounded orbit
in the sense of Definition 3.2.7.

Here is Newelski’s [27] formulation of the problem
If we consider the existence of a bounded orbit in S(C) as a property of T , then

this property should not depend on the choice of Cκ provided κ is large enough. In
particular, if a type p ∈ S(C) has bounded orbit and C′ = Cscr′κ � Cκ′ is a larger
monster model (for some κ′ > κ, then there should exist a type p′ ∈ S(C′) extending
p with the GC

′
orbit of the same size as that of the GC

′
-orbit of p. It is unclear to me,

how large κshould be for C to have this property.
Pillay and Conversano [10, 11] for o-minimal and even NIP theories and Newelski

[27] for more general classes defined in terms of the action of groups have calculated
the Hanf number. But our question here is:

Question 3.2.5 Is there a calculation of the Hanf number for bounded orbits that
works for every first order theory of groups? Or are some kind of stability conditions
necessary to get a bound.

Note that the key aspect of∞-bounded is the property of extending a κ-monster to
a κ′-monster preserving the size of a small orbit. It was implicit in [26] that such an
extension theorem holds in stable theories. For context, we include a proof.

Fact 3.2.6 If T is stable and C is a κ-monster of T with a type p ∈ S(C) with bounded
orbit of cardinality λ < µ (with µ as in Definition 2.0.2.3), then in any κ′-monster
C′ � C, there is a type with orbit of cardinality λ.
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Proof. Let p′ ∈ S(C′) be a nonforking extension of p = p0 ∈ S(C). Fix M0 ≺ C
that is κ(T )+-saturated and 〈qα ∈ S(M0) :α < λ〉 which are the conjugates of p�M0.
Each qα is a nonforking extension of a stationary type over some Xα ⊂ M0 with
|Xα| < κ(T ). If every C′-conjugate of p′ is a nonforking extension of some qα, we
are finished. Now suppose some m ∈ C′ conjugates p′ so that mp′�M0 6= qα for all
α < µ. Then mX0 is not contained in M0. But there exists a subset Y of M0 with
|Y | = κ(T ) such that r = tp(mX0/M0) is based on Y . Now by |M0|-saturation of C,
construct in C a nonforking sequence mβYβ for β < |M0| of realizations of r. Each
Yβ is the base of a conjugate of p′�M0 contrary to hypothesis. �3.2.6

Newelski’s formulation focuses on whether a particular orbit remains bounded as
the ambient monster changes. To connect with the true monster we consider a variant–
which monsters have bounded (i.e. small) orbits?

Definition 3.2.7 (A model has a Bounded orbit) 1. Let M be the monster model
of T . We say M has a bounded orbit if there is a p ∈ S(M) such that
Mp = {ap : a ∈M} is a set.

2. Let C = Cκ be a κ-monster model of T . We say Cκ has a bounded orbit if there
is a p ∈ S(C) such that, with Cp denoting {ap : a ∈ C}, |Cp| < |C|.

Question 3.2.8 When does M have a bounded orbit? That is, can we define a cardinal
κ and a property of set models such that M has a bounded orbit if and only if the set
monster Cκ has the property.

This is the formulation of Conjecture 2.0.4 in this context. We will see it is prob-
lematic.

Notation 3.2.9 We will write M̂ for a model which may be either a κ-monster Cκ or
the true monster M. The saturation hypothesis may not always be used.

For the next few paragraphs we analyze the relation between the orbits of a type and
its restrictions. Note that for any set or class model M and p ∈ S(M), the cardinality
of the orbit of p is the index of stbM (p) in M . (The stabilizer of p, stbM (p), is the
subgroup of a ∈M such that ap = p.)

Claim 3.2.10 Let M ≺ N ≺ M̂ and p̂ ∈ S(M̂).

1. If a ∈ stb
M̂

(p̂) and a ∈ M then a ∈ stbM (p̂�N). In particular, for any
M ≺ M̂ , (stb

M̂
(p̂) ∩M) ⊆ stbM (p̂�M).

2. So if M contains representatives of all cosets of stb
M̂

(p̂),

|M̂/stb
M̂

(p̂))| = |M/stb
M̂

(p̂) ∩M | ≥ |M/stbM (p̂�M)|.

