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1. Introduction

Hartshorne’s question

We avoid the use of the words ‘greater’ and ‘lesser’ because these
imply the existence of an order relation among figures which we
have not yet established. In fact, the existence of an order relation
for content depends on (Z) (Exercise 22.7). [ We will also see that
‘if squares are equal then their sides are equal’ follows from (Z)
(Exercise 22.6).]

I do not know of any purely geometric proof of axiom(Z) from
the definition of content [area] we have given. . . . (Z) holds how-
ever, whenever there is a measure of area function defined in the
geometry.

([Har00, p.202])

He repeats the same sentiment in more detail on page 210 with additional detail.
‘The proof [of De Zolt and of area function] is analytic in that it makes use of the
field of segment arithmetic and similar triangles.’ ([Har00, p.210]).

These passages raise several questions. What is De Zolt’s axiom (Z)? What is
De Zolt good for? What is a geometric proof? Hartshorne’s answer to the first is:

Axiom 1.1. (De Zolt (Z) [Har00, p 201]) If Q is a figure contained in another
figure P, and if P - Q has non-empty interior then P and Q do not have equal
content1.

1We use equidecomposable for ‘scissors congruence, dissection’ and equal content or equicom-
plementable when subtraction is allowed as in Euclid I.35.

1
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This formulation reflects the influence of the Grundlagen. De Zolt’s version2 is

If a polygon is divided into parts in a given way, it is not possible,
when one of these parts is omitted to recompose the remaining
parts in such a way that they cover entirely the polygon.

(De Zolt 1881 p. 12)

The underlying problem is this. It is quite clear that congruence classes of line
segments are linearly ordered by AB < CD if AB is congruent with a subsegment
of CD. But a similar relation in two dimensions is complicated; there are certainly
polygons P and Q where Q has lesser area than P (at least by a naive calculation)
but P is not congruent with a subset ofQ. De Zolt used the postulate above to argue
for such an ordering [Gio21, §3.2]. But there is an important distinction; Hartshorne
uses the property ‘equal content’ (so baptized by Hilbert but with the meaning of
‘equal triangle’ in Euclid I.35) as opposed to De Zolt’s use of equidecomposition
or scissors congruence3 – a standard practice in the 19th century. As we see in
Fact 4.2, for Archimedean planes these two notions define the same equivalence
relation on pairs of figures, albeit witnessed differently. Hilbert aimed to establish a
theory of plane area without use of the Archimedean axiom4. For that, he rigorously
established another notion of equal area: the carpenter’s area of a 2ft×3ft rectangle
is 6 sq ft. We take this up with the discussion of Definition 5.3.

We come to the fundamental dilemma posed by Hartshorne’s question. Both De
Zolt’s axiom and the existence of a measure of area function hold in any model
of HP5 (neutral geometry plus parallels (Definition 3.1). The extant proof uses a
measure of area function. Is this technique necessary? More precisely, in any plane
satisfying HP5 : DeZolt and a measure of area function exists. How can we possibly
show they are independent (or dependent)? Frege faced the same problem in his
dialog with Hilbert. He felt that the various axioms of geometry all were inherent in
the fundamental concepts but nevertheless separately needed to expound geometry.
But since they were all true, one could not apply Hilbert’s ‘formal method’ [Bla07]
to show independence. We are not in the same boat but a very similar one.

Our approach is similar to that hinted at in [?] of finding different geometrical
interpretations (some where the hypothesis is true but the conclusion fails) of the
same propositions. For this we formulate in Section 5 a general theory of equiv-
alence relations on magnitude (e.g. ‘equal area (or volume)’). This will allow us
to compare properties of such equivalence relations that depend on a number of
factors, including: the definition of figures, the background theory, the shape of the
figures and the dimension of the space.

