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Steiner systems and quasi-groups
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Steiner Systems

A Steiner system with parameters t , k ,n written t − S(n, k ,1) is an
n-element set S together with a set of k-element subsets of S (called
blocks) with the property that each t-element subset of S is contained
in exactly one block.

We begin with t = 2 and allow infinite n.
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Some History

For which n’s does an 2− S(n, k ,1) system exist?
for k = 3

Necessity:
n ≡ 1 or 3 (mod 6) is necessary.
Rev. T.P. Kirkman (1847)

Sufficiency:
n ≡ 1 or 3 (mod 6) is sufficient.
(Bose 6n + 3, 1939); Skolem ( 6n + 1, 1958)
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Linear Spaces

Definition: linear space
The vocabulary contains a single ternary predicate R,
interpreted as collinearity. A linear space satisfies

1 R is a predicate of sets (hypergraph)
2 Two points determine a line

α is the iso type of ({a,b}, {c}) where R(a,b, c).

Groupoids and quasi-groups
1 A groupoid (magma) is a set A with binary relation ◦.
2 A quasigroup is a groupoid satisfying left and right cancelation

(Latin Square)
3 A Steiner quasigroup satisfies

x ◦ x = x , x ◦ y = y ◦ x , x ◦ (x ◦ y) = y .

John T. Baldwin University of Illinois at ChicagoInfinite Combinatorics from Finite structures PALS Seminar, BoulderFebruary 20, 2024 5 / 41



The connection between Steiner systems and
quasigroups

1 Every Steiner triple system is a quasigroup.
I.E. R is the graph of ◦.

2 Every pi -Steiner system admits a compatible quasigroup
structure. [GW75]

3 The [BP21] strongly minimal pi -Steiner systems are not
quasigroups (unless pi = 3) [BV24].

4 There are strongly minimal Steiner groups (A,R, ∗), that induce
q-Steiner systems for every prime power q [Bal23].
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Constructing infinite block designs: Amalgamation Classes
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Constructing generic models
≤-amalgamation Classes
A ≤-amalgamation class (L∗0,≤) is a collection of finite structures for a
vocabulary σ (which may have function and relation symbols)
satisfying [BS96]:

1 ≤ is a partial order refining ⊆.
2 ≤ satisfies joint embedding and amalgamation.
3 A,B,C ∈ L∗0, A ≤ B, and C ⊆ B then A ∩ C ≤ C.
4 L∗0 is countable

Theorem
For a ≤-amalgamation class, there is a countable structure M, the
generic model, which is a union of members of L∗0, each member of L∗0
embeds in M, and M is ≤-homogeneous.

For Fraı̈ssé, the language is finite relational, the class is closed under
substructure, and ≤ is ⊆.
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Existentially closed 3-Steiner Systems

Barbina-Casanovas
[BC19] Consider the class K̃ of finite structures (A,R) which are
each the graph of a Steiner quasigroup (2− (n,3,1) system).

1 K̃ has ap and jep and thus a limit theory T ∗sq.
2 T ∗sq has

1 quantifier elimination
2 2ℵ0 3-types;
3 the generic model is prime and locally finite;
4 T ∗sq has TP2 and NSOP1.

Key foundation: Every partial finite Steiner triple system can be
embedded in a finite Steiner triple system. [Tre71]
See [Bal] for a 2009 survey of Hrushovski constructions.
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Classification of first order theories

Gabe Conant’s diagram
John T. Baldwin University of Illinois at ChicagoInfinite Combinatorics from Finite structures PALS Seminar, BoulderFebruary 20, 2024 9 / 41



Omitting classes of Steiner quasigroups

Horsley- Webb

Consider the class K̃ of finite structures (A, ∗) which are
Steiner quasigroups that are F -free (omit a family F of finite nontrivial
STS) and good (there exists an A ∈ K which neither extends nor
embeds in any member of F ).

1 K̃ has ap and jep and thus
2 K̃ has a countable locally finite generic model.

On locally finite quasigroups their homogeneity is the model theorists
ultrahomogeneity. Thus their construction gives 2ℵ0 countable (ℵ0
categorical) Steiner systems.

Question
Where do they fit on the map?

If F = ∅, this is T ∗sq. The others should be nearby.
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Strongly Minimal Theories
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STRONGLY MINIMAL

Definition
T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition
a is in the algebraic closure of B (a ∈ acl(B)) if for some φ(x ,b):
|= φ(a,b) with b ∈ B and φ(x ,b) has only finitely many solutions.

Theorem
If T is strongly minimal, algebraic closure defines a
matroid/combinatorial geometry.
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Combinatorial Geometry: Matroids
The abstract theory of dimension: vector spaces/fields etc.