Proof. For any φ(x, c) ∈ p̂�N , φ(x, a−1c) ∈ stb
M̂

(p̂) and a−1c ∈ N so
φ(x, a−1c) ∈ stbN (p̂�N). For the equality in the second assertion, note that for any
b ∈ M there is an ai in the set of representatives such that b−1ai ∈ stb

M̂
(b̂) but also

in M . �3.2.10

We establish downward monotonicity for having a bounded orbit.
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Claim 3.2.11 Let M ≺ N ≺ M̂ and p̂ ∈ M̂ . If M̂ has a bounded orbit of size µ then
for every κ with µ < κ < |M̂ | and every model M of size κ, there is a model M ′ of
size κ with M ≺M ′ such that M ′ has an orbit of size ≤ µ.

Proof. Fix a model M of size κ. Let p̂ ∈ S(M̂) have a bounded orbit of cardinality
µ, i.e. stb

M̂
(p̂) has µ cosets with representatives 〈ai : i < µ〉. Let N be a submodel

containing the ai. Choose M ′ as an elementary extension of N and M of cardinality
κ. By Claim 3.2.10, the orbit of p̂�M ′ has size at most µ. �3.2.11

We show every model is contained in a model of the same cardinality where the
containment in Claim 3.2.10.1 becomes equality.

Claim 3.2.12 Fix p̂ ∈ S(M̂). For any M , there is an M ′ with M ≺ M ′ and |M | =
|M ′| such that

stb
M̂

(p̂) ∩M ′ = stbM ′(p̂�M
′).

Proof. By Claim 3.2.10 stb
M̂

(p̂) ∩M ′ ⊆ stbM (p̂�M). Now let M1 = M∗ be a
model of size |M | such that for every a ∈ stbM (p̂�M)−stb

M̂
(p̂)∩M , there is c ∈M∗

with φ(x, c) ∈ p̂, φ(a−1x, c) 6∈ p̂. Thus, every such a is not in stbM∗(p̂�M∗). Now if
Mi+1 = M∗i , then M ′ =

⋃
i<ωMi satisfies the desired condition, as by Claim 3.2.10

stb
M̂

(p̂) ∩M ′ ⊆ stbM ′(p̂�M ′). �3.2.12

With these technical lemmas we can relate the size of the orbit a fixed type over the
(class or set) monster to the size of the orbits of its restrictions.

Lemma 3.2.13 Fix a type p̂ ∈ S(M). The following are equivalent.

1. The orbit of p̂ is bounded.

2. Let µ = |Mp̂|. For every M with |M | ≥ µ, there exists an M ′ containing M
with |M ′| = |M | such that p̂�M ′ has cardinality µ.

3. Let µ = |Mp̂|. For every M with |M | ≥ µ, there is a κ-monster Cκ with
M ≺ Cκ and the restriction of p̂ to the κ-monster Cκ has an orbit of cardinality
less than κ.

Proof. 1) implies 2) is Claim 3.2.11 with M̂ taken as M. For 2) implies 1), we
prove the converse. If p̂ ∈ S(M) is unbounded then for every κ, we can choose
M of cardinality κ so that κ elements of M are in distinct cosets of stbM(p̂). By
Lemma 3.2.12, we can extend M to M ′ with stbM(p̂) ∩M ′ = stbM ′(p̂�M ′) and the
index of this subgroup is at least κ.

3) To prove 3) from 1) make the same construction as in proving 3) but continue
for κ+ steps with the α+ 1’st structure saturated over its predecessor.

3) implies 1). Build a chain Cκ for arbitrarily large κ satisfying the condition in
iii). Since p̂ is fixed for the entire construction p̂ is unbounded.

�3.2.13

Remark 3.2.14 Note that condition 3) of Lemma 3.2.13 depends on the particular
embedding of Mκ in the monster. That is, if we take a different copy of Mκ, there will
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be a conjugate of p̂ under the automorphism group of M whose restriction to this Mκ

has a bounded orbit.
Thus 3) implies:
4) For arbitrarily large κ, there is a p̂′ ∈ S(M) whose restriction to the κ-monster

Mκ has an orbit of cardinality less than κ.
But 4) is ostensibly weaker; the extension keeps changing.

Question 3.2.15 Is it possible that there is a type p ∈ S(M) that is bounded, say with
orbit size µ and for arbitrarily large κ there are extensions pκ over set models Mκ

which all have orbit size µ. But there is no increasing chain of such types?

We can rephrase this analysis with the following implication.

Corollary 3.2.16 From Lemma 3.2.13 and Remark 3.2.14, we know 1) implies 2):

1. M has a bounded orbit.

2. For arbitrarily large κ, the κ-monster Mκ has an orbit of cardinality less than
κ.

Question 3.2.17 But does the converse hold?