[Har00, Exercise 22.6] shows that in a Euclidean plane (Definition 3.1) that satis-
fies De Zolt for equicomplementation, also satisfy the ‘squares property’: equicom-
plementable squares are congruent. We are faced again with the dilemma. What
does such a proof show, given that both the hypothesis and the conclusion are true
(in EG). How can there be a non-trivial implication between two true assertions?
By working in the general framework of Section 5, we identify the notion ‘scaled’

2As it appears in [Gio21]
3In [Hil62, §18] Hilbert writes ‘equal area’; he later renamed the notion equidecomposable.
4It seems that much modern research, especially in higher dimensions, has discarded this

generality. That is, such references as [Dup01] work over the reals without ever mentioning it.
[Bol78, p 74] restricts to the Archimedean context in a sentence; it is not clear for how long the

restriction is intended to hold.
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Definition 5.5 and show in Theorem 5.7 that scaled plus the squares property imply
de Zolt. This general argument shows that squares property could be replaced by
many similar scales (e.g. rectangles of the same height), witnessing the pivotal role
of being well-scaled.

2. Common Notions

Euclid’s Elements [Euc56] contains the following general properties of magni-
tudes.

Definition 2.1 (Common Notions).

(1) Things which equal the same thing also equal one another.
(2) If equals are added to equals, then the wholes are equal.
(3) If equals are subtracted from equals, then the remainders are equal.
(4) Things which coincide with one another equal one another.
(5) The whole is greater than the part.

Hilbert insists that Euclid errs in positing through the common notions general
principles for the comparison of magnitudes [Hil62, p 62]. Rather, precise versions
of each principle must be proved for each topic. Such a view is consistent with
De Risi’s [DR20] careful historical analysis arguing that the common notions were
unlikely to be written by Euclid, but were added to clarify implicit hypotheses in
his argument. Similarly, [Har00, p. 196] lists minor variants of the common notions
and adds the first two of the following Euclidean assumption about ‘equal area’

Definition 2.2 (Further properties of Area).

(1) Congruent figures are ‘equal’.
(2) The squares property for ‘equality’: equal squares have equal (congruent)

sides5.
(3) The rectangle property for ‘equality’: ‘equal’ rectangles with correspond-

ing (e.g. shorter) sides equal have the other side equal and are congruent
figures6.

We have written ‘equal’ to emphasize that the equivalence relations described in
Definition 5.4 are possible substitutions. [Har00, Corollary 22.5] asserts

Fact 2.3. If ‘equals’ is taken as equicomplementability the following hold.

(1) In any Hilbert plane equicomplementability satisfies Definition 2.1 2 and 3.
(2) And further, in any plane satisfying HP5 if equicomplementability satisfies

Z,it also satisfies7 4 and 5 of Definition 2.1 for area, the rectangle property
(Definition 2.2.3) and the squares property (Definition 2.2.2).

We prove a converse, Theorem 5.7.3, to the second statement: any model of HP5
(any Euclidean plane) satisfies the rectangle property (the squares property8). We

5Equivalently, are congruent. De Zolt [DZ81] emphasizes Euclid ambiguous use of ‘equal’.
6[Hil62, p. 61] states this problem and proves it holds in models of HP5 in the following

section.
7[Har00, Corollary 22.5] asserts the second part only for Euclidean fields. But while circle-circle

intersection is needed to convert arbitrary figures to rectangles or squares, it is not needed for the

rectangle or square properties.
8Note that, using Hilbert’s measure of area function, a model of HP5 for equicomplementation,

satisfies de Zolt for equicomplementation.
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prove the result in more generality to emphasize that the key property of equicom-
plementation is that is it well-scaled, if the squares property holds.

3. Logical Foundations

In [Gio21], Giovannini describes the context in which the issues discussed here
arose: the need in the face of calculus to clarify rigorous foundations for geometry.
These efforts concerned both the clarification of the axiomatic basis and an attempt
to eliminate ‘infinitary’ methods such as limits.

The culmination of the effort9 for a clear axiomatization of geometry was [Hil62].
As stressed in [Bal18b, §9], Hilbert and Euclid take different routes. Euclid first
studies the theory of area by equicomplementability [Euc56, Books I, II] and then,
invoking Archimedes and general properties of proportionality, studies similarity
[Euc56, Book VI]. While, Hilbert develops segment arithmetic to justify proportion
and uses a measure of area function to ground the comparison of areas. We take
from [Har00] abbreviations for important subcollections of Hilbert’s axioms.