Definition
A closure system is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following axioms.
A1. cl(X ) =

⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X )
A3. cl(cl(X )) = cl(X )

(G, cl) is pregeometry if in addition:
A4. If a ∈ cl(Xb) and a 6∈ cl(X ), then b ∈ cl(Xa).

If cl(x) = x the structure is called a geometry.

Usually this acl pre-geometry is not definable.

John T. Baldwin University of Illinois at ChicagoInfinite Combinatorics from Finite structures PALS Seminar, BoulderFebruary 20, 2024 12 / 41



Constructing Strongly minimal Steiner systems
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The trichotomy

Zilber Conjecture
The acl-geometry of every model of a strongly minimal first order
theory is

1 disintegrated (lattice of subspaces distributive) (Z,S)

2 vector space-like (lattice of subspaces modular) (Q,S)

3 ‘bi-interpretable’ with an algebraically closed field (non-locally
modular) (C,+,×)

Hrushovski disproved the conjecture by providing a method to
construct strongly minimal sets that have flat geometries, admit no
associative binary function, and more.
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The flexibility of the Hrushovski construction

The ‘Hrushovski construction’ actually has 5 parameters:

Describing Hrushovski constructions
1 σ: vocabulary L∗0 is the collection all finite σ-structures.
2 L0: A ∀∃ axiomatized subclass of L∗0
3 ε: A function from L∗0 to Z that induces a dimension on the

definable subsets of the generic.
4 L0 ⊆ L∗0 defined using ε.
5 Lµ: the A ∈ L0 satisfying that the number of 0-primitive (B/C) are

bounded by µ(B/C).

Choosing nice classes U of µ yields a collection of Tµ with similar
properties.

For Hrushovski, the ‘standard’ U is U = {µ : µ(C/B) ≥ δ(B)}.
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Obtaining strong minimality

Primitive Extensions and Good Pairs

Let A,B,C ∈ K0.
(1) C is a 0-primitive extension of A if C is minimal with δ(C/A) = 0.

(2) C is good over B ⊆ A if B is minimal contained in A such that C is
a 0-primitive extension of B. We call such a B a base.

Bounding realization of good pairs
1 For any good pair (C/B), χM(B,C) is the maximal number of

disjoint copies of C over B appearing in M.
2 For µ ∈ U , Kµ is the collection of M ∈ K 0 such that
χM(A,B) ≤ µ(A,B) for every good pair (A,B).

This guarantees strong minimality.
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Strongly minimal linear spaces

Definition
A k -Steiner system is a 2− (n, k ,1) block design (i.e. has n-elements,
blocks (lines) with k elements, and 2 points determine a line).

Fact
Suppose (M,R) is a strongly minimal linear space where all lines have
at least 3 points. There can be no infinite lines.

An easy compactness argument establishes

Corollary
If (M,R) is a strongly minimal linear system, for some k , all lines have
length at most k .

The construction with µ(α) = q − 2 gives a q-Steiner system.
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Hrushovki’s basic construction vs Steiner

The relations are all taken as hypergraphs -define sets not sequences.

Example
1 σ has a single ternary relation R;
2 L0: All finite σ-structures

finite linear spaces
3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.
δ(A) = |A| −

∑
`∈L(A)(|`| − 2).

4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A.
Replace ε by δ.

5 U is those µ with µ(A/B) ≥ ε(B).
with the exception: µ(α) = q − 2 gives line length q.

Here α is the primitive extension A/B where B = {a,b} and
A = {a,b, c} with R(a,b, c).
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Strongly minimal Steiner Systems Exist

Theorem (Baldwin-Paolini)[BP21]
For each k ≥ 3, there are an uncountable family Tµ for µ ∈ U , of
strongly minimal 2− (κ, k ,1) Steiner-systems.

There is no infinite group definable in any Tµ.
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Highly Transitive Block Designs
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Motivation
1 Combinatorics:

[Eva04] proves ‘For all reasonable finite t, k and s we construct a
t − (ℵ0, k ,1) design and a group of automorphisms which is
transitive on blocks and has s orbits on points.’
He suppresses the model theory and the paper appeared in the J.
of Combinatorial design.

2 Model Theory:

Definition
[FM23] (Degree of nonminimality of a stationary type in a stable
theory) Given a stationary type p ∈ S(A), in a stable theory T with
U(p) > 1, the degree of nonminimality, nmdeg, of p is the minimal
length n of a sequence of realizations of the type p, say a1, . . . ,an such
that p has a nonalgebraic forking extension over a1, . . . ,an.