If the converse held, then we would know that the true monster does not have a
bounded orbit, exactly if there is an upper bound on the cardinalities of set monsters
with bounded orbits. And then we could reduce the existence of a true monster with
bounded orbits to the following ZFC question.

Question 3.2.18 Find an explicit description of a function f : On → On such that if
T has cardinality σ and the f(σ)-monster has a bounded orbit then M has a bounded
orbit. More precisely, is there such an f which is calculable?

3.3 Saturation and omission
In this section, we state what seems to be a natural model theoretic property. It arose
from Newelski’s consideration of the issues in Section 3.2. But the Hanf number for
the property is not calculable.

Newelski reduced the existence of bounded orbits to the question. When is a there
a triple of a theory in vocabulary τ , a sub-vocabulary τ1 and a τ -type p such that there
is a model M with M�τ1-saturated but M omits p.

Let us state the property more formally.

Definition 3.3.1 We say M1 |= t where t = (T, T1, p) is a triple of two theories and a
type. The theories are in vocabularies τ ⊂ τ1 with |τ1| ≤ λ, T ⊆ T1 and p is a τ1-type
over the empty set if M1 is a model of T1 which omits p, but M1�τ is saturated.

Let Nλ denote13 the set of t with τ1 = λ and N ss
λ the subset of those where the

theory T is superstable. Then H(Nλ) denotes the Hanf number of Nλ, H(Nλ) is
least so that if some t ∈Nλ has a model of cardinalityH(Nλ) it has arbitrarily large
models.

13Thus, ‘there is an M ∈ Nλ with cardinality κ’ replaces the more cumbersome notation in [5],
‘PλN (Kt, κ) holds’.
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To avoid difficulties about finding saturated models, we assume in this subsection:

Assumption 3.3.2 Assume the collection of λ with λ<λ = λ is a proper class.

This assumption follows from the generalized continuum hypothesis or from ‘There
are a proper class of strongly inaccessible cardinals’.

Under the mild set theoretic hypotheses of 3.3.2, we showed in [5] that H(Nλ)
equals the Löwenheim number of second order logic, which is incalculable[34]. In [4]
we restrict the question by requiring that the theory T satisfy stability conditions. The
distinction between superstable and stable is immense. For the superstable case the
number is easily calculable in terms of Beth numbers.

Theorem 3.3.3 Let |τ | = λ.

1. If T is superstable

H(N ss
λ ) < H(L(2λ)+,ω) ≤ i

(2(2λ)+ )+
.

2. In general,

H(Nλ) ≥ `2(LII)

where `2(LII) denotes the Löwenheim number of second order logic. Thus
H(Nλ) is a large cardinal if such exist.

For the superstable case, we have stated a calculable bound. For stable theories,
work in progress (with Shelah) purports to show the upper boundH(L(2ω)+,ω1

), which
still depends on the choice of set theory, although it is lower than the general case.

4 What kind of conditions imply only weak set theory
is needed to prove a proposition?

The usual answers to this question are in terms of syntactic properties of the properties
under consideration. Properties of infinitary logic are inherently more complicated
that properties of first order logic. Or as Macintyre phrased it, various properties are
phrased with second order quantification.

None of the three examples in Section 3 seem a priori to have any real connection
with stability. Even in the first case, forking and dividing can be defined for arbitrary
theories and one can ask, ‘does forking equal dividing’. But we have three propositions
where there is apparent (in the first case), definite (in the third) and (open in the second)
dependence on set theory to obtain the proposition for an arbitrary theory14. But in
each case a stability hypothesis gives a positive solution to the problem. In stable

14Strictly speaking to apply this comment to the case of NTP2 theories we should only consider types over
models, since we know there are non-simple theories for which forking (over arbitrary (countable) sets) does
not equal dividing.
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theories forking is the same as dividing. In stable theories, there are bounded orbits. In
superstable theories, the Hanf number of Nλ is calculable.

Note that in these examples the dependence of the result on the length of the set
theoretic universe varies depending on the stability of the underlying theory. In con-
trast, calculating the spectrum function of a first order theory has no such dependence
(although the proof uses the stability hierarchy).

Can we find a way to characterize such conditions as stability or o-minimality or
the geometric conditions such as genus mentioned by Macintyre so as to account for
lesser set theoretic strength necessary to study ‘tame’ mathematics? We see here that
the cardinalities of the objects studied are not the defining characteristic of tame.
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