Notation 3.1. Consider the following axiom sets10.

(1) First-order axioms:
HP, HP5: We write HP (Hilbert plane) for Hilbert’s incidence, between-

ness11, and congruence axioms. We write HP5 for HP plus the parallel
postulate. HP is often known as absolute or neutral geometry. We
will just say neutral geometry when discussing 3-space.

EG: The axioms for Euclidean geometry, denoted EG12, consist of HP5
and in addition the circle-circle intersection postulate CCP.

(2) Hilbert’s group continuity axioms, must be formalized in infinitary and
second-order logic13

Archimedes: The sentence in the logic14 Lω1,ω expressing the Archimedean
axiom.

9[Hil62] and all further editions are written in natural language. Hilbert’s 1918 lectures [Hil13]

made clear the first order (restricted predicate calculus) nature of the essential axioms in the
Grundlagen; Tarski [Tar59, GT99] provides a full account in a single sorted language. This was

done much earlier than the published accounts.
10The names HP, HP5, and EG come from [Har00]. Tarski also studies EG under the name

E ′′2 in [Tar59].
11These include Pasch’s axiom (B4 of [Har00]) as we axiomatize plane geometry. Hartshorne’s

version of Pasch is that any line intersecting one side of triangle must intersect one of the other
two.

12There is a natural translation of ‘Euclid’s axioms’ into first-order statements in a vocabulary

with ternary betweenness and collinearity predicates, 4-ary (6-ary) congruence relations on pairs
of segments (on triples representing angles) (e.g. [Bal18b, BM12]). The construction axioms have

to be viewed as ‘for all – there exist’ sentences. The axiom of Archimedes is of course not first-
order. We write Euclid’s axioms for those in the original as opposed to modernized (first-order)
axioms for Euclidean geometry, EG. Note that EG is equivalent to (i.e. has the same models) as
the system laid out in Avigad et al [ADM09].

13Hilbert’s completeness axiom is not even in second order [Vää14]; we use the more familiar

Dedekind axiom.
14 The Archimedean axiom is a property of an ordered semigroup. In the logic, Lω1,ω , quan-

tification is still over individuals but now countable conjunctions are permitted so it is easy to
formulate Archimedes axiom: ∀x, y(

∨
m∈ωmx > y). By switching the roles of x and y we see each

is reached by a finite multiple of the other. In proving Fact 3.3, we use the equivalent version
expressing that for every m for every x, there is a y, y < s

m
.
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Dedekind: Dedekind’s second-order axiom15 that there is a point in each
irrational cut in the line.

The distinction between the first order and the infinitary/second order axioms is
crucial. The collection of all the axioms has a unique model which is the Euclidean
plane over the real numbers. But Hilbert was laying out a much more flexible
and general arena. HP5 is an incomplete first order theory. While the distinction
between first and second order was not fully grasped in 1899, in Hilbert’s lectures
of 1918, where the restricted predicate calculus is clearly seen a restriction of higher
order logic, he observes the significance of the first order axioms of the Grundlagen.

Remark 3.2. A note on definitionsFrom the standpoint of modern logic an explicit
definition is an abbreviation for a first order formula; an implicit definition of
a predicate P is given by a first order formula in the given vocabulary with a
symbol for P such that in every model of the theory P designates a unique relation.
Note that concepts like equidecomposable meet neither of these conditions. They
metamathematical notions that are proved to behave well.

In the Grundlagen, fundamentally geometric propositions are proved in HP5,
while the axiom of Archimedes is used primarily to construct counterexamples.
The actual use is a few pages that show the only model of all the axioms, including
Hilbert’s version of the Dedekind postulate, is the Cartesian plane over <.

Hilbert proves the axiom of Archimedes is independent from various axiom
groups of HP5. He shows the independence of the first order axioms from Archimedes
using standard techniques from number theory. These proofs might suggest that
coordinatization and knowledge of polynomial and power series rings are central
for the following result. However, this is not the case. A simple argument is:

Fact 3.3. There is a non-Archimedean plane satisfying HP5.