It is known that such an n exists. The goal is to discover
conditions on T to give uniform bounds for nmdeg(p).
Freitag discovered that ‘high transitivity’ is the key criteria.
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Highly Transitive Block Designs

Definition
A t − (v , k , λ) design is a set P of points, of cardinality v, together with
a set B of blocks each of which is a k -element subset of P, and which
has the property that any set of t points is a subset of exactly λ blocks.
An automorphism of the design (P,B) is simply a permutation of P
which sends blocks to blocks.

Theorem
For every r , k < ω there are ℵ1-categorical theories Tr ,k ,µ whose
models are t − (κ, k ,1) block designs that have two orbits of s-sets for
s ≤ t .

(joint work with Freitag and Mutchnik) by varying the parameters of the
Hrushovski construction.
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Hrushovki’s basic construction vs Highly Transitive

Requirements
For a theory Tn,k

1 σ has a single ternary relation R;
σ has a single r -ary relation R and a unary P;

2 L0: All finite σ-structures
finite r -space: r − 1 pts determine a curve

3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.
δ(A) = 2× |A| − |P(A)| −

∑
`∈L(A)(nA(`)

4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A.
Replace ε by δ. To get (almost) k transitivity: for |A| ≤ k , forbid
all B from L∗0 such that B ⊇ A and δ(B/A) < 0.

5 U is those µ with µ(A/B) ≥ ε(B).
µ(α) = q − (r − 1) gives line length q.
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Highly Transitive Block Designs: result

Theorem
For every r , k ≥ r , there is an almost strongly minimal theory Tr ,k with
two sorts P and ¬P such that for any M |= Tr ,k with |M| = κ

1 M is a τ -structure where τ has an r -ary relation R and a unary
predicate P.

2 M ⊆ acl(P(M) ∪ a) for a finite sequence a;
3 M is the universe of an (r − 1)− (κ, κ,1) design and the restriction

to a strongly minimal subset P, is an (r − 1)− (κ, k ,1) design.
There are two orbits on points: P and ¬P, the action of aut(M) is
transitive on blocks.

4 Moreover for each s ≤ r , the action of aut(M) (in P and in ¬P is
transitive on s element sets.

5 For Tr ,k ,µ the complete type over ∅, p, given by ¬P(x) has
nmdeg(p) = Find(p) = r − 1.
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Small Intersection Property
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Largeness in permutation groups

Let M be a countable infinite structure, G := autM.
G is a topological (Polish) group under pointwise convergence:
basic open sets are cosets of stabilizers of finite tuples over M

Gm1,...,mk := {g ∈ Gstg(mi) = mi for all i ≤ k}.

M has the small index property (SIP) if each H ≤ G of index
< 2ℵ0 is open.
G has uncountable cofinality if it is not a countable union of a
chain of proper subgroups.
G has the Bergman property if for each generating set
1 ∈ E = E−1 of G there exists k ∈ N such that G = Ek .
G has ample generics if for each n ∈ N the conjugacy action of G
on Gn has a comeager orbit (i.e. one containing the intersection of
countably many dense open subsets of Gn).
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Variants on SIP
tp(a/B) is the collection p of formulas φ(x;b) such that |= φ(a/B). M
realizes p if some a ∈ M satisfies p.
M is κ-saturated if every type of any B ⊂ M with |B| < κ is realized in
M.
For uncountable saturated M, aut(M) has sip [LS93].
|M| = ℵ0

1 M ℵ0-saturated.
2 M is ℵ0-categorical.

Each of 1) and 2) have some M with and some without sip.
We consider 1)

1 SIP Fails for the countable saturated model of algebraically closed
fields and for Q. [Las02]

2 True for the countable saturated model of the infinite rank ω-stable
Hrushovski construction.
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In general if aut(M) has sip, the group structure determines determines
the Polish topology on autM.
For countable M

Theorem (Kechris, Rosendal 2007)
1 Ample generics imply SIP.
2 For ω-categorical M, ample generics imply uncountable cofinality

and the Bergman property for autM.
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Some countable examples

SIP
uncountable

cofinality
Bergman

ample
generics

(N,=)
Dixon
Neumann
Thomas ’86

Macpherson
Neumann ’86 Bergman ’06 Kechris

Rosendal ’07

random
graph

Hodges
Hodkinson
Lascar
Shelah ’93

Hodges
Hodkinson
Lascar
Shelah ’93

Kechris
Rosendal ’07 Hrushovsky ’92

(Q,≤) Truss ’89 Gourion ’92 Droste
Holland ’05 no, Hodkinson

free group
of rank ω

Bryant
Evans ’97

Bryant
Evans ’97 Tolstykh ’07 Bryant

Evans ’97

Cantor
space

Truss ’87 Droste
Göbel ’05

Droste
Göbel ’05 Kwiatkowska ’12
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The model theoretic universe

Gabe Conant’s diagram
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Hrushovki’s basic construction vs SIP for infinite rank

Example
1 σ has a finite relational language;
2 L0: All finite σ-structures

SAME
3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.