Proof. Fix points A and C on a plane satisfying HP5. Consider the set of
sentences16 φn(A,B,C) where φn(A,B,C) asserts the Bn are decreasing, B1C ≈
AB1 and for each i, 2 6 i 6 n − 1 BiBi−1 ≈ ABi. Since each φn is true for an
appropriate choice of Bn+1 to witness B, the compactness theorem17 for first order
logic implies there is a B∞ such that φn(A,B∞, C) for every n. Then B∞ is an
infinitessimal. 3.3

We turn now to the methodological problems. The main result, Theorem 5.7 is
true in (every model of) the first order theory HP5. It would not makes sense to
say it is proved in HP5. ‘Proved in first order theory’ means there is a deduction
in the first order predicate calculus18 of a statement of first order logic in a fixed

15Hilbert added his Vollstandigkeitsaxiom to the French translation of the 1st edition and it
appears from then on.

16In symbols, using B as an antisymmetric (to avoid extra notation for order) strict between-
ness predicate:

∃B1, . . . Bn(B(C,B1, B2) ∧
∧

26i6n−2

B(Bi, Bi+1, Bi+2) ∧ (B(Bn−1, Bn, A) ∧B(Bn, B,A)

17This theorem asserts that if each finite subset of an infinite set of sentences is consistent then

the entire set is here. In the application here we consider the axioms of HP5 and the φn.
18Using any of the many, equivalent by the completeness theorem, different sets of axioms and

rules of inference for first order



6 JOHN T. BALDWIN//ANDREAS MUELLER

Figure 1. Euclid I.35

vocabulary19 for the subject axiomatized. But notions such as equidecomposable
(or equicomplementable) are not first order; ‘equidecomposable’ is equivalent to an
infinite disjunction of first order formulas: equidecomposable by n-triangles for each
n. Normal (unformalized) mathematics proves (in set theory) that such statements
as De Zolt (1.1) are true in every model of HP5 [Har00, Proposition 23.1.d]; neither
the measure of area function nor the equicomplementability are first order definable
notions.

4. The role of Archimedes

While Euclid (or his successors) had postulated through the common notions,
that there was general theory of magnitudes that in particular applied to both area
and volume, there was divergence in his treatment of the two.

Remark 4.1. While Euclid implicitly20 gives a formula for the area of triangle, he
uses the method of exhaustion to show ‘triangular pyramids of the same angle are
to each other as to their bases.’ Removing such limit processes is one of the goals
of 19th century rigorizing.

In the last decades of the 19th century such geometers as Stolz, Schur, and De
Zolt were well aware of using the Archimedean axiom21 One of Hilbert’s achieve-
ments was to clarify exactly where the Axiom of Archimedes is needed in geometry.
His third problem asked whether this role changed in passing from two to three
dimensions.

Fact 4.2 (Wallace-Bolyai-Gerwien Theorem). Two polygons in an Archimedean
plane are equidecomposable (scissors congruent) if and only if they have the same
measure of area.

The analog in three dimensions would drop the hypothesis of same Dehn invari-
ant. But Hilbert’s third problem suggested and Dehn proved that that is impossible.

Fact 4.3 (Dehn-Snyder Theorem). Two polyhedra in <3 are scissors congruent iff
they have the same volume and the same Dehn invariant.

Dehn [D] proved in 1901 that equality of the Dehn invariant is necessary for
scissors congruence. Snyder proved the converse forty years later. The cube has
Dehn invariant 0 (and tiles the 3-space). The other Platonic solids have non-zero
invariant and do not tile22 3-space.

Dehn’s theorem is a counterexample to the linear ordering consequence of De Zolt
for polyhedra in three dimensions. While Archimedes is needed in two dimensions,
it does not suffice in three.

19For a suitable vocabulary see [Bal18b, 9.3.5] or [Bal18a].
20He doesn’t measure area so he shows only area is proportional to height and base.
21Stolz coined the name in 1881. See [Gio21, Ehr06].
223-space can be tiled by tetrahedra if they are not required to be regular.
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As we formalize in Definition 5.5 there are two distinct issues. 1) De Zolt’s axiom
can be seen as a clarification of Euclid’s common notion 5, the whole is greater than
the part23. That hypothesis provides a strict partial order of the polygons. 2) De
Zolt explictly asks for a linear order (trichotomy property) of equivalence classes by
decomposition. He claimed to prove this from his axiom. We note in Corollary 5.10
that without the axiom of Archimedes this is just false.

5. General Framework

As promised in the introduction, we establish a general framework for the study
of ‘equivalent geometric magnitudes’.

Definition 5.1 (General framework). Let n = 2 or 3.

(1) An atom is an n-dimensional convex hull of n+ 1 points in n-space.
(2) A figure in n-space is a non-overlapping (intersection cannot have an inte-

rior) union of atoms.
(3) A figure P is contained is another Q if Q is a non-overlapping union of P

and a figure R.
(4) An equivalence relation E on figures is admissible if

(a) Congruent atoms are E-equivalent (i.e. CN4);
(b) For disjoint figures P, P ′ and Q,Q′, if E(P, P ′) and E(Q,Q′), then

E(P ∪Q,P ′ ∪Q′) (i.e. CN2).
(5) The De Zolt order with respect to an admissible equivalence relation on

figures with non-empty interior is defined by [P ] < [Q] if (∃R)[Q] = [P+R].

We have written ‘atom’ to have a common term for triangle in the plane and
tetrahedron in three space. Thus a figure will be a non-overlapping union of trian-
gles (tetrahedra) in the plane (3-space). Thus each figure has non-empty interior.
Whether the De Zolt order is strict or satisfies trichotomy depends very much on
the choice of equivalence relation.

After introducing the idea of equicomplementability (equal content) and proving
Euclid I.35 (triangles with same base and equal height are equicomplementable),
[Hil62, p. 61] writes ‘the discussion so far leaves it still in doubt whether all poly-
gons are not, perhaps, of equal content.’ He elaborates by asking for a proof that a
rectangle is ‘definitely determined by means of one side and its area’. The answer-
ing proof [Hil62, §18] requires defining a measure of area function. For this, Hilbert
[Hil62, §15] introduces an algebra of segments24 where both addition and multiplica-
tion are associative and commutative and multiplication distributes over addition.
There are quotients but no additive inverse, 0 or 1. Contrast the properties of a
field discussed in §13 and the weaker conditions in §15 of [Hil62]. These differences
(except not fixing 1) are essential since the domain is non-empty segments. Then
he introduces the following measure of area function.

He now defines the measure of area of a triangle with base a segment b and
height a segment h to be bh

2 . He proves25 any polygon can be decomposed into a
finite number of disjoint triangles and assigning the measure of the polygon to be

23But De Zolt did not see it that way [Gio21, §3.2].
24This was first done in [Sto85]. Clearly Stolz didn’t call the result a field since the term was

only coined by Weber in 1893 https://en.wikipedia.org/wiki/Field_(mathematics)#History.
25This proof is only sketched; Hartshorne provides a full proof in [Har00, §17,§22, §23]. This

proof uses rigid motions which he proves to exist under weaker hypotheses than Hilbert plane.
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the sum of the measures of the triangles is well-defined. [Hil62, §20,§21] proves,
without applying Archimedes axiom that triangles have equal content if and only if
they have equal measures of area and that this result extends to polygons.

Hilbert’s claim26 that this is a geometric proof is bolstered by his not defining a
field or even saying ‘multiplication is a cancellative semigroup’ but just laying out
the essential geometric machinery.

Remark 5.2 (Three ways to assign measure to area ).

global method: Fix a unit; say, a square; tile the plane with congruent
squares. Then to measure a figure, continually refines the measure by
cutting the squares in quarters and counting only those (possibly fractional)
squares which are contained in the figure.

local method: (Hilbert) Triangulate a figure with finitely many triangles,
which are each assigned area

Euclidean Geometry: bh
2

Hyperbolic Geometry: (0, δ) or (1, δ) depending on the size of the
defect δ

and the area of the figure is the sum of the areas of the triangles.
representative method: Fix a representative of each equivalence class.

The first two are described in [Bol78, §5](See [Har00, §36] for the hyperbolic case.);
we introduce the third – choose a specific congruence class that is determined by
the length of one side –in Theorem 5.7. The methods extend to volume in three
space.