Count each relation symbol
4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A. SAME
5 U is those µ with µ(A/B) ≥ ε(B).
µ(α) = q − 2 gives line length q. OMIT

preprint of Ghadernezad shows

Theorem
The generic structure (ω-saturated) (L∗, ε) structure has SIP
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Questions on SIP

Question
Which if any of the following have sip?

1 Strongly minimal Steiner Systems? [BP21]
2 Almost strongly minimal (M = acl(D(M)) D strongly minimal)

1 The asm projective plane [Bal94]
2 The asm highly transitive structures above

3 Stable ‘Hrushovki structures’
1 Spencer-Shelah random graph [BS97]
2 Hrushovski’s strictly stable ℵ0-categorical theory [Her95]

Note that Lascar [Las92] proves an ‘almost sip’ for strong types.
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Coordinatization by varieties of algebras
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2 VARIABLE IDENTITIES

Definition
A variety is binary if all its equations are 2 variable identities: [Eva82]

Definition
Given a (near) field (F ,+, ·,−,0,1) of cardinality q = pn and an
element a ∈ F , define a multiplication ∗ on F by

x ∗ y = y + (x − y)a.

An algebra (A, ∗) satisfying the 2-variable identities of (F , ∗) is a
block algebra over (F , ∗)

This block algebra is a Steiner quasigroup with cardinality q.
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Coordinatizing Steiner Systems

Weakly coordinatized
A collection of algebras V ‘(weakly) coordinatizes’ a class S of
(2, k)-Steiner systems if

1 Each algebra in V definably expands to a member of S
2 The universe of each member of S is the underlying system

of some (perhaps many) algebras in V .

Coordinatized
A collection of algebras V definably coordinatizes a class S of
k -Steiner systems if
in addition the algebra operation is definable in the Steiner system.
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Coordinatizing Steiner Systems

Key fact: weak coordinatization [Ste64, Eva76]
If V is a variety of binary, idempotent algebras and each block of a
Steiner system S admits an algebra from V then so does S.

Theorem
[] [GW75, GW80] For each q, the class of q-Steiner systems is
(weakly) coordinatized by a (2,q)-variety V of block algebras

Can this coordinatization be definable in the strongly minimal (M,R)?
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No nontrivial definable binary functions [BV24]
dcl∗(X ) = dcl(X )−

⋃
Y(X dcl(Y ).

Theorem
Let Tµ be a strongly minimal theory as in original construction or
Steiner type. I.e. µ ∈ U = {µ : µ(A/B) ≥ δ(B)}). Let I = {a1, . . . ,av}
be a tuple of independent points with v ≥ 2.
GI If Tµ triples, i.e.

µ ∈ {µ : µ(A/B) ≥ 3}

then dcl∗(I) = ∅, dcl(I) =
⋃

a∈I dcl(a), and every definable function
is essentially unary.

G{I} In any case sdcl∗(I) = ∅, sdcl(I) =
⋃

a∈I sdcl(a)
and there are no ∅-definable symmetric (value does not depend
on order of the arguments) truly binary functions.

Thus for any µ ∈ U , Tµ does not admit elimination of imaginaries
and the algebraic closure geometry is not disintegrated.
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Necessary Definitions

Definition
1 [Pad72] An (r , k) variety is one in which every r -generated algebra

has cardinality k and is freely generated by every r -element
subset.

2 Mikado Variety A variety V of binary, idempotent algebras, (2, k)
algebras is called Mikado.
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Constructing a strongly minimal quasigroup

Definition: K q

1 Fix a prime power q and a Mikado variety V of quasigroups such
that F2, the free algebra in V on 2 generators has q elements.

2 σ has two ternary relations R,H.
3 Let K q

V be the collection of finite A such that (A,R)- is a q-linear
spaces A, with (`,H) a copy of the free V algebra on two
elements, H holds only between elements of a line.

4 Any collinear triple extends to a q-element clique. (A ∀∃ sentence.)

Since V is axiomatized by 2-variable equations, if A′ ∈ K q
V , A′�H is the

graph of an algebra in V . In the generic model each pair is included in
a q-element line; but not in the finite structures.
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