We slightly vary Hartshorne’s general definition:

Definition 5.3. A measure of area function on figures in n-space is a function α
with values in an ordered semigroup G27 satisfying:

(1) Congruent atoms have the same value.
(2) For disjoint figures P,Q, α(P ∪Q) = α(P ) + α(Q).

Like Hilbert in[Hil62, §13] and unlike [Har00, 205], who posits a linearly or-
dered group28, we require only that G is a linearly ordered semigroup (associative
binary operation), with no notion29 of positive and negative or even a 0, and no
multiplication.

That is, the algebra of segments depends only on concatenation of intervals to
define addition. We do not use Hilbert’s definition of multiplication.

Returning to the general case we define some relevant equivalence relations.

Definition 5.4. (1) Two figures P, P ′ are equidecomposable if they each can
be written as a non-overlapping union of the same number of pairwise con-
gruent atoms.

26Hilbert makes much of avoiding Archimedes and using only the first order axioms of plane
geometry (Hilbert’s first four groups.) at [Hil62, pg 69-70] and he objects to Euclid’s appeal to
general axioms about magnitudes on [Hil62, pg 62]. Perhaps his aim is not to avoid ‘algebra’ but

to avoid any principles far from geometry – like common notions.
27[Hil62] does not introduce the term semigroup. This is unsurprising since the term only

came into use in the next decade [Hol14]. But Hilbert was avoiding such an algebraic slant. An
ordered semigroup is a structure (∗, <) such that ∗ is associative and satisfies (∀x, y, z)x < y →
(xz < yz ∧ zx < yz).

28This is needed for the hyperbolic case considered later.
29If one considers a semigroup with 0, we would demand that α map into the positive cone.
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(2) Two figures P, P ′ are equicomplementable if there are other figures Q,Q′

such that:
(a) P and Q are non-overlapping;
(b) P ′ and Q′ are non-overlapping;
(c) Q and Q′ are equidecomposable
(d) P ∪Q and P ′ ∪Q′ are equidecomposable.

(3) Two figures P, P ′ are equimeasured (by α) if there is a measure of content
function α into a semigroup such that α(P ) = α(P ′)

(4) For a subgroup G of the group of rigid motions of the space, two figures
P, P ′ are G-equivalent if there is g ∈ G with g(P ) = P ′.

The proof of [Har00, 22.4], points out that in 2) Q and Q′ can be taken disjoint.
We explore various admissible equivalence relations below to understand the

interactions between the following properties. We introduce new terminology to
give a general description of one of the main results of the first two books of Euclid.
In particular, we describe as a scale a figure whose congruence class is determined
by the length of either one (e.g. a regular polygon) or two (rectangles with fixed
height) sides.

Definition 5.5. (1) A figure type30 A is an explicit description of a figure
given by a first order formula; e.g. square, triangle, regular pentagon, rec-
tangle with a fixed height.

(2) A figure type A is a scale31 if whenever P, P ′ each satisfy A and
1-parameter case: If one side32 of P is congruent to one side of P ′

or 2-parameter case: If a designated segment (e.g. height) of P and
of P ′ is congruent to a segment AB, fixed by naming constants, and
separate distinguished segments 33 of P (e.g. the base) and of P ′ are
congruent

then P and P ′ are congruent.
(3) An equivalence relation on figures is scaled (by a scale A) if every equiva-

lence class contains at least an instance of A.
(4) A scaled equivalence relation E on figures is well-scaled (by a scale A) if

P, P ′ satisfy A and E(P, P ′) implies P ≈ P ′. (Here and below P ≈ P ′

means P and P ′ are congruent.)

By Definition 5.5.1.a, inHP5 rectangle with a fixed height is a scale for equicom-
plementability ([Euc56, Proposition I.44] ) and in EG so is square ([Euc56, Propo-
sition II.14]). Note that the distinguished edge determines the congruence class
but the equivalence class of the figure may not determine its congruence class. For
example, [Euc56, Proposition II.14] does not guarantee that all squares ‘equal to a
given regular figure’ are congruent but only that there is at least one such square.
So well-scaled is stronger than scaled.

30In Euclid’s Data, he calls a similar notion of figures given in species.
31The definition of scale does NOT depend on an equivalence relation but is a property of a

figure type.
32Perhaps the only examples are regular polygons and regular polyhedra.
33Example: Let the figure type be: rectangle of fixed height (designated segment). Take the

distinguished segment as base. The defining formula φ(A,B, x1, y1, y2, x2) asserts that the xi, yi
are the vertices of a rectangle, x1x2 = AB and y1, y2 the distinguished segment. If the figure is a

square, there is no need to distinguish.
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Definition 5.6. (1) De Zolt’s axiom holds with respect to an admissible equiv-
alence relation, E, on figures means: If Q is a figure contained in another
figure P , and if P − Q has non-empty interior then P and Q are not E-
equivalent.

(2) We write34 [P ] 6 [Q] if there exists a figure R with non-empty interior such
that E(P +R,Q).

Now the main theorem is the following two statements, which are essentially
converses.

Theorem 5.7. Work in neutral geometry.

(1) If E is well-scaled by A then there is measure of area function α for E, the
equivalence classes are linearly ordered, and E satisfies De Zolt.

(2) If E is scaled by a scale A and E satisfies De Zolt, E is well-scaled.

Proof. 1) Since E is scaled, there is a representative of A in each equivalence
class. Since E is also well-scaled we can define a function α′ from figures to the
congruence class of figures of type A: α′(P ) is the unique congruence class of A
in [P ]E and thus determines the length of the distinguished segment. But, by
Definition 5.5.2) the correspondence between length of the distinguished segment
and congruence class is a bijection. So by setting the measure of area function α(P )
equal to the length of the distinguished side of α′(P ), the ordering of line segments
gives a linear ordering of (equivalence classes of) polygons which satisfies De Zolt.

2) Suppose P and P ′ are E-equivalent and both satisfy A but they are not
congruent. Then by Definition 5.5.2 the designated sides are not congruent and
without loss of generality the designated side AB is congruent to a subsegment of
A′B′. But then P ′ − P has non-empty interior and by De Zolt P ′ 6≈ P . That
is, each equivalence class contains (up to congruence) a unique figure satisfying A.

5.7

Corollary 5.8. If the plane π satisfies

(1) HP5 and the rectangle property (Definition 2.2) for equicomplementation
(2) or EG and the squares property (Definition 2.2) for equicomplementation

then equicomplemenation satisfies De Zolt and there is a measure of area function
on π.

Proof. By I.44 (II.14) of [Euc56], equicomplementation is scaled by rectangles
with fixed height (squares35). The rectangle (squares) property says each equiv-
alence class contain only congruent rectangles (squares) and so the equivalence
relation is well-scaled. and the result follows by Theorem 5.7.1. 5.7

We now illustrate the necessity of the two conditions in the theorem.

Lemma 5.9. There is a model of EG where Equidecomposition is not scaled by
squares.

Proof. We show there is a plane π satisfying HP5 and indeed EG with a paral-
lelogram EBCF that is not equidecomposable with a square. Consider a Cartesian
plane π over a non-Archimedean elementary36 extension F of the reals <. We say
a point A in π is standard or finite, if A is in <.

34For any F , [F ] indicates the E-equivalence class of F .
35[Har77, p. 205] notes that circle-line intersection is used in the proof.
36F satisfies the same first order sentences as <. In particular F is a Euclidean field.
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Figure 2. Euclid I.35

Using the diagram for Euclid I.35, suppose A,B,C,D are finite (standard) but
E and F are not; although the length of EF must be standard since EF ≈ BC.
Now we know ABCD is equidecomposable with a (standard) square, since all its
sides are in the real field and Theorem 4.2 applies.

Since π |= HP5, Hilbert’s measure of area function gives the same finite area
to both ABCD and EBCF . But EBCF is not equidecomposable with any finite
square because it has a side of infinite length so finitely many triangles cannot ex-
haust the perimeter. But then EBCF is not equidecomposable with any square.
This holds because de Zolt implies that if there is a square representing an equiva-
lence class, it is unique up to congruence. 5.9

Corollary 5.10. The proof of Theorem 5.7.2 requires the ‘scaled’ hypothesis.

Proof. In every model of HP5, Equidecomposition satisfies De Zolt, (since it
refines equicomplementability which does. But Lemma 5.9 shows not every figure
is equidecomposable with a square and so there is no measure of area function that
witnesses equidecomposition (unless we assume Archimedes). So equidecompostion
is not scaled. Consider the two parallelograms in Lemma 5.9. They have the
same area by Hilbert’s measure of area function, but are not equidecomposable.
Thus, they are incomparable under the De Zolt order, Definition 5.1.4, as DeZolt
comparable classes cannot have the same measure of area 5.10

Remark 5.11. We give two further examples
1) Declaring all figures equivalent is an admissible equivalence relation that fails

De Zolt and does not have a non-trivial measure of area function.
3) Let T be the group of translations of real 3-space. ET where T is the group

of translations satisfies De Zolt but not represented and refines equidecomposition
[Bol78, §10]. This gives an Archimedean example where De Zolt does not imply lin-
early ordered (or existence of measure) showing both De Zolt and scaled are essential
for Theorem 5.7.1 even in the Archimedean case.

6. Geometric Proof and Purity

Hilbert is careful to describe his argument in geometric terms. Multiplication in
an ‘algebra of segments’ defines the area of a triangle as bh

2 . The most ‘algebraic’
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component of the proof is the use of proportionality in both [Hil62, §20] and [Har00,
Lemma 23.3]. But this is not essential.

Theorem 6.1. Any of the three choices of base for a triangle give the same value
for the product of the base and the height.

Figure 3. Area of Triangle Independent of Choice of Base

Proof. Take triangle ABC. Choose an arbitrary side, say a. Draw the midline
EF parallel to side a. The height ha perpendicular to a is bisected by the midline
at G (or by its extension).

Rotate triangle AEF about point E to get parallelogram BCFH with base a
and height ha

2 . HC divides the parallelogram into two congruent triangles (BCH

and FHC) with base a and height ha

2 and therefore area 1
2 ×

aha

2 , so the area of

the parallelogram BCFH is aha

2 .
Since that is done without preference of base, the argument is valid for the other

two sides and corresponding heights of the triangle, giving the second and third
area formulas as bhb

2 and chc

2 . All three measure areas of parallelograms with equal
content as triangle ABC.

This shows that the triangle area formula 1
2 (base)(height) is independent of

choice of base.

The scale function in Theorem 5.7 is still more geometric as it avoids the def-
inition of multiplication altogether. The argument of Theorem 5.7 requires only
the structure of an ordered additive semigroup. Moreover, it does not require
Archimedes.

The Hartshorne problem can also be regarded as an issue of purity. Here is a
similar example of a ‘more geometric’ proof. Hilbert proved that plane is Desar-
guesian if and only if it is embedded in three space. And argued that this showed
that ‘3-space’ was an impure component of the traditional proof. But his argument,
[Hil62, §29], was scarcely ‘geometric’ since he defines a ‘Desarguesian number sys-
tem’ on a line and performs two pages of algebraic calculations with linear equations
in three variables. Baldwin and Howard [Bal13, appendix] gave a direct geomet-
ric argument that a Desarguesian projective plane π can be embedded in a three
dimensional geometry.
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Remark 6.2 (Conclusion). Hartshorne’s question asks about the significance of the
existence of a measure of a area function in establishing the theory of area. Equide-
composablity and thus equicomplementability are described by infinite disjunctions
of first order formulas. Thus, (as grasped by De Zolt), non-equidecomposablity is
a treacherous notion; to establish it requires checking infinitely many possibilities.
Moreover, these possibilities are too wild to support an induction. Hilbert’s com-
putation of the measure of area also has infinitely many cases depending on the
number of vertices of the figure and the number of triangle in the triangulation.
But, regardless of the number of triangles, the measure does not depend on the
triangulation37. That is exactly what it is summarised by saying measure of area
is a function. Some such uniformity is needed to prove De Zolt.

Any well-scaled equivalence relation will work. But, like Hartshorne, we see a
complete proof only for Hilbert’s.